
 

Black hole interference patterns in flavor oscillations
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Motivated by neutrino astronomy, we consider a plane wave of coupled and massive flavors, scattered by
a static black hole, and describe analytically and numerically the corresponding oscillation probability in
the surrounding space. Both the interpretation as particles traveling along geodesics and as scattered waves
are studied, and consistently show a nontrivial and potentially long range interference pattern, in contrast to
the spatially uniform transition probability in a flat spacetime. We introduce a numerical method for
studying the oscillations around black holes, which accounts for the full curved geometry and flavor wave
mixing. Whilst limited to the region immediately around the black hole, this numerical approach has the
potential to be used in more general contexts, revealing the complex interference patterns which defy
analytic methods.
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I. INTRODUCTION

The emerging field of neutrino astronomy at observato-
ries such as the Ice Cube [1], Antares [2], KM3Net 2.0 [3]
and the Baikal Neutrino Telescope [4] promises to improve
our understanding of the fundamental properties of neu-
trino physics. If these are to be combined with multi-
messenger observations from gravitational wave events at
LIGO/Virgo ([5] and see [6] for a review), an understanding
of the behavior of neutrinos in curved spacetimes, in
particular their flavor oscillations, will be required for
proper interpretation of the results. Neutrino interferometry
has, for example, been proposed as a means by which to
discover asymmetry in neutrinos and antineutrinos, and
thus distinguish Dirac and Majorana neutrinos [7,8].
The phenomenon of flavor oscillations is described by

quantum mechanics and, as explained in more detail below,
is based on the study of the wave function of neutrinos,
more specifically of their phase. The phase shift induced by
gravitational fields on particles’ wave functions was origi-
nally observed with neutrons in the Earth’s gravitational
field [9], with the corresponding effect first studied theo-
retically in [10]. For neutrinos oscillations, the effect of
gravitational fields on the wave function along geodesics
should also have phenomenological implications [11], due

for example to the gravitational redshift which increases
the oscillation length [12].
General studies of gravitational effects on the phase of

wave functions, for different spins, were done in [13–17],
and more specific studies involve supernovae explosions
[18], neutrino optics and the Lens-Thirring effect [19], or
the study of three flavor oscillations in curved space time
[20]. There is also a potential violation of the equivalence
principle in relation to flavor oscillations in curved space
time, as discussed in [21–23].
We study here the effect of a curved background on the

flavor transition probability, motivated by the scenario
where neutrinos emitted by an astrophysical event pass
by a BH before being observed. Such a scenario has been
studied in [24], where two neutrino beams are lensed by a
massive object, and the oscillation probability is calculated
at the focal point. We propose instead to assume an incident
plane wave of two mixed flavors, which is scattered by a
BH. In this stationary process, we calculate analytically and
numerically the phase shift which is gravitationally induced
at every point of space, and which allows us to determine
the oscillation interference pattern. This study therefore
takes into account delocalized effects arising from a wave
description, and not only the interference of two specific
geodesics.
Section II reviews features related to oscillation proba-

bility, in flat spacetime and also in the presence of a BH. In
the latter case, the description is based on particles traveling
along geodesics, and we approximate an incident plane
wave as a set of parallel and coherent beams, with different
impact factors. In this cylindrically symmetric configura-
tion, the resulting scattering pattern exhibits paraboloids of
minimum probability, aligned with the axis of symmetry,
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at large distances. Although highly localized, these parab-
oloids would in principle result in directions far from the
BH along which no oscillation of neutrino flavors would be
observed.
We then turn to the wave description in Sec. III, where

we give generic analytical features of a massive wave
scattered by a BH. The resulting equations can be solved
analytically only in very limited cases, and the aim of this
section, together with Appendix A, is mainly to understand
the scattering properties of the model.
Section IV covers the numerical implementation of the

study, in the vicinity of the BH, following the dynamical
evolution of plane wave flavor mass eigenstates on a fixed
Schwarzschild background in horizon penetrating coordi-
nates. The resulting interference pattern thus takes into
account the self interference of the waves, the full effect of
the curved geometry and the resulting backward scattering.
Appendix B gives further details of the code used and
convergence tests. Whilst we are far from being able to
directly observe neutrinos in the vicinity of BHs, such
interference patterns may affect the weak interactions
around black holes or massive objects such as neutron
stars, for example, in a merger scenario.

II. FLAVOR OSCILLATIONS

We consider here two scalar flavors, since the essence of
the flavor oscillation process is independent of the spin.
Also, for fermions, the spin flip effect induced by gravity
actually does not occur in Schwarzschild spacetime [25].
The present study is based on plane waves, although this
assumption is associated with several ambiguities in the
context of flavor oscillations. As explained in the clear and
thorough review [26], these ambiguities can be avoided
with wave packets. Nevertheless, the plane wave
assumption is enough to construct the essential features
of the interference pattern we are interested in.

