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We study the excitation of the electric current of chiral fermions along the external magnetic field, known
as the chiral magnetic effect, in the presence of the background axial-vector field. The calculation of the
current is based on the exact solution of the Dirac equation for these fermions accounting for the external
fields. First, this solution was obtained for massive particles and, then, we consider the chiral limit, which is
used in the anomalous current computation. We obtain that, in this situation, the anomalous current does
not contain the direct contribution of the axial-vector field. This result is compared with findings of other
authors.
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I. INTRODUCTION

The evolution of chiral charged particles in external
fields reveals multiple quantum phenomena. First, we
mention the Adler-Bell-Jackiw anomaly [1], which consists
in the nonconservation of the axial current in the presence
of an external electromagnetic field. This anomaly was
shown in Ref. [2] to be closely related to the excitation of
the electric current of massless fermions JCME ¼ αemðμR −
μLÞB=π along the external magnetic field B. Here αem ≈
1=137 is the fine structure constant and μR;L are the
chemical potentials of right and left chiral fermions.
This phenomenon was named the chiral magnetic effect
(CME) later in Ref. [3]. One can also mention the chiral
vortical effect (CVE), described in Ref. [4], which is the
generation of the anomalous current in a rotating matter.
There are active searches for manifestations of the CME in
astrophysics and cosmology [5], as well as in accelerator
physics [6].
There is an open question on the influence of the external

axial-vector field Vμ
5 on the magnitude of the anomalous

current in the CME. If a homogeneous and isotropic Vμ
5 is

present, the Lagrangian of the interaction of the fermion
field ψ with Vμ

5 can be represented as L5 ∼ ψ̄γμγ5ψV5μ →
ψ†γ5ψV0

5, which shows that the chiral imbalance μ5 ¼
ðμR − μLÞ=2 could be shifted by V0

5. Here γ
μ ¼ ðγ0; γÞ and

γ5 ¼ iγ0γ1γ2γ3 are the Dirac matrices. Thus the CME could

contain the contribution of V0
5 ≡ V5. This idea was recently

implemented in Ref. [7]. However the regularization used in
Ref. [7] to compute the divergent integrals was ambiguous.
Another possibility for Vμ

5 to affect the CME is the
consideration of the polarization operator of a photon in the
fermion plasma under the influence of Vμ

5. In this case,
the polarization operator could acquire the additional term
Πμν ∼ iεμνλρVλ

5k
ρ, where kρ is the photon momentum and

εμνλρ is the antisymmetric tensor. The appearance of this
term is equivalent to the excitation of the current J ∼ V5B,
which would be a direct contribution of Vμ

5 to the CME.
The calculation of the antisymmetric contribution to Πμν

in the QED plasma of chiral fermions was made in Ref. [8],
where the CME was reproduced. Then, analogous calcu-
lations in the presence of an external axial-vector field, e.g.,
the electroweak interaction with background matter, were
carried out in Refs. [9,10]. The calculations in Refs. [9,10]
demonstrate that one has the nonzero contribution to the
polarization tensor Πij ∼ iεijnknV5, showing that the CME
can be influenced by the external axial-vector field Vμ

5.
However, a model with L5 ≠ 0 is nonrenormalizable and
the result of the calculation of Πμν was shown in Ref. [11]
to depend on the regularization scheme applied.
Using the perturbative loop expansion, the CVE was

found in Ref. [12] to receive no radiative corrections from
Yukawa-type interactions. This result can be extended to
the CME. However, the arguments against the corrections
to the CVE are not applicable in the case of dynamical
gauge fields, which can be present in a realistic system. We
can also mention that lattice calculations, performed in
Ref. [13], show that the CME can get a contribution from
an interfermion interaction.
The aim of this work is to find out whether there is an

influence of the axial-vector field on the CME.We consider
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a particular example of this axial-vector field in the form
of the electroweak interaction with background matter.
We start in Sec. II with the description of the motivation for
this study. Then, in Sec. III, we calculate the anomalous
current along the external magnetic field basing on the
exact solution of the Dirac equation in the external fields.
Our results are discussed in Sec. IV.

