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It has recently been demonstrated analytically that the two-point correlation function for pairs of
neutrinos may contain information about the size of the protoneutron star formed in a Galactic core-
collapse supernova. The information about the size of the source emerges via the neutrino equivalent of
intensity interferometry originally used by Hanbury-Brown and Twiss with photons to measure the radii of
stars. However the analytic demonstration of neutrino intensity interferometry with supernova neutrinos
made a number of approximations: that the two neutrinos had equal energies, that the neutrinos were
emitted at simultaneous times from two points and that they were detected simultaneously at two detection
points that formed a plane with the emission points. These approximations need to be relaxed in order to
better determine the feasibility of neutrino intensity interferometry for supernovae neutrinos in a more
realistic scenario. In this paper we further investigate the feasibility of intensity interferometry for
supernova neutrinos by relaxing all the approximations made in the earlier study. We find that, while
relaxing any one assumption reduces the correlation signal, the relaxation of the assumption of equal times
of detection is by far the largest detrimental factor. For neutrino energies of order ∼15 MeV and a
supernova distance of L ¼ 10 kpc, we show that in order to observe the interference pattern in the two-
point correlation function of the neutrino pairs, the timing resolution of a detector needs to be on the order
of ≲10−21 s if the initial neutrino wave packet has a size of σx ∼ 10−11 cm.
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I. INTRODUCTION

The neutrino signal from a Galactic core-collapse super-
nova is expected to be rich with information about the
sequence of events that occur during the explosion and
with information about the properties of the neutrino. The
information is imprinted via the time, energy and flavor
composition of the signal. For recent reviews of what we
may learn from the neutrino signal from the next Galactic
supernova we refer the reader to the reviews by Scholberg
[1], Mirrizzi et al. [2], and Horiuchi and Kneller [3]. In
addition, it was recently shown by Wright and Kneller
(W& K) [4] that there might also be information about the
supernova and the neutrino in another channel: the sepa-
ration in space between simultaneously detected events.
The origin of this effect is simply the interference between
the two possible pairs of paths from two emission points
on the neutrinosphere to the two detection points. This is
the same interference effect used originally by Hanbury-
Brown and Twiss [5] with photons to measure the radii of
stars [6] and is known as HBT or intensity interferometry.
This technique has since been used to measure the emission
region of many other systems (see Baym [7] for examples),

and it has also been previously suggested as a method for
determining theMajorana or Dirac nature of the neutrino [8].
In a simplified calculation, W& K showed how intensity

interferometry using supernova neutrinos could be used to
determine the size of the source—i.e., the neutrinosphere—
for a supernova at a distance of 10 kpc using neutrinos with
an energy of orderE ∼ 10 MeV in detectorswith dimensions
of order tens to hundreds of meters. They found that as long
as the initial neutrino wave packet was not smaller than
∼10−12 cm and the neutrino mass was not less than
∼10−8 eV, spatial variation of the two-particle correlation
function was visible on the scale of typical neutrino detector
dimensions and thus it seemed possible to measure the
neutrinosphere radius given sufficient statistics and detector
time resolution. However in order to draw that conclusion,
W& K made a number of approximations in order to make
their analysis tractable. They assumed that the two neutrinos
had equal energies, that the neutrinos were emitted at
simultaneous times from just two points, and that they were
detected simultaneously at two detection points that formed a
planewith the two points of emission. These approximations
need to be relaxed in order to determine whether W& K’s
optimism that the technique could yield useful information is
justified within a more realistic scenario.
The goal of this paper is to further explore the

phenomenon of neutrino intensity interferometry and its
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application to supernova neutrinos by relaxing the assump-
tions that went in to the W& K analysis. To investigate the
larger parameter space we construct a sample of event pairs
using a Markov-chain Monte Carlo algorithm and compute
the statistics of the sample as a function of 11 parameters
that describe the two-particle wave packet. Our paper is
structured as follows: in Sec. II we derive the expression for
the two-particle correlation function and then describe the
Markov-chain Monte Carlo algorithm used to determine
the expected pattern of simultaneous events as a function of
the 11 parameters that enter into the expression. In Sec. III
we present the numerical results of the sample we generated
and then explain analytically in Sec. IV the most important
finding. We discuss the results and conclude in Sec. V.

II. EXPANDED ANALYSIS

We begin with the wave packet formulation of the single-
particle wave function (ψ ij) given in Eq. (2) of W& K for a
neutrino with mass mν created with quantum limited
position and momentum uncertainty, σx and σp respectively
(i.e., 2σxσp ¼ 1, in natural units), emitted from spacetime
point tri, r⃗i with energy Ei and detected at spacetime point
tdj, d⃗j:

ψ ij ≡ ψ p⃗ij
ðx⃗ij;tijÞ

¼ ð2πÞ−3=4
σ⊥ij

ffiffiffiffiffiffiffi
σkij

p Exp

�
iðpij ·xijÞ−

b⃗2
ij

4σxσ⊥ij
−

itijðb⃗ij ·p⃗ijÞ2
8E3

i σ
2
xσ⊥ijσkij

�
:

ð1Þ

In this equation p⃗ij is the central momentum of the neutrino

wave packet, x⃗ij ¼ d⃗j − r⃗i is the displacement and tij ¼
tdj − tri is the time elapsed from when the center of the
wave packet was at r⃗i to when the neutrino was detected
at d⃗j. Additionally we define the quantities σ⊥ij ¼ σx þ
itijσp=Ei which is the lateral spread of the wave packet,
σkij ¼ σx þ itijσp=ðEiγ

2
i Þ which is the longitudinal spread

of the wave packet, b⃗ij ¼ x⃗ij − tijp⃗ij=Ei which is the
spatial offset of the detection point from the path of the
wave packet centroid, and the Lorentz factor is γi ¼ Ei=mν.
Note that in what follows we shall ignore flavor oscillations
in the supernova mantle—collective flavor oscillations
are suppressed during the early phases of the supernova
due to the large matter density [9,10]—and do not take into
account the misalignment between the neutrino mass and
flavor states in the detection process. Such details will not
greatly affect our results.
The increase in the size of the neutrino wave packet over

an astronomical distance can be significant. The longi-
tudinal size of the neutrino wave packet for a neutrino
energy of E ¼ 15 MeV and an initial wave packet size of
σx ¼ 10−11 cm as a function of a the neutrino mass and for
various supernova distances is shown in Fig. 1. Notice how

the longitudinal spread of the wave packet decreases as the
neutrino mass decreases for a given supernova distance but
that it has a floor of σx. For supernovae at a distance in the
range of 1 pc to 10 kpc and a neutrino energy around
10 MeV, the longitudinal spread of the neutrino wave
packet at Earth is much greater than σx if the neutrino mass
is greater than 10−9 eV. In the limit where σk ≫ σx and
σ⊥ ≫ σx, the scaling of σk and σ⊥ is as follows:

σ⊥ ≈ ð66 pcÞ
�

L
1 kpc

��
15 MeV

E

��
10−11 cm

σx

�
ð2Þ

σk ≈ ð9 kmÞ
�

L
1 kpc

��
mν

1 eV

�
2
�
15 MeV

E

�
3
�
10−11 cm

σx

�
:

ð3Þ

Counterintuitively, the larger the spatial size of the wave
packet at the source, the smaller it is in the limit where
σk ≫ σx and σ⊥ ≫ σx. The enormous growth in the size
of the neutrino wave packet is why their overlap, and
consequent interference, must be considered. A rough
estimate of the number of overlapping wave packets in a
detector can be made. Two neutrinos detected simulta-
neously with a separation along the line of sight to the
supernova of σk or less will have had overlapping wave
packets. The number N2ν of overlapping wave packets
per unit area is thus N2ν ∼ Fσk=c where F is the neutrino
flux at Earth and c the speed of light. For a supernova at
L ¼ 10 kpc emitting 1058 neutrinos over a 10 second
period, the flux F is of order F ∼ 1015=m2=s. Thus the
estimate for the number of overlapping wave packets is
N2ν ∼ 1012=m2 for a neutrino mass of mν ¼ 1 eV.
Intensity interferometry is the effect which occurs when

there are alternative multiparticle wave functions connecting
the points of emission to the points of detection. For two
neutrinos emitted from points r⃗1 and r⃗2 and detected at d⃗1
and d⃗2, the two-particle wave function, given in W& K, is

FIG. 1. Growth of the longitudinal thickness of the wave
packet.
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ϕp⃗1;p⃗2
ðr⃗1; d⃗1; r⃗2; d⃗2Þ ¼

1ffiffiffi
2

p ðψ11ψ22 − ψ12ψ21Þ; ð4Þ

where the single-particle wave functions ψ ij are given in
Eq. (1). The two-particle probability density is

jϕp⃗1;p⃗2
j2 ¼ 1

2
ðjψ11j2jψ22j2 þ jψ12j2jψ21j2Þ

−
1

2
ðψ�

11ψ
�
22ψ12ψ21 þ ψ�

12ψ
�
21ψ11ψ22Þ; ð5Þ

and the two-point correlation function (2PCF), C2ðdÞ, the
quantity one would hope to measure in an experiment, is
given by

C2 ¼
2jϕj2

jψ11j2jψ22j2 þ jψ12j2jψ21j2

¼ 1 −
ðψ�

11ψ
�
22ψ12ψ21 − ψ�

12ψ
�
21ψ11ψ22Þ

jψ11j2jψ22j2 þ jψ12j2jψ21j2
: ð6Þ

The question becomes whether the 2PCF is observable.
To answer this question W& K made a number of approx-
imations in order to determine the observability of the
interference pattern in the 2PCF with a reduced set of
parameters. They found that if they set both emission times
and both detection times to be equal i.e., tr1 ¼ tr2 and
td1 ¼ td2, assumed equal energies for the neutrinos, and
confined the geometry to a plane, then the 2PCF has a spatial
variation which could be observed on the scale of tens of
meters for 15 MeV neutrinos emitted from two points
separated by tens of kilometers from a source at a distance
of 10 kpc. Our goal is to relax these assumptions and allow
for two different neutrino energies, noncoincident times of
emission from a hemispherical source, noncoincident times
of detection, and a nonplanar geometry.

