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It is shown that the diagonalization of the axial-vector–pseudoscalar transitions in the effective meson
Lagrangian in the presence of electromagnetic interactions leads to a deviation from the vector meson
dominance picture which usually arises in the Nambu–Jona-Lasinio model. The essential features of such a
modification of the theory are studied. Some important examples are considered in detail.
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I. INTRODUCTION

The electromagnetic interactions of mesons can be
introduced in the corresponding chiral Lagrangian through
the replacement of the usual derivatives by the gauge
covariant ones [1]. In particular, in the Nambu–Jona-
Lasinio (NJL) model, this has been done long ago in
[2–7]. It has been shown that in the presence of vector
mesons the picture appears to be identical to the vector
dominance model, where the photons interact with quarks
only through the exchange of ρ0, ω, and ϕ mesons. The
idea of dominance of the neutral vector mesons in the
hadronic electromagnetic current has a theoretical justifi-
cation in the context of a Lagrangian field theory [8,9]. It is
completely consistent with gauge invariance, provided that
vector mesons are coupled only to conserved currents.
In this picture, however, there is a feature that is

apparently, but only apparently, unrelated to the problem
of electromagnetic interactions of mesons. Through the
study of effective chiral Lagrangians with spin-1 mesons, it
has been realized that they possess a cross term a⃗0μ∂μπ⃗; i.e.,
the axial-vector a0μ and pseudoscalar π fields mix [10–14].
Consequently, one should diagonalize the free part of the
Lagrangian by introducing a physical axial-vector field a⃗μ.
The nondiagonal term a⃗0μ∂μπ⃗ is usually eliminated by a

linearized transformation a⃗0μ ¼ a⃗μ þ c∂μπ⃗ with a well-
defined coupling c. Our observation is that in the presence
of electromagnetic interactions the derivative of the pseu-
doscalar field, ∂π, in this conventional change of variables,
should be replaced by the covariant one, Dπ; otherwise the
noncovariant diagonalization would ruin the gauge sym-
metry of the Lagrangian [15]. Somehow this obvious step is
totally ignored in the literature.
The purpose of this paper is to study the consequences of

such covariant diagonalization in the photon-meson
Lagrangian. Our starting point is the NJL model with
SUð2Þ × SUð2Þ chiral symmetric four-quark interactions
(see, for instance, [12]). Here we extend this model by
including electromagnetic interactions and show that the
covariant diagonalization leads to new electromagnetic
vertices where a quark-antiquark pair interacts directly
with the photon and the pion. As a result, the theory
deviates from the vector meson dominance (VMD) scheme,
but possesses the gauge symmetry.
To illustrate our theoretical arguments, we give several

examples. The aim is to reveal the specific role of the
new electromagnetic vertices induced by the πaμ-
diagonalization. For instance, in the case of the a1 → πγ
decay, the results of the old and new approaches are shown
to be identical on the mass shell. The γππ amplitude does
not change. The anomalous f1ð1285Þ → γπþπ− decay
amplitude is shown to be gauge invariant in both cases,
but the results differ. The a1ð1260Þ → γπþπ− amplitude is
not gauge invariant in the conventional approach, but it is
invariant in the new version. The latter two processes give a
very interesting and rare example for which the surface
term of the triangle anomaly cannot be fixed by the Ward
identities. As we will show, the amplitude contains a free
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parameter which should be determined from the experi-
ment. A similar case has been studied previously in the
chiral Schwinger model [a Uð1Þ gauge field coupled to
chiral fermions in two dimensions] [16,17].
The outline of the paper is as follows. The effective

quark Lagrangian with SUð2ÞL × SUð2ÞR chiral symmetric
four-quark interactions is presented in Sec. II. Here we
introduce the auxiliary bosonic fields, add the electromag-
netic interactions, and discuss shortly the evaluation of the
real part of the one-loop quark determinant. We also discuss
the solution of the πaμ mixing problem, showing that the
gauge covariant diagonalization leads to new electromag-
netic vertices in the Lagrangian. This section contains the
main result of our paper. In Sec. III we give support to the
correctness of the above modification of the theory by
calculating different electromagnetic processes. The fol-
lowing examples are considered: (a) the a1 → πγ decay in
Sec. III A; (b) the γππ vertex in Sec. III B; (c) tn Sec. III C
the meson effective Lagrangian is used to describe the
anomalous f1ð1285Þ → γπþπ− decay amplitude; (d) in
Sec. III D we obtain the a1ð1260Þ → γπþπ− decay ampli-
tude in the one-quark-loop approximation and show how
the gauge invariance is restored due to new contributions
induced by the πaμ covariant diagonalization. We summa-
rize our results in Sec. IV.

