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The higher-order corrections become increasingly important with experiments reaching the subpercent
level of uncertainty as they look for physics beyond the standard model. Our goal is to address the full set of
two-loop electroweak corrections to Mgller or electron-proton scattering. It is a demanding task which
requires an application of various approaches where two-loop calculations can be automatized. We choose
to employ dispersive subloop insertion approach and develop two-loop integrals using two-point functions
basis. In that basis, we introduce a partial tensor reduction for many-point Passarino-Veltman functions,
which later could be used in computer algebra packages. In this paper, we have considered self-energy,
triangle and box subloop insertions into self-energy, vertex and box topology.
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I. INTRODUCTION

The electroweak precision searches for the physics
beyond the standard model (BSM) frequently demand a
subpercent level of accuracy from both experiment and
theory. From the theory perspective, this can be achieved by
extending the perturbation expansion of the scattering
matrix element to the two-loop level. However, since the
electroweak (EW) interaction usually introduce different-
mass propagators and higher-order tensor Feynman
integrals, the two-loop EW calculations can become
increasingly complicated. In general, in electroweak case,
it is very challenging or even not possible to find analytic
results beyond the one-loop level, so one would either have
to resort to various approximations or purely numerical
methods. See, for example, a comprehensive overview of a
variety of numerical loop integration techniques in [1], a
general case of the two-loop two-point function for
arbitrary masses in [2], and a method of calculating scalar
propagator and vertex functions based on a double integral
representation in [3,4]. The more recent developments on
analytical evaluation of two-loop self-energies can be found
in [5-10], and on numerical evaluation of general n-point
two-loop integrals using sector decomposition in [11,12].
In addition, we normally have to evaluate several thousands
Feynman graphs. Obviously, such a voluminous task
should be delegated to the computer-based calculations.
Although there has been a strong progress, we still have an
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ongoing problem of having to deal with cumbersome
expressions and consequently be forced to introduce
approximations. In many existing techniques, the tensor
integrals have to be reduced to master scalar integrals
which increases size of the final expressions dramatically.
In order to address this, we employ a dispersive approach to
subloop diagrams, and introduce a partial tensor reduction
of the two-loop graphs. In general, a subloop can be repre-
sented through a dispersion tensor integral operator with a
relatively simple propagatorlike structure. Dispersion ten-
sor integral numerator could be then absorbed into the
effective Feynman vertices or propagators, and the second-
loop integration will acquire an additional propagator. The
idea of the subloop insertions with the help of the dispersive
approach was implemented for the self-energies [13,14]
and partially for the vertex graphs with the help of Feynman
parametrization [15]. We extend this for self-energy, vertex
and box subloop insertions of the general tensor structure.
In addition, we apply the reduction of the three-, four-, and
five-point tensor coefficient functions insertions to the
derivative representation of the two-point tensor function.
Of course, as in previous works, the treatment of the UV
and IR divergences requires subtractions derived from the
two-loop EW counterterms and introduction of the photon
mass regulator. In Sec. II, we start with basic definitions and
ideas of dispersive treatment of subloop insertions. After
that, we consider self-energies, vertex and box insertions and
provide a partial tensor reduction. Section III considers
specific example of two-loop self energy with vertex-type
insertion and provide numerical comparison with [13] for the
kinematical region below and above threshold.

II. SUBLOOP APPROACH

Generally, a dispersion relation allows to express a loop
integral through the known imaginary part:
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Examples of self-energy subloops in the self-energy, triangle and box topologies. In general, self-energy could be applied to

FIG. 1.
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Here, ¢? is the external momentum squared and s is the
branch-point position on the real axis. The imaginary part
IL(g?) can be calculated from discontinuities of the loop

integral using Cutkosky rules. If we consider the subloop
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insertion represented by the self- energy, triangle, or box, we
can extract an imaginary part of two-, three-, and four-point
tensor coefficient functions from the routines such as FF [16]
and LoopToors [17], which are already implemented
numerically. This leaves us with a problem of expressing
the two-loop tensor integrals in terms of many-point tensor
coefficient function. We start with definition of a general
two-loop tensor integral in the dimensional regularization:

=

i=0

where ¢, are the integration momenta in the first and
second loops, respectively. The momenta k; ;; represent
various combinations of the external momenta p; ;; from a
two-loop graph. The masses of internal particles are defined
as m; ;. For the processes specifically related to the parity-
violating scattering, a subloop topology would be defined
by either self-energy, triangle or box insertions.

A. Self-energy subloop

The self-energy subloop could be inserted into another
self-energy, triangle or box topology (see Fig. 1). After
replacing self-energy subloop by the dispersion integral,
graphs from Fig. 1 could be reduced to graphs shown in
Fig. 2. More specifically, for fermions or vector bosons, the

b : (2)

M
[(q1 + kin)* = m3 ] /.1;10[((12 +kjn)? = m ] H[(g1 + g2 + kip)? = mip]

self-energy subloop can be defined in form of the Lorentz
covariant terms:

_ q.9 _ q.9 _
SV-V(g) = (g,w - ;;)z% @)+ B ) O

¥ (q) = qw_%|(q%) + qw, Z(q?) + m;Z(g?). (4)

Here, in Eq. (3), Z};"(¢4%) represents transverse and
longitudinal parts of diagonal and mixed vector boson
self-energies. In Eq. (4), Zlf_ r.s(g?) represents left, right and
scalar parts of the fermion self-energy graph. The w, =

HET“ are usual left/right chirality projectors. Each of the

-O- Y

FIG. 2. Reduced two-loop topologies after subloop self-energy insertions.
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blocks X in Egs. (3) and (4) can be written in terms of
Passarino-Veltman two-point tensor coefficient functions.
Then, each of the two-point tensor coefficient functions
B;ijiju(q* my, mj) can be replaced by the dispersion
integral:

[es]

/ds

(mg+my)?*

~ 2 2
AVBi,i,;,ijk(S, My, mﬂ)

