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The Laser Interferometer Space Antenna is a joint European Space Agency–NASA space mission to
detect and study milliherz cosmic gravitational waves. The trajectories followed by its three spacecraft
result in unequal- and time-varying arms, requiring use of the time-delay interferometry (TDI)
postprocessing technique to cancel the laser phase noises affecting the heterodyne one-way Doppler
measurements. Although the second-generation formulation of TDI cancels the laser phase noises when the
array is both rotating and “flexing,” second-generation TDI combinations for which the phase fluctuations
of the onboard ultrastable oscillators can be calibrated out have not appeared yet in the literature. In this
article, we present the solution of this problem by generalizing to the realistic LISA trajectory the
ultrastable oscillators calibration algorithm derived by Tinto et al. for a static configuration.
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I. INTRODUCTION

Gravitational waves (GWs) are predicted by Einstein’s
theory of general relativity and represent disturbances of
space-time propagating at the speed of light. Because of
their extremely small amplitudes and interaction cross
sections, GWs carry information about regions of the
Universe that would be otherwise unobtainable through
the electromagnetic spectrum. Their first detection
announced by the LIGO project in February 2016 [1],
followed by the additional observations of four more events
[2–5], marked the beginning of GW astronomy.
Contrary to ground-based laser interferometers, which

are sensitive to GWs in a band from about a few tens of
hertz to a few kilohertz, space-based interferometers are
expected to access the frequency region from a few tenths
of millihertz to about a few tens of hertz, where GW signals
are expected to be larger in number and characterized by
larger amplitudes. The most notable example of a space-
based interferometer, which for several decades has been
jointly studied in Europe and in the United States of
America, is the Laser Interferometer Space Antenna
(LISA) mission [6]. LISA, which is now expected to be
launched in the year 2034, will detect and study cosmic
gravitational waves in the 10−4 − 1 Hz band by relying on
coherent laser beams exchanged by three remote spacecraft

along the arms of their forming giant (almost) equilateral
triangle of 2.5 × 106 km arm length.
A space-based laser interferometer GW detector mea-

sures relative frequency changes experienced by coherent
laser beams exchanged by three pairs of spacecraft. As the
laser beams are received, they are made to interfere with
the outgoing laser light. Since the received and receiving
frequencies of the laser beams can be different by tens to
perhaps hundreds of millihertz (consequence of the
Doppler effect from the relative interspacecraft velocities
and the intrinsic frequency differences of the lasers), to
remove these large beat notes present in the heterodyne
measurements, one relies on the use of a microwave signal
generated by an onboard clock [usually referred to as the
ultrastable oscillator (USO)]. The magnitude of the fre-
quency fluctuations introduced by the USO into a hetero-
dyne base-band one-way Doppler measurement depends
linearly on the USO’s noise itself and the heterodyne beat-
note frequency. The USO baselined by the LISA project
relies on an oven-stabilized crystal and is characterized by
an Allan standard deviation of σA ≈ 10−13 for averaging
times in the interval 1 − 104 s, covering the frequency band
of interest to space-based interferometers [6]. In the case of
the LISA mission, in particular, it was estimated [7] that the
magnitude of the square root of the power spectral density
of the USO’s relative frequency fluctuations appearing, for
instance, in the unequal-arm Michelson time-delay inter-
ferometry (TDI) combination X (valid for a static-array
configuration) would be about 3 orders of magnitude larger
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than that due to the residual (optical-path and proof-mass)
noise sources.
A technique for removing the USO noise from a

Michelson interferometer for a static-array configuration
was first discussed in Ref. [8], applied in Ref. [9] to the
unequal-arm Michelson X and Sagnac α TDI combinations
for a static array (TDI-1), and improved and extended to all
the TDI-1 combinations in Ref. [7]. This technique requires
the modulation of the laser beams exchanged by the
spacecraft and the further measurement of six more
interspacecraft relative phases by comparing the sidebands
of the received beam against sidebands of the transmitted
beam. The physical reason behind the use of modulated
beams for calibrating the USOs noises is to exchange the
USOs phase fluctuations so they can experience the same
time delays as those experienced by the laser phase noises
while propagating along the three arms.1 By performing
sideband-sideband measurements [7–9], six additional one-
way phase differences that allow one to calibrate out the
USOs phase fluctuations from the TDI-1 combinations
while preserving the gravitational wave signal in the
resulting USO-calibrated TDI data are generated.
Although an alternative experimental implementation to