II. EFFECTIVE LAGRANGIAN

Let us consider a system of Nc × Nf ¼ 3 · 2 ¼ 6 light
Dirac quark fields qðxÞ and an equal amount of antiquarks
q̄ðxÞ (the color and flavor indices are suppressed) with
SUð2ÞV × SUð2ÞA chiral symmetric four-fermion inter-
actions, and the Uð1Þ gauge invariant electromagnetic
interactions. The Lagrangian density

L ¼ q̄ðiγμDμ − m̂Þqþ LS þ LV þ Lem; ð1Þ

LS ¼ ðGS=2Þ½ðq̄qÞ2 þ ðq̄iγ5τ⃗qÞ2�; ð2Þ

LV ¼ −ðGV=2Þ½ðq̄γμτaqÞ2 þ ðq̄γμγ5τaqÞ2�; ð3Þ

Lem ¼ −ð1=4ÞFμνFμν ð4Þ

includes both spin-0 and spin-1 four-quark couplings with
dimensional constants GS and GV correspondingly; m̂ ¼
m̂u ¼ m̂d is a current quark mass; τa ¼ ðτ0; τ⃗Þ for a ¼ 0, 1,
2, 3, where τ0 is a 2 × 2 unit matrix and τ⃗ are the SUð2Þ
Pauli matrices; and γμ are the standard Dirac matrices in
four dimensions. The covariant derivative is given by
Dμ ¼ ∂μ − ieQAμ, where the matrix Q ¼ 1=2ðτ3 þ 1=3Þ
accumulates the electromagnetic charges of u and d
quarks in relative units of the proton charge e > 0; Aμ is
a four-potential of the electromagnetic field, and
Fμν ¼ ∂μAν − ∂νAμ.

The Uð1Þ gauge transformations

q → q0 ¼ eiϕeQq; Aμ → A0
μ ¼ Aμ þ ∂μϕ ð5Þ

are parametrized by a local phase ϕðxÞ. The Lagrangian
density LV is chosen to be symmetric with respect to the
Uð2ÞV × Uð2ÞA chiral transformations, because we are
going to discuss the vector meson dominance mechanism
which requires, in the case considered, two neutral vector
meson states ρ0 and ω. The global transformations of the
chiral group can be parametrized by eight real parameters:
αa and βa. For small values of the parameters, an infini-
tesimal change of the quark δq ¼ q0 − q and antiquark
δq̄ ¼ q̄0 − q̄ fields is given by

δq ¼ iðαþ γ5βÞq; δq̄ ¼ iq̄ð−αþ γ5βÞ; ð6Þ

where α ¼ αaτa=2 and β ¼ βaτa=2.
As explained by Nambu and Jona-Lasinio, the

Lagrangian density L is apparently of the symmetry
breaking type, in the sense that, starting from some critical
value of GS, the minimum of the effective potential occurs
for nonzero values of hq̄qi ≠ 0 and the constituent quark
mass m. This is just the chiral symmetry breaking phe-
nomenon. In the nonsymmetric vacuum, the physical
spectrum contains qq̄ bound states. Therefore, it is con-
venient to introduce the meson variables in the correspond-
ing functional integral explicitly. This can be done by
transforming the nonlinear interactions of quarks to the
Yukawa-type interactions of quarks with auxiliary boson
fields:

S½Aμ� ¼
Z

½dq�½dq̄�½ds�½dp⃗�½dvaμ�½da0aμ�

× exp i
Z

d4x

�
q̄Dmq −

1

4
FμνFμν þ LM

�
: ð7Þ

Here Dm is the Dirac operator in the background fields:

Dm ¼ iγμDμ −mþ sþ iγ5pþ γμvμ þ γμγ5a0μ: ð8Þ

The scalar, pseudoscalar, vector, and axial-vector fields are
s ¼ sτ0, p ¼ p⃗ τ⃗, vμ ¼ vaμτa, and a0μ ¼ a0aμτa, respec-
tively. LM describes the meson mass part of the
Lagrangian density:

LM ¼ −
1

4GS
tr½ðs −mþ m̂Þ2 þ p2�

þ 1

4GV
tr½v2μ þ ða0μÞ2�: ð9Þ

The spontaneous symmetry breakdown leads to the p⃗a⃗0μ
mixing between the pseudoscalar and axial-vector fields
already in the one-quark-loop approximation, i.e., in the
same order at which the effective potential develops the

A. A. OSIPOV and M.M. KHALIFA PHYS. REV. D 98, 036023 (2018)

036023-2



nonsymmetric ground state. To avoid the mixing, one
usually defines a new axial-vector field a⃗μ through the
replacement

a⃗0μ ¼ a⃗μ þ κm∂μp⃗; ð10Þ

where the constant κ should be fixed to avoid the p⃗a⃗μ term.
This is a standard procedure which is widely used in the
literature whether or not electromagnetic interactions are
included. However, one can easily see that the replacement
(10) adds to the Lagrangian density (7) a Yukawa-type
vertex κmq̄γμγ5∂μpq which breaks gauge symmetry.
Indeed, the gauge transformation of the pseudoscalar field
is given by the adjoint representation of the group

p → p0 ¼ eiϕeQpe−iϕeQ: ð11Þ

It follows then that q̄∂μpq → q̄∂μpqþ i∂μϕeq̄½Q;p�q.
Thus, this combination is not gauge invariant. The func-
tional S½Aμ� will be gauge invariant if, and only if, we use
the covariant substitution

a0μ ¼ aμ þ κmDμp; ð12Þ

whereDμp ¼ ∂μp − ieAμ½Q;p� instead of (10). In this case,
both sides of the expression (12) are transformed over the
adjoint representation of the gauge group. That ensures the
preservation of the gauge invariance of the functional S½Aμ�.
Our purpose now is to obtain the effective meson theory

defined by the vacuum-to-vacuum transition amplitude (7),
where we make the replacement (12). After the replace-
ment, the differential operator Dm becomes