A. Oscillation probability in the absence of gravity

Consider two scalar flavors ϕa;ϕb, which satisfy the
equation of motion

□ΦþM2Φ ¼ 0; ð1Þ
where

Φ ¼
�
ϕa

ϕb

�
and M2 ¼

�
m2

a μ2

μ2 m2
b

�
: ð2Þ

The eigenmasses and the corresponding mass eigenstates
are given by

m2
� ¼ 1

2
ðm2

a þm2
bÞ �

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2

a −m2
bÞ2 þ 4μ4

q
�
ϕþ
ϕ−

�
¼

�
cos α sin α

− sin α cos α

��
ϕa

ϕb

�
ð3Þ

where α is the mixing angle and

sin α≡ 1ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

jm2
a −m2

bj
Δm2

r

Δm2 ≡m2þ −m2
− ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2

a −m2
bÞ2 þ 4μ4

q
: ð4Þ

The equation of motion satisfied by the mass eigenstates is

□ϕ� þm2
�ϕ� ¼ 0; ð5Þ

with equal-momentum plane wave solutions in flat space,
given by

ϕ�¼ expð−iω�tþ ik⃗ · r⃗Þ whereω�¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

�þk2
q

: ð6Þ

Rotating back to the flavor eigenstates leads to flavor
configurations

�
ϕa

ϕb

�
¼ exp ðik⃗ · r⃗Þ

�
cos α − sin α

sin α cos α

��
exp ð−iωþtÞ
exp ð−iω−tÞ

�
:

ð7Þ

To calculate the oscillation probability, one introduces at
every point of space the normalized kets

j�i ¼ eiφ�j�; 0i
hþ; 0jþ; 0i ¼ h−; 0j−; 0i ¼ 1; hþ; 0j−; 0i ¼ 0:

ð8Þ

for the mass eigenstates, and

jai ¼ cos αjþi − sin αj−i
jbi ¼ sin αjþi þ cos αj−i; ð9Þ

for the flavor eigenstates. For the field configurations (7),
the phases are φ� ¼ k⃗ · r⃗ − ω�t and it is easy to check that
the flavor oscillation probability has the known expression

Pplane
a→b ðtÞ≡ jhb;0jaij2¼ sin2ð2αÞsin2

�
1

2
ðωþ−ω−Þt

�
; ð10Þ

and is independent of the spatial coordinates. If one
considers a beam of ultrarelativistic particles, the propa-
gation time can be identified with the propagation length, in
a system of units in which c ¼ 1. The oscillation length is
then

L ¼ 2π

ωþ − ω−
≃

4πk
Δm2

; ð11Þ

and corresponds to the experimental observable.
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B. Gravity-induced phase shift

In the presence of gravity, the phase of mass eigenstates
depends on the spatial coordinates in a nontrivial way. We
assume then that the mass eigenstates have the same
amplitude, which is a valid approximation if one considers
the situation where the masses are almost-degenerate [26].
For the stationary scattering process we consider, the time
dependence of mass eigenstates is trivial, and a configu-
ration can be written

ϕ� ¼ eiΦ�ðr⃗Þ−iω�tA�ðr⃗Þ; ð12Þ
where r⃗ denotes the set of space coordinates. Assuming
Aþ ≃ A−, the amplitude can be factorized in the linear
combinations representing the flavor eigenstates. This
amplitude therefore cancels out in the normalization of
states for the calculation of oscillation probability, which
thus depends on the phases Φ� − ω�t only. As a conse-
quence, the same argument as the one leading to Eq. (10)
gives here

Pa→b ¼ sin2ð2αÞsin2
�
1

2
ðωþ − ω−Þt −

1

2
Δðr⃗Þ

�
; ð13Þ

where the phase shift we are interested in is

Δðr⃗Þ ¼ Φþðr⃗Þ −Φ−ðr⃗Þ; ð14Þ
and is the main subject of our numerical analysis presented
in Sec. IV. Time cannot be replaced by the distance traveled
in the probability (13), since one does not consider specific
geodesics, but one can nevertheless characterize the motion
of surfaces of constant probability (13). For this, at a given
time t one denotes by D a surface corresponding to a given
probability, far enough from the BH for spacetime to be
assumed flat. As time increases Δ must compensate the
change in ðωþ − ω−Þt, for the probability to stay constant
onD, which must therefore be shifted and deformed in such
a way that

dPa→b

dt
¼ 0 ⇒ ωþ − ω− ¼ v⃗ · ∇⃗Δ; ð15Þ

where v⃗ is the velocity of points on D. The gradient ∇⃗Δ
is perpendicular to D at each point, and its scalar product
with the velocity of D at this point is therefore a constant
characterizing the system. For a stationary process as we
consider here, the surfacesD are periodically generated and
move away from the scattering center.

C. Neutrino interferometry in Schwarzschild geometry

Before turning to the study of a massive wave scattered
by a BH, we describe here the point of view of particles
traveling along specific trajectories. The first calculation on
neutrino interferometry was done in [24], and related
comments can be found in [27–30].

We consider the motion of a test particle of massm in the
Schwarzschild metric

ds2 ¼ gμνdxμdxν ¼ fðrÞdt2 − dr2

fðrÞ − r2dθ2 − r2sin2θdφ2;

ð16Þ
with

fðrÞ ¼ 1 −
Rs

r
; ð17Þ

where Rs ¼ 2GM and we restrict the study to the equatorial
plane θ ¼ π=2, where the conserved quantities are

pt ¼ mfðrÞ dt
ds

and pφ ¼ −mr2
dφ
ds

: ð18Þ

Consider a neutrino source at the position r⃗A where the
beam is split into two beams, which are later lensed by a
BH, to meet again at the position r⃗B. The flavor oscillation
probability at the intersection point has been calculated
in [24], after evaluating the phase along null geodesics.
Assuming that the impact parameters b1, b2 of the two
intersecting beams are large compared to Rs, and up to
terms of order ðm�=kÞ2, the result is