1

2 .2 o 2)
Bi,ij,ijk(q 7ma’m/}) =- 5
T s—q-—ie

(5)
where 3B, ;; (s, mg, mp) can be easily computed using

LoopPTooLs or FF libraries. As aresult, Egs. (3) and (4) can
be rewritten in the following form:

(
9.9 _
(g;w - ZIQU) SZ¥ V(S, m?,, m/zi)

+ ”(2] IV (s, mﬁ,mé)}

q
1. 1
Sg)==3 -
(@) Tap / ds s—q*—ie
(maer/f)z

X [qa)_i‘sE{(s, m2, m/%) + qa)+32‘£(s, m2, ml%)
+ mf‘TsZJSC(s, mg, my)]. (6)

The summation in Eq. (6) is done over all possible internal
particles in the self-energy subloop carrying masses m, and
my. Using Eq. (6), we can now write general expressions
for the two-loop topologies in Fig. 1. In the case of a
subloop represented by a vector boson self-energy, we get

by = / ds/quz

(m, +m/,

qZ.ul .. ’q2.IJR
M

— ie) jl;IO[(‘h + kj,M)z - mjz‘,M]

1.M,1
Iﬂl#z vy-

X

(s — a3
X Fﬂlllz(Q27s’ma’mﬂ)’ (7)
where F, (2.5, m,, mg) is defined as

- —qz"c‘;z"z) 2PV (s, mg, mj)

Fﬂlﬂz (Q2’S’ma’mﬁ) - (gﬂlﬂz
2

+%SZZ‘V(&m§,m§). (8)
2

For the subloop insertion stemming from fermion self-
energy, we can write

LM, = / ds / dP g,
ma-&-m,;
% qA24,u] . "qZ,L/R
(s = g3 —ie) TL[(qz + kjar)* = m5 ]
j=0
x G(qa, s, Mg, M), )
and

Glg2. 5. mp) = (oS (s, m2, m3)

+ qr0, ST (s, m2, mj)

—l—mf\sZ (s, mg, m3)]. (10)
In both Eq. (7) and Eq. (9), the integration over the second
loop momenta can be written in the form of the Passarino-
Veltman many-point tensor coefficient functions. For self-
energy subloop insertion specifically, we can simplify the
second-loop integral by means of partial fraction decom-
position. Since the momentum running in the adjacent
propagators and dispersion term (s — g, —ie)™' is the
same, we can write

1 1 1
G—m; q3—s q3—m;

o ( R )
m;—m; \mj—s gg—m; mi—s q5—m;
R S

P-s q3—s

(11)

m}—s m3

This gives the following result for a case of the vector
boson self-energy insertion

] ©
1.M,1
Iﬂlﬂz Vp...UR ;Eﬂ / ds
(m,ﬁ-m,,)z
LB (B, C.D)IEY (5. 2. )

+ L; %,}2 vr.g (B C. D)IZ) VY (s, m2, mﬁ)]
(12)

Functions L, .. 0, @0d Ly, 0 0, 0, depend on two-,
three-, and four-point tensor coefficient functions for the
topologies in Fig. 1, defined from left to right, respectively.
Each of the many-point functions are dependent on the
integration parameter s, masses and combinations of
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external momenta. For the two-loop result with fermion
self-energy insertions, we can write:

o0
1
il =1y / ds
T ap
(m”+m/;)2

A [NE (B C.D)SZ] (5. m2, m3)m_
+NYML L (B.C.D)Zh(s. mE m)o,
+ Nt Lo (B, C. D)SZf(s, mE, m3)]. (13)

As in the previous case, the functions Ni‘% ;,l.yl 1, are
defined through functions B, C and D in similar fashion.
Integration in Egs. (12) and (13) can be completed numeri-
cally after subtraction of the UV divergences. In case where
it is possible to perform subloop subtraction (i.e., there is no
global UV divergence), we can use the self-energy subloop
which has already subtracted terms. For example, y —y

self-energy is:

$71(q?) = 7 (g2) — 277(0) - a%zy-wq%z:oqz

S -
q / S ¥ (s, my, mp) (14)

= — Z .
T ap s (s — ¢* — ie)

(m,an/;)Q

Clearly, 2777(0) = 0, but we keep this term in Eq. (14)
anyway for the dispersive subtraction. This way, the
second-loop integral in Eq. (6) will acquire term ‘f—; which
will cause the cancellation of two y propagators around
y —y insertion, and hence we can omit use of partial
fraction expansion in Eq. (11) and still write the final
second-loop integration in the form of B, C and D functions
for the topologies defined from left to right in Fig. 1. The
same can be done for Z - Z, y — Z and W — W mixings
insertions. For Z — Z and W — W insertions, we can write,
in the on-shell renormalization scheme, the following [18]:

£V(g) = 1 () - 2V ()

0
- a_qsz—V(q2)|q2:sz(q2 - m%/)

2 92 by
— (q mV) 3y / ds
T ap
(mat+mp)?
ITVY (s, >
S (s, mqy, mp) (15)

(s =mp)*(s — q* —ie)

Here, superscript V —V corresponds to either Z — Z or
W — W mixings. For y — Z mixing we have:

() = ¥ g

L 52(0)q2 - 2 2(m)(q? — m2)]

S m
202 2 by
_alg—mg) / s
T ap
(m{,er[,)z
~

y ST (s, my, mp)

s(s —=m2)(s — g* —ie)’ (16)
Equations (15) and (16) would cancel Z — Z or W — W and
y — Z propagators in the second loop integration, and, as a
result, functions L, in Eq. (12) will again depend on B, C
and D Passarino-Veltman tensor coefficient functions. In
the case of f — f subloop, we can apply the following
on-shell subtractions:

¥ (0) =2/ )= ()= 2 ()] o, =)
=qow_(I;+ag)+qo,(Ig+ag)+ms(ls+ag).
(17)

Here, the functions I, g ¢ have the following integral
representation:

Lo g - m? s 7 s SZ{.R.S(s,ma,mﬁ.)
- T ap (s — m})(s - q* —ie)
(ma+my)?
and
arr = _2m%(22,R(m%> + Zg(mzf))
ag = mJ%(Z/L(m;) + 2%(mj%) + 2Zg(m§)) (18)

Substitution of Eq. (17) into the second-loop integration
will result in the cancelation of (g> — m%) in I g s with one
of the fermion propagators. Terms a; g ¢ do not result in
cancellations, but they also do not introduce the dispersion
denominator (s — g> — ie)~" into the second-loop integra-
tion. After applying partial fraction expansion of the
denominators with the same momentum, functions N, .
would depend on B, C and D tensor coefficient func-
tions only.