II. MOTIVATION

In this section, we compare the results of different
methods for the calculation of JCMEkB in the presence
of Vμ

5, which is taken in the form of the electroweak
interaction with background matter.
The method of the relativistic quantum mechanics was

used for the first time to describe the CME in Ref. [14]. The
idea of this method is the following. First, one obtains the
exact solution of the Dirac equation for a massless particle
in an external magnetic field. Then the electric current is
computed as

Jχ ¼ qhψ̄ χγψχi; ð2:1Þ

where ψχ is the wave function, obtained in the solution
of the Dirac equation and q is the particle charge. The
averaging h…i in Eq. (2.1) is made over the statistical
ensemble. The contribution of any chirality χ ¼ L, R is
accounted for in Eq. (2.1). This method allows one to take
into account the contribution of the external field non-
perturbatively. Nevertheless, it is restricted to the constant
and homogeneous magnetic field.
The application of the relativistic quantum mechanics

method for the study of the CME in the presence of the
electroweak parity violating interaction was made in
Refs. [15,16]. Let us consider a massless electron, electro-
weakly interacting with nonmoving and unpolarized back-
ground matter under the influence of an external magnetic
field along the z axis,B ¼ Bez. The Lagrangian for such an
electron, described by the bispinor ψe, has the form

L ¼ ψ̄e½γμði∂μ þ eAμÞ − γ0ðVLPL þ VRPRÞ�ψe; ð2:2Þ

where Aμ ¼ ð0; 0; Bx; 0Þ is the vector potential correspond-
ing to the constant and homogeneous magnetic field, e > 0

is the elementary charge, PL;R ¼ ð1 ∓ γ5Þ=2 are the chiral
projectors, and VL;R are the effective potentials of the
electroweak interaction of the electron chiral projections
with background matter. The explicit form of VL;R is given
in Ref. [15] for the case of background matter consisting of
neutrons and protons.
The energy spectra of the chiral projections of the

electron were found in Refs. [15,16] as

EL;R ¼ VL;R þ E0; E0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
z þ 2eBn

q
; ð2:3Þ

where pz is the longitudinal momentum along the magnetic
field, and n ¼ 0; 1;… is the discrete quantum number. If
n ¼ 0 in Eq. (2.3), we have obtained in Refs. [15,16] for
left electrons,

Eðn¼0Þ
L ¼ VL þ pz; 0 < pz < þ∞; ð2:4Þ

and for right particles,

Eðn¼0Þ
R ¼ VR − pz; −∞ < pz < 0: ð2:5Þ

In Eqs. (2.4) and (2.5) we assumed, in analogy with the
situation when VL;R ¼ 0, that left and right electrons move
in a certain direction along the magnetic field.
Using the spectra in Eqs. (2.3)–(2.5) and the wave

functions, found in Refs. [15,16], as well as applying
the general expression for the current in Eq. (2.1), one finds
that only the lowest energy level with n ¼ 0 contributes to
the current, giving one its nonzero component along the
magnetic field as

J ¼ 2αem
π

ðμ5 þ V5ÞB; ð2:6Þ

where αem ¼ e2=4π is the fine structure constant and V5 ¼
ðVL − VRÞ=2 is the contribution of the electroweak
interaction.
The result in Eq. (2.6) was criticized in Ref. [17], where

it was found that

J ¼ 2αem
π

μ5B≡ JCME; ð2:7Þ

even in the presence of the background electroweak matter,
i.e., when VL;R ≠ 0. The authors of Ref. [17] used the
alternative derivation of the CME based on the energy
balance in the motion of a massless charged particle in
parallel electric and magnetic fields, previously proposed in
Ref. [2]. Note that, even if one uses the method of Ref. [2]
to derive the CME in the presence the electroweakly
interacting matter and accounts for the dispersion relation
in Eqs. (2.4) and (2.5), the expression for the current in
Eq. (2.6) can be reproduced [18].
The expression for the current in Eq. (2.7) was also

derived in Ref. [19], where the CME in the presence of the
axial-vector field was studied using the chiral hydrody-
namics approach, which was developed earlier in Ref. [20].
No explicit contribution of the electroweak interaction to
the current, like in Eq. (2.6), was found in Ref. [19].
The apparent contradiction between the relativistic

quantum mechanics method in Refs. [15,16] and other
approaches [17,19] for the description of the CME in the
presence of the axial-vector external field requires a special
analysis.
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III. ANOMALOUS CURRENT IN THE PRESENCE
OF THE ELECTROWEAK INTERACTION