PBH
a→b ¼ sin2ð2αÞ

�
sin2

�
Δm2

4k

�
Rþ Rs −

R
P

b2

4rArB

��

× cos

�
m2þRΔb2

8krArB

�
cos

�
m2

−RΔb2

8krArB

�

þ sin2
�P

m2RΔb2

16krArB

�
sin2

�
Δm2RΔb2

16krArB

��
; ð19Þ

where R≡ rA þ rB andX
b2 ¼ b21 þ b22; Δb2 ¼ b21 − b22X
m2 ¼ m2þ þm2

−; Δm2 ¼ m2þ −m2
−: ð20Þ

Motivated by a plane wave scattered by a BH, we
consider here a source at minus infinity in the x-direction,
which produces asymptotically parallel and coherent beams
with different impact parameters −∞ < b < þ∞. Far
enough from the BH, we can use the asymptotically
Cartesian coordinates ðx; yÞ in the equatorial plane, centred
on the BH, with the impact parameters measured along the
y axis, as shown in Fig. 1.
The limit rA → ∞ in the probability (19) can be taken in

the following way

Δm2

4k
ðrA þ RsÞ ¼ 2qπ; q integer and q → ∞; ð21Þ

which leads to the oscillation probability at the intersection
of two deflected beams with impact parameters b1, b2,
given by
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P∞ ¼ sin2ð2αÞ
�
sin2

�
Δm2

4k

�
r −

P
b2

4r

��

× cos

�
m2þΔb2

8kr

�
cos

�
m2

−Δb2

8kr

�

þ sin2
�P

m2Δb2

16kr

�
sin2

�
Δm2Δb2

16kr

��
; ð22Þ

where r is the radial coordinate of this intersection point.
It is interesting to consider the lines of constant prob-

ability in the equatorial plane, assuming that jbij ≫ Rs.
The deflection angle δ for massless particles with impact
parameter b along the y axis is

δ ≃ −
2Rs

b
: ð23Þ

The equation for the asymptotically straight trajectory, after
deflection, is then

y − b
x

≃ −
2Rs

b
; ð24Þ

such that the two impact parameters b1, b2 corresponding
to beams intersecting at the point ðx > 0; yÞ are

b1 ≃
y
2
þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ 8Rsx

q
> 0

b2 ≃
y
2
−
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ 8Rsx

q
< 0: ð25Þ

The probability in Eq. (22) can then be sketched, as in
Fig. 2, and shows a nontrivial interference pattern for x > 0.
Note that only forward scattering is taken into account. As
can be seen on Fig. 2(a) (and Fig. 2(c) for smaller initial
momentum), the probability is described by a spherical
pattern, with a radial oscillation length consistent with the
expression (11), and which arises from the sine squared in

the first line of Eq. (22). However, one can see in the
magnified and stretched views (b) and (d) that there is
another oscillation in the orthoradial direction where the
probability vanishes along lines which originate from the
BH, and extend in almost radial directions. These lines are
described by the vanishing of the product of cosines in the
second line of Eq. (22), which happens when

m2Δb2

8kr
¼ π

2
þ nπ ðn integerÞ; ð26Þ

wherem ≃mþ ≃m−. We focus on the lines which are close
to the axis of symmetry, therefore where x ≫ y. Together
with the expressions (25), the condition (26) gives the
parabolas

x
Rs

≃ An

�
y
Rs

�
2

; ð27Þ

where

An ≡ an
�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1=ð4anÞ

p �
; ð28Þ

with

an ≡ R2
sm4

4π2k2ð1þ 2nÞ2 : ð29Þ

We note that, since the present derivations are valid close to
the axis of symmetry, we have Δm2Δb2 ≪ 16kr and thus
the 2nd line of Eq. (22) is negligible.
The parabolas (27) corresponding to different integers n

can be seen on the magnified views in Figs. 2(b) and 2(d).
Given the cylindrical symmetry of the problem, the BH
therefore generates a family of paraboloids of vanishing
oscillation probability, along the direction of the original
momentum. This additional oscillation length in the
orthoradial direction is much smaller than the radial one,
since it depends on the masses and not the mass difference.
As can be seen in the non magnified views in Figs. 2(a)

and 2(c), there is a third oscillation feature, again in the
orthoradial direction, where the regions of maximum
probability are “shifted” out of phase. These out of phase
maxima arise from the product of sines squared in the 2nd
line of Eq. (22), which is neglected to derive the parabolas
(27). This term becomes of the same order as the 1st line
of Eq. (22) in these sectors. The typical oscillation length
of these features depends on the mass difference and thus is
of the same order as the radial oscillation length.
As a consequence of these new oscillation features, the

flavor detected depends not only on the radial distance to
the BH, but also on the distance between the observer and
the axis of symmetry of the problem.
Finally, note that several independent length scales

appear in the problem, and different combinations could
lead to similar interference patterns to those shown in
Fig. 2. These length scales arise from:

x

y

b1

b2

FIG. 1. Figure to show the setup described in Sec. II C, with
initially asymptotically parallel and coherent beams with impact
parameters b1 and b2, which are scattered by the BH and intersect
for x ≫ Rs.
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(1) the eigenmasses mþ ≃m−;
(2) the difference Δm2;
(3) the initial momentum k;
(4) the BH mass M.

We therefore have 3 independent dimensionless parameters
on which the interference pattern depends, and these are
chosen here, for phenomenological purposes, consistently
with ultra-relativistic particles with a small mass difference

(compared to their masses), and such that the radial
oscillation length is of the order of Rs.