The structure of the insertions in Eq. (6) suggests that we
can introduce V —V and f — f effective mixing propaga-
tors with a dispersion integral removed. All the functions of
parameter s could be left un-evaluated during the second-
loop integration. This gives us the possibility to employ a
computer-algebra approach, where the second-loop integral
could be evaluated analytically, and after subtractions the
dispersion integration can be carried out numerically. For
V — V effective mixing we can write that as a combination
of the transverse and longitudinal propagators:
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TABLE 1. Structures of the function TV=V(g?, s, m?) for
specific V — V mixings.
r=v {zw}-{z.w} r=2
vov 1 1 1
T ) (S_m?z.w)y s(s—m?)
HX;V(q) H¥,m‘f + l_[L U
. o _ 49"
—19, gp T
nv-v — PH q SZV_V s’mz’mz
T Pl |s— g —ie v (s, mg ﬂ)
—i
X 2 961/2
q- —my
. q°
mv-v — _—"en 7 ISV (s, m2, m3)
Lwe =@ —md |s—q?—ie” & TP
—i
X — g‘wz ) (19)
q - —my

When evaluating the second-loop integral we can leave
imaginary parts of X;; un-evaluated and get analytical
structure for the two-loop graph. In case subtraction is
possible at the subloop level, V — V effective propagators
would have the following structure:

ﬁX;V(q) H¥;u‘// + HL MU
g 4u4y
v 2 _
1y, = =TV (s, m}) L_q—_qle] STV (s, mg, mp)
%4
2
HL o —TV_V(S, m%/) S_qq2_l€:| SZX_V(S, m(%, m;)

(20)

Here, the functions 7V~" (s, m?,) and JX;; are indepen-
dent of the second-loop momenta and could be left un-
evaluated until dispersion integration is performed. For the
specific V — V mixings, functions in Eq. (20) are defined in
Table I. For fermion mixing, we can also introduce
following effective propagator

IV (q) = (21)

1 G(q, s, my, mg) 1
s—q* —ie

g —my qg—m;

For the subtracted f — f subloop insertions, we can replace
Eq. (21) and introduce, with the help of Egs. (17) and (18),
the following set of effective fermion propagators derived
from the first-loop integration:

A

1V (q) = 1] (q) + 11 (q)

i (o) — YLgW_ + yrgqw, + myys
1 (q) (q—’_ mf) (612 _ mjzf)(s — q2 — l€)

(g +my)

! 1
f _ d 4 y
21 q- mf[ L40- T+ AR+ Iy S]q— my’
(22)
where
NS
R)>
Yors = Yrrs(s.mi mj) = L83
s — mf

The UV-finite functions d g s(s,mg, mj) can be derived

from Eq. (18) using a dispersive representation of the
constants ay, g s:

xS ~xyf
ST g + S
dpr=dp (s, m} mﬁ) Zm%W

ST) + 3Th + 23%
(s —m3)? ’

dg = dg(s, m2, mz) = mjzf

where QELRS = KSZL R, S(s m(zl, mﬂ) The implementation

of the effective propagators in Egs. (19), (20), (21), and (22)
is straightforward in the computer-algebra packages such as
FormCalc or Form ([17,19]), and as a result it is possible to
construct the two-loop self-energies matrix elements in the
analytical form. If additional subtractions are needed, it can
be done later using the second-order EW counterterms
([15,20]). Finally, the last step of the calculations would be
numerical integration. This can be done with the help of the
numerical libraries from LoOPToOOLS or FF and integration
routines such as VEGAS or QUADPACK. Since the
dispersion integration would involve many-point tensor
coefficient functions (above the two-point functions), a
numerical stability could become a concern. Out of all the
Passarino-Veltman functions, only two-point tensor coef-
ficient functions have well-defined analytical structure and
therefore the most stable numerically. It would be most
desirable if we could write three-, four-, and five-point
functions (for the cases of triangle and box type of the
subloop insertion) which enter functions L, ;, and N, . in
Egs. (12) and (13) as some representation of the two-point
tensor coefficient functions. This can be achieved if we
combine the Feynman trick [20,21] with derivative repre-
sentation of the many-point functions. Let us now consider
three-, four-, and five-point functions separately.

We start with the scalar three-point function and later
consider results for the C;;; ;i Passarino-Veltman func-
tions. The general expression for the three-point scalar
function is given by
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Co = Co(pi. p3. (p1 + p2)* m}, m3, m3)
4—D
H D
- d
inD/2/ q

X

1
lg* = mil[(q + p1)* = m3)[(q + py + p2)* —m3]
(23)

With the help of Feynman trick, we can join the first two
propagators in Eq. (23), and after shifting momentum
q =7 — p; — Py, We can write

D/z/dx/dD

(t—(pix+ Pz)) —mi,

X
[
mi, = mix + mix — pixx, (24)

where ¥ = 1 — x. Term [(z — (p,X + p;))* — m3,]~% can be
replaced after shifting mass m?2, by a small parameter A.
1

[(z = (p1X + pa2))* — miy)

2

0 1
R T ST A B

As a result, the expression for the three-point function can
be reduced to the derivative representation of two-point
function [see Fig. 3]:

|

4-D
C _ £

= lim

A—0

1
i/d
a Jo

/M3y + A

P1T + P2

Reduction of the triangle graph by the derivative representation of self-energy.