WITH MATTER

To analyze the contribution of the parity violating
interaction to the CME, using the relativistic quantum
mechanics approach, we start with the consideration of
massive particles interacting with the axial-vector and
magnetic fields and then discuss the chiral limit. As in
Sec. II, we consider the electroweak interaction of an
electron with background matter. Since the relativistic
quantum mechanics method deals with an exact solution
of the Dirac equation in an external field, the correspond-
ing solution should be utilized. For the first time the Dirac
equation for a massive electron, electroweakly interacting
with background matter under the influence of an external
magnetic field, was solved in Ref. [21]. Then this solution
was used in Ref. [22] to compute the induced current
along the magnetic field.
Thus, instead of the Lagrangian in Eq. (2.2), we discuss

the following Lagrangian:

L ¼ ψ̄e½γμði∂μ þ eAμÞ −m − γ0ðVLPL þ VRPRÞ�ψe;

ð3:1Þ

where m is the electron mass. The remaining parameters
have the same meaning as in Sec. II.
Let us look for the solution of the Dirac equation, which

results from Eq. (3.1), in the form

ψe ¼ exp ð−iEtþ ipyyþ ipzzÞψx; ð3:2Þ

where ψx ¼ ψðxÞ is the bispinor which depends on x
and py;z are the momentum projections along the y and
z axes. We choose the chiral representation of the Dirac
matrices [23],

γμ ¼
�

0 −σμ

−σ̄μ 0

�
; σμ ¼ ðσ0;−σÞ;

σ̄μ ¼ ðσ0; σÞ; ð3:3Þ

where σ0 is the unit 2 × 2matrix and σ are the Pauli matrices.
Using Eq. (3.3), we can represent ψx in the form [22]

ψT
x ¼ ðC1un−1; iC2un; C3un−1; iC4unÞ; ð3:4Þ

where Ci, i ¼ 1;…; 4, are the spin coefficients,

unðηÞ ¼
�
eB
π

�
1=4

exp

�
−
η2

2

�
HnðηÞffiffiffiffiffiffiffiffiffi
2nn!

p ; n ¼ 0; 1;…;

ð3:5Þ

are the Hermite functions, HnðηÞ are the Hermite polyno-
mials, and η ¼ ffiffiffiffiffiffi

eB
p

xþ py=
ffiffiffiffiffiffi
eB

p
.

The energy spectrum for n > 0 reads [21,22]

E ¼ V̄ þ λE; E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE0 þ sV5Þ2 þm2

q
; ð3:6Þ

where s ¼ �1 is the discrete quantum number dealing with
the spin operator [21], E0 is defined in Eq. (2.3), V̄ ¼
ðVL þ VRÞ=2, and λ ¼ �1 is the sign of the energy; i.e., the
electron energy reads Ee ¼ Eðλ ¼ þ1Þ ¼ E þ V̄, and the
positron energy has the form Eē ¼ −Eðλ ¼ −1Þ ¼ E − V̄.
For n ¼ 0, one has [22]

E ¼ V̄ þ λE; E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðpz þ V5Þ2 þm2

q
: ð3:7Þ

Note that, at n ¼ 0, there is only one spin state of the
electron.
The spin coefficients obey the system [22],

ðE ∓ pz � V5ÞC1;3 ∓
ffiffiffiffiffiffiffiffiffiffiffi
2eBn

p
C2;4 þmC3;1 ¼ 0;

ðE � pz � V5ÞC2;4 ∓
ffiffiffiffiffiffiffiffiffiffiffi
2eBn

p
C1;3 þmC4;2 ¼ 0; ð3:8Þ

where we consider the particle (electron) degrees of free-
dom, λ ¼ 1. Since we are mainly interested in the dynamics
of electrons at the lowest energy level, we should set n ¼ 0
in Eq. (3.8). It results from Eq. (3.4) that, in this situation,
C1 ¼ C3 ¼ 0 to avoid the appearance of Hermite functions
with negative indices.
If, besides setting n ¼ 0 in Eq. (3.8), we approach to the

limit m → 0 there, one gets

ðE þ pz þ V5ÞC2 ¼ 0; or

�
E ¼ −pz − V5;

C2 ≠ 0; and C4 ¼ 0;

ð3:9Þ

ðE − pz − V5ÞC4 ¼ 0; or

�
E ¼ pz þ V5;

C4 ≠ 0; and C2 ¼ 0:

ð3:10Þ

We can see that Eq. (3.9) corresponds to a right electron
and Eq. (3.10) to a left one.
The energy spectrum in Eq. (3.7) in the limit m → 0

reads

E ¼ jpz þ V5j: ð3:11Þ

Comparing Eq. (3.11) with Eqs. (3.9) and (3.10), we obtain
that for a right electron

jpz þ V5j ¼ −pz − V5; or pz < −V5; ð3:12Þ

and
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jpz þ V5j ¼ pz þ V5; or pz > −V5; ð3:13Þ

for a left particle.
Therefore the total energy of a left electron at the lowest

energy level has the form

Eðn¼0Þ
eL ¼ VL þ pz; −V5 < pz < þ∞; ð3:14Þ

and

Eðn¼0Þ
eR ¼ VR − pz; −∞ < pz < −V5; ð3:15Þ

of a right particle. Comparing Eqs. (3.14) and (3.15) with
Eqs. (2.4) and (2.5), we can see that the form of the
spectrum at n ¼ 0, obtained here, formally coincides with
that used in Refs. [15,16]. However, the range of the pz
variation is different.
To complete the solution of the Dirac equation at n ¼ 0

and m → 0 we should fix the remaining spin coefficients.
One gets that

CðRÞ
2 ¼ CðLÞ

4 ¼ 1

2π
; CðLÞ

2 ¼ CðRÞ
4 ¼ 0; ð3:16Þ

which results from the normalization condition

Z
d3xψ†

pypznψp0
yp0

zn0 ¼ δðpy − p0
yÞδðpz − p0

zÞδnn0 ; ð3:17Þ

of the total wave function.
The wave function of a positron can be obtained from

Eqs. (3.2) and (3.4) by applying the charge conjugation
ψ ē ¼ iγ2ψ�

e and setting λ ¼ −1 in Eq. (3.6). Finally one has

ψT
ē ¼ expð−iEēt − ipyy − ipzzÞ

× ð−iC4un;−C3un−1; iC2un; C1un−1Þ; ð3:18Þ

where the coefficients Ci obey the system in Eq. (3.8).
If n ¼ 0, we obtain on the basis of Eqs. (3.18) and (3.7)

that

ψ ðn¼0Þ
ēR ¼ expð−iEēRt − ipyy − ipzzÞ ×

iu0
2π

ð−1; 0; 0; 0ÞT;
ð3:19Þ

where

Eðn¼0Þ
ēR ¼ pz − VR; −V5 < pz < þ∞ ð3:20Þ

is the energy of right positrons at the lowest energy level.
For left positrons one has

ψ ðn¼0Þ
ēL ¼ expð−iEēLt − ipyy − ipzzÞ ×

iu0
2π

ð0; 0; 1; 0ÞT;
ð3:21Þ

where

Eðn¼0Þ
ēL ¼ −pz − VL; −∞ < pz < −V5 ð3:22Þ

is the energy of left positrons at the lowest energy level.
The positron wave functions in Eqs. (3.19) and (3.21)
satisfy the normalization condition in Eq. (3.17).
The energy spectrum for electrons and positrons at the

lowest energy level is shown in Fig. 1. One can see that
there is no gap between the dispersion relations of left
and right electrons/positrons, predicted in Refs. [15,16,18];

i.e., the assumption that Eðn¼0Þ
Lmin ≠ Eðn¼0Þ

Rmin at pz ¼ 0 [see
Eqs. (2.4) and (2.5)] is incorrect. In the presence of the
electroweak matter, the spectrum of massless electrons/
positrons with n ¼ 0 is parallel transported to the point
(pz ¼ −V5, E ¼ V̄) for electrons and to (pz ¼ −V5,
E ¼ −V̄) for positrons from the point (pz ¼ 0, E ¼ 0)
corresponding to the vacuum case.
According to Eq. (2.1), the contributions of left and right

electrons at the lowest energy level to the current are

Jðn¼0Þ
eL;R ¼ −e

Z
dpydpzψ̄eL;RγψeL;RfðEðn¼0Þ

eL;R − μL;RÞ;

ð3:23Þ

where fðEÞ ¼ ½expðβEÞ þ 1�−1 is the Fermi-Dirac distri-
bution function, β ¼ 1=T is the reciprocal temperature, and
μL;R are the chemical potentials of left and right particles.
First we notice that the components of the current, trans-
verse with respect to B, are vanishing. Performing the

