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X-ray observations of some short gamma-ray bursts indicate that a long-lived neutron star can form as a
remnant of a binary neutron star merger. We develop a gravitational-wave detection pipeline for a long-
lived binary neutron star merger remnant guided by these counterpart electromagnetic observations. We
determine the distance out to which a gravitational-wave signal can be detected with Advanced LIGO at
design sensitivity and the Einstein Telescope using this method, guided by x-ray data from GRB140903A
as an example. Such gravitational waves can, in principle, be detected out to ∼20 Mpc for Advanced LIGO
and ∼450 Mpc for the Einstein Telescope assuming a fiducial ellipticity of 10−2. However, in practice, we
can rule out such high values of the ellipticity as the total energy emitted in gravitational waves would be
greater than the total rotational energy budget of the system. We show how these observations can be used
to place upper limits on the ellipticity using these energy considerations. For GRB140903A, the upper limit
on the ellipticity is 10−3, which lowers the detectable distance to ∼2 Mpc and ∼45 Mpc for Advanced
LIGO and the Einstein Telescope, respectively.
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I. INTRODUCTION

The era of gravitational-wave multimessenger astrophys-
ics has begun. On 17 August 2017, the Advanced Laser
Interferometer Gravitational-waveObservatory (aLIGO) [1]
and Advanced Virgo [2] made the first gravitational-wave
observation of a binary neutron star merger, known as
GW170817 [3]. This event was also detected 1.74 seconds
later as a short gamma-ray burst (SGRB) by the Fermi and
Integral telescopes [4], confirming that binary neutron star
mergers can be the progenitors of SGRBs. There are
competing hypotheses for the fate of the postmerger
remnant. Some analyses of the electromagnetic observations
support a hypermassive neutron star that collapsed to form a
black hole in ≲1 s [5–7]. Others support the formation of a
stable, rapidly spinning, long-lived magnetar [8].
In either case, a short- or long-lived postmerger remnant

emits gravitational waves. The detection of such gravita-
tional waves will have significant implications for the
understanding of neutron-star physics including the nuclear
equation of state. A search for short and intermediate
duration gravitational-wave signals from a postmerger
remnant of GW170817 did not return a significant result
[9]. This lack of detection was expected given theoretical
models [10–12] and current aLIGO sensitivity. However,
the proximity of GW170817, in conjunction with planned

upgrades to aLIGO and Virgo sensitivity [13] and improved
algorithms, suggests, that we may be able to detect
postmerger gravitational waves from GW170817-like rem-
nants in the future.
In general, the merger of two neutron stars could result in

four different outcomes, which depend on the mass and spin
of the remnant and the equation of state—a stable neutron
star, a supramassive neutron star, a hypermassive neutron
star or the direct collapse to a black hole. A supramassive
neutron star is initially supported against gravitational
collapse by rigid-body rotation but will collapse to form a
black hole on timescales of 10 s–104 s [14].Ahypermassive
neutron star is supported against gravitational collapse
through differential rotation but collapses to a black hole
in ≤ 1 s (see Baiotti and Rezzolla [15] for a recent review).
In this paper, we focus on the scenariowhere a neutron star

merger produces a supramassive or stable neutron star
remnant. This rapidly spinning star spins down through a
combination of electromagnetic and gravitational-wave radi-
ation. The latter is likely produced by the nonzero stellar
ellipticity in conjunctionwith the spin-flip instability [11,16],
unstable r-modes [17,18] or the secular Chandrasekhar-
Friedmann-Schutz bar-mode instability [12,19–23].
The extended x-ray emission of many SGRBs has been

observed by satellites such as Swift and Chandra, and used
to determine parameters of the neutron star remnant [e.g.,
[24–26]]. Rowlinson et al. [24,27] showed that models of
magnetic dipole radiation from spinning down millisecond*nikhil.sarin@monash.edu
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magnetars [28,29] agree with x-ray afterglow observations
of several SGRBs. GRB170817A had an extended emis-
sion of a different structure [e.g., [30,31]].
In this paper, we present a method to search for

gravitational waves from a long-lived postmerger neutron
star remnant. In Sec. II, we derive a model for the
gravitational waves emitted from a rapidly spinning down
millisecond magnetar while also describing the parameters
and the parameter space. In Sec. III, we discuss how we can
utilize observations of x-ray afterglows from SGRBs to
constrain parameters and run a targeted gravitational-wave
search. We continue, in Sec. IV, with a discussion of the
detection statistics for our pipeline and conclude in Sec. V
with a brief discussion on the extensions that will improve
the analysis and physical theory.