1
4-D
U .0 D
Co= lﬂDﬂ}l—»Oaﬂ/dx/d !

0
1

[(z = (P1X + p2))? = (miy + A)][e> — m3]

X

||
Q.')| Q

I
/dXBo (P1X + p2)* m3, miy +2). (26)
0

On the contrary, in [21], the differentiation in Eq. (26)
would be done with respect to m?,, but this would require
the analytical differentiation first (since m?, is a function of
the Feynman parameter), and then integration over the
Feynman parameter. In our case, the integration over the
Feynman parameter, and then differentiation with respect to
A can be all done numerically. Using the approach from
Eq. (26), we can replace the many-point tensor functions in
the second-loop integration by the derivatives of the two-
point function. Taking into account that the LooPTOOLS
libraries have numerical implementation for the regulari-
zation of UV and IR divergences, we can perform the two-
loop calculations using the two-point functions basis and,
later, after the appropriate subtractions, perform the dis-
persive and the Feynman integration numerically. The final
step would be a numerical evaluation of the derivative of
the integrated result. Since LooPToOLS and FF libraries are
capable of computing tensor coefficient functions of the
higher-rank tensors, we can derive the partial tensor
reduction for the three-point function in terms of the
two-point basis. For the function C,, _, , we can write

q qﬂN

mn/z/ S (R L (PR S crih

For the vector CM, we can use the tensor decomposition and
in parallel apply the Feynman trick on the right-hand side of
Eq. (27). After using the derivative approach from Eq. (26),
and shifting the momenta as before, we get

(27)

P Ci + (Piy + Po)Co

1
0
=y B - (plﬂ + pZu)BO] (28)
a [
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where By, = By, ((p1X+ p2)?, m3,m12 + A). Using the
tensor decomposition for B, = —(p;,X + py,)B;, and
matching terms in front of p,, and p,,, we can solve
for C;, in terms of By ; functions:

1

C, —11 g/delx

= ~lim / x[By + Bi] (29)
0

Dy = Dy(p3. p3. p3. P2, (p1 + p2)% (P2 + p3)%

p4=D

The same idea can be extrapolated to the higher orders of
the three-point functions. The results for the C,, and C,,,
partial reduction are given in Appendix A. An important
advantage of the partial tensor reduction is that we can
substantially reduce the size of the final expressions in the
two-loop integrals. The reduction of the three-point func-
tions to the two-point basis can be also employed in the
dispersive representation of Cy, ., Which could prove
helpful if we use the triangle subloop insertion.

For the four-point function, we will use an analogous
approach. We start with the general structure of scalar Dy
function:

2 2 2)

2
my, my, m3, nyj

1

 inPP / ¥ [ = mi][(q + p1)* = m3](

g+ pi+p2)?—mil(g+ pi+ pa+p3)? —mi]

3

In this case, we join the first three propagators, and after shifting momentum g =7 — ‘21 pi, We get
iz

1

1
d/@/w
D/z/ (= (p1(X = y) 4+ P2y + p3))? — miys P [7* — m]]

0

m123

P12 = P1+ D2

=mi(x—y) + mix + miy — pixx — pi,yy + 2xy(pi p12)

(30)

Obviously, the reduction to the two-point B, function is achieved by the second-order differentiation with respect to mass

shift parameter A:

1—x
2

0

0
Dy = hmaT/dx/dyBo[(pl(x ) + pay + p3)* mi, miy + 4. (31)

0 0

Again, the partial reduction for Dy, ., ) upo

can be done in the similar way as in Eq. (28) (Appendix B).

The five-point functions are reduced as before with the help of the Feynman trick, the third-order differentiation with
respect to the mass shift parameter 4, and shift of momentum g = 7 — £}, p;. Here, we can write

2

2 2 2 2)

_ 2 2 2 202 2 2 2 2 3
Ey = Eo(p1. P3. P53+ P4 P3: Plas P33s P3as Piss P35y My, My, M3, my, ms

I—x—y

dPz
dx [ d d
D/Z/ /y/ Z/ (= (P1(E—y—2) + p2(§ —2) + P32+ pa))* —

— (miyy + )N

0
1 8% 1 1—x 1—x—y ) )
[Tz_mg _ﬁg)%_x/dx/dy / dZBO[<p1(x_y_Z>+p2( —Z)+P32+P4) m57m1234+/1] (32)
0 0

where miy, = mi(X —y — z) + mjx + m3y + miz—
pixx = pLyy = PinZe + 2x9(pip12) + 2x2(pipins) +
2)’Z(P12P123) and plj Pz"‘Pj, szk pl+pj +pk
Results of the reduction for E functions are given in
Appendix C for the tensor coefficients functions up to

the fourth rank. As one can see, we can construct the two-
loop integrals with the self-energy subloop insertions using
only the two-point basis. Employing the effective propa-
gators, we can now construct model files for the FeynArts
[22] package and obtain the two-loop results in FormCalc
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K
Y

FIG. 4. Examples of the triangle subloop in two-loops topology. In general, triangle could be constructed around any vertex of the

second loop.

FIG.5. Triangle insertion with one of the legs on-shell. Here, ¢,
is the second loop integration momentum.

or FORM. The final UV- and IR-regularized expressions
would have to be renormalized by means of subtractions. If
subloop subtraction is not possible, we can regularize the
insertion by a cutoff of the dispersion integral. In this case,
the renormalization constants from counterterms respon-
sible for the cancellations of subloop UV divergences,

would have to be calculated using the dispersive repre-
sentation with the same cutoff. In the last stages, numerical
dispersion integration and differentiation would have to be
done. The same ideas can be extrapolated in the case of the
triangle-type of insertions in the self-energy, vertex or box
diagrams.