FIG. 1. The energy spectrum of massless left and right
electrons/positrons at the lowest energy level with n ¼ 0 electro-
weakly interacting with background matter. This plot corresponds
to Eqs. (3.14), (3.15), (3.20), and (3.22).
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integration over −∞ < py < þ∞ and accounting for
Eqs. (3.14)–(3.16), on the basis of Eq. (3.23) we obtain

the expression for the total current of electrons Jðn¼0Þ
e ¼

Jðn¼0Þ
L þ Jðn¼0Þ

R at n ¼ 0,

Jðn¼0Þ
e ¼ e2B

ð2πÞ2
�Z

−V5

−∞
dpzfð−pz þ VR − μRÞ

−
Z þ∞

−V5

dpzfðpz þ VL − μLÞ
�

¼ e2B
ð2πÞ2

Z þ∞

0

dp½fðpþ V̄ − μRÞ

− fðpþ V̄ − μLÞ�: ð3:24Þ

Analogously to Refs. [15,16] one can show that higher
energy levels with n > 0 do not contribute to the current.
Thus we omit the superscript in Eq. (3.24) for brevity.
The positron contribution to the current Jē can be

obtained analogously to Eq. (3.23) as

Jðn¼0Þ
ēL;R ¼ e

Z
dpydpzψ̄ ēL;Rγψ ēL;RfðEðn¼0Þ

ēL;R þμL;RÞ: ð3:25Þ

Using Eqs. (3.19)–(3.22), we derive, on the basis of
Eq. (3.25),

Jðn¼0Þ
ē ¼ e2B

ð2πÞ2
�Z

−V5

−∞
dpzfð−pz − VL þ μLÞ

−
Z þ∞

−V5

dpzfðpz − VR þ μRÞ
�

¼ e2B
ð2πÞ2

Z þ∞

0

dp½fðp − V̄ þ μLÞ

− fðp − V̄ þ μRÞ�; ð3:26Þ

for the total contribution to the current from positrons at the
lowest energy level.
Using Eqs. (3.24) and (3.26), we obtain that the total

current J ¼ Je þ Jē reads

J ¼ e2B
ð2πÞ2

Z þ∞

0

dp½fðpþ V̄ − μRÞ − fðp − V̄ þ μRÞ

− fðpþ V̄ − μLÞ þ fðp − V̄ þ μLÞ�

¼ 2αem
π

μ5B; ð3:27Þ

which is in agreement with Eq. (2.7).

IV. DISCUSSION

In the present work, we have elaborated the improved
derivation of the anomalous current of massless charged
fermions, interacting with an axial-vector field under the

influence of the external magnetic field, induced along
this magnetic field. We have chosen a particular example of
the axial-vector field as the electroweak interaction of an
electron with nonmoving and unpolarized background
matter. Unlike Refs. [17,19], here we have used the method
of the relativistic quantum mechanics, originally proposed
in Ref. [14] to describe the CME.
Utilizing the exact solution of the Dirac equation, found

in Refs. [21,22], we have shown in Sec. III that the axial-
vector field does not contribute to the current JkB;
cf. Eq. (3.27). The value of the current coincides with
the prediction of the CME in Eq. (2.7) even in the case
when chiral fermions electroweakly interact with back-
ground matter, confirming the findings of Refs. [17,19].
To obtain this result in frames of the relativistic quantum

mechanics one has to consider the solution of the Dirac
equation for a massive electron in the external fields and
then approach the limit m → 0. If one sets m ¼ 0 in the
Dirac equation from the very beginning, i.e., if one
considers the chiral Lagrangian in Eq. (2.2), one obtains
the current in Eq. (2.6) as in Refs. [15,16], which is
inconsistent with the results of Refs. [17,19]. Thus we
conclude that the system of chiral fermions, where the
external axial-vector field is present, can be prepared in two
nonequivalent ways. This fact is reflected in Fig. 2.
It is also interesting to notice that, at n ¼ 0, particles of a

certain chirality, say left-handed, are indirectly affected by
the parameters corresponding to the opposite (i.e., right-
handed) chirality. It can be seen in Eqs. (3.14) and (3.15).