Dm ¼ iγμdμ −mþ sþ iγ5p; ð13Þ

dμ ¼ ∂μ − iΓμ; ð14Þ

Γμ ¼ vμ þ eQAμ þ γ5ðaμ þ κmDμpÞ: ð15Þ

This modification leads to the following consequences.
Consider the replacement of variables

vμ → vμ − eQAμ ð16Þ

made in the functional S½Aμ�. (It is equivalent to the
replacements v0μ → v0μ − eAμ=6 and v3μ → v3μ − eAμ=2.) It
removes the Aμ dependence from Dm, except in the
covariant derivative Dμp:

Γμ → Γμ ¼ vμ þ γ5ðaμ þ κmDμpÞ: ð17Þ

In other words, when the covariant diagonalization is
introduced, the direct interaction of photons with quarks
does not vanish. There is still a vertex which couples the

electromagnetic field with the pion and quarks. This yields
a deviation from the vector meson dominance picture. The
latter aspect is new (in the sense that it has never been
considered before in the NJL model approach) and is the
main subject of our study here.
While there is no direct coupling of a single photon with

quarks, there may perfectly well be the couplings of the
photon with the neutral vector mesons. We can see this
from the mass part of the Lagrangian density, which now
changes to

LM → LM ¼ −
1

4GS
tr½ðs −mþ m̂Þ2 þ p2�

þ 1

4GV
tr½ðvμ − eQAμÞ2 þ ðaμ þ κmDμpÞ2�:

ð18Þ

A typical Lagrangian of the vector meson dominance arises
from the following term:

1

4GV
trðvμ − eQAμÞ2 ¼

m2
ρ

2
ðω2

μ þ ðρ0μÞ2 þ 2ρþμ ρ−μ Þ

−
e
gρ

m2
ρAμ

�
ρ0μ þ

ωμ

3

�
þ 5e2m2

ρ

9g2ρ
A2
μ:

ð19Þ

Here, the physical states of vector fields have been
introduced [v0μ ¼ ðgρ=2Þωμ, v⃗μ ¼ ðgρ=2Þρ⃗μ] and the mass
formula g2ρ=ð4GVÞ ¼ m2

ρ has been used.
Now one should integrate over the quark fields

Z
½dq�½dq̄� exp

�
i
Z

d4xq̄Dmq
�

¼ detDm

¼ eTr lnDm: ð20Þ

The path integral of the Gaussian type accounts for the one-
quark-loop contribution to the effective action. The result is
given by the nonlocal functional determinant (up to an
overall constant). The trace, Tr, should be calculated over
color, Dirac, and flavor indices and it also includes the
integration over coordinates of the Minkowski space-time.
In particular, the contribution of the chiral determinant to

the real part of the effective action is

Seff ¼ −
i
2
Tr lnD†

mDm ¼ iLeff : ð21Þ

The consistent approximation scheme to obtain from the
nonlocal chiral determinant (20) the local long-wavelength
(low-energy) expansion for the effective action of mesons
Seff is the Schwinger-DeWitt technique [18–20] (see
details, for instance, in [12]). We will restrict ourselves
to the first- and second-order Seeley-DeWitt coefficients.
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These coefficients accumulate the divergent part of the
effective action, which is regularized here by the ultraviolet
cutoff Λ. Let us recall that the result of such calculations is
well known (in the sense that the only difference between
the expression for Dm obtained in [12] and Dm here is the
replacement of the usual derivative ∂μp by the gauge
covariant one Dμp). Thus, we can simply use that result by
writing

Leff ¼ −
m̂

4mGS
trðs2 þ p2Þ

þ 1

4GV
tr½ðvμ − eQAμÞ2 þ ðaμ þ κmDμpÞ2�

þ I2tr
�
ð∇μsÞ2 þ ð∇μpÞ2

− ðs2 − 2msþ p2Þ2 − 1

3
ðv2μν þ a2μνÞ

�
; ð22Þ

where the factor I2 is

I2 ¼
Nc

ð4πÞ2
�
ln

�
1þ Λ2

m2

�
−

Λ2

Λ2 þm2

�
; ð23Þ

and we adopt the following notations:

∇μs ¼ ∂μs − faμ þ κmDμp; pg;
∇μp ¼ ∂μp − i½vμ; p� þ faμ þ κmDμp; s −mg;
vμν ¼ ∂μvν − ∂νvμ − i½vμ; vν�

− i½aμ þ κmDμp; aν þ κmDνp�;
aμν ¼ ∂μaν − ∂νaμ − ieκmFμν½Q;p�

þ ieκmAμ½Q; ∂νp� − ieκmAν½Q; ∂μp�
− i½aμ þ κmDμp; vν� − i½vμ; aν þ κmDνp�: ð24Þ

Notice that the electromagnetic field Aμ drops out from
∇μs, due to the simple algebraic properties f½Q;p�; pg ¼
½Q;p2� ¼ 0 [the commutator of two diagonal matrices is
zero]. We have also taken into account that the antisym-
metric combination ∂μaν − ∂νaμ, after the replacement
(12), is changed to ∂μaν − ∂νaμ þ κmð∂μDνp − ∂νDμpÞ.
In the standard case [Dμp → ∂μp] it would not change, but
the presence of the electromagnetic field leads to the three
new contributions shown in our expression for aμν.
Some comments about formula (22) are still in order. To

get this Lagrangian density we have used the gap equation

m − m̂ ¼ mGSI1; ð25Þ

where

I1 ¼
Nc

2π2

�
Λ2 −m2 ln

�
1þ Λ2

m2

��
: ð26Þ

It is assumed that the strength of the quark interactions is
large enough, GS > ð2πÞ2=ðNcΛ2Þ, to generate a non-
trivial, m ≠ 0, solution of Eq. (25) (even if the current
quarks would be massless).
The Lagrangian density Leff does not contain p⃗a⃗μ-

mixing. This is because of the cancellation which occurs
between the three different contributions to the nondiagonal
p⃗a⃗μ-mixing term in Leff . It restricts the numerical value of
the parameter κ to the following one:

1

2κ
¼ m2 þ 1

16GVI2
: ð27Þ

The free part of the Lagrangian density Leff must have
a canonical form. This can be done by the redefinition of
the fields

s ¼ gσσ; p⃗ ¼ gππ⃗; ð28Þ

v0μ ¼
gρ
2
ωμ; a0μ ¼

gρ
2
f1μ; ð29Þ

v⃗μ ¼
gρ
2
ρ⃗μ; a⃗μ ¼

gρ
2
a⃗1μ: ð30Þ

The effective constants gσ, gπ , gρ and masses of meson states
are functions of the I2 and the constant Z−1 ¼ 1–2κm2:

g2σ ¼
1

4I2
; g2π ¼ Zg2σ; g2ρ ¼ 6g2σ; ð31Þ

m2
π ¼

m̂g2π
mGS

; m2
σ ¼ 4m2 þ Z−1m2

π; ð32Þ

m2
ρ ¼ m2

ω ¼ 3

8GVI2
; ð33Þ

m2
a1 ¼ m2

f1
¼ m2

ρ þ 6m2: ð34Þ

Apart from the language of the Schwinger-DeWitt
method, there is a more practical way to study the
consequences of the theory (7). Indeed, the vertices of
the Lagrangian density Leff (together with the correspond-
ing coupling constants) can be obtained by calculating the
one-quark-loop diagrams and keeping only the leading
terms in the derivative expansion which dominate in the
long-wavelength approximation [4,5]. These direct calcu-
lations prove to be useful when one considers certain low-
energy processes. In the following, we will apply this
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method to the calculation of anomalous processes, i.e., in
considering the imaginary part of the chiral determinant.

III. SOME EXAMPLES

It should be emphasized that the transformation (12)
represents a change of variables in the path integral (7),
which does not destroy either the chiral or the gauge
structure of the functional S½Aμ�, and, therefore, does not
change the physical content of the theory. In particular, this
means that the elements of the S-matrix on the mass surface
must coincide with the results of similar approaches, where
other types of p⃗a⃗μ-diagonalization are used [13]. Such an
equivalence theorem is known in axiomatic field theory
(Haag’s theorem [21]), as well as in its Lagrangian version
[22,23]. Unfortunately, there is no basis for arguing that the
replacement (10) is reliable for the theory described by the
functional S½Aμ�. Indeed, it breaks the local gauge sym-
metry of S½Aμ�. Thus, the theories obtained as the result of
replacements (10) and (12) belong to the two distinct
equivalence classes. The goal of this section is to make
clear that these replacements lead to different physical
results.

A. a1πγ-vertex

To write an expression for the a1πγ-vertex, let us think of
different contributions arising from the Lagrangian density
(22). These can be illustrated by the two Feynman
diagrams, shown in Fig. 1.
The diagram (a) collects the terms originated by the

replacement (12). Therefore, they have the non-VMD
origin. These terms come from the LM, ð∇μpÞ2, and a2μν
parts of Leff . The first two are

1

4GV
trðaμþ κmDμpÞ2→−ie

κm
2GV

trðaμ½Q;p�ÞAμ;

I2trð∇μpÞ2→−8ieκm3I2trðaμ½Q;p�ÞAμ; ð35Þ

or, after summing them, one finds

− 2ieðκmÞ
�

1

4GV
þ 4m2I2

�
trðaμ½Q;p�ÞAμ

¼ −2ieðκmÞm
2
a1

g2ρ
trðaμ½Q;p�ÞAμ: ð36Þ

The third term, from a2μν, gives

−
I2
3
tra2μν → 2ieðκmÞ 1

3
I2trfāμνðFμν½Q;p�

þ Aν½Q; ∂μp� − Aμ½Q; ∂νp�Þg; ð37Þ

where āμν ¼ ∂μaν − ∂νaμ.
Combining (36) and (37), we obtain (after some rede-

finitions of fields) a Lagrangian density which is associated
with the diagram (a) in Fig. 1:

LðaÞ
a1πγ ¼ −

i
2
egρfπZtr

n
aμ1½Aμ; π�

−
āμν1
2m2

a1

ð½F μν; π� þ ½Aν; ∂μπ� − ½Aμ; ∂νπ�Þ
o
: ð38Þ

Here, Aμ ¼ AμQ, F μν ¼ ∂μAν − ∂νAμ, and fπ ¼ m=gπ is
the weak pion decay constant.
Noting that

āμν1 ½F μν; π� ¼ −2∂νaμ1½F μν; π� ¼ −2∂νðaμ1½F μν; π�Þ
þ 2aμ1ð½∂νF μν; π� þ F μν; ∂νπ�Þ; ð39Þ

LðaÞ
a1πγ can be finally rewritten (after rearrangement of

derivatives and omitting a total divergence) as follows:

LðaÞ
a1πγ ¼ −

i
2
egρfπZtr

�
aμ1½Aμ; π�

þ 1

m2
a1

ðF μν½aμ1; ∂νπ� þ āμν1 ½Aμ; ∂νπ�Þ
�
: ð40Þ

The diagram (b) describes the standard VMD contribu-
tion. It is easy to see, by combining (19) and (22), that

LðbÞ
a1πγ ¼ −LðaÞ

a1πγ . Therefore, the sum of these two diagrams
vanishes. It means that there is no a1πγ-vertex in the theory
described by S½Aμ� in the leading order of the derivative
expansion.
While there is no a1πγ-vertex when one restricts to the

first two Seeley-DeWitt coefficients in the asymptotic
expansion of the theory, there may perfectly well be this
vertex in the next stage of such expansion. Notice that the

(a)

(b)

FIG. 1. The typical Feynman diagrams describing the a1πγ
vertex: (a) the non-VMD contribution; (b) the VMD contribution.
The sum of these contributions vanishes in the leading order of
the derivative expansion.
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approach based on the replacement (10) leads to the

Lagrangian density LðbÞ
a1πγ, which is not zero. However, it

is not difficult to see thatLðbÞ
a1πγ vanishes on the mass shell of

the a1 meson.

B. γππ-vertex

It should be appreciated that, in such a scenario, the
vector meson dominance picture remains unchanged when
one uses the covariant replacement (12) in describing the
electromagnetic form factor of the pion. To show this we
calculate the contribution of the diagram presented in
Fig. 2. There are only two terms which are responsible
for the non-VMD part here. These are the mass part LM and
the ð∇μpÞ2 term in (22). They give

1

4GV
trðaμþκmDμpÞ2→−ie

κ2m2

2GV
trð∂μp½Q;p�ÞAμ;

I2trð∇μpÞ2→4ieκm2ZI2trð∂μp½Q;p�ÞAμ: ð41Þ

The sum of these two contributions vanishes. Indeed, we
have

4ieκm2Aμtrð∂μp½Q;p�Þ
�
ZI2 −

κ

8GV

�
¼ 0; ð42Þ

where the last step is a consequence of Eq. (27).

C. The anomalous f 1 → γππ decay

The process f1ðlÞ → πþðpþÞ þ π−ðp−Þ þ γðpÞ has
been studied recently in [24]. The presumed underlying
theory was described by the path integral S½Aμ�, where the

replacement (10) has been done. The amplitude got three
types of contributions consistent with the vector meson
dominance picture: the ρ0- and a1-exchanges and the direct
contribution. The latter two are of our special interest here.
Let us recall that the a1-exchange, in the model considered,
contributes as a contact interaction

Tða1Þ ¼ −i
egρ

8π2f2π
eμναβϵβðlÞϵ�αðpÞ

× 2κm2½1þ ð1 − 3aÞκm2�lμqν; ð43Þ

where ϵβðlÞ and ϵ�αðpÞ are the polarization vectors of the f1
and the photon; the four-momentum q ¼ pþ − p−. The
second term in the brackets is due to the replacement (10).
The derivative coupling q̄γμγ5∂μπq makes the correspond-
ing triangle quark diagram, f1a1π, linearly divergent. This
superficial linear divergence appears in the course of
evaluation of the overall finite integral. Shifts in the internal
momentum variable of the closed fermion loop integrals
induce an arbitrary finite surface term contribution propor-
tional to ð1 − 3aÞ, where a is a dimensionless constant,
controlling the magnitude of an arbitrary local part [17,25].
Observing that

eμναβlμqν ¼ eμναβðpμqν − 2pμ
þpν

−Þ; ð44Þ

one sees that the term ∝ pμ
þpν

− breaks gauge invariance.
Thus there must be other diagrams to restore the symmetry.
These are the one-quark-loop box diagrams. At leading
order of the derivative expansion they give the additional
contribution to the amplitude

TðboxÞ ¼ i
egρ

8π2f2π
eμναβϵβðlÞϵ�αðpÞ

�
pμqν
Z

− κm2ð4 − κm2Þpμ
þpν

−

�
: ð45Þ

Now, one can restore the gauge symmetry of the whole
amplitude by fixing the parameter a. The requirement is to
cancel the unwanted pμ

þpν
− term of the sum Tða1Þ þ TðboxÞ.