the modulation technique, which relies on the use of an
onboard optical-frequency comb [10–12] to generate the
microwave frequency coherent to the frequency of the
onboard laser,2 has recently been proposed [13], in this
article, we derive the TDI combinations for a rotating and
“flexing” array [so-called second-generation TDI (TDI-2)]
that calibrate out the microwave signal phase fluctuations
due to the onboard LISA USOs. A summary of this article
is presented below.
In Sec. II, we provide the mathematical expressions

describing the one-way heterodyne base-band measure-
ments performed onboard the LISA spacecraft. They reflect
the planned LISA’s split-interferometry design, and they
were first presented in Refs. [14,15]. In these references,
a data processing algorithm was also proposed to obtain
TDI-2 combinations that are USO noise free. Recently,
however, it has been shown (by the LISA Simulation
Working Group) that the technique discussed in
Refs. [14,15] does not work as expected, and we discuss
the physical reasons behind its shortcoming.
After showing that the commutator of two delay oper-

ators applied to the phase noise of a LISA USO results in
relative frequency fluctuations (strain) that are significantly
smaller than those associated with the acceleration and
optical-path noises, in Sec. III, we derive the expressions

that calibrate the USO noises out of the TDI-2 unequal-arm
Michelson and Sagnac interferometric combinations [16].
A summary of our results and conclusions are then
presented in Sec. IV.

II. SPLIT-INTERFEROMETRY ONE-WAY
HETERODYNE MEASUREMENTS

In what follows, we provide the expressions for the eight
one-way heterodyne base-band measurements performed
by the phase meter onboard spacecraft 1; the remaining 16
can be obtained by cyclic permutation of the spacecraft
indices. As pointed out in Refs. [14,15], the base-band
process performed by the phase meter amounts to meas-
uring the absolute value of the difference between the
received and receiving frequencies of the lasers beams
made to interfere at the photodetectors. This is done
through the use of a numerically controlled microwave
frequency referenced to the onboard USO [7–9]. Since the
operational frequency band of a LISA’s photodetector
ranges from about 5 (below this frequency, the relative
intensity noise becomes excessive) and 25 MHz (above this
frequency, the digitization noise becomes unacceptably
large) and because of the additional ≈� 10 MHz Doppler
shift between the frequencies of two interspacecraft lasers,
it is necessary to transmit and receive laser beams of which
the frequency differences fall within the photodetectors’
operational bandwidth. By implementing high-accuracy
frequency stabilization methods [17,18] and/or frequency
locking schemes [6], and by relying on a predefined
frequency allocation plan, one can then have the frequency
beat notes fall within the operational bandwidths of the
photodetectors, infer the correct sign of the beat-note
frequencies, and further process the base-band data
[14,19]. The expressions of the base-band measurements
performed by the phase meter were derived in Refs. [14,15]
in the context of the LISA split-interferometry architecture,
and we refer the reader to those publications for more
details. Here, we adopt those expressions and modify them
by accounting for the correct sign of the frequency
differences as given by the frequency allocation plan.
This amounts to multiplying both sides of the equations
given in Refs. [14,15] by the signs of the frequency
differences as specified by the frequencies allocation plan.
An example application of what we just described can be
found in Ref. [14] (see p. 124 there), in which the signs of
the various frequency differences, denoted there by the
symbols θij, are discussed. These are functions of the laser
phase lock offset frequencies and interspacecraft Doppler
shifts. They are equal to either þ1 or −1, depending on
whether the frequency of the received beam, νi, is larger or
smaller than the frequency νj of the receiving beam,
respectively.
We adopt the description of the LISA array given in

Ref. [16], in which the beam arriving at spacecraft i has
subscript i and is primed or unprimed depending on

1Although dispersive effects in the measurement chain could
add additional delays, they are expected to be either negligible or
characterizable. For this reason, they have been disregarded in
our discussion.

2The optical frequency-comb technique exactly cancels the
microwave signal phase fluctuations as it relies onmodified TDI-2
combinations and does not require the use of modulated beams.
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whether the beam is traveling clockwise or counterclock-
wise, respectively, around the LISA triangle as seen from
above the plane of the constellation described in Fig. 1. We
also adopt the usual notation for delayed data streams,
which is convenient for algebraic manipulations [16]. We
define the six time-delay operators Di, Di0 , i ¼ 1, 2, 3,
i0 ¼ 10; 20; 30, where for any data stream xðtÞ