II. GRAVITATIONAL WAVEFORM FROM
MILLISECOND MAGNETARS

A long-lived postmerger remnant spins down due to
electromagnetic and gravitational-wave radiation. We start
with the general torque equation.

_Ω ¼ −kΩn; ð1Þ

where Ω and _Ω are the star’s angular frequency and its time
derivative, respectively, k is a constant of proportionality,
andn is the braking index. Thegravitational-wave frequency
is a function of the star’s spin frequency. Throughout this
work,we assume the gravitationalwaves are emitted at twice
the star’s spin frequency, which is true for an orthogonal
rotator. The following equations are therefore not valid for
gravitational waves from r-mode emission; we discuss
generalizations of our model in Sec. V.
The braking index is related to the emission mechanism;

n ¼ 3 implies that the neutron star is spun down only
through a dipole magnetic field in vacuum [32], while n ¼ 5
implies that the neutron star is spun down through gravi-
tational-wave radiation [33,34]. A braking index of n ¼ 7 is
conventionally associated with spin down through unstable
r modes [e.g. [18]], although the true value can be less for
different saturation mechanisms [35,36]. Inference of the
braking index for twomillisecondmagnetars born in SGRBs
give n ¼ 2.9� 0.1 and 2.6� 0.1 for GRB130603B and
GRB140903A, respectively [26].
Integrating Eq. (1) and solving for the gravitational-wave

frequency gives the gravitational-wave frequency evolution

fgwðtÞ ¼ fgw;0

�
1þ t

τ

� 1
1−n
; ð2Þ

where

τ ¼ ðfgw;0πÞ1−n
−kð1 − nÞ ; ð3Þ

is the spin-down timescale and fgw;0 is the gravitational-
wave frequency at t ¼ 0.
The dimensionless gravitational-wave strain amplitude

for a nonaxisymmetric, rotating body obeying Eq. (1) is
given by

h0ðtÞ ¼
4π2GIzz

c4
ϵ

d
f2gw;0

�
1þ t

τ

� 2
1−n
: ð4Þ

Here, Izz is the principle moment of inertia, ϵ is the
ellipticity of the rotating body, d is the distance to the
source, G is the gravitational constant, and c is the speed of
light. The gravitational-wave strain at a detector hðtÞ is a
combination of the hþ and h× polarizations,

hðtÞ ¼ h0ðtÞ
�
Fþ

1þ cos2ðιÞ
2

cosΦðtÞ þF× cosðιÞ sinΦðtÞ
�
;

ð5Þ

where, ι is the inclination angle, and

ΦðtÞ ¼ Φ0 þ 2π

Z
t

0

dt0fgwðt0Þ; ð6Þ

is the phase, with Φ0 ¼ Φðt ¼ 0Þ. In Eq. (5), Fþ and F×
are the antenna pattern functions [37] for each of the
polarizations. In reality, Fþ and F× are functions of time. In
this work, we have ignored this complication and assumed
constant Fþ and F× which we determine using the sky
location of GRB140903A. This does not significantly
affect our quantitative results, although it will need to be
included when the full pipeline is developed to search for
gravitational waves.
Substituting the gravitational-wave frequency evolution

from Eq. (2) into Eq. (6) gives

ΦðtÞ ¼ Φ0 þ 2πτfgw;0

�
1 − n
2 − n

���
1þ t

τ

�2−n
1−n

− 1

�
: ð7Þ

The full waveform model for a rapidly rotating neutron star
spinning down due to gravitational wave radiation with an
arbitrary braking index consists of Eqs. (4), (5), and (7). We
refer to this waveform model as the magnetar waveform
model, which is parametrized by the initial gravitational-
wave frequency fgw;0, the spin-down timescale τ, braking
index n, inclination ι, initial phase Φ0 and scaling param-
eters Izz, ϵ, d.
In the following, we develop an algorithm for a matched-