It gives a ¼ 5=12. The rest of the sum is a gauge invariant
expression

Tða1Þ þ TðboxÞ ¼ iAeμναβϵβðlÞϵ�αðpÞpμqν; ð46Þ

where

A ¼ egρ
8π2f2π

�
2 − Z
Z

þ ðZ − 1Þ2
8Z2

�
: ð47Þ

Although this is most probably the way out of the problem,
the meaning of that step is not completely clear. One can
argue that, in this particular case, the gauge symmetry is
broken at the level of terms ∝ κm2, but exactly at this level

(a)

(b)

FIG. 2. Two types of contributions to the γππ vertex: (a) the
diagrams of the non-VMD origin; (b) the VMD contribution. The
calculations show that the entire contribution of the diagrams in
panel (a) vanishes.
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the gauge symmetry is explicitly broken in the Lagrangian
due to the replacement (10). Thus, it is not clear if it is safe
to use the gauge symmetry argument here.
What if one adds to this picture the covariant replace-

ment (12)? First of all, the contribution (43) will vanish, in
accord with the result of Sec. III A. Instead, the amplitude
receives new contributions from the triangle Feynman
diagrams shown in Fig. 3, where the lower pion line “π”
represents the creation of a pion by the quark-antiquark pair
due to a q̄γ5πq coupling and the line with “∂π” corresponds
to a derivative coupling q̄γμγ5∂μpq.
The first diagram (π) contributes to the amplitude by the

following expression:

TðπÞ
Δ ¼ ie

f2π
Ncgρðκm3ÞϵβðlÞϵ�αðpÞ½Jβα1 ðl; p−Þ

þ Jβα2 ðl; p−Þ − Jβα1 ðl; pþÞ − Jβα2 ðl; pþÞ�; ð48Þ

where

Jβα1 ðl; p−Þ ¼
Z

d4k
ð2πÞ4 tr½Sðk; 0Þγ

βγ5Sðk; lÞγ5
× Sðk; l − p−Þγαγ5�; ð49Þ

Jβα2 ðl; p−Þ ¼
Z

d4k
ð2πÞ4 tr½Sðk;−lÞγ

βγ5Sðk; 0Þγαγ5
× Sðk;−lþ p−Þγ5�; ð50Þ

Sðk; lÞ ¼ k̂ − l̂þm
ðk − lÞ2 −m2

; k̂ ¼ kμγμ: ð51Þ

In accord with the two different directions for the loop
momenta, we specify the loop integrals Jβα1 ðl; p−Þ and
Jβα2 ðl; p−Þ by indices 1 (clockwise) and 2 (counterclock-
wise). Observing that the traces are

tr½ðk̂þmÞγβγ5ðk̂ − l̂þmÞγ5ðk̂ − l̂þ p̂− þmÞγαγ5�
¼ 4imeμναβð2k − lÞμpν

−; ð52Þ

tr½ðk̂þ l̂þmÞγβγ5ðk̂þmÞγαγ5ðk̂þ l̂ − p̂− þmÞγ5�
¼ −4imeμναβð2kþ lÞμpν

−; ð53Þ

and changing in the second integral k → −k, we conclude
that Jβα1 ðl; p−Þ ¼ Jβα2 ðl; p−Þ. The result then should be
expanded in powers of external momenta, yielding
the long-wavelength approximation for the amplitude

TðπÞ
Δ → TðπÞ:

TðπÞ ¼ −
iegρ
4π2f2π

κm2eμναβϵβðlÞϵ�αðpÞlμðpþ − p−Þν: ð54Þ

The contribution of the second diagram [“∂π”] in
Fig. 3 is

Tð∂πÞ
Δ ¼ ie

f2π
Ncgρðκm2Þ2ϵβðlÞϵ�αðpÞ½Iβα1 ðl; p−Þ

þ Iβα2 ðl; p−Þ − Iβα1 ðl; pþÞ − Iβα2 ðl; pþÞ�; ð55Þ

where

Iβα1 ðl; p−Þ ¼
Z

d4k
ð2πÞ4 tr½Sðk; 0Þγ

βγ5Sðk; lÞp̂−γ5

× Sðk; l − p−Þγαγ5�; ð56Þ

Iβα2 ðl; p−Þ ¼
Z

d4k
ð2πÞ4 tr½Sðk; 0Þγ

βγ5Sðk; lÞγαγ5
× Sðk; p−Þp̂−γ5�: ð57Þ

Just like in the previous case one can show (by the
corresponding replacements in one of the integrals) that
Iβα1 ðl; p−Þ ¼ Iβα2 ðl; p−Þ. However, unlike the previous case,
these integrals are superficially linearly divergent even
though an eventual evaluation yields a finite answer. Owing
to the linear divergence, shifting the integration momentum
in the closed loop changes the value of the integral, so that
there is an essential ambiguity in (56) and (57). As a result,

at low momenta we find Tð∂πÞ
Δ → Tð∂πÞ:

Tð∂πÞ ¼ −
iegρ
4π2f2π

ðκm2Þ2eμναβϵβðlÞϵ�αðpÞ

× ð3c − 2lÞμðpþ − p−Þν; ð58Þ

where cμ is a free four-vector, which, in general, can be
written as a linear combination of three independent four-
vectors, entering the triangle diagram, i.e.,

cμ ¼ apμ þ bðpþ þ p−Þμ þ cðpþ − p−Þμ: ð59Þ

Inserting cμ into Eq. (58) and taking into account (45)
and (54), we find the sum T ¼ TðπÞ þ Tð∂πÞ þ TðboxÞ:

FIG. 3. The Feynman diagrams describing the non-VMD
contribution to the f1ð1285Þ → γπþπ− amplitude.
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T ¼ iegρ
8π2f2π

eμναβϵβðlÞϵ�αðpÞf½ð1 − 2κm2Þ2

− 6aκ2m4�pμqν þ κ2m4ð12b − 7Þpþμp−νg: ð60Þ

When gauge invariance is enforced ðb ¼ 7=12Þ, this
amplitude still contains an ambiguity in the form of the
undetermined constant a.
To conclude this section, we will compare our result with

the one obtained on the basis of the standard replacement,
i.e., with the formula (46). One can see that the gauge
invariant approach changes the result essentially. The
requirement of gauge invariance, which fixes the ambiguity
in (46) by insisting that this symmetry be preserved, leads
to a definite value for the constant A [see Eq. (46)]. This is
not the case in the consistent approach to the gauge
symmetry. The formal gauge invariance of the model does
not fix A. It means that the constant a should be fixed from
the experiment. It is interesting to note that the result (46)
arises from the formula (60) at a ¼ b ¼ 7=12.

D. The anomalous a1 → γππ decay

The calculation of the decay amplitude a1ðlÞ →
γðpÞ þ πþðpþÞ þ π−ðp−Þ, where l, p, pþ, p− are the
4-momenta of the corresponding particles, can be carried
out, in the standard approach, in a similar way as was
being done for the a1ð1260Þ → ωπþπ− decay in [26]. One
should only turn on the vector meson dominance con-
version ω → γ, described by the Lagrangian density (19).
The amplitude will accumulate contributions from three
different processes: (a) the ρ0 exchange channel a1→γρ0→
γπþπ−; (b) the ρ� exchange a1 → π�ρ∓ → πþπ−γ; and
(c) the direct decay mode a1 → γπþπ− described by the
quark box diagram.
The creation of the photon in the exchange channels is a

result of the anomalous processes a1 → γρ0 and ρ� → π�γ.
There is no problem in evaluating these amplitudes, which
are known to be gauge invariant. In view of this it seems
worthwhile to concentrate on the study of the direct
channels’ amplitudes. The calculation of the Feynman
box diagrams and the separation of leading terms in the
expansion in external momenta (the long-wave expansion
of the fermion determinant) leads to an amplitude [26]:

T box ¼ i
gρeNc

8π2f2π
eμναβϵβðlÞϵ�αðpÞ½ð1 − 2κm2Þpμqν

þ ðκm2Þ2pμ
þpν

−�: ð61Þ

There is an obvious, troublesome question. If all other
contributions to the amplitude are gauge invariant, how
does one deal with the last term of (61) which breaks the
gauge symmetry? The answer to this question cannot be
found in the conventional approach. However, the consid-
eration based on a covariant derivative (12) solves the
problem. Indeed, it leads to additional contributions shown

in Fig. 4. Both anomalous triangle diagrams are finite. A
single pion vertex of the first diagram is described by
the Lagrangian density Lπ ¼ igπq̄γ5πq. In the second dia-
gram, this vertex is replaced by the axial-vector coupling
L∂π ¼ κmgπq̄γμγ5∂μπq.
Let us first write a formal expression for the amplitude

with the vertex Lπ:

T ðπÞ
Δ ¼ ie

f2π
Ncgρðκm3ÞϵβðlÞϵ�αðpÞ½Jβα1 ðl; p−Þ

− Jβα2 ðl; p−Þ þ Jβα1 ðl; pþÞ − Jβα2 ðl; pþÞ�; ð62Þ

where Jβα1 ðl; p−Þ and Jβα2 ðl; p−Þ are given by Eqs. (49)
and (50). It is clear that this amplitude vanishes. Indeed, due
to the property Jβα1 ðl; p−Þ ¼ Jβα2 ðl; p−Þ, the second term
cancels the first one, and the fourth term cancels the third

one, giving T ðπÞ
Δ ¼ 0.