Dj0DixðtÞ ¼ xðt − Liðt − Lj0 Þ − Lj0 Þ; ð1Þ
where (Lj0 , Li), j0 ¼ 10; 20; 30, i ¼ 1, 2, 3, are the light travel
times along the three arms of the LISA triangle along the
clockwise and counterclockwise directions, respectively.3

It is important to note that, although ½Dj0 ;Di�xðtÞ ≠ 0 in
general, the commutator of two delay operators can be
neglected if the resulting magnitude of a random process it
is applied to is significantly smaller than the magnitude of
the secondary (acceleration and optical-path) noises affect-
ing the LISA measurements.
The eight heterodyne base-band measurements per-

formed by the phase meter onboard spacecraft 1 are
presented in two groups, each including four data sets
from the specific optical bench where they are collected.
The group of measurements from optical bench 10 is
represented by the mathematical expressions (see Fig. 2)

sc
10 ¼ ½H10 þD20p3 − p10 − 2πν3ðn20 ·D20Δ3 þ n2 · Δ10 Þ þ Nobt

10 � − a10q1 þ Ns
10 ; ð2Þ

ssb
10 ¼ ½H10 þD20p3 − p10 þm3D20q3 −m10q1 − 2πν3ðn20 ·D20Δ3 þ n2 · Δ10 Þ þ Nobt:sb

10 � − c10q1 þ Nsb
10 ; ð3Þ

ϵ10 ¼ ½p1 − p10 þ 4πν1ðn2 · δ10 − n2 · Δ10 Þ þ μ1� − b10q1 þ Nϵ
10 ; ð4Þ

τ10 ¼ ½p1 − p10 þ μ1� − b10q1 þ Nτ
10 ; ð5Þ

while those from optical bench 1 are equal to

sc1 ¼ ½H1 þD3p20 − p1 − 2πν20 ðn3 ·D3Δ20 þ n30 · Δ1Þ þ Nobt
1 � − a1q1 þ Ns

1; ð6Þ

ssb1 ¼ ½H1 þD3p20 − p1 þm20D3q2 −m1q1 − 2πν20 ðn3 ·D3Δ20 þ n30 · Δ1Þ þ Nobt:sb
1 � − c1q1 þ Nsb

1 ; ð7Þ

ϵ1 ¼ ½p10 − p1 þ 4πν10 ðn30 · δ1 − n30 · Δ1Þ þ μ10 � − b1q1 þ Nϵ
1; ð8Þ

τ1 ¼ ½p10 − p1 þ μ10 � − b1q1 þ Nτ
1: ð9Þ

The observables sc, ssb, ϵ, and τ are the interspacecraft carrier-to-carrier and sideband-to-sideband one-way heterodyne
base-band measurements, the proof mass-to-optical bench, and the bench-to-bench metrology measurements, respectively;
the a, b, and c are the fractional frequency beat-note coefficients, i.e., the coefficients determined by the phase meter [15]
that multiply the USO-referenced pilot-tone frequency so as to match the beat-note frequencies. The expressions of these
coefficients are obtained from the corresponding ones given in Ref. [15] by multiplying them by the appropriate signs of the
frequency differences defined by the frequency allocation plan (these are the “sign functions” θs in Ref. [15]). After
performing such operation, it is easy to show that they become equal to

FIG. 1. Schematic LISA configuration. The spacecraft are
labeled 1, 2, and 3, with their optical benches labeled with
primed or unprimed indices depending on whether the received
laser beam is propagating clockwise or counterclockwise as seen
from above the plane of the picture. The optical paths are denoted
by Li and Li0 , where the index i corresponds to the opposite
spacecraft.

3The speed of light c is assumed to be unity in this article.
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a10 ¼
ν3ð1 − _L20 Þ − ν10

f1
; ð10Þ

a1 ¼
ν20 ð1 − _L3Þ − ν1

f1
ð11Þ

b10 ¼
ν1 − ν10

f1
; b1 ¼

ν10 − ν1
f1

¼ −b10 ð12Þ

c10 ¼
ðν3 þm3f3Þð1 − _L20 Þ − ðν10 þm10f1Þ

f1
; ð13Þ

c1 ¼
ðν20 þm20f2Þð1 − _L3Þ − ðν1 þm1f1Þ

f1
ð14Þ

In Eqs. (2)–(9), the H terms are the contributions to the
measured phase fluctuations due to a possibly present
transverse-traceless gravitational wave signal; the p and ν
terms represent the lasers’ phase noises and frequencies,
respectively; the q terms are the phase noises due to the three
USOs; the N terms are shot-noise phase fluctuations at the
photodetectors; L terms and _L terms are the interspacecraft
relative optical paths and their time derivatives, respectively;