A. Ensemble generation

In order to determine whether the 2PCF is sensitive to the
parameters that enter into the two-particle wave function,
we generate an ensemble of event pairs via a Markov-chain
Monte Carlo (MCMC) method based upon the Metropolis-
Hastings algorithm. After generating the sample, we can
examine the distribution of the events with respect to each
of the parameters separately, but also we can study the
distribution of the event pairs as a function of pairs of
parameters. The pair we are most interested in is the
sensitivity of the 2PCF as a function of R, the source radius,
and d, the event separation. As an expectation, fermion
statistics tells us that, regardless of R, there should be no
events at d ¼ 0 if the detection times and energies are equal.
We set the distance to the supernova, L; the initial wave

packet size, σx; and the neutrino massmν to be fixed which
leaves 11 independent parameters needed to define the two-
particle wave packet. They are R which is the radius of

the neutrinosphere; θ1, θ2, ϕ1 and ϕ2 which define the two
initial positions on the neutrinosphere that emitted the
two detected neutrinos; ΔE1 and ΔE2 which define the
neutrinos’ energies via Ei ¼ Emid þ ΔEi where Emid ¼
15 MeV for our analysis; and lastly, d which is the
separation of the events in the detector. We align the center
of the protoneutron star with the origin and place the center
of the detector along the z-axis. The detected events are
taken to occur along a line parallel to the x-axis direction—
the direction of the event pairs may be fixed this way due to
the rotational symmetry of the problem which means the
relevant quantity is the relative angle between the axis of
the detected events and the axis of the emission points, not
the orientation of each separately. Finally, there are four
times to consider: the two times of emission at the source,
tr1 and tr2, and two times of detection, td1 and td2, but,
without loss of generality we can set one of the detection
times to be the propagation time of the centroid of the wave
packet between the source and the detector and then label
the second detection time by the lapse Δtd. Thus the
detection times are td1 ¼ L=v and td2 ¼ L=vþ Δtd where
v is the neutrino velocity for Emid.
Each of the 11 parameters is examined over a bounded

interval. The natural ranges of the four angles are 0<θi<2π
and 0 < ϕi < π=2 and we adopt uniform distributions for
these angles; i.e., the neutrinos have a half-isotropic
distribution of emission angles at the neutrinosphere and
we do not consider limb darkening. We adopt the range
0 < d < 300 m also with a uniform distribution in order to
cover the dimensions of current and future neutrino
detectors. Given model expectations for the neutrinosphere
radius we set 0 < R < 80 km. Finally, for ΔE1, ΔE2, tr1,
tr2 andΔtd the bounds on these quantities are fixed for each
run of the MCMC and we shall consider many different
ranges. The bounds will be listed as the results are presented.
At each iteration of the algorithm, the new values of the

11 variable parameters are drawn from a truncated normal
distribution with a mean given by the previous value of the
parameter and the standard deviation is the width of the
parameter’s interval divided by a scale factor. Special care
has been taken to ensure that the probability of accepting a
new proposal is correctly modified by an acceptance factor
if any of the parameters have values near their limits.
The two-particle wave function at the new location in the
parameter space is computed and if it is more probable than
the last location, the new location in the parameter space is
accepted and added to the chain. If it is less probable than
the last location, the ratio of the probability at the new
location relative to the previous location is tested against a
uniform random number. If the random number is less than
the ratio, the new location is also added to the chain but
if the random number is larger than the ratio of proba-
bilities, the new location is rejected and the algorithm
retains the previous location and attempts an alternative
trial location in the next iteration.
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For the Metropolis-Hastings algorithm, an initial point
needs to be assigned. Our approach is to choose three
evenly spaced values in each parameter’s interval to define
our set of initial values. Thus we have 311 ¼ 177, 147
initial values and each of these is used to initialize the first
link in the Markov chain (also known as a “walker”) of the
algorithm. All of the chains we make contain 1000 links.
Initially the location of the chain links in the parameter
space will be biased toward the initial point and so the
common practice is to “burn” these biased iterations
accomplished, in our case, by discarding the first 250
links. Further details about the dependence of the algo-
rithm’s convergence on the scale factor, the length of the
chains, and the burn count are provided in the Appendix.