Thus, it remains to consider the contribution of the
second diagram, which can be written as

T ð∂πÞ
Δ ¼ ie

f2π
Ncgρðκm2Þ2ϵβðlÞϵ�αðpÞ½Iβα1 ðl; p−Þ

− Iβα2 ðl; p−Þ þ Iβα1 ðl; pþÞ − Iβα2 ðl; pþÞ�; ð63Þ

where Iβα1 ðl; p−Þ and Iβα2 ðl; p−Þ are given by the formulas
(56) and (57). If it were possible to shift the integration
variable in these expressions, the first term would cancel
the second one, the third term would cancel the fourth one
in the square brackets (63), and we would obtain that

T ð∂πÞ
Δ ¼ 0. However, due to the formal linear divergence of

these integrals, which is present in (56) and (57) even after
traces are calculated, the surface terms arise [25]. The latter
renders the result to be different from zero,

Iβα1 ðl; p−Þ − Iβα2 ðl; p−Þ ¼
1

8π2
eμναβcμðp−Þν; ð64Þ

where cμ is an arbitrary four-momentum.

FIG. 4. The typical Feynman diagrams describing the non-
VMD contribution to the a1ð1260Þ → γπþπ− amplitude.
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As a result, the amplitude receives a finite contribution:

T ð∂πÞ
Δ ¼ i

egρNc

8π2f2π
ðκm2Þ2ϵβðlÞϵ�αðpÞeμναβcμðpþ þ p−Þν:

ð65Þ

Notice that this is the complete result for this triangle
diagram. We got it without using the derivative expansion.
The four-vector cμ can be represented as a linear

combination of three independent momenta that are directly
related to the process under consideration:

cμ ¼ apμ þ bðpþ − p−Þμ þ cðpþ þ p−Þμ:

In fact, only two of them survive after substituting this
expression in (65). Consequently, the contribution of the
second diagram shown in Fig. 4 takes the form

T ð∂πÞ
Δ ¼ i

egρNc

8π2f2π
ðκm2Þ2ϵβðlÞϵ�αðpÞeμναβ

½apμðpþ þ p−Þν þ 2bðpþÞμðp−Þν�: ð66Þ

One immediately sees now that by choosing b ¼ −1=2 one
vanishes the terms that violate the gauge invariance in the
sum of (61) and (66):

T box þ T ð∂πÞ
Δ ¼ i

gρeNc

8π2f2π
eμναβϵβðlÞϵ�αðpÞpμ

½ð1 − 2κm2Þqν þ aðκm2Þ2ðpþ þ p−Þν�: ð67Þ

The only uncertain quantity in an expression (67) is
the constant a, which cannot be fixed by the vector
Ward identities.
Thus, we obtain a finite gauge invariant result, but the

theory does not allow us to calculate the constant a. It must
be fixed from the experiment. Let us recall that a similar
situation occurs in a soluble two-dimensional chiral model
of Schwinger. That case was analyzed in detail in [16,17].
Here, we have discussed the four-dimensional example,
which is interesting not only from the pure theoretical point
of view, but also because the issue can be studied
experimentally.

IV. CONCLUSIONS

The purpose of this paper has been to check the
consistency of assuming that in the NJL model with vector

mesons the procedure of πa1-diagonalization, in the pres-
ence of electromagnetic interactions, should be carried out
in a gauge covariant way. This fact is unreasonably ignored
in the literature. Since the covariant derivative contains an
electromagnetic field, direct interactions of a photon with a
pseudoscalar meson and a quark-antiquark pair appear in the
theory. This brings the theory beyond the generally accepted
picture of vector meson dominance. We have explicitly
demonstrated that there are physical consequences of such
a step.
To show this, we have obtained the effective meson

Lagrangian with an approximate SUð2Þ × SUð2Þ chiral
symmetry, and have studied some electromagnetic proc-
esses where novel vertices are involved. The aim of
providing these examples is not to offer an exhaustive
overview of the possible physical consequences, but rather
some examples to convince the reader that such conse-
quences really take place.
Note that the changes are mainly related with a modi-

fication of a local replacement of variables in the theory
[instead of (10) we use (12)] and, in accord with the
Chisholm’s theorem [22,23], should not alter the S-matrix.
It is easy to understand why, in spite of this expectation, the
results differ. The reason for this is contained in the gauge
symmetry requirement. Violating the gauge symmetry, the
change (10) leads to the contradiction with the Ward
identities and because of that cannot be considered as an
equivalent transformation of the theory. Nonetheless, in
some cases, the replacement (12) leads to the same result as
the replacement (10) [the γππ vertex], or the results differ
by their of-shell behavior (the a1 → πγ decay).
The real physical consequences we have found are

related with the anomalous f1ð1285Þ → γπþπ− and
a1ð1260Þ → γπþπ− decays. In both cases, the new cou-
pling q̄qγπ not only restores the local gauge symmetry, but
also generates a surface contribution to the amplitude. It
gives us one of the rare nontrivial field-theoretical examples
of how, when calculating the final contributions from
single-loop quark diagrams, there arises a surface term
whose dimensionless constant cannot be fixed by the
theory.
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