the f terms are the USOs’ pilot-tones frequencies, while the
m terms are integer numbers defining the modulation
frequencies [15]; the n terms are unit vectors along the
directions of propagation of the laser beams; theΔ terms and
δ terms are vector random processes associated with the
mechanical vibrations of the optical benches and proof
masses with respect to the local inertial reference frame,
respectively; the μ terms are phase fluctuations due to the
optical fibers linking the two optical benches, and they have
been assumed to be independent of the direction of propa-
gation of the optical beams within them (see Ref. [15] for a
clear discussion about this point); finally, the Di and Dj0 are
delay operators [16].
Since the LISA array is both rotating and flexing, two

delay operators do not commute in general [16]. For
instance, with a laser noise equal to 30 Hz=

ffiffiffiffiffiffi
Hz

p
in the

millihertz band [16], the commutator of two delay oper-
ators applied to it results in residual fluctuations that are
about an order of magnitude larger than those identified
by the secondary noises. This is, in fact, the reason why
the formulation of TDI for a static array is unable to
suppress such a laser noise below the level identified by the
secondary noises.
In the case of a LISA’s USO, however, its relative

frequency fluctuations at optical frequency are significantly

to s/c 2
to s/c 3

FIG. 2. Simplified schematic diagram of the proof mass and optical bench assemblies for LISA spacecraft 1. The left bench reads out a
phase signal sc1 from optical bench 20 onboard spacecraft 2. The phase difference is measured by using the laser, the photodetector on the
left optical bench, and the phase meter (not shown), where the base-band and digitization of the one-way measurements is performed.
The motion of the optical bench relative to the proof mass is measured through internal metrology and results in the time series ϵ1. The
relative phase fluctuations between the laser on the optical bench 1 and the laser on the optical bench 10 are instead captured by the
measurements τ1 and τ10 , respectively. Finally, the sideband-sideband phase differences, ssb1 and ssb

10 , capture the phase fluctuations of
the USOs onboard spacecraft 2 and 3, respectively, relative to those of the USO onboard spacecraft 1. These are the “essential
ingredients” of the USO calibration algorithm.
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smaller than those of a laser. This means that the commu-
tator of two delay operators applied to it results in relative
frequency fluctuations significantly smaller than those due
to the secondary noises. To be more quantitative, let us
estimate the magnitude of the commutator of two delay
operators applied to the phase fluctuations, qðtÞ, of a LISA
USO. This is given by the following expression [16]:

½Di;Dj�qðtÞ ¼ qðt − LiðtÞ − Ljðt − LiÞÞ − qðt − LjðtÞ
− Liðt − LjÞÞ ≃ ½Li

_Lj − Lj
_Li� _q: ð15Þ

The right-hand side of Eq. (15) implies the order-
of-magnitude estimate of the corresponding Fourier com-
ponents of the relative frequency fluctuations (strain)

amplitude, jfΔCqðfÞj
ν0

, in a TDI combination

jgΔCqðfÞj
ν0

≡ ð4πL _LÞ
�
afq
ν0

��j _̃qðfÞj
2πfq

�
f; ð16Þ

where the ˜ symbol means “Fourier transform” and f is the
Fourier frequency. By assuming a LISAUSO characterized
by a one-sided power spectral density of relative frequency
fluctuations equal to SyðfÞ ¼ 6.7 × 10−27 f−1Hz−1,4 a
beat-note frequency of afq ¼ 25 MHz, a laser frequency
of ν0 ¼ 3 × 1014 Hz, a LISA arm length (in seconds) of
L ¼ 8.3 sec. and an interspacecraft characteristic relative
velocity of _L ≃ 3 × 10−8, we find the right-hand side of
Eq. (16) to be equal to 2.3 × 10−26 Hz−1=2 at f ¼ 1 Hz and
smaller than this value at lower frequencies. Since this is
more than 5 orders of magnitude smaller than the minimum
of the strain sensitivity identified by the secondary noises in
the TDI-1 combinations [7], we can regard the commutator
of two delay operators to be negligibly small when applied
to a LISA USO phase noise.
Before deriving the USO noise calibrating expressions, it

is necessary to first remove the optical bench noises from
the interspacecraft one-way measurements sc [15]. This is
done by using the differences ϵ − τ from each optical bench
as they contain the displacement of the optical bench
relative to the proof mass. Second, the laser phase fluctua-
tions with primed indices, pi0 , can be expressed in terms of
those with unprimed indices, pi, by taking suitable linear
combinations of the sci , τi, τj. This final operation results in
the so-called η combinations, which depend only on the
three unprimed laser phase fluctuations, pi [16], and are not
affected by the optical-bench noise. Their expressions are
equal to [15]