III. RESULTS

A. Uniform event distributions

We first consider a setup where the nonvariable param-
eters take the values L ¼ 10 kpc, σx ¼ 10−11 cm and
mν ¼ 1 eV and the variable parameters are bound to the
intervals jΔEij < 1 MeV, jtrij < 10−3 s. The distribution
for the neutrinosphere radius is taken to be uniform with all
values equally likely. Lastly, we restrict ourselves to the
rather extreme case where jΔtdj < 10−22 s. With such a
small permitted difference between the detection times we
can isolate the effects of allowing neutrino emission from
two random points on a hemisphere and with similar, but
not identical energies. As described above, we initialize 311

chains, iterate each 1000 times using a scale factor of
20 and lastly, we remove the first 250 links of each chain.
The results of this computation are shown in Figs. 2 and 3.
For each histogram, the y-axis is the number of counts in
each of 128 uniform bins within the range of each
parameter and displays values from zero counts up to
the maximum number (∼106). The contour plot of the 2D
histogram shows the normalized event pair sample in

64 × 64 bins. Each of the histograms displayed in
Figs. 2 and 3 will be discussed in turn.
The θ histogram in Fig. 2 shows the combined distri-

bution of θ1 and θ2. The peaks in the distribution of this
parameter occur at the angles where the axis of emission of
the two neutrinos lies in the same plane as the detection.
These peaks indicate that the two-particle wave packet
probability density is largest when the points of emission
and detection form a plane. Conversely, the troughs
indicate that the two-particle probability density is smaller
when the neutrinos are emitted in a plane perpendicular to
the detection plane. If we allow for the alignment of the
detection axis to be arbitrary these peaks and troughs would
disappear for a source emitting uniformly. However,
simulations of core collapse in multidimensions find that
the neutrino emission during the first second postbounce
can be anisotropic either due to a large scale asymmetry such
as the standing accretion shock instability [11–13] or lepton-
emission self-sustained asymmetry (LESA) [14–16], or
small scale anisotropy due to neutrino emission “hotspots”
at the base of “downflows” [17,18].
The ϕ histogram shows the two overlapping histograms

of ϕ1 and ϕ2. Interestingly this distribution indicates that
dual neutrino detection is more probable for neutrinos
emitted near the edge as opposed to the center of the
emitting hemisphere. Similarly, the ΔE histogram shows
the two histograms for the ΔE1 and ΔE1 variables. The
increase in probability for higher energies is not due to the
energy dependence of neutrino cross sections—an effect
which would also skew event pairs to those with higher
energies—and will be briefly commented on in Sec. II.
The Δtd histogram is qualitatively flat but the tr histogram,
which is the combined distribution of tr1 and tr2, has clear

FIG. 2. Histograms of the number of events as a function of the
variable θ, ϕ, ΔEi, tri and Δtd when ΔEi is constrained to be
jΔEij ≤ 1 MeV, jtrij ≤ 10−3 s and jΔtdj ≤ 10−22 s.

FIG. 3. Normalized event counts as a function of the source
radius R and the separation in the detector d for the case when
ΔEi is constrained to be jΔEij ≤ 1 MeV jtrij ≤ 10−3 s and
jΔtdj ≤ 10−22 s.
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structure. The Gaussian-like shape of the tri histogram
indicates that the algorithm fully covered the time range
that could lead to overlapping neutrino wave packets in a
detector for our given setup. The radius of the neutrino-
sphere was restricted to R < 80 km which corresponds to a
maximum light travel time of 2.7 × 10−4 s. Thus our results
indicate that the time window for emission is a factor of
a few times the light crossing time of the source i.e., Δtr ¼
jtr1 − tr2j≲ fewR=c.
Lastly, the 2D histogram (Fig. 3) of the R and d variables

shows the hoped-for correlation signal. The fact that the
contours vary both in R and d indicates that the pattern of
spacial separation of two-particle detection events is large
and furthermore, it changes with source size. The goal of
any static-source, intensity-interferometry experiment is to
measure the events-vs-separation distribution and, by fit-
ting it to a predictive model (such as the 2D histogram in
Fig. 3), determine the source size. Our results show that
allowing the neutrinos to be emitted from a hemisphere at
different times and with unequal energies does not eradicate
the information about the source size in the 2PCF seen in
the simpler analysis by W& K.
Let us now increase the size of the detection time

window Δtd. Figures 4–7 show the same quantities as
displayed in Figs. 2 and 3. The difference is that for Figs. 4
and 5, the detection time window has been broadened to
jΔtdj < 10−21 s. While the distribution of the event pairs
with respect to tr and ΔE is largely unchanged, the peaks
and troughs in the distribution for the angles θ1 and θ2 are
now much smaller, the preference for event pairs which are
emitted towards the edge of the disk is also less pro-
nounced, and the distribution of detector time separation
now has a clear minimum at zero. More importantly, the 2D
contour plot for the distribution of events with the radius R
and event separation d of the sample is now more uniform
across the plane. The reduction of the variance in this joint
distribution indicates that the broader time detection
window makes the hoped-for signal weaker and more
difficult to detect. In order to determine a neutrinosphere

radius we would need many more pairs of events than for
the previous case shown in Fig. 3.
Finally, in Figs. 6 and 7, the detection time window has

been broadened to jΔtdj < 10−20 s. Again the distribution
of the event pairs with tr1 and tr2 still prefers the case when
the neutrinos are emitted simultaneously and the distribu-
tion with energy is also the same as the previous results
with a preference for energies slightly higher than Emid
rather than below. But for the other variables the distribu-
tion of the angles θ1=θ2 and ϕ1=ϕ2 is completely uniform,
and the minimum in Δtd at Δtd ¼ 0 is seen to be a feature
that occurs for detection separation times smaller than
jΔtdj≲ 10−21 s with the rest of the distribution uniform.
But most disturbingly, the 2D contour plot of the distri-
bution of the event pairs with R and d is now very close to
uniform. Clearly, the information in the signal related to the
size of the neutrinosphere is all but gone.