filter search for gravitational waves using the magnetar
waveformmodel.We construct a template bank by choosing
physical parameters for fgw;0, τ, n, ι, andΦ0 from a prior.We
quantify in Sec. IV that a template bank constructed from
physically motivated but unconstrained priors is computa-
tionally expensive for detecting gravitational waves, but
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these priors can be further constrained using x-ray afterglow
observations which reduce the computational cost of
searches and increase the sensitivity. The scaling parameters
do not require priors as they only affect the amplitude of the
gravitational wave which is normalized in a matched-filter
search. Throughout this work, we assume a fiducial moment
of inertia, Izz ¼ 1045 g cm2, an optimal orientation ι ¼ 0,
and a constant ellipticity ϵ. We note that the strain scales
linearly with themoment of inertia, whichmay be a factor of
a few larger than our fiducial value. In principle, we can
choose to model the ellipticity as a function of time.
However, over the long timescales considered here, the
ellipticity is not expected to evolve significantly; the internal
magnetic field that likely causes the stellar deformation gets
wound up on the Alfvén timescale, which for these systems
is ≪ 1 s [e.g., [38]]. Although it is possible to have an
evolution of the ellipticity through other mechanisms such
as stellar cooling, the effect is similar to the angle between
the star’s principal moment of inertia and its rotation axis
evolving due to, for example, the spin-flip instability (see
Sec. V). We leave this generalization for future work.

A. Gravitational-wave energy budget

We also consider the energy budget of the gravitational
wave emission to determine allowed regions of the param-
eter space. The total power emitted in gravitational waves is

_EgwðtÞ ¼ −
32G
5c5

I2zzϵ2Ω6ðtÞ: ð8Þ

We substitute our gravitational-wave frequency evolution
Eq. (2) for the evolution of the star’s angular frequency and
integrate to determine the energy emitted in gravitational
waves for a constant braking index

EgwðtÞ¼−
32π6G
5c5

I2zzf6gw;0ϵ
2τ
n−1

n−7

��
1þ t

τ

�7−n
1−n

−1

�
: ð9Þ

This energy evolution is different to a standard continuous-
wave signal as the strain evolves as a function of time. The
total energy emitted in gravitational waves must be less
than the initial rotational energy, Erot of the system

jEgwðtÞj < Erot; ð10Þ

where

Erot ¼
1

2
Izzf2gw;0π

2: ð11Þ

We can use this condition to check if a given parameter
space is physical. Figure 1 illustrates, for a postmerger
remnant inferred from GRB140903A with a fiducial Izz ¼
1045 g cm2, an ellipticity ϵ ¼ 10−2 violates the energy-
budget constraint. Based on these energy considerations the

upper limit on ellipticity for GRB140903A is ϵ ≈ 10−3. In
reality, the moment of inertia for a long-lived postmerge
r remnant is likely higher than the fiducial value we use
here, however all our limits can be scaled appropriately for
different values of Izz. In particular, the moment of inertia is
inversely proportional to the inferred upper limit on
ellipticity, because the rotational energy grows linearly
with Izz, but the gravitational-wave energy grows quad-
ratically. Our fiducial moment of inertia therefore provides
a conservative limit on the ellipticity.

B. Optimal matched filter statistic

The matched-filter signal-to-noise ratio ρ is given by [39]

ρ ¼ hhjuiffiffiffiffiffiffiffiffiffiffiffihujuip ; ð12Þ

where h ¼ sþ n is the combination of signal s and noise n,
u is the template, and hajbi denotes the noise-weighted
inner product [39], defined by

hajbi ¼ 4ℜ
Z

∞

0

ã�ðfÞb̃ðfÞ
ShðfÞ

df: ð13Þ

Here ã denotes the Fourier transform of a, ã⋆ its complex
conjugate, and ShðfÞ is the noise power spectral density.
The optimal matched-filter signal-to-noise ratio ρopt is
achieved when the template matches the data precisely:

ρopt ¼
ffiffiffiffiffiffiffiffiffiffiffi
hhjhi

p
: ð14Þ

In this analysis, the threshold signal-to-noise ratio required
to make a detection is ρthreshold ¼ 4.4, which is derived in
Sec. IV. In Fig. 2, we show the region of parameter space
wherewe could detect a signal from a postmerger remnant at
the same distance as GW170817 (40 Mpc). We assume
Izz ¼ 1045 g cm2, ϵ ¼ 0.01 (top panel) and ϵ ¼ 0.001 (bot-
tom panel), n ¼ 2.71 and fgw;0 ¼ 2050 Hz. We use these