III. MASSIVE WAVE SCATTERED
BY A STATIC BLACK HOLE

In this section we describe some analytical features of a
massive plane wave scattered by a BH. Studies of massless

FIG. 2. Plot of the oscillation probability P∞ given by Eq. (22). The BH is located at x ¼ y ¼ 0 and the horizontal axis x corresponds
to the direction of the original momentum of the plane wave. For Figs. (a) and (b), the numerical values used are such that the particles’
Compton wavelength is 10−10 times smaller than the Schwarzschild radius and their initial momentum k is 107 times larger than their
masses, which differ by 1%. Figure (b)—which is stretched along the vertical y-axis—shows a magnified section of (a), showing as
dotted lines the parabolas of vanishing probability across the first few spherical patterns. The parabolas correspond to the integer values
between n ¼ 0 and n ¼ 4 in Eq. (27). In Figs. (c) and (d) the momentum is 4 times smaller than for Figs. (a) and (b), with identical
masses, such that the oscillation length in the radial direction is approximately 4 times shorter, and of the order of the BH radius. In this
case the parabolas are much closer together. Both Figs. (a) and (c) show a second oscillation feature in the orthoradial direction, where
the regions of maximum probability are shifted out of phase.
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scalar wave scattering from a BH can be found in [31–35],
and a pedagogical review is given in [36]. As in the
situation of light scattering, both forward and backwards
glory effects [37] do occur for spin zero particles [38],
which is confirmed in this section.
Unlike in the previous section, where the description was

done in the equatorial plane θ ¼ π=2, we follow convention
for these studies and consider here a cylindrically sym-
metric system where the wave vector of the original plane
wave is along the z-axis. In coordinates (16), the fields
therefore depends on r and θ, but not φ.

A. Decomposition in partial modes

We consider here a mass eigenstate ϕ with mass m,
satisfying the equation

1ffiffiffi
g

p ∂μð
ffiffiffi
g

p
gμν∂νϕÞ þm2ϕ ¼ 0; ð30Þ

where the metric is given by Eq. (16). The so-called tortoise
coordinate r⋆ can then be introduced as

dr
dr⋆

≡ fðrÞ; ð31Þ

with which the metric is conformally equivalent to

ds̃2 ¼ ðdtþ dr⋆Þðdt − dr⋆Þ −
r2

fðrÞ ðdθ
2 þ sin2θdφ2Þ;

ð32Þ
and involves the Eddington-Finkelstein coordinates t� r⋆.
In terms of the radial coordinate r⋆, the wave equation for a
cylindrically symmetric field reads

∂2
0ϕ̂− ∂2

r⋆ϕ̂þfðrÞ
�
m2þRs

r3

�
ϕ̂−

fðrÞ
r2 sinθ

∂θðsinθ∂θϕ̂Þ ¼ 0;

ð33Þ

where ϕ̂≡ rϕ does not depend on φ. The next step is to
decompose the cylindrically symmetric field ϕ̂ on the
Legendre polynomials basis

ϕ̂ ¼ e−iωt
X∞
l¼0

ð2lþ 1ÞPlðcos θÞulðrÞ; ð34Þ

where the trivial time dependence describes a stationary
process. Given the identity

d
dx

�
ð1 − x2Þ dPlðxÞ

dx

�
þ lðlþ 1ÞPlðxÞ ¼ 0; ð35Þ

the expansion (34) plugged in the evolution equation,
Eq. (33) gives, for every l,

d2ul
dr2⋆

þ ðω2 − VlðrÞÞul ¼ 0; ð36Þ

where the effective potential seen by each mode ul is,

VlðrÞ ¼ fðrÞ
�
m2 þ lðlþ 1Þ

r2
þ Rs

r3

�
: ð37Þ

Although the coordinate r⋆ leads to an elegant formulation
of the problem, it is not appropriate for the study at large
distance r ≫ Rs in the massive case, as explained in
Appendix A.

B. Semiclassical approach

In the semiclassical approximation discussed in detail in
[39], the variable l is replaced by a continuous parameter,
with a dominant contribution l̂ obtained from the stationary
phase method for the calculation of the phase shift of the
mode ul. l̂ satisfies

δðl̂Þ ¼ θ; ð38Þ

where δðlÞ is the classical deflection angle and θ is the
observation angle, and the differential cross section of the
scattering process is then shown to be

dσ
dΩ

				
semiclassical

≃
ω2ðl̂þ 1=2Þ
sin θðdδ=dlÞl̂

: ð39Þ

If one compares this expression with the classical differ-
ential cross section for scattered particles

dσ
dΩ

				
classical

¼ jbj
sin θ

djbj
dθ

; ð40Þ

one can make the identification

jbjω ≃ l̂þ 1

2
: ð41Þ

The latter equation gives an important insight into the
scattering process: the dominant mode ul̂ in the scattering
process corresponds to a beam with typical impact factor
given by Eq. (41).