FIG. 4. The same as Fig. 2 but for the case jΔEij ≤ 1 MeV
jtrij ≤ 10−3 s and jΔtdj ≤ 10−21 s.

FIG. 5. Normalized event counts as a function of the source
radius R and the separation in the detector d for the case jΔEij ≤
1 MeV jtrij ≤ 10−3 s and jΔtdj ≤ 10−21 s.

FIG. 6. The same as Fig. 2 but for the case jΔEij ≤ 1 MeV
jtrij ≤ 10−3 s and jΔtdj ≤ 10−20 s.
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Thus from our three calculations for jΔtdj < 10−22 s,
jΔtdj < 10−21 s and jΔtdj < 10−20 s shown in Figs. 2–7 we
conclude that, for tight enough detection time bounds, the
interference signal is clearly present in the two-event
spacial distribution. However, as the detection time window
is broadened, the interference signal is greatly diminished
and in order to extract the information about the size of the
source from the signal, very large numbers of event pairs
are required.

B. Weighted event distributions

One assumption of the previous calculation is clearly
flawed: the uniform distribution for the neutrinosphere
radius R. So let us consider the case where the distribution
for the neutrinosphere radius is weighted using a function
proportional to the neutrino luminosity versus neutrino-
sphere radius from the first second of a hydrodynamical
simulation of a core-collapse supernova. The evolution of
the radius and luminosity we adopt is taken from the SFHo-
z9.6co-nu-1D simulation in [2]. The relation between these
two quantities is shown in Fig. 8. Using this relation to
weight the neutrinosphere radius distribution means our
sample is now weighted towards those values of the radius
variable R corresponding to those times when the proto-
neutron star is emitting lots of neutrinos and thus most
likely to produce pairs of events. We now repeat our
analysis, leaving the distributions for the angles θi and ϕi as
uniform and again considering various neutrino energy,
emission and detection time windows.
The results are shown in Fig. 9. Even with the weighted

distribution for R, we again find the distribution of events
with separation d becomes more uniform as we increase
the detection time window, the emission time window,
or the neutrino energy window with degeneracies among

the three. With an emission time window jtrij ≤ 10−3 s
and an energy window of ΔE ¼ 1 MeV, which is the red
curve in the figure, the distribution of events has a clear
minimum at d ¼ 0 for the detection time window of
Δtd ¼ 10−22 s as previously noted. As we allow for larger
detection time windows, the green and the blue curves, but
hold the emission time and energy windows fixed, the
minimum in the number of events with separations of
d ¼ 0 becomes less deep and by Δtd ¼ 10−20 s it has
essentially disappeared.
As we argued earlier, one would normally expect the

emission time windows to be of order of the light crossing
time of the neutrinosphere which, as Fig. 8 shows, are of
order 10−4 − 10−3 s. However during the accretion phase
of a core collapse supernova (CCSN) significant neutrino
emission occurs from hotspots created at the base of
downflows onto the protoneutron star [18]. Such hotspots
would be much smaller than the size of the neutrinosphere
so perhaps we can consider smaller time windows. The
purple curve in Fig. 9 indicates that if we reduce the time
emission window to 10−4 s we can compensate for the
larger detection time window, and the black curve

FIG. 7. Normalized event counts as a function of the source
radius R and the separation in the detector d for the case jΔEij ≤
1 MeV jtrij ≤ 10−3 s and jΔtdj ≤ 10−20 s.

FIG. 8. Luminosity as a function of neutrinosphere radius over
the first second postbounce.

FIG. 9. Distribution of events versus event separation.
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indicates we can do the same with the energy window. But
even with the smaller emission time window and the
smaller energy difference, the figure shows that the
detection time windows needed to see the minimum at
d ¼ 0 are very small.
Thus we conclude that while, in principle, neutrino

intensity interferometry could be used to measure the
radius of the neutrinosphere, in practice it requires detec-
tion time windows which are unfeasibly small.

IV. ANALYTIC EXPLANATION

The analysis of the neutrino event pair sample we created
using the numerical algorithm revealed that in order to
observe the spatial variation of the two-particle correlation,
the time difference between the detected event pairs must

be very small. This requirement of an extremely small
time difference can be explained analytically. In order to
facilitate our explanation we adopt the assumptions of
ballistic momenta (p̂ij ¼ x̂ij ¼ ðd⃗j − r⃗iÞ=jðd⃗j − r⃗iÞj) and
equal energy (E ¼ E1 ¼ E2) and, to further simplify the
analysis, we restrict the geometry to a “two-dimensional”
case where the emission points ðt; x; y; zÞ ¼ ð0;�R; 0; 0Þ
and detected locations (L=v;�d=2; 0; L) lie in the same
spatial plane. We define the components of the single-
particle wave packets that enter Eq. (4) to be ψ ¼ Neχ with
χ containing all the important time dependence. Given the
symmetry of our setup, the individual χ’s are related and by
specifying one, they all can be identified. We choose to
define χ22 and the others may be obtained by suitable
substitutions:

Re½χ22� ¼
γ2ðγ2 − 1Þ2E2

νσ
2
x

�
ξ−1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 þ ðd=2 − RÞ2

p
− ðL=ξ − ðtr2 − ΔtdÞÞ

�
2

ðL=ξ − ðtr2 − ΔtdÞÞ2 þ 4γ4E2
νσ

4
x

ð7Þ

Im½χ22� ¼ Eν

�
ξ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 þ ðd=2 − RÞ2

q
− ðL=ξ − ðtr2 − ΔtdÞÞ

�

þ
Eνðγ2 − 1ÞðL=ξ − ðtr2 − ΔtdÞÞ

�
ξ−1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 þ ðd=2 − RÞ2

p
− ðL=ξ − ðtr2 − ΔtdÞÞ

�
2

2ððL=ξ − ðtr2 − ΔtdÞÞ2 þ 4γ4E2
νσ

4
xÞ

; ð8Þ

where ξ2 ¼ ðγ2 − 1Þ=γ2. To obtain χ11 from χ22 substitute
tr2 → tr1, Δtd → 0; for χ12 make the substitutions tr2 → tr1
and R → −R; and for χ21 replace R → −R and Δtd → 0.
Using these quantities and reasonably asserting that in the
astrophysical limit the normalization factors N are nonzero
and cancel, we find that the 2PCF is given by

C2 ¼
eΣðcoshΔ − cos θÞ

eΣ coshΔ
ð9Þ

where

Σ ¼ Re½χ11 þ χ12 þ χ21 þ χ22�; ð10Þ

Δ ¼ Re½χ11 − χ12 − χ21 þ χ22�; ð11Þ

θ ¼ Im½χ11 − χ12 − χ21 þ χ22�: ð12Þ

Meanwhile the reader will observe that the factor eΣ occurs
in both the numerator and the denominator of the expres-
sion for the 2PCF and therefore algebraically cancels. This
factor can become extremely small (Σ can be very negative)
and thus needs careful consideration; otherwise we
would end up fruitlessly exploring the 2PCF in regions
of parameter space where no two-particle events can occur
(with or without interference). The final simplifying

approximation we make is to assert that all Re½χij�’s have
the same denominator by setting tr1, tr2, Δtd → 0 in the
denominators only. We have verified that this approxima-
tion is valid in the region of parameter space we are
considering. In conjunction with the usual assumption of
γ2 − 1 → γ2 and by termwise applying the astrophysical
limit (L ≫ R ≫ d), we find that

Σ ¼ η1

�
Δtdðtr1 þ tr2 − ΔtdÞ − t2r1 − t2r2

−
R2

L
ðtr1 þ tr2 − ΔtdÞ −

R4

2L2

�
; ð13Þ

Δ ¼ η1

�
Δtdðtr2 − tr1Þ −

dR
Lγ

ðtr1 þ tr2 − ΔtdÞ −
dR3

L2

�
;

ð14Þ

η1 ¼
2γ4E2

νσ
2
x

L2 þ 4γ4E2
νσ

4
x
¼ 1

2σ2k
: ð15Þ

For a neutrino with an energy of 15 MeV,mν ¼ 1 eV, σx ¼
10−11 cm and L ¼ 10 kpc, the longitudinal spread of the
wave function of the single-particle wave packet at the
detector is σk ∼ 90 km as shown in Fig. 1. Since the leading
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order terms in Σ and Δ are quadratic in time—the other
terms are very small because they are suppressed by the
ratio R=L—we conclude that in order to observe any event
pairs at all, the value of the term Δtdðtr1 þ tr2 − ΔtdÞ −
t2r1 − t2r2 must be greater than ∼ − σ2k=c

2 ∼ −10−3 s2 in

order to give a value for eΣ ∼ 1. This is not a severe
constraint for this set of neutrino mass, energy, initial wave
packet size and supernova distance but note that as the
neutrino mass decreases, the longitudinal spread of the
single-particle wave packet also decreases, making
the restriction on the combination of emission times and
the detection time window more stringent. Similarly,

higher neutrino energies, greater initial wave packet size,
or smaller distance to the supernova also reduce the size of
the wave packet at Earth which also means the absolute
value of Δtdðtr1 þ tr2 − ΔtdÞ − t2r1 − t2r2 must satisfy a
stricter bound. Finally, we note that if the values of the
terms quadratic in time in Σ satisfy this constraint, then the
term quadratic in time inΔ is very close to zero. This means
that coshΔ is very close to unity and will be assumed to be
so for the remainder of this analysis.
A similar analysis can be performed for θ and, after

making the same simplifying assumptions used for Σ and
Δ, we find

θ ¼ η2

�
−
3

2
Δtdðtr1 − tr2Þðtr1 þ tr2 − ΔtdÞ −

dR
L

ðt2r1 þ t2r2 þ Δt2dÞ þ LΔtdðtr1 − tr2Þ − dRðtr1 þ tr2 − ΔtdÞ
�
þ θNII;