η10 ¼ ξ10 þ z1; ð17Þ

η1 ¼ ξ1 −D3z2; ð18Þ

where

ξ10 ≡ sc
10 −

ν3
ν1

ðϵ10 − τ10 Þ
2

−
ν3
ν30

D20
ðϵ3 − τ3Þ

2
; ð19Þ

ξ1 ≡ sc1 −
ν20

ν10
ðϵ1 − τ1Þ

2
−
ν20

ν2
D3

ðϵ20 − τ20 Þ
2

; ð20Þ

z1 ≡ τ1 − τ10

2
: ð21Þ

As mentioned in the Introduction, recent LISA
Simulation Working Group activities have shown that
the current algorithm [15] to calibrate the USO noises
out of the TDI-2 combinations is not performing as
expected. To understand why, let us consider the one-
way data measurements described by Eqs. (2)–(9).
Onboard each spacecraft, there are two sets of them, one
set per optical bench, with a total of 24 data measurements
after including those for the split-interferometry configu-
ration and the sideband-sideband one-way interspacecraft
Doppler data. From a simple counting argument, we
conclude that the number of observables is larger than
the number of noises to be canceled. There are six lasers,
three USOs, six optical-bench noises,5 and six fiber-optics
noises (as this may depend on the direction of the light
propagation within the fiber) for a total of 21 random
processes to be canceled by properly combining the 24 data
set. To solve this well-posed mathematical problem, the
choice was made in Ref. [15] to regard one of the USO
noises to be equal to zero. This choice was based on the
assumption that the USO noises enter in the heterodyne
base-band measurements as simple differences and that
therefore one of them could be set to zero. Unfortunately,
most of the measurements do not depend on the differences
of the USO noises [see Eqs. (2)–(9)]. Those that do,
such as the sideband-sideband measurements, depend on
differences of USO noises measured at different times. This
means that, even if all USO would “glitch” equally, their
differences would not cancel because of the light time
delays.
As will be shown below, there exist TDI-2 combinations

that cancel the laser phase fluctuations and from which it is
in fact possible to calibrate out the USO noises to a
sufficiently high level of precision. This is done by properly
time shifting and linearly combining the η observables and
the one-way carrier-to-carrier and sideband-to-sideband
measurements.

4This one-sided power spectral density corresponds to an Allan
standard deviation equal to about 10−13 from 1 to 104 sec
integration times [20].

5Although each optical bench noise is a three-dimensional
random process, only its projection along one sensitive direction
is of relevance.
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To minimize the length of the equations we will rely on,
we will use expressions for the η observables that display
only the contributions from the laser and USO noises.
Under this assumption, they assume the forms

η10 ¼ D20p3 − p1 þ ½−a10 þ b10 �q1; ð22Þ

η1 ¼ D3p2 − p1 − a1q1 þ b2D3q2; ð23Þ

where the other four η observables are obtained from
the above expressions by permutation of the spacecraft
indices.

III. CLOCK-NOISE CALIBRATION FROM THE
TDI-2 COMBINATIONS

We describe the procedure for calibrating the USO
noises out of the TDI-2 combinations by deriving the
expressions for the unequal-arm Michelson interferometric
combination X1 and the Sagnac combination α1. The
procedures described in this article can easily be extended
to other TDI-2 combinations, and for this reason, we do not
include them here.

A. X1 combination

In terms of the η observables, the TDI-2 unequal-arm
Michelson combination, Xq

1, is given by the expression [16]

Xq
1 ¼ ½D3D30D20D2 − I�½ðη10 þD20η3Þ þD20D2ðη1 þD3η20 Þ�

− ½D20D2D3D30 − I�½ðη1 þD3η20 Þ þD3D30 ðη10 þD20η3Þ�; ð24Þ
where the label q emphasizes the USO-noise dependence. After substituting Eqs. (22) and (23) in Eq. (24), we have

Xq
1 ¼ ½D3D30D20D2 − I�½b1ðD20D2 − IÞq1 − a1D20D2q1 − a10q1 − a20D20D2D3q2 − a3D20q3�

− ½D20D2D3D30 − I�½b1D3D30 ðD20D2 − IÞq1 − a10D3D30q1 − a1q1 − a20D3q2

− a3D3D30D20q3�: ð25Þ
Since the commutator of two delay operators applied to a LISA USO noise is negligibly small, we can rewrite the above
equation in the form