C. Vicinity of the horizon

Near the BH horizon, the radial coordinate can be written

r ¼ Rsð1þ ϵÞ; with 0 < ϵ ≪ 1; ð42Þ

and one would expect the potential (37) to be negligible
compared to ω2. One should check though, for fixed r, that
large values of l do not invalidate this approximation. Given
that 3

ffiffiffi
3

p
Rs=2 is the critical impact parameter for a null
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geodesic, one can assume that the dominant beams con-
tributing to the scattering pattern in the vicinity of the BH
are those corresponding to an impact parameter satisfying
jbj ≤ 3

ffiffiffi
3

p
Rs=2. A detailed discussion of critical impact

parameters can be found in [40], which includes the case of
massive particles. Since we assume ultrarelativistic par-
ticles though, the null geodesic approximation is enough
for the present discussion.
According to the semiclassical argument above, the

dominant modes are then characterized by

l̂ ≤ 3
ffiffiffi
3

p
Rsω=2; ð43Þ

and satisfy

fðrÞ l̂ðl̂þ 1Þ
r2

≃
ϵl̂2

R2
s
≤
27

4
ϵω2 ≪ ω2: ð44Þ

As a consequence, the solution to Eq. (36) is then
approximately independent of l in the relevant range (43).
If we assume an ingoing wave only (since no signal can

escape this region), we obtain ul ∝ expð−iωr⋆Þ, and the
full solution is then approximately

ϕ ≃ AðθÞ exp½−iωðtþ r⋆Þ�; ð45Þ

where

AðθÞ ¼ 1

Rs

X3
ffiffi
3

p
Rsω=2

l¼0

ð2lþ 1ÞPlðcos θÞ: ð46Þ

We note that [41,42] discuss the possibility of an outgoing
massive wave in this regime, in addition to the ingoing
wave, with a different amplitude which takes into account a
reflection from the Horizon, related to Hawking radiation.
This effect is dominant at energies which are comparable to
the Hawking temperature, and since the present study is
motivated by high-energy neutrinos, we neglect here the
outgoing wave.
Assuming that mass eigenstates have the same ampli-

tude, AþðθÞ ≃ A−ðθÞ, the oscillation probability is given by

Pvicinity
a→b ≃ sin2ð2αÞsin2

�
1

2
ðωþ − ω−Þðtþ r⋆Þ

�
; ð47Þ

and depends on the Eddington-Finkelstein coordinate
tþ r⋆ only. This is consistent with the numerical analysis
in Section IV, where the Kerr-Schild time coordinate t0
satisfies t0 þ r ¼ tþ r⋆, such that the probability (47) for
fixed t0 is almost uniform in the vicinity of the BH, since
we have there ðωþ − ω−Þr ≪ 1 (the oscillation timescale is
very long). Note that the expression (47) predicts an infinite
number of oscillations, for fixed t, as one approaches the
horizon, where r⋆ → ∞. However, this is an artifact of the

choice of observer at infinity, for whom t diverges at the
horizon. In terms of t0, the number of oscillations is finite.

D. Asymptotic solution

Equation (36) can be solved asymptotically, by analogy
with the scattering problem in a Coulomb potential. The
different steps are explained in Appendix A, and the
solution can be written in terms of the momenta

k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 −m2

p
; p ¼ ð2ω2 −m2Þ=k; ð48Þ

and the radial coordinate

ρ≡ rþ pRs

2k
lnð2krÞ: ð49Þ

If A is a constant amplitude, the solution can then be
expressed in terms of the nonscattered plane wave ϕplane,
and we find

ϕ ≃ ϕplane þ A
r
hðθÞ exp ðikρ − iωtÞ; ð50Þ

where

hðθÞ≡X∞
l¼0

ð2lþ 1ÞPlðcos θÞðe2iδl − 1Þ; ð51Þ

and the complex phase δl is expressed in terms of the
momentum p, as explained in Appendix A. Note that the
plane wave appearing in Eq. (50) is “distorted” in the sense
that it involves both radial coordinates, r and ρ, as can be
seen in Appendix A. Equation (A12) in this Appendix
shows that the expression (50) is valid up to terms of order
1=r2, and the unavoidable mixture of radial coordinates r
and ρ can be understood as a consequence of the long range
of the gravitational interaction. Also, the expression (50) is
formal only, since the sum appearing in the definition of
hðθÞ is actually divergent [36]. But if one considers a “thick
beam” with maximum impact parameter B, instead of an
infinite incident plane wave, then the semiclassical argu-
ment given above allows to set a cut off L for l, defined
by L ≃ Bω.
Finally, the result (50) is valid for each mass eigenstate,

for which one can extract the phase as

argðϕÞ ¼ arctan

�
ImðϕÞ
ReðϕÞ

�
; ð52Þ

but this is left to next section, where the original equations
of motion, Eq. (30), are solved numerically for each mass
eigenstate.
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IV. NUMERICAL CALCULATION OF THE
OSCILLATION PROBABILITY

In this section we describe the results of an evolution of
the flavor fields on a fixed Schwarzschild BH background.
The purpose is to study the interference patterns produced
in the oscillation probability as the plane waves pass the
BH. We expect, and indeed find, that a stationary pattern is
built up dynamically, radiating from the BH as the
evolution progresses.
Full details of the numerical methods and convergence

tests are provided in Appendix B.