B. Triangle subloop

Examples of the triangle subloop insertion in two-loops
topology are shown in Fig. 4. Our starting point here would
be to construct the dispersive representation of the three-
point function, which later could be used in the second-loop
integration. To simplify, we will consider the case in which
one of the external legs of the triangle insertion is put on-
shell (see Fig. 5). This could be a case shown in Fig. 4, for
the triangle insertion in the box acting as the second loop.
Considering that all particles in the loop are scalars, the
graph in Fig. 5 is a three-point scalar function, and using the
notation in Eq. (23), we can write

dDQl

Co(mz’ Q%v (qZ _k)Z’m(Z), mzamz) = ’u4_D /
inP/? [q

= mil[(q1 = k)* =m*][(q1 —k+q2)* =m?]

(33)

where we used p; = —k, p» = ¢, and p3; = k — g,. In order to replace the three-point function in Eq. (33) by the dispersive
representation [23], we can again use the Feynman trick and join the first two propagators. It is important to apply the
Feynman trick to the propagators without the second-loop momenta (g, ), otherwise it would become a part of the effective
mass m,. If necessary, an appropriate shift of the momentum can be done to isolate the propagators with momentum of the
first loop only. Using Eq. (26), we can write:
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FIG. 6. Comparison of the results obtained using LooPTOOLS
(solid line) and dispersion integral in Eq. (35) (dots). Here, we
have used for my=1.2 GeV, m =0.1 GeV and (k-q,) =
—-3.4 GeV>.

Co(m?, q%, (g, — k)2, m(z), m?, m?)

1
.0 _
= Eﬁa/dﬂ?o((gz - kx)z’ m% m%z +4)
0
iy = 3+ i, (34)

The two-point function can be easily written as a dispersion
integral and substituted into Eq. (34):

0.8

0.6+

0.4+

e
Lossosee”

Re C;[ARG]
b Y

0.0

-0.2/ L

-0.4

210 5 0 5 10

2% [GeV?]

IBy(s, m%, mi, + 1)

s— (g, —kx)* —ie

(ma+(m3,+4)"/2)?
(35)

The branch point of the two-point function is on the real
axes (m%2 > (), and hence the dispersion integral in Eq. (35)
is well defined. Since B, function is UV-divergent, the
integral in Eq. (35) would diverge, which is addressed by
introducing a cutoff A. After differentiating numerically, A
dependence will cancel. We checked numerically that the
final result in Eq. (35) in fact does not depend on the cutoff
parameter A. Using LOOPTOOLS libraries, we can compare
left- and right-hand parts of Eq. (35) and see good agreement
(see Fig. 6). In general, there will be cases when m?}, =
mix + m3x — pixx could become negative for the specific
values of Feynman parameters or external momenta. In this
case, we would choose an integration contour over the upper
half-part of the complex plane, and as a result perform
dispersion integration from —A? to A? cut-off. To demon-
strate, we consider a scalar two-point function with arbitrary
imaginary mass. Since B, function is UV-divergent, we will
take derivative of B with respect to mass shift parameter 4,
and for lim;_ & Bo(p*, m?, —|m3| + 1) we can write:

0
lim — By (p*, mi, —|m3| + )

1—0 OA
AZ
1 . 0 Bo(s,m?, —|m3| + A
=_—lim— [ ds o, 2' %' ) (36)
2mi 7~0 OA s—p-—ie
—A2
0.4}
0.2} o
— 0.0 A
0] \
2 -
$ ’”M...w
S _o.2 -
[0]
4
-0.4
_0.6,
-0.8 : L
-10 -5 0 5 10
0.% [GeV?]

FIG. 7. Comparison of the C; and C, functions calculated from dispersion integrals (dots) and LOoOPTOOLS (solid line). Masses and

external momenta have the same values as for Fig. 6.

036021-9



A. ALEKSEJEVS

PHYS. REV. D 98, 036021 (2018)

0.2

0.1

0.0

-0.1

Re Coo[ARG]

-0.2

-0.3

0.4 ‘ ‘
-10 -5 0 5 10

0% [GeV?]

0.2

0.1

*oue
*ooes,
*0ecsteces

Re C1,[ARG]

0.0

pooe.
""-..._.‘"
.,

-0.1

4
X,

-10 -5 0 5 10
9.° [GeV?]

FIG. 8.
external momenta have the same values as for Fig. 6.

If we take, for example, A? = 10'° GeV?, m? = 1 GeV?
and |m3| =9 GeV?, we observe that results obtained by
means of Eq. (36) and LooPToOOLS shows up discrepancy
only after 6th digit (see Table II). Using the idea outlined in
Eq. (35), we can also derive dispersive representation for the
higher order three-point function. With the help of Eq. (29)
and Appendix A, we show in Fig. 7 results for the C ; and
Co0.11.12.22 functions. Since C is UV divergent, we obtained
finite result after subtraction at g3 = 0. The results are in
good agreement with LOOPTOOLS (see Fig. 8). We also have
tested third-rank three-point functions and found an excel-
lent agreement. In general, we can write that triangle subloop
can be replaced by the following effective coupling

0.2

0.0

o
aan, T

o,
o,
o,

-0.2

Re C11[ARG]

-04

-0.6

-10 5 0 5 10
0% [GeV?]

04+

0.2+

0.0

Re C[ARG]

{

3

4

{

{

3

i

i

-0.2¢+

—04 ‘
-10 -5

0 5 10
q2° [GeV?]

Comparison of the Cy 11122, functions calculated from dispersion integrals (dots) and LoOPTOOLS (solid line). Masses and

:TsF(s,m%,m%2 +4)
s—(pa+ p1X)* —ie

2 2= 2 2 3
my, = mixX + mzx — pyxx.