θNII ¼ θHBT

�
1þ γ2R2=2

4γ4E2σ4x þ L2

�
¼ θHBT

�
1þ γ2R2

2L2

�σ2k − σ2x

σ2k

��
;

θHBT ¼ −2
dEνR
L

;

η2 ¼
γ2Eν

L2 þ 4γ4E2
νσ

4
x
¼ γ2Eν

L2

�σ2k − σ2x

σ2k

�
: ð16Þ

Once again, for 15 MeV energies, mν ¼ 1 eV, σx ¼
10−11 cm and L ¼ 10 kpc, the prefactor η2 is found to
be η2 ∼ 1012=s3. Given the astrophysical limit and the
expectation of the emission times being of order ∼10−3 s, it
is the term in θ which is linear in L which contributes the
most to the difference between θ and θNII. As the detection
time window increases the possible values of the product
η2LΔtdðtr1 − tr2Þ also become larger, leading to ever larger
shifts of θ away from θNII. The greater the possible shifts
from θNII are, the wider the spread of the cos θ term which
appears in the 2PCF. In order to observe the interference, θ
cannot differ greatly from θNII which cannot differ greatly

1

from θHBT .
The above analysis gives rise to the following two

conditions that together ensure that the 2PCF is a useful
signal which we define to be a reasonable possibility of
producing a correlated pair of neutrino events, and values
for θ which do not differ greatly from θHBT :

Exp½η1ðΔtdðtr1 þ tr2 − ΔtdÞ − t2r1 − t2r2Þ� >
1

2

η2LΔtdðtr1 − tr2Þ
θHBT

< 1: ð17Þ

The first inequality ensures that at least in half the cases of
two-neutrino emission, the single-particle wave packets of

the neutrinos are overlapping in the detector and could give
rise to a correlated pair. The second inequality is the
requirement that the interference pattern is not washed
out by large variations of the θ term. The first constraint is
very aggressive—one can tolerate fewer overlapping wave
packets i.e., a smaller right-hand side of the inequality—if
the source were static (such as a star) because the decreased
probability of event pairs can be compensated by longer
exposure times. However this is not possible for a transient
source such as a supernova. Even if we relax this require-
ment, the constraint in the time window is only logarithmic
in the probability of having the overlapping wave packets.
The two constraints are shown in both plots of Fig. 10.
The left plot is for mν ¼ 1 eV and the right plot is for
mν ¼ 0.1 eV. The black (blue) region is the allowed region
defined by the first (second) inequality in Eq. (17). The
limits of Δtr ¼ tr1 − tr2 are chosen so that the normaliza-
tion constraints are visible [from the first inequality in
Eq. (17)]. The limits on Δtd are selected such that the blue
region almost entirely covers the black region; i.e., the
region where the interferometric signal is useful overlaps
the region where two-particle events can occur. These
bounds remain qualitatively unchanged when event sepa-
ration and source size are varied over appropriate intervals
(given in Sec. II A). The difference between the two plots
gives an indication of the effect of neutrino mass. When
mass is decreased by a factor of 10, the bound on source
emission time for overlapping wave packets is decreased by
a factor of ∼100. While this does not affect the detector

1The requirement that θNII not differ greatly from θHBT was a
constraint established by W& K.
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time resolution requirements by much, it does mean that
getting correlated pairs is 100 times harder. Thus we find
that in order to satisfy the inequalities in Eq. (17), the
experimental time resolution required for useful interfero-
metric signal is extreme, Δtd ≲ 10−21 s for mν ¼ 1 eV,
E ¼ 15 MeV, L ¼ 10 kpc and σx ¼ 10−11 cm which is the
same as we found in the numerical analysis. Figure 10
shows that as the neutrino mass decreases, a larger window
of Δtd is allowed but the window on Δtr shrinks. This
behavior can be explained from the two inequalities. The
second inequality from Eq. (17) can be rearranged using the
definitions of θHBT , η2 and σk to give

Δtd <
2dR

γ2ðtr1 − tr2Þ
�
1þ 4γ4σ4xE2

ν

L2

�
: ð18Þ

When the term 4γ4σ4xE2
ν=L2 ≪ 1, i.e., larger neutrino

masses, the detector timing constraint is Δtd < ð2dRÞ=
γ2ðtr1 − tr2Þ. In this limit Δtd ≪ tri so the difference
between the emission times, (tr1 − tr2), is of order σk=c.
Thus Δtd is set by the ratio dR=cσk divided by the square
of the Lorentz factor of the neutrino—which is very large if
the neutrino massmν is of order 1 eVor less and the neutrino
energy is Eν ¼ 15 MeV. When the term 4γ4σ4xE2

ν=L2≫1,
which occurs as the neutrino mass approaches zero, we find
Δtd < ð8dRγ2σ4xE2