A. Initial conditions

The two mass eigenstates of the flavor fields are set up
as plane waves in the x-direction, as described by Eq. (6)
with t ¼ 0, superimposed on a fixed background geometry
which describes a Schwarzschild BH in Kerr-Schild coor-
dinates ðt0; r; θ;φÞ (see Appendix B).
Numerical values are chosen such that m− ≃mþ, in

order to have approximately the same amplitude for ϕ− and
ϕþ. The values in units set by the BH radius Rs are m− ¼
1.0=Rs andmþ ¼ 0.99=Rs. The wave number is k ¼ π=Rs,
such that the corresponding wavelength of the mass
eigenstates is λ ¼ 2Rs. The resulting oscillation length in
flat space corresponding to these values would be of the
order of L ∼ 2000Rs.
These values are not phenomenologically realistic, but

are set by numerical constraints. To model neutrinos around
solar mass BHs, one should set m ∼ 1010=Rs and k ∼
1017=Rs as in the previous sections, but this would mean
resolving two very disparate timescales, which is computa-
tionally intractable using the current method.
There are thus two possible interpretations of the

numerical results. First, assuming a solar mass BH, the
mass values chosen would correspond to m ∼ 10−10 eV, so
very light neutrino-like particles. Alternatively, for neutri-
nos themselves, the simulated BH would correspond to
primordial BHs of order 10−10 M⊙, although the momen-
tum k should also be made larger in this case.
Despite these issues, we could expect that some features

of the numerical solution are still relevant to the neutrino
scattering case. We also show results for a higher momen-
tum case k ¼ 2π=Rs and observe the differences.

B. Evolution and results

We evolve the mass eigenstates from the initial con-
ditions above according to the Klein Gordon equation
Eq. (1), and calculate, at each point of space and for one
given time t0 the phase difference

Θ ¼ ðωþ − ω−Þt − Δðr; θÞ
¼ ðωþ − ω−Þt0 − Δ̃ðr; θÞ
¼ argðϕþÞ − argðϕ−Þ: ð53Þ

We thus expect that the system will settle into a stationary
regime, with the oscillation probability

Pt0 ¼ sin2 Θ: ð54Þ

Since the oscillation timescale is of order 2000Rs which is
much greater than the simulation time, the term Δ̃ðr; θÞ
should dominate the probability pattern.
We show the real part of one of the complex fields in

Fig. 3 for two different initial momenta k. The other fields
show a similar behavior, and we see that the amplitude of
the two fields is approximately the same, justifying our use
of Eq. (13) to calculate the probability.
Figure 3 also shows the spatial patterns of the oscillation

probability per Eq. (54). The results can be summarized as
follows:
(a) The scale in the probability varies by an amount of

order 0.001, thus the region is overall very uniform, as
expected from the analytic calculations in Sec. III;

(b) In the interference pattern that builds up around the
BH, there appear to be two main contributions:
(i) Dark lines build up away from the BH, resulting

in complex but roughly paraboloidal structures
of minimal probability after the BH.

(ii) Finer, approximately radial lines of maximum
probability cross the darker ones.

Whilst it is difficult to draw comparisons
between the plots here and in Fig. 2, since the
latter uses the particle viewpoint in which time
variation is converted to spatial variations along
the particle path, one could imagine that the fine
structure seen in the magnified plots (on orders
much smaller than the oscillation length) is
related to the structures seen here numerically.
According to Eq. (15), as time evolves (on the
order of the oscillation period) paraboloids of
constant probability move along the x-axis and
gradually close up.

(c) The forward glory in the field (the enhanced region in
the fields shown in the upper two plots of Fig. 3),
subtends an angle at the BH of 16° in the case of the
lower momentum, and this angle halves when the
momentum is doubled. This region corresponds to
the band of low oscillation probability, between two of
the finer radial lines of maximum probability. There is
clearly a correspondence between the spatial profile
of the forward glory and the oscillation probability,
such that the lines of equal probability also become
closer together—the structure becomes more fine—
with increased momentum.

(d) The amplitude of the forward glory is 1.4 times as
large for the higher momentum case, whereas the
overall variation in the probability is roughly halved.

(e) Unlike the analytic approximations, the numerical
simulation shows the full spatial dependence and
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FIG. 3. (a) and (c) show plots of the real part of one of the complex fields with coordinates measured in units of the Schwarzschild
radius Rs ¼ 2GM. The BH is located at x ¼ z ¼ 32 and the horizontal axis x corresponds to the direction of the original momentum of
the plane wave. Plots (c) and (d) show the oscillation probability per Eq. (54). The scale has been chosen to show the angular pattern
which builds up away from the BH, resulting in complex but roughly paraboloidal structures. The plots show waves for which the
momenta are k ¼ π=Rs and k ¼ 2π=Rs as indicated. The smoothness of regions at the edges of the plot is an artificial feature, related to
the finite run-time of the numerical simulation: scattered waves have not had enough time to escape from the vicinity of the black hole,
and thus the interference pattern has not yet built up.
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includes the backscattering effects of the BH, resulting
in a nontrivial pattern of enhanced/suppressed oscil-
lation probability on the left of the BH.

V. CONCLUSIONS

In this work we have modeled the interference patterns
in flavor oscillations which are generated as plane waves of
neutrinos pass by a BH, using both analytic and numerical
techniques.
In all cases we find highly nontrivial interference

patterns which potentially extend to large distances from
the BH. In general, these are paraboloidal shaped regions of
enhanced or suppressed probability. These regions, whilst
localized, could result in unexpected neutrino detection
patterns, in the situation where a BH is roughly in the line
of sight between the Earth and an astrophysical event such
as a supernova explosion. Together with the information
obtained from electromagnetic or gravitational signals, the
unexpected neutrino detection pattern could then give
essential features on either the BH or the astrophysical
event at the origin of the neutrino flux.
The interference patterns we describe assume coupled

massive scalars. A full analysis, using fermions, would give
the same result in the nonspinning case. However, in the
case of a spinning BH, one would need to account for the
spin flip effect in addition to the flavor oscillation phe-
nomenon. As in flat space time and in the presence of a
magnetic field [43], the resulting flavor oscillation prob-
ability would be further modulated, due to a new length
scale introduced in the system by the BH spin.
Another simplification is that we consider plane waves

of coupled flavors, whereas a more phenomenologically
motivated model would consider wave packets. This would
be more complicated analytically, but potentially simpler to
study numerically, since it is localized and thus would not
require a high resolution to be maintained across the whole
grid. However, the plane wave situation is a first step in
understanding the whole interference structure, which
would partially be reconstructed by a wave packet passing
through a BH.
We also assume a small difference in the eigenmasses of