FA:ﬁ

(37)

Operator D is defined as D = lim,_o 2 [! dx r/(\; B s,
and function r(x, A) has the following structure: r(x, 1) =
(m3 + (m2, + 2)V/?)20(m?,) — A>0(—=m?3,). Momentum p,
can be a combination of external momenta only. Momentum
P» can contain integration momentum of the second loop.
The structure of the function JF(....) would depend on
the nature of the particles appearing in the triangle subloop
and is specific to the process. If subtractions are possible
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v
P
Y

FIG. 9. Box topology insertions in double boxes, ladder boxes
and crossed-vertex graphs.

at the subloop level, then Eq. (37) has to be modified as
follows:

SF(s, m%, m%z +A)[(p2 + Pl)_f)z - P%Xz}

[s = (p2 + p1%)? — i€][s — pi¥’]

Iy=D (38)

The general algorithm of calculations with the triangle
subloop insertions could be summarized as follows.
First, calculate one-loop triangle insertion in Passarino-
Veltman basis. Next, replace all three-point functions
by dispersive representation using rotation of the argu-
ments, so that momentum p; does not depend on the
second-loop integration momentum. After that, add the
term (s — (p, + p1%)?> —ie)~! from Eq. (37), or (37), or

((p2 + P = i[5 = (ps + pr)° — ie] s = P32
|

1
DOI—

k1 . ki—aq ks + qo '7 ks
(m1) (ma1)
&
_l’_
q1 < = q2
_l’_
(ms) =€ (ms)
|
S
]{72 ‘ k4
(m2) ka+aq k4 — qo (mg)

FIG. 10. Double box diagram.

from Eq. (38) to the second-loop integration. The next stage
is to get the second-loop integral, again in Passarino-Veltman
basis, and rewrite three-, four-, and five-point functions in the
two-point basis. After that, apply the subtractions for the
second loop using counterterms in a given renormalization
scheme. The final stage is to evaluate the dispersion and
Feynman parameters integrals, and do numerical differ-
entiation at least once.

C. Box subloop

Box subloops can be incorporated in double boxes,
ladder boxes and crossed-vertex graphs (see Fig. 9). As in
the case of triangle subloop, our starting point would be an
example of the double-box diagram. Here, we would define
dispersive representation of the four-point insertion. In our
case, all the external particles are on-shell, and masses on
the top and bottom lines of Fig. 10 are equal to m; and m,,
respectively. Following the momenta notation in Fig. 10,
we can write for the left box subloop:

d4

2

ir* | g7 —m3][(q1 + k2)* = mi][(q1 — k1)* —mi)[(q1 + g2 + ks — k1) —m3]’

After joining the first three propagators, using the mass-shift parameter approach, shifting momentaz = q; + ¢, + k3 — k;
and applying dispersive representation of the two-point function, we get the following result for the box subloop insertion:

1 1—x A?

0= Jim e
0 0

r(x,y.A)

By [S, m?p m%23 + /1]9(_”1%23)

> / 0 / o / ds[zi%Bo[s,mi,m%zaH]@(m%za)

s — (qa + ks — xky — k1 3)? — ie

+ :
s = (qy + k3 — xky — k1 3)? — ie

} . (40)

Mass m?,; = m3(x —y) + x>m3 + y*m?} — 2xy(kk,) could become negative for specific values of x and y, so the function
r(x,y, ) is defined as r(x,y,4) = (my + (mly; + 4)1/2)20(m2,;) — A*0(—=m?3,;). Here, O(x) is a usual step function. The
second-loop integral will receive, from Eq. (40), an additional propagator and would become a four-point function with

dispersion parameter s playing a role as the mass:
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1
Id—box =

~ i 1., (2i3By[s.m3, mbyy + A)0(mys) + Bols.m3. m?y + 210(—m3y3))

d4612

/[CI%—’"SH( 2 +k3)? —mi][(qo

Operator I, has the following definition: I,,,, = lim, ;2 5 L dx [d dy f Sewd)

—ky)* =m3)[(q2 + k3 — xky — ky3)* — 5 — i€’

(41)

.. For the second-loop integration,

we would also apply approach outlined in Eq. (31), and after joining the first three propagators, using mass-shift parameter
&, final two-loop result can be expressed completely in the two-point basis:

1. .
Lipox = — i Lys ez (2B s, mﬁ, m%23 + /1]9(””%23) + Bols, mi, m%23 + /1]9(—’”%23))
Bo|(wky + zks — xky — yk1)* m3,s + &, 5. (42)
Operator 1., is defined as 1., = limf_,o%fol dz [y dw..., and mass mys = mi(Z — @) + m}z? + @?*m3 —

2zw(ksky). For the generalized box subloop, we can replace it by four-particle coupling

=D

SF(s, mj, miy; + 2)

— (p1(X =) + pay + p3)* — i€

miy = mi(X —y) + mix + m3y — p%xfc — p1oyy + 2xy(p1p12). (43)

where operator D defined as D = lim,_ 2 o [ dx [ dy f

)CV

.. Using box subloop in Eq. (43), the second-loop

integration will get an additional propagator and integration can be carried out in two-point function basis using Egs. (26),

(31), and (32).

III. NUMERICAL EXAMPLE

Lets consider a case with the triangle (three-point function) insertion applied as an example. Namely, we will consider the
diagram in Fig. 11 with all the masses are different and external particles are off-shell. Following the notation of [13],

a general expression for that graph is:

I=-

After joining the first two propagators, shifting momenta as
T = q; + q,, and applying differentiation with mass shift
parameter 1, we get

A2

1= 53 %E%aj/dx / ds(2iIBy[s, m3, m%, + 2)0(m3,)
0 #(x2)
+ Bols. m3. mt, + 210(=mi,))-
d*q,
= sll(q2 + p)* = m3]’

(45)

/ [45 — m3)[(q2 + xp)?

(ma1) (ma4)

FIG. 11. Examples where triangles topology insertion have
been considered.