FIG. 1. The energy budget of a postmerger remnant inferred
from GRB140903A with ellipticity ϵ ¼ 10−2 (solid curves) and
10−3 (dashed curves) with the red shaded region indicating the 2σ
confidence interval. The grey shaded region above the solid black
horizontal line is nonphysical as discussed in Sec. II A.
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values of fgw;0 and n as they are the maximum likelihood
parameters fromGRB140903Ausing themethod detailed in
Sec. III. The left-hand side of Fig. 2 shows it is theoretically
possible for gravitational waves from such an object to be
observable by aLIGO operating at design sensitivity [13] if
τ ≳ 4 × 104 s and tobs ≳ 4 × 104 s. The right-hand side
shows that the Einstein Telescope (ET), a proposed third
generation detector [40], can detect such a signal if τ ≳ 102 s
and tobs ≳ 102 s for ϵ ¼ 10−2. We note that GRB140903A
has τ ¼ 17207� 1880 s. However, as shown in Sec. II A,
this large ellipticity is nonphysical for GRB140903A-like
postmerger remnant in all of the parameter space required to
detect a signal with aLIGO. A physically realistic ellipticity
ϵ ¼ 10−3 rules out any prospect of detectionwith aLIGO for
a GRB140903A-like postmerger signal at 40 Mpc and
requires τ ≳ 104 s and tobs ≳ 104 s for detecting the same
signal with ET.
The optimal matched filter signal-to-noise ratio

[Eq. (14)] can also be used to estimate the distance out
to which we can detect a signal. Figure 3 shows that with
aLIGO at design sensitivity the furthest distance we can
detect a signal with maximum likelihood parameters
inferred from GRB140903A is 40 and 4 Mpc for ϵ ¼
10−2 and 10−3, respectively, while with ET the distances are
900 Mpc and 90 Mpc, respectively. As we showed in
Sec. II A, for the parameters inferred from GRB140903A
only an ellipticity ϵ ≤ 10−3 is physical, postmerger rem-
nants with longer spin-down timescale, τ, can be detected
to larger distances assuming that ϵ ∼ 10−3 is physical for
those parameters.
The optimal matched filter is the maximum signal-to-

noise ratio one can achieve in a matched filter search.

FIG. 2. Optimal matched-filter signal-to-noise ratio ρopt for a typical SGRB postmerger signal at a distance of 40 Mpc as a function of
the gravitational-wave observation time tobs and the spin-down timescale of the system. The left panels shows ρopt for aLIGO with
ϵ ¼ 10−2 (top panel) and ϵ ¼ 10−3 (bottom panel). The right panels show the same but for ET. The shaded region is nonphysical as the
implied gravitational-wave energy emitted by the neutron star is greater than the available energy budget (see Sec. II A). A ρopt > 4.4 is
considered detectable.

FIG. 3. The optimal matched-filter signal-to-noise ratio ρopt as a
function of distance for a millisecond magnetar inferred from
GRB140903A for aLIGO (top panel) and ET (bottom panel) for
two different ellipticities; ϵ ¼ 10−2 (solid curves) and ϵ ¼ 10−3

(dashed curves). The red shaded region indicates the 2σ confidence
interval from the posteriors shown in Fig. 5. A threshold ρopt ¼ 4.4
is indicated by a black horizontal dotted line. Any value above this
threshold is detectable by aLIGO at design sensitivity. All curves
are constructed using an observation time of 5 × 104 s.
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In practice, this limit is unobtainable with current computa-
tional resources. As shown by Fig. 2 and Fig. 3, to achieve
ρopt ≥ 4.4 and make a detection of gravitational waves, we
need to observe a signal for at least ∼104 seconds with
aLIGO at design sensitivity. At large observation times, the
volume of parameter space imposed by uniform priors
becomes unfeasible for a realistic gravitational-wave search
(see Sec. IV). In the following section, we demonstrate how
to constrain the priors, and hence the search parameter
space, using x-ray observations of SGRBs.