Indeed, if one adiabatically changes VL, not only Eðn¼0Þ
L

but also Eðn¼0Þ
R will be modified since the range of the pz

variation in Eðn¼0Þ
R depends on V5. One would naively

FIG. 2. Schematic diagram showing that the system withm ¼ 0
and VR;L ≠ 0, which is studied while considering the CME, can
be prepared in two nonequivalent ways. One can start with a
system of massless particles without the electroweak interaction
(upper left box) and then turn on the electroweak interaction
(lower left box). This scenario is implemented in Refs. [15,16,18]
and gives the current in Eq. (2.6). However, this approach is not
equivalent to that, where one, first, starts with massive particles
with the electroweak interaction (upper right box) and then “turns
off” the particle mass (lower right box). The latter approach
results in the current in Eq. (2.7).
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expect that left- and right-handed electrons behave totally
independently for purely massless particles.
The effect of the change of the particle momentum in the

presence of the electroweak interaction [see Eq. (3.11)] was
known previously. In the case when a particle moves in a
background electroweak matter, both particle energy and
its momentum acquire the contributions ∼GF, where GF is
the Fermi constant. It results, e.g., in the appearance of
the ponderomotive force in the situation of the anisotropic
matter with inhomogeneous density [24].
We also mention that one does not need to involve the

concept of the Chern-Simons current [25], as suggested in
Ref. [17], to reconcile the results for the derivation of the
CME in the presence of the axial-vector field based on the
relativistic quantum mechanics [14] and the energy balance
arguments [2]. We can obtain the coinciding results just by
using the correct energy spectrum of massless electrons at
the lowest energy level; cf. Eqs. (3.14) and (3.15).
Since the electroweak interaction of chiral electrons with

a homogeneous neutron matter does not contribute to the
CME, one cannot expect the instability of the magnetic
field and the amplification of the field in a neutron star (NS)
to the magnetar strength, predicted in Refs. [15,16]. At the
absence of V5-contribution to the CME, one has the
following qualitative behavior of the magnetic field in
NS. If the initial chiral imbalance μ5 of ultrarelativistic
electrons is present in the system, it is washed out very
rapidly because of the helicity flip in electron collisions.
The chiral imbalance does not recover since there is no V5

driver in the μ5 evolution equation. Since μ5 → 0, the
densities of the magnetic energy and the magnetic helicity
are not affected by the CME. Therefore the evolution of the
magnetic field does not reveal an instability. Hence the
magnetic field in NS can only experience a slow expo-
nential decay because of the finite electric conductivity of
NS matter. The direct numerical simulations confirm this
magnetic field behavior.
Since the model of the magnetic field generation in

magnetars driven by the electroweak interaction of elec-
trons with background nucleons is likely to be invalid, other
mechanisms for the explanation of magnetic fields in

magnetars, different from that proposed in Refs. [15,16],
should be put forward. The classical magnetohydrodynam-
ics (MHD) dynamo is unlikely to be sufficient for the
generation of strong magnetic fields in magnetars [26].
Hence one should probably look for the solution of the
magnetars problem in frames of the elementary particle
physics, e.g., involving chiral phenomena.
In this respect, we can mention Ref. [27], where the CVE

is used to generate the fluid helicity of plasma under the
influence of strong neutrino fluxes in a nascent NS. Then
this fluid helicity can be converted to a helical magnetic
field. To solve the problem of the magnetic field scale, it
was suggested in Ref. [28] to implement the inverse
cascade in chiral MHD in proto-NS matter. The neutrino
driven creation of μ5 outside the neutrino-sphere in proto-
NS was proposed in Ref. [29]. The generation of magnetic
fields in a magnetar owing to the CME, based on this μ5,
was also studied in Ref. [29]. However, analogously to
Ref. [27], that model encounters a problem of the small
scale of the magnetic field created.
The system of equations of chiral MHD was formulated

in Ref. [30]; the effects of turbulence in such media were
also studied there. The direct numerical simulations of
the chiral MHD dynamos were performed in Ref. [31].
The implication of the obtained results for the description
of the magnetic fields generation in proto-NS was dis-
cussed in Refs. [30,31].
A possible explanation of magnetar bursts [26] based on

the magnetic field reconnection owing to accounting
of quantum terms in the magnetic helicity evolution was
recently proposed in Ref. [32]. Note that these quantum
corrections to the classical MHD arise from the nonzero
mass terms in the Adler-Bell-Jackiw anomaly. It means that
one does not need to consider the chiral symmetry
restoration in the model in Ref. [32].
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