1/ d*qd*q, . (44)
7 lgi = mill(q: = p)* = m3)l(q) + 42)* = m3]lg3 — m){(q2 + p)* — m3]

|

where  mi, =mix+mjx—p’xx and  r(x, 1) =

(m3 + (m2, + 2)V/2)20(m32,) — A>0(—m?,). For the time-
like process when p? > 0, a value of m3, could become
negative for the conditions above the threshold. That is
addressed by using Eq. (36). In spacelike cases of p? < 0,
the dispersion representation of the insertion is well
defined. The second-loop integral, with the help of
Eq. (26), can be written in two-point function basis. The
final two-loop result can now be given in a compact form:

1

I = —L, lim > dxdy
27i {1610 OAOE
N 0
/ ds(2iIBy[s, m3, m}, + 2)0(m?,)
r(x.2)
+ Bols, m3, mi, + 20(=m7,))
X Bo[p*(x = y)?, s, mis + &, (46)
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TABLE II. Comparison of the results for lim,_, %BO X
(p?,m3,—|m3| + 1) obtained in Eq. (36) and LOOPTOOLS.

p? (GeV)? Eq. (36) LoopPTOOLS

-5.0 0.147987 — 0.079999 i 0.147988 — 0.079999 i
-1.0 0.127835 — 0.037405 1  0.127836 — 0.037405 i
-0.5 0.124874 — 0.034242 i 0.124875 — 0.034242 i
0.5 0.119143 — 0.028889 i  0.119144 — 0.028889 i
1.0 0.116402 — 0.026626 i  0.116403 — 0.026626 i
5.0 0.097877 — 0.014968 i 0.097878 — 0.014968 i
10.0 0.081819 — 0.008497 i 0.081820 — 0.008497 i
50.0 0.039036 — 0.000911 i 0.039037 — 0.000911 i

where m3s = m3y + m2y — p*yy. The integration and dif-
ferentiation in Eq. (46) can be done numerically. Numerical
integration, in the case of below threshold conditions, have
used the global adaptive algorithm implemented in the
integration package of Mathematica program. For the
above threshold conditions, we have implemented numeri-
cal CUBA libraries from [24,25]. These libraries are
specifically designed for the multidimensional integration
and employ Monte Carlo or cubature rules of polynomial
degree algorithms. They showed the best convergence for
the integration above threshold conditions. After that, we
can compare our results with [13] (see Table III). We get a
good agreement of the results and extend our calculations
to the spacelike regime as well. In Table III, we also provide
computing time and compare it to [13] for the case of two-
dimensional integration using VEGAS routine. As we can
see, computing time from [13] is nearly constant, but in our
case it is highly dependent on the value of |p?|. Further
analysis shows that in our case we have to apply numerical
differentiation with respect to mass-shift parameters, which
is sensitive to the variations of A and ¢ in Eq. (46).
Sensitivity grows when |p?| is getting large, and in order
to achieve stability in numerical differentiation, precision of
the integration over Feynman parameters should increase

substantially. This is primarily the cause of the increase in
integration time. The computing time of the dispersion
integral is usually in the order of fraction of a second, and
numerically very stable. In the case of the box-type
insertion, we would need, on top of the multidimensional
integration, to deal with the second-order differentiation.
That is a much more challenging task and will require two-
loop graphs, with box insertions, to be evaluated using
C++, FORTRAN, or PYTHON languages. This will be
addressed in follow-up publications dedicated to the
numerical evaluations of the dispersive representations of
two-loop graphs with the box-type insertions.

IV. CONCLUSION

In this work, we have applied the dispersive treatment
approach of the subloop insertion and represented the two-
loop results in the two-point function basis. The second-
loop integration was reduced to the two-point basis with the
use of the partial tensor reduction. The partial tensor
reduction simplifies analytical expressions considerably
to the point that it is possible to employ computer algebra
evaluating the two-loop calculations analytically and carry
out integration and differentiation numerically after that. As
an example, we have compared our results for the double
self-energy shown in Fig. 11 with [13] and found an
excellent agreement.
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TABLE III. Comparison of the results obtained in Eq. (46) with [13]. We take masses the same as in [13], m% =1,
m3 =2,m3 =3, m} = 4,and m} =5 GeV?. Points p> > 10 GeV? correspond to above threshold condition. Third
and fifth columns show computing time in seconds using Eq. (46) and [13], respectively.

p? (GeV)? This work Afrhis Work [13] At [13]
-50.0 —0.08296 75

-10.0 —0.18399 22

-5.0 —0.22178 17

-1.0 ~0.26919 8

-0.5 —0.27712 9

-0.1 —0.28360 9 . e
0.1 —0.28714 9 —0.28701 84
0.5 —0.29443 9 —0.29479 85
1.0 —0.30449 10 ~0.30493 85
5.0 —0.45230 14 —0.45241 86
10.0 —0.48810 — 0.35318 i 30 —0.48825 — 0.35333 i 86
50.0 0.17335—0.11781 i 1120 0.17391 —0.11807 i 85
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APPENDIX A: C,, AND C,,,

With the help of operator I = lim,_ 2 [} dx..., we can write
C .

't
Coo = 1¢[By) Cip = —1c[(B) + By))x]
Ciy = 1c[B) %] Cyy = 1¢[By + 2B, + By
C/wa:
Coo1 = L¢[Boo1x] Ciin = —1c[(Byy + Bi11)x?
Coo = —1¢[Boo + Booi] Cizy = I¢[(By + 2By, + By )x]
Ciiy = I¢c[By %7 Cyy = —1¢[By+3(B, + Byy) + Byl

Two-point functions B;;;;x have the following definition: B; ;i = B;;; ik[(p1X + p2)?, m3, mi, + 4.