1%, such that we can consider only the phase difference
between the mass eigenstates and neglect the amplitude
contributions to the probability. We will consider the
impact of relaxing this assumption in future work.
Finally, due to computational constraints, the numerical

study necessarily focused on the regions close to the BH,
with the BH horizon scale corresponding to the initial
momenta of the plane waves, rather than the oscillation
length as in the analytic work. This is phenomenologically
less well motivated, either corresponding to neutrinos
around low mass, primordial BHs, or ultralight neutrinolike
particles interacting with solar mass BHs. We hope to
develop the numerical methods to study more phenom-
enologically motivated scenarios in future work. However,

the present method of study already provides a means by
which to study more complex geometries in the future, in
particular spinning BHs, for which analytic derivations are
intractable.
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APPENDIX A: ASYMPTOTIC SOLUTION
FOR A SCATTERED MASSIVE WAVE

Equation (36) is usually solved asymptotically, by
analogy with the scattering problem in a Coulomb poten-
tial. This problem involves an equation of the form

d2ul
dr2

þ
�
κ21 þ

2κ2
r

−
lðlþ 1Þ

r2

�
ul ¼ 0; ðA1Þ

and is solved in the book [44] by Landau and Lifshitz, with
asymptotic solutions

ul ≃ exp



�i

�
κ1rþ

κ2
κ1

lnð2κ1rÞ −
lπ
2
þ ηl

��

ηl ¼ argΓ½lþ 1 − iκ2=κ1�: ðA2Þ

Unlike the massless case, where one can replace r by r⋆ to
find an equation of the form (A1)—up to higher order terms
in 1=r—Eq. (36) involves

fðrÞm2 ¼ fðr⋆Þm2 þO
�
ln r
r2

�
; ðA3Þ

and the logarithmic term cannot be omitted, compared to
lðlþ 1Þ=r2. One can come back to the equation in terms
of r though, which is

d2ul
dr2

þ
�
ω2 −m2 þ Rs

r
ð2ω2 −m2Þ

þR2
s

r2
ð3ω2 −m2Þ − lðlþ 1Þ

r2

�
ul ¼ Oð1=r3Þ; ðA4Þ

and has the form of Eq. (A1) only for values of l satisfying

lðlþ 1Þ ≫ R2
sð3ω2 −m2Þ ∼ 3ðRsωÞ2: ðA5Þ

According to the semiclassical argument though, the latter
condition is satisfied for the dominant modes l̂, since the
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typical impact parameters b for beams contributing asymp-
totically satisfy b ≫ Rs. One can then use the result (A2) to
find

ul ≃ exp



�i

�
krþ Rsp

2
lnð2krÞ − lπ

2
þ ηl

��

ηl ¼ argΓ½lþ 1 − iRsp=2�
k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 −m2

p

p ¼ 2ω2 −m2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 −m2

p ; ðA6Þ

where k is the momentum at infinity, which is independent
of the mass eigenstate, since

k2 ¼ ω2þ −m2þ ¼ ω2
− −m2

−: ðA7Þ

From Eqs. (34) and (A6), the formal expression for a mass
eigenstate has the asymptotic form

ϕ ≃
1

r
e−iωt

X∞
l¼0

ð2lþ 1ÞPlðcos θÞ

× ðAleiðkρ−lπ=2þηlÞ þ Ble−iðkρ−lπ=2þηlÞÞ; ðA8Þ
where

ρ≡ rþ Rs
p
2k

lnð2krÞ; ðA9Þ

and Al, Bl are constants of integration. In order to recover
usual notations [36], the constants of integration Al, Bl are
traded for a global factor A and the complex-valued phase
shift δl such that

ϕ ≃
A
2ir

e−iωt
X∞
l¼0

ð2lþ 1ÞilPlðcos θÞ

× ðeiðkρ−lπ=2þ2δlÞ − e−iðkρ−lπ=2ÞÞ; ðA10Þ

where

ReðδlÞ ¼ ηl: ðA11Þ

The expression (A10) can be compared to the asymptotic
form of the plane wave [44]

ϕplane ≃
A
r
e−iωt

X∞
l¼0

ð2lþ 1ÞilPlðcos θÞ sinðkr − lπ=2Þ

≃
A
r
e−iωt

X∞
l¼0

ð2lþ 1ÞilPlðcos θÞ sinðkρ − lπ=2Þ;

ðA12Þ

such that the solution (A10) can finally be written in the
form

ϕ ≃ ϕplane þ A
r
hðθÞeiðkρ−ωtÞ; ðA13Þ

where

hðθÞ≡X∞
l¼0

ð2lþ 1ÞPlðcos θÞðe2iδl − 1Þ: ðA14Þ

APPENDIX B: NUMERICAL IMPLEMENTATION

This Appendix summarizes the key features of the
numerical code used in the simulations, which is based
on the publicly available numerical relativity (NR) code
GRCHOMBO, itself built on top of the open source Chombo
framework [45]. For a more full discussion of GRCHOMBO

see [46], or the website www.grchombo.org. Here we
describe the key features of the code as used in this work,
in which the matter fields were evolved on a fixed BH
background, neglecting any backreaction of the fields on
the metric (thus note that the NR capabilities of the code
were not utilized).