III. X-RAY AFTERGLOW

Short gamma-ray bursts are often followed by x-ray
emission lasting up to many tens of thousands of seconds
[24–27]. Such an x-ray afterglow was not observed for
GRB170817A. In Fig. 4, we show the x-ray afterglow of
GRB140903A with data from the Neil Gehrels Swift and
Chandra satellites [41]. Rowlinson et al. [24] modeled the
x-ray afterglows of several SGRBs with two components.
Firstly, an initial power-law decay,

LðtÞ ¼ At−r; ð15Þ

where L is the luminosity, A is the power-law amplitude,
and r is the power-law exponent. Here, the decay exponent
can be fixed to r ¼ Γγ þ 1, where Γγ is the photon index
of the prompt emission, or allowed to vary. The second
component is a luminosity law to model the energy
injection from a millisecond magnetar that is spinning
down through magnetic dipole radiation (n ¼ 3) [28,29].
Lasky et al. [26] extended this model to include other
forms of radiation causing spin-down, which is derived by
utilising the general torque equation [Eq. (1)]. The lumi-
nosity of the second component therefore comes directly
from the nascent neutron star, and can be expressed as

LðtÞ ¼ L0

�
1þ t

τ

�1þn
1−n
; ð16Þ

where, L0 is the initial luminosity at the onset of the plateau
phase and is related to the initial gravitational-wave
frequency fgw;0 by

L0 ¼
f2gw;0π

2Izzη

2τ
; ð17Þ

where η encodes the efficiency of converting spin-down
energy to x rays. Our numerical model involves fitting
Eqs. (15) and (16) to the x-ray observations from Swift
and Chandra. However, instead of fitting L0 we fit our
initial gravitational-wave frequency fgw;0. We use a
Markov Chain Monte Carlo algorithm [42] to fit the
x-ray afterglow of SGRBs with our model using uniform
priors for fgw, n, τ, A, and r between [log10ð−1Þ, log10ð5Þ],
[log10ð2Þ, log10ð6Þ], [0, 6], [log10ð−10Þ, log10ð5Þ], and
[−2, 5], respectively. Fits we have made to GRB140903A
are shown in Fig. 4. We determine the posterior distribution
on our parameters fgw;0, τ, and nwhich are shown in Fig. 5.
In the following section, we discuss how these posteriors
can be used as priors for a targeted search for the
postmerger remnant associated with an SGRB.

IV. GRAVITATIONAL-WAVE SEARCH PIPELINE

Here we describe a pipeline to search for gravitational
waves from a spinning down millisecond magnetar. The
algorithm can be summarized as follows:

FIG. 5. Posterior distribution for fgw;0, n, and τ for
GRB140903A. These posteriors are used as priors to build a
GRB specific template bank. Shown are one-,two-, and three-
sigma confidence levels. This figure is generated using the
ChainConsumer software package [43].

FIG. 4. γ and x-ray lightcurves for GRB140903A. Black points
are data from Swift and Chandra satellites. The blue curve shows
the maximum likelihood model described in Sec. III. The dark red
band is the superposition of 800 models randomly drawn from the
posterior distribution (shown in Fig. 5). The dashed black curve
is the model for the luminosity from the nascent neutron star
[Eq. (16)].
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(1) Generate posterior distributions on the three wave-
form parameters fgw;0, n and τ using the x-ray
afterglow observations of a specific SGRB as
described in Sec. III.

(2) These posterior distributions, along with uniform
priors onΦ0 and cos ι ∈ ½0; 1�, serve as priors for our
waveform model. Template waveforms are gener-
ated from points in these priors.

(3) Templates are used to calculate the matched filter
signal-to-noise ratio using LIGO data at the time of
the SGRB.

The same pipeline can also be adopted with unconstrained
uniform priors in step 1, in the case where no x-ray data are
available. However, the number of templates required for a
matched-filter search becomes computationally unfeasible.
We quantify this throughout this section.
We calculate the fitting factor FF [44], also com-

monly referred to as the overlap [e.g., [45]]. The fitting
factor is the penalty in signal-to-noise ratio one suffers due
to comparing templates that do not precisely match the
signal: FF ¼ ρ=ρopt. We want to minimize this penalty
while maximizing the signal-to-noise ratio.
To calculate the FF we randomly draw one value of each

parameter from our priors and construct a model waveform
using the waveform model described in Sec II. We assume
this is our true template, hT. We determine the optimal
matched filter signal-to-noise ratio for this template using
Eq. (14), We randomly draw from our priors excluding our
“true template” and create a random template, hi, where i
labels the ith drawn sample. We compute the matched
filter signal-to-noise ratio [Eq. (12)], ρi. We calculate ρi for
N random templates. In the limit of infinite templates,
maxðρiÞ → ρopt.
The maximum fitting factor is defined as