APPENDIX B: D, D,,, D,,,, AND D,,,,,

Introducing operator i, = limi_,og—; fol dx f(} ~dy..., we list only the final results

D,,:
D, = 1,[Bx]
D, = 1,[B))]
Dy = -1,[B, +B,].
DW:
Dy = 1[Byo] Dsy3 = 1p[By + 2B, + By)]
Dy = iD[anz] Dy, = iD[an)’]
Dy, = iD[BHyZ] D3 = _iDKBl + Byy)x]
Dyy = —1p[(B) + Byy)y]
D/u/p:

Doy = iD[Bomx] Dy = iD[Bmez}

Do = 1p[Boo1y] Dyy; = —Ip[(B11 + Bi1y)xy]
Doos = —Ip[Boo + Booi] Dy, = 1p[By11y’]

Dyyy = 1p[B11¥ Doy = —1p[(By + Bin)y’]
Dyyy = 1p[Bi114%y] Dy33 = 1p[(By + 2By + Bi1))y)

Dyy3 = —1p[(By; + By )« Dy33 = —1p[By +3(B, + By)) + Byyy).
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DWM:
Doovo = 1p[Boooo] Dyp3 = —1p[(Bi11 + Bii1n)x%]
Doory = Ip[Booi1 %] Dyy33 = 1p[(Byy +2By11 + By )x7]
D12 = i p[Boo11xy] Doy = iD[Blmxy3]
Doois = —Ip[(Boor + Bii11)a] Diyy = —Ip[(By11 + Byij)xy?]
Doopr = i plBoo11¥’] Dyp33 = i pl(Bi1 +2By11 + By )xy)
Doozs = —Ip[(Boor + Bii11)y] Dis33 = —1p[(By +3(B11 + Biit) + Biin )|
Dogs3 = 1p[Boo + 2Bog; + Booi1] Doy = 1p[Bii11y”]

Doy = —1p[(By11 + Bijin)y’]

Doy = 1p[(Byy +2By11 + Byin)y?]

Dyys3 = —1p[(By +3(Bi1 + Bii1) + Binn)yl
Dss333 = 1p[(By +4(By + By1y) + 6By + Byypy)-

Two-point functions B, ;;,ixi have the following arguments: B;,; it = Biijiiniul(P1(X—y) + pay + p3)?,
2

m3, m}y; + A]. As can be seen reduction of Djji; uses Boooo, Booi1, and Byyyy functions, which can be evaluated using
[18] including the cases of imaginary masses.

APPENDIX C: E,, E,,, E

ws Epps AND E

wpo

Using the operator I = lim,_ 2 = i dx [ dy [} dz..., we list only the final results

E, = 1.[Bx]
E, = 1[B)y]
Ey = 14[B,Z]
Ey = —1.[By + B)].
EW:
Ey = iE[Boo] Ey; = iE[Bn)’Z]
Ey = 1B 1xY Eyy = —1g[(B) + By1)y]
Ejy = 1g[B)1xy] Eyy = 14[B),27]
Ej; = 1g[B)xz] E3 = —14[(B) + B1))7]
Eyy = —1g[(B, + Byy)x] Ey = 1[By+ 2B, + By)].
Ey = iE[Blly ]
E,,

Epyy = —1g[(Bi1 + Bii)x?]
Eyy = 1g[(By + 2By + By
iE[Bl11y3]

iE[B111y21]

E222 =

E223 =
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Hupc+

Two-point functions B; ;i are defined as follows: B ;i iii=Biijijiiul(P1(X—y—2)+p2(¥—2)+ P32+ pa)*.
m3,mMiysy+4].

Ejy = —1g[(By + Biip)x?

Eip = iE[Bmxyz]
Ejp; = 15[By11xyz]
Ejpy = —14[(Byy + Bip)xy)

Ej33 = 1g[B))1x2%]

Egop3 = 1g[Boon1y7]

Egons = —12[(Booi + Biin1)y]
Ego33 = 1£[Boo112%]

Ego34 = —1g[(Boor + Biin )z
Egoas = 1£[Boo + 2Booi + Booi1]
Ejn = iE[Bl]llx4]

Ejy=-1 el(Bii1 + Byin)x°]
Eyi0 = I [31111X y ]

Eyip3 = iE[BuanyZ}

Ejpag = —1g[(By11 + Biin )x%y)
Eji33 = 1g[B111x°27]

Ejiza = —1g[(Bi1y + By )x22]
Ejjgq = 1.[(B)) + 2By + Biin)¥?]

Eyyy = —15[(By + Bi11)y?

Eyyy = 1g[By11y7’]

Eyy = —15[(B1 + Bi1)y?]

Eyy = 1[(B) + 2By, + Bijy)y]

Eys = i e[Bin?’]

Esyy = —1g[(By1 + Bi1)7’]

Esy = 1g[(By + 2By + Biy1)Z)
Egyy = —15[By +3(By + By1) + By

Eins = _iEKBlll + Byy11)xy?]
Ejx3 = iE[BmlxyZz]

Epyy = —1g[(By1y + Byin)xyz]
Eps = Lg[(Byy + 2By + Byip)xy]
Epz = i E[Biinxz’]

Epsay = —1g[(Biiy + Bipn)xz’]
Eys = L5[(Byy + 2By + By )xg]

A

Ejgas = =1g[(By + 3(Byy + Bi1y) + Biiin)X]

Eyy = —1g[(Bi11 + Biin)y’]
Eyys3 = 1g[B1111y°7]
Epyy = —1 el(Bi + Biiin)y*z

el(Bi1 4+ 2By11 + Bii11)y?]

Eyy = i elBiyz’]

Eyyy = —1g[(By1y + Byin)y2?]

Eysas = 1g[(B1y + 2By + B )ye
Eygy = —1g[(By +3(By1 + Biy) + Bun)y)
Exp3 = 1g[Bi1i2Y]

Es3s = —1g[(Bin + Bin)2]

Essy = 1p[(Byy +2Byyy + Byy11)27)

Esgyy = —1g[(B) +3(Byy + Bi11) + Biiii)2

Eygaq =

036021-16
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