1. Background metric

We use the Kerr-Schild form of the Schwarzschild
solution as the background on which the fields evolve,
thus neglecting any backreaction of the flavor fields on the
metric. This metric is horizon penetrating and thus simu-
lates the full exterior solution, but necessitates excision at
the singularity—n the static Schwarzschild case this can be
done by simply setting the flavor fields within the horizon
(in practice we do this for r < Rs=2) to decay to zero. Since
the curvature of the metric prevents signals from escaping,
errors due to the excision do not (in principle) propagate
outwards.
The Kerr-Schild time coordinate t0 is related to the

Schwarzschild coordinate t by adding the difference
between the tortoise coordinate r⋆ and the standard
Schwarzschild radial coordinate r:

t0 ¼ tþ RS ln ðr=RS − 1Þ ðB1Þ
whilst the radial Kerr Schild coordinate is equal to the
Schwarzschild radius (note this is for the non spinning
case).
The form of the metric in the standard 3þ 1 ADM

decomposition is then:

ds2 ¼ −α2dt2 þ γijðdxi þ βidtÞðdxj þ βjdtÞ ðB2Þ
where

α ¼ ð1þ 2M=rÞ−1=2 ðB3Þ

βi ¼ 2Mxi

rþ 2M
ðB4Þ

γij ¼ δij þ 2Hxixj=r2 ðB5Þ
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where xi ¼ xi are the cartesian coordinates on the grid and
r2 ¼ x2 þ y2 þ z2. The trace of the extrinsic curvature, the
only other component required for the evolution of the
fields, is given by

K ¼ 2α3ð1þHÞxi∂iH þ 2αH∂iðxi=rÞ: ðB6Þ

2. Matter field evolution

We have two complex scalar fields, which represent the
mass eigenstates of the flavor fields. For each field the real
part ϕr evolves as:

∂tϕr ¼ αΠr þ βi∂iϕr; ðB7Þ

∂tΠr ¼ βi∂iΠr þ α∂i∂iϕr þ ∂iϕr∂iα

þ α

�
KΠr − γijΓk

ij∂kϕr þ
dV
dϕr

�
; ðB8Þ

where the second order Klein Gordon equation has been
decomposed into two first order equations as is usual for
numerical evolutions. In the mass eigenstate basis, the mass
matrix is diagonal and so the potential gradient is simply
given by

dV
dϕ�

r
¼ m2

�ϕ
�
r : ðB9Þ

The imaginary parts follow the same evolution, with
ϕr → ϕi.

3. Numerical details and convergence

GRCHOMBO is a multi-purpose numerical relativity
code, which uses adaptive mesh refinement to increase
resolution in areas of interest, and is fully parallelized using
the MPI framework. Whilst the full NR capabilities were

not required for this work, its flexibility, scaling and built
in GR tools made it easy to adapt for the fixed back-
ground case.

a. Discretization in space and time

The metric values and their derivatives are calculated
exactly at each point using the analytic expressions
above, whereas the flavor field derivatives use 4th order
finite difference stencils of the grid values and a 4th
order Runge-Kutta time integration for the evolution
equations. We use symmetric stencils for spatial
derivatives, except for the advection derivatives (of the
form βi∂iF) for which we use one-sided/upwinded
stencils.
The length of the domain is L ¼ 64RS, and we use four

(2∶1) refinement levels with the coarsest having 7683 grid
points. This coarsest resolution must be sufficient to resolve
the wavelengths of the plane wave flavor fields (λ2RS)
far from the BH. Around the BH additional resolution is
required to properly resolve the horizon area. Kreiss-Oliger
dissipation is used to control numerical errors in the
evolution of the matter fields, in particular that arising at
the grid boundaries.

b. Boundary conditions

We use periodic boundary conditions in all three
directions to be able to simulate plane waves traveling in
the x-direction. Ideally one would allow the waves to enter
and exit at the �x boundary by using appropriate ingoing
and outgoing boundary conditions, thus minimizing the
boundary reflections which will inevitably disturb the
results. A “lazier” alternative is simply to put the bounda-
ries further away from the region of interest and then only
“trust” the region which is causally disconnected from the
boundaries at each point in the simulation. Thus the
simulation is stopped at t ¼ L=4 and only the r < L=4
part is considered valid.

FIG. 4. Here we show that the spatial profile of the probability P is converging at approximately 4th order, by comparing the difference
between the results at 3 successive resolutions, which correspond to base resolutions of 3843, 5123, and 7683, each with 4 levels of 2∶1
refinement on top.
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For future simulations we plan to develop the
appropriate boundary conditions, as this will potentially
double the size of the region which we are able to
accurately evolve.

c. Convergence and testing

We have checked convergence of the simulations, as
illustrated in Fig. 4.

We also checked that in the flat space case, the
probability remained spatially uniform and the oscillation
period was that given by Eq. (10) (∼2000Rs for the values
used), as expected.
Finallywe checked that the solutionwas unchangedwhen

the boundaries were put twice further out, withL ¼ 128 and
a coarsest resolution of 10243, to confirm that the reflections
resulting from the periodicity were not affecting the results
within the central area for which we show results.
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