FF ¼ maxðρiÞ
ρopt

; ð18Þ

where maxðρiÞ is the maximum matched-filter signal-to-
noise ratio from a population of N templates. In the limit of

an infinite number of templates, FF → 1, assuming our
signal parameters are within our template parameter space.
Creating a large number of templates is computationally
expensive. We therefore want to minimize the number of
templates we need. Additionally, we want to maximize our
signal-to-noise ratio by creating templates for a longer
duration.
In Fig. 6, we show the scaling of FF with the number of

templates in the template bank for different tobs and two
different priors: an unconstrained uniform prior (left panel)
where the priors on fgw;0, n and τ are [500, 3000] Hz,
[2.5, 5] and [350, 35000] s, respectively, and the con-
strained posterior priors from using x-ray afterglow obser-
vations (right panel). The error bars indicate one sigma
confidence levels, generated by repeating the analysis with
1000 different noise realizations.
Figure 6 shows that for 105 templates, FF ¼ 0.62 for

tobs ¼ 10 s with uniform priors. A fitting factor FF ¼ 0.62
implies that we lose 38% of the optimal matched-filter
signal-to-noise ratio when running a matched-filter search.
This recovery percentage is even worse for longer obser-
vation times, with tobs ¼ 100 s having FF ¼ 0.12 for
uniform priors with 105 templates, indicating we lose
88% of the optimal matched-filter signal-to-noise ratio.
Although FF scales up for an increasing number of
templates, the amount of templates required to construct
a search that could detect potential signals is unfeasible
computationally for uniform priors. Furthermore, as shown
in Sec. II, real astrophysical signals likely require tobs >
1000 s, and FF at these tobs is significantly worse.
Fortunately, FF is comparatively better for constrained
priors (right panel). For example, for tobs ¼ 100 seconds
with 105 templates, FF ¼ 0.72 with constrained priors as
opposed to 0.12 with uniform priors. In a real search, we
will likely require tobs > 103 seconds and 106 templates.
We have not calculated the FF for these parameters as it is
computationally expensive and requires an optimization
step in the template generation to avoid using the high
sampling frequencies throughout that are required at the
beginning of the waveform. Furthermore, for aLIGO,

FIG. 6. The fitting factor (FF) as a function of the number of templates with unconstrained parameter priors (left panel) and priors
constrained by x-ray afterglow observations (right panel) for observation times tobs ¼ 10 seconds (solid lines), tobs ¼ 100 seconds
(dashed lines), and tobs ¼ 500 seconds (dotted lines). The error-bars indicate one sigma.
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detectable astrophysical signals require large τ values
which are ruled out by the energy budget constraint; see
Sec. II A. In addition, constructing searches with observa-
tion times significantly larger than τ gives worse results
as one no longer accumulates significant signal-to-noise
for t ≫ τ. Noting the scaling observed in FF, we expect
FF ≈ 0.4 for tobs ¼ 104 seconds with 106 templates, an
acceptable loss considering the gains from a longer signal
duration.
We calibrate our pipeline by injecting signals into

Gaussian noise colored to match that of the expected strain
sensitivity. This calibration is parameter dependent, so in a
real search, we will need to do this for each SGRB. We use
the posteriors from GRB140903A to create a fake signal. In
Sec. II, we used the optimal matched filter signal-to-noise
ratio [Eq. (14)] to determine an optimistic estimate for the
distance out to which we can detect a signal (shown in
Fig. 3). These distances are optimistic, and as we quantified
with FF, we suffer a loss in signal-to-noise due to having
imperfect templates.
We define a horizon distance as the distance to which a