Xq
1 ≃ ½D3D30D20D2 − I�½b10 ðI −D3D30 ÞðI −D20D2Þq1 þ a1ðI −D20D2Þq1

− a10 ðI −D3D30 Þq1 þ a20D3ðI −D20D2Þq2 − a3D20 ðI −D3D30 Þq3�; ð26Þ

where we have factored out the delay operator
½D3D30D20D2 − I�.
It is important to note that the q terms in the square

bracket in Eq. (26) can easily be related to those in Eq. (9)
of Ref. [7], which are for the TDI-1 combination X of a
static LISA. This means that the expressions calibrating the
USO noises out of the TDI-2 combination X1 can be
derived by using the approach of Ref. [7] for the static-array
unequal-arm Michelson combination X.
Following Tinto et al. [7], let us introduce the following

linear combinations of the carrier-to-carrier and sideband-
to-sideband one-way heterodyne base-band measurements:

r10 ≡ sc
10 − ssb

10

m3f3
; ð27Þ

r1 ≡ sc1 − ssb1
m20f2

: ð28Þ

Note that the above observables differ from those given in
Ref. [7] by the presence of the modulation frequency
integersm20 andm3. After substituting in Eqs. (27) and (28)

the expressions for the one-way heterodyne base-band
measurements, sc, ssb [Eqs. (2), (3), (6), and (7)] after
some algebra, it is possible to obtain the following
expressions for r10 and r1:

r10 ¼
ð1 − _L20 Þ

f1
q1 −

D20q3
f3

; ð29Þ

r1 ¼
ð1 − _L3Þ

f1
q1 −

D3q2
f2

: ð30Þ

By neglecting terms proportional to _L, Eq. (30) can be
rewritten to sufficient precision in the form

r10 ¼
q1
f1

−
D20q3
f3

; ð31Þ

r1 ¼
q1
f1

−
D3q2
f2

; ð32Þ

with the remaining expressions obtained by cyclic permu-
tations of the spacecraft indices. Note that the dependence
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on the m integers has dropped out from the r combinations
[Eqs. (31) and (32)], which are essentially equal to the
corresponding ones in Ref. [7] after modifying them to
account for the inequality of the delays experienced by
laser beams propagating along opposite directions (Sagnac
effect).
Since there are only three USO noises qi, there exist

relationships relating the six calibration data ðri; ri0 Þ, i ¼ 1,
2, 3, i0 ¼ 10; 20; 30. Because the mathematical structure of
the r observables [Eqs. (31) and (32)] is equal to that of the
one-way measurements in which the random processes
qi=fi play the same role as the laser phase noises, we infer
that such relationships belong to the TDI space.
By using Eqs. (31) and (32) and following Ref. [7], it is

easy to derive the following identities:

½I −D20D2�q1 ¼ f1ðr10 þD20r3Þ; ð33Þ

½I −D3D30 �q1 ¼ f1ðr1 þD3r20 Þ; ð34Þ

D3½I−D20D2�q2 ¼ f2½r10 − ðI−D20D2Þr1þD20r3�; ð35Þ

D20 ½I−D3D30 �q3¼ f3½r1− ðI−D3D30 Þr10 þD3r20 �: ð36Þ

By first applying the delay operator ½D3D30D20D2 − I� to
Eqs. (33)–(36) and substituting the resulting expressions
into Eq. (26), we finally find the following USO-corrected
X1 combination:

X1 ≡ Xq
1 − ½D3D30D20D2 − I�

�
b10

f1
2
½ðI −D3D30 Þðr10 þD20r3Þ þ ðI −D20D2Þðr1 þD3r20 Þ�

þ a1f1½r10 þD20r3� − a10f1½r1 þD3r20 � þ a20f2½r10 − ðI −D20D2Þr1 þD20r3�

− a3f3½r1 − ðI −D3D30 Þr10 þD3r20 �
�
: ð37Þ

Since the unequal-arm Michelson interferometric response
X1 is antisymmetric with respect to permutations of the
indices (2,3’), (3,2’), and (1,1’), the corresponding combi-
nations used for calibrating out the USO noise from Xq