νÞ=ðtr1− tr2ÞL2. Now the time detection
window constraint from the second inequality is expanded
by the Lorentz factor. In the limitmν → 0, the detection time
window constraint from the second inequality is always
satisfied but, as mν → 0, it becomes harder to satisfy the
constraint from the first inequality on the number of
correlated pairs because the longitudinal spread of the wave
packet at Earth decreases. For massless neutrinos, σk ¼ σx at
Earth so the combination Δtdðtr1 þ tr2 − ΔtdÞ − t2r1 − t2r2
needs to be of order the square of the light-travel time of the

initial neutrino wave packet i.e., σ2x=c2. For σx ¼ 10−11 cm
this time is σx=c ¼ 3 × 10−22 s. In the massless neutrino
limit, the number N2ν of overlapping wave packets is
N2ν ∼ 10−7=m2 for a supernova at L ¼ 10 kpc.
Thus we find the two requirements in Eq. (17) are

“orthogonal” in the sense that changing parameters so that
it becomes easier to satisfy one makes it more difficult to
satisfy the other. There is really no way to evade the bound
that the detection time window has to be extremely small
given the initial wave packet size, realistic distances to
supernovae, neutrino emission over a period of seconds,
and detector dimensions which are measured in meters.

V. CONCLUSION

In this paper we have continued the study of neutrino
intensity interferometry by relaxing the assumptions that
were used by Wright and Kneller. These were the require-
ment of equal times of emission and detection, the
assumption of equal energies for the two neutrinos, and
the assumption that the two points of emission and two
points of detection lie in plane. While the relaxation of all
these assumptions generally reduces the significance of
the correlation signal, it is the relaxation of the assumption
of equal times of detection that leads to the greatest loss
and the principle reason why neutrino intensity interfer-
ometry becomes difficult to realize in practical terms.
Unfortunately our analysis indicates that this conclusion
is robust. For neutrinos with an initial wave packet spread
of σx ∼ 10−11 cm and energies of E ∼ 15 MeV emitted
from a supernova at L ¼ 10 kpc, a neutrino mass greater
than mν ∼ 10−9 eV means that the detection time window
must be smaller than dR=ðγ2σkÞ where d is the distance
between the detected pair, R is the radius of the source, σk is
the longitudinal spread of the neutrino wave packet at
Earth, and γ is the neutrino Lorentz factor. For smaller

FIG. 10. Allowed regions defined by Eq. (17).
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neutrino masses the detection time window must be smaller
than the light-travel time of the initial neutrino wave packet.
Both times are of order ∼10−21 s or less.
Finally, the reader may be curious why intensity inter-

ferometry works for photon pairs when measuring the sizes
of stars and not for neutrinos from supernovae. The key
difference is the size of the photon wave packet. For a
typical main sequence star the mean free path of an atom in
its atmosphere is of order ∼10−4 m which, together with a
typical thermal velocity, gives a time between collisions of
∼10−8 s. This means any photon produced by emission in
that environment has a wave packet size of σx ∼ 102 cm.
One can also estimate the coherence time of continuous
bremsstrahlung emission via free electrons near H− ions in
the stellar photosphere and find ∼10−11 s which would give
a wave packet size σx ∼ 0.4 cm. Thus both emission
processes indicate that the initial size of the photon wave
packet is much larger than the neutrinos emitted from the
neutrinosphere in a core collapse supernova and this greater
size makes the technique feasible for a static and suffi-
ciently bright source if one uses detectors with a wave-
length resolution of Δλ≲ 30 nm.
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APPENDIX: MCMC COVERAGE
AND CONVERGENCE

In order to analyze the convergence of the MCMC and
its sensitivity to the scale factor, we consider the 2D
histogram of R and d and examine its behavior as a
function of both iteration and scale factor. The results are
presented in Fig. 11. This figure has the iteration number
on the x-axis and a quantification of the histogram error on
the y-axis. The histogram error is a measure of how far the
2D histogram deviates from an ensemble of converged
histograms. The various curves displayed in Fig. 11 are

labeled in the legend. The label “iStart” indicates from
which iteration the histogram accumulates data (for a
particular point on the line, the corresponding point on the
x-axis indicates the iteration at which the accumulation
ends). The label “Scale Factor” denotes what scale factor
is used for each line (see Sec. II A). Figure 11 also
indicates, as dashed lines, the level of error that the
ensemble of converged histograms have with each other
as a quantification of when a MCMC can be considered as
converged. Thus the figure shows quite clearly that by
burning the first 200 iterations, the time to convergence
is drastically reduced. Furthermore, we see that the red
curve, with a scale factor of 30, and the purple curve, with
a scale factor of 7, have a slower convergence rate as
compared to the other three curves with scale factors
between 7 and 30. Most of our numerical calculations
were performed with a burn of 250 iterations and a scale
factor of 20. Figure 11 shows that such a choice will
converge well before the 1000 iterations that all of our
calculations were performed for. This gives confidence
that our choices of burn count and scale factor yield stable
results and that the final, analyzed histograms are in a
converged state.
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