detector with a given sensitivity can observe events with a
given significance in a real matched-filter search. We start
with the matched filter signal-to-noise ratio ρ (Eq. (12) We
determine a signal-to-noise ratio threshold ρthreshold, which
is the minimum signal-to-noise ratio to claim a detection
with aLIGO at design sensitivity with a single detector. To
determine this threshold, we calculate ρ using Eq. (12) with
noise-only realizations (s ¼ 0) and forN templates.We take
the maximum ρ from N templates and do this for multiple
realizations of noise retaining themaximum ρ each time.We
determine the 99.7 percentile of our probability distribution
on ρ with no signal, which indicates that 99.7% of the time
noise can mimic a signal (a false alarm). Any detection
needs ρ > ρthreshold to be significant. For our pipeline, the 3σ
ρthreshold is 4.4 with 104 templates and 1000 realizations
of noise; however, the choice of this false-alarm rate is
arbitrary.
We also establish a false dismissal probability, which

quantifies when a real signal present in the data cannot be
disassociated from the noise. As a result, it fails to be
identified. To determine a horizon distance, we find the
distance where our false dismissal probability is less than
10%, which is done by repeating the procedure for
determining ρthreshold, but injecting signals at fixed dis-
tances. We then determine at what distance less than 10%
signals have ρ < ρthreshold.
Prior to this point, we have only considered a single

detector; the signal-to-noise ratio grows approximately in
quadrature for a network of N similar detectors and
therefore having an aLIGO-Virgo triple detector network
will increase the horizon distance accordingly. In the future,
with a network of 3G detectors such as ET and Cosmic
Explorer, a similar increase in signal-to-noise ratio can
be expected. Other factors such as sky localization and

time-varying Fþ and F× will also affect the horizon
distance. Considering these factors, in a real search we
can expect our horizon distance for a GRB140903A
inferred postmerger signal to be half the optimal
matched-filter distance indicated by Fig. 3 as ∼2 and
∼45 Mpc for ϵ ¼ 10−3 for aLIGO and ET, respectively.

V. CONCLUSION

We have developed an algorithm to search for gravita-
tional waves from a long-lived postmerger remnant of a
binary neutron star merger. In Sec. II, we derive a waveform
model for gravitational waves emitted from a spinning
down millisecond magnetar. We detail and analyze a
matched filter detection pipeline using this waveform
model. We find that using x-ray observations from
SGRB afterglows results in a significant decrease in
parameter space resulting in a much improved and targeted
search for a postmerger remnant. These x-ray guided priors
can also be applied in other postmerger search pipelines.
Our analysis indicates for an ellipticity ϵ ¼ 10−2 our
pipeline can, in principle, detect gravitational waves with
aLIGO at design sensitivity out to ∼20 Mpc for a fiducial
moment of inertia 1045 g cm2. If one ignores the energy-
budget constraint, this fiducial value implies a conservative
limit on the gravitational-wave strain and therefore horizon
distance. In reality, the moment of inertia of the remnant
may be a factor few larger than this fiducial value; as the
strain scales linearly with the moment of inertia, this
implies the horizon distance may also be a factor of a
few larger. However, when including the energy-budget
constraint, the horizon distance implied by a higher
moment of inertia is lower due to the inverse relationship
between the moment of inertia and the ellipticity.
It is the energy-budget constraint that ultimately sets

the distance to which these postmerger remnants can
be detected. A large region of the parameter space is
implausible, which lowers the horizon distance to ∼2 Mpc
for GRB140903A-like postmerger signals. The Einstein
Telescope can detect a similar signal out to ∼45 Mpc.
Postmerger signals with longer spin-down timescale τ will
be detectable out to larger distances.
We are also investigating a more realistic model. The

waveform model introduced here is simplified as the model
assumes the neutron star is an orthogonal rotator. In this
state, the principal eigenvector of the moment of inertia
tensor is orthogonal to the star’s rotation axis making the
star an optimal emitter of gravitational waves. The neutron
star is possibly driven to this orientation through the spin-
flip instability [16,46,47], but the timescales involved are
uncertain [10,11,48]. As the system is driven to orthogon-
alization, it emits gravitational waves which we can include
in our waveform model. We also have not accounted for
time-varying Fþ and F× terms.
Another extension is to constrain our parameter

space further by including information obtained through
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parameter estimation on the binary neutron star inspiral
gravitational-wave signal. Specifically, we can constrain
the inclination of the source which should increase the
pipeline sensitivity. The x-ray afterglow observations also
suggest an evolution of the braking index with timewith the
system evolving from gravitational-wave dominated spin-
down to magnetic dipole. This evolution of the braking
index is something we can include in our model.
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