1

have been antisymmetrized by relying on Eqs. (33)–(36)
and taking advantage of the “commutativity” of two delay
operators applied to a LISA USO noise. The other two
unequal-arm Michelson responses, X2 and X3, follow from
Eq. (37) after performing a cyclic permutation of the
spacecraft indices.
To demonstrate the efficacy of our proposed USO noise

calibration procedure for the second-generation TDI com-
binations, in Fig. 3, we plot the square root of the power
spectral densities of the relative frequency fluctuations
(strain) associated with the noise sources entering the X1

combination. These include the acceleration and optical-
path noises (red line), the USO noise before it is calibrated
out of X1 (blue line), and the residual USO noise after
applying the calibration procedure described in this article
(green line). We chose beat-note magnitudes and signs so as
to result in the worst possible USO noise spectra (blue and
green lines) in the X1 TDI combination. Note the residual
USO noise is several orders of magnitude smaller than the
acceleration and optical-path noises over the entire fre-
quency band accessible by LISA.

B. α1 combination

In terms of the η observables, the TDI-2 Sagnac
combination, αq1, is given by the following expression [16]:

αq1 ¼ ½D3D1D2 − I�½η10 þD20η30 þD20D10η20 � − ½D20D10D30 − I�½η1 þD3η2 þD3D1η3�: ð38Þ

After substituting Eqs. (22) and (23) in Eq. (38), we have

αq1 ¼ ½D3D1D2 − I�½ðb10 − a10 Þq1 þD20D10 ðb20 − a20 Þq2 þD20 ðb30 − a30 Þq3�
− ½D20D10D30 − I�½ð−a1 þ b1D3D1D2Þq1 þ ð−a2 þ b2ÞD3q2

þ ð−a3 þ b3ÞD3D1q3�: ð39Þ

Following a reasoning similar to the one made earlier to evaluate the commutator of two delay operators applied to a USO
noise, it is easy to show that also ðD30D20D10 −D3D2D1Þq ≃ 0, where the ≃0 means it results in relative frequency
fluctuations (strain) significantly smaller than those identified by the acceleration and optical-path noises. Equation (39) can
therefore be rewritten in the form
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αq1 ¼ ½D3D1D2 − I�½ða1 − a10 Þq1 þ b10 ðI þD3D1D2Þq1 þ ½D20D10 ðb20 − a20 Þ
þ ða2 − b2ÞD3�q2 þ ½D3D1ða3 − b3Þ þ ðb30 − a30 ÞD20 �q3�; ð40Þ

after having factored out the delay operator ½D3D1D2 − I�.
Since the expression inside the large square brackets is (apart from the primed delays due to the Sagnac effect) the same

as that of the TDI-1 combination α given in Ref. [7], and because it was shown there that it is impossible to exactly calibrate
out of α the USO noise using the r combinations [9], it follows that also for αq1 it is impossible to exactly calibrate out the
USO noise. As shown in Ref. [7], however, we can rewrite the USO phase noises in terms of some of the r data and only the
USO phase noise q1 by using the following additional identities:

D3D1D2q1 ¼ q1 − f1½D3D1r3 þD3r2 þ r1�; ð41Þ

D20D10q2 ¼
f2
f1

q1 − f2½r10 þD20r30 �; ð42Þ

D3D1q3 ¼
f3
f1

q1 − f3½r1 þD3r2�; ð43Þ

D3q2 ¼
f2
f1

q1 − f2r1; ð44Þ

D20q3 ¼
f3
f1

q1 − f3r10 : ð45Þ

The USO noise terms involving the qi in Eq. (40) then become

½ða1 − a10 þ 2b10 Þf1 þ ða2 − a20 þ 2b20 Þf2 þ ða3 − a30 þ 2b30 Þf3�
q1
f1

− f1b10 ½r1 þD3r2 þD3D1r3� − f2½b20 þ a2�r1 − f3½b30 − a30 �r10
− f2½b20 − a20 �½r10 þD20r30 � − f3½b30 þ a3�½r1 þD3r2�: ð46Þ
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Acceleration and Optical Path Noises
USO Noise before Calibration
Residual USO Noise after Calibration

FIG. 3. Square root of the spectral densities of the fractional frequency fluctuations (strain) noises entering in the second-generation
TDI combination X1. The red line represents the contribution from the acceleration and optical-path noises. They jointly identify LISA’s
overall performance requirements. The blue line corresponds to the USO noise level in X1 before the calibration procedure is applied,
while the green line is the residual USO noise spectrum in X1 after applying the calibration procedure. The beat-note magnitudes and
signs have been chosen so as to result in the worst possible USO noise spectra (blue and green lines) in the X1 TDI combination.
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If we now take into account the expressions for the a and b coefficients, the first term in Eq. (46) can be reduced to the
following form:

½ðν2 − ν30 Þ _L1 þ ðν3 − ν10 Þ _L2 þ ðν1 − ν20 Þ _L3�
q1
f1

: ð47Þ

This corresponds to relative frequency fluctuations (or strain noise) of the order of about 10−27 under the assumptions of
having laser frequency offsets of a few hundred megahertz, a laser center frequency equal to 3 × 1014 Hz, a Doppler term _Li

equal to about 3 × 10−8, and a USO frequency stability of about 10−13. Thus, we can ignore it and, after some algebra,
define the laser noise–free and USO noise–free reduced data α1 to be

α1 ≡ αq1 þ ½D3D1D2 − I�
�
1

2
f1b10 ½ðr1 þD3r2 þD3D1r3Þ þ ðr10 þD20r30 þD20D10r20 Þ�

þ f2ðb20 þ a2Þr1 þ f3ðb30 − a30 Þr10 þ f2ðb20 − a20 Þðr10 þD20r30 Þ

þ f3ðb30 þ a3Þðr1 þD3r2Þ
�
: ð48Þ

Like X1, also α1 should be antisymmetric with respect to
permutation of the indices (2,3’), (3,2’), and (1,1’). The
combinations in Eq. (46) used for calibrating out the USO
noise from αq1 have therefore, in Eq. (48), been antisymme-
trized. The remaining two TDI-2 Sagnac responses,
denoted α2 and α3, follow from Eq. (48) after performing
cyclic permutation of the spacecraft indices.
In Fig. 4, we plot the square root of the power spectral

densities of the relative frequency fluctuations (strain)

associated with the noise sources entering the α1 combi-
nation. These are the acceleration and optical-path noises
(red line), the USO noise before it is calibrated out of α1
(blue line), and the residual USO noise after applying the
calibration procedure described in this subsection (green
line). Like we did for the X1 combination, here, too, we
selected beat-note magnitudes and signs so as to result in
the worst possible USO noise spectra (blue and green lines)
in α1. At 10−4 Hz, the residual USO noise is more than
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Acceleration and Optical Path Noises
USO Noise before Calibration
Residual USO Noise after Calibration

FIG. 4. Square root of the spectral densities of the fractional frequency fluctuations (strain) noises entering in the second-generation
TDI combination α1. The red line represents the contribution from the acceleration and optical-path noises. They jointly identify LISA’s
overall performance requirement. The blue line corresponds to the USO noise level in α1 before the calibration procedure is applied,
while the green line is the residual USO noise spectrum in α1 after applying the calibration procedure. The beat-note magnitudes and
signs have been chosen so as to result in the worst possible USO noise spectra (blue and green lines) in the α1 TDI combination.
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2 orders of magnitude smaller than the acceleration and
optical-path noises, and it gets smaller at higher
frequencies.

IV. CONCLUSIONS

This article addresses the problem of calibrating the
onboard clock phase fluctuations out of the second-
generation TDI combinations. We have focused our analy-
sis on deriving calibrating expressions for the unequal-arm
Michelson combination X1 and the Sagnac combination α1
as similar procedures can be extended to all other second-
generation TDI combinations. Our approach relies on the
key observation that the commutator of two delay operators
applied to a LISA USO noise results in relative frequency
fluctuations that are significantly smaller than those of the
secondary noises and can therefore be neglected.
Although the sideband-sideband technique suppresses

the LISA’s USO noises to levels significantly smaller than
that identified by the secondary noises, it does not cancel
them exactly. This might result in a sensitivity limitation for
more ambitious missions characterized by higher sensitiv-
ities and/or significantly larger beat notes [21,22]. This is
because the calibrating algorithm presented here might
not sufficiently suppress the USO noises in their TDI-2
combinations. The use of optical frequency comb, on the
other hand, provides a solution in these cases by generating
the microwave signal frequency coherent to the frequency

of the onboard laser. This is because the optical frequency-
comb technique exactly cancels the microwave signal
phase fluctuations by using modified TDI-2 combinations
and it does not require modulated beams.
In addition, use of an optical frequency comb may result

in a simplification of LISA’s onboard interferometry system
[13] because (i) generation of modulated beams and addi-
tional heterodyne base-band measurements involving clock
microwave sidebands will no longer be needed and (ii) the
entire onboard USO subsystem can be replaced with the
microwave signal referenced to the onboard laser. This may
result in a reduced system complexity and the probability of
subsystem failure. Recent progress in the realization of a
space-qualified optical frequency comb indicates that such
a capability will be available well before LISA’s launching
date [12].
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