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We explore the possibility that bound states involving darkmatter particles could be detected by resonance
searches at the LHC and the generic implications of such scenarios for indirect and direct detection. We
demonstrate that resonance searches are complementary to monojet searches and can probe dark matter
masses above 1 TeV with current LHC data. We argue that this parameter regime, in which the bound-state
resonance channel is the most sensitive probe of the dark sector, arises most naturally in the context of
nontrivial dark sectors with large couplings, nearly degenerate dark matter–like states, and multiple force
carriers. If dark sector bound states are present and can be detected at the LHC, annihilation of dark matter
particles in our galactic halo may occur either with a minimal Sommerfeld enhancement that may be
appreciable or through radiative bound-state formation, leading to large signals in indirect searches. We
calculate these complementary constraints, which favor eithermodels inwhich the bound state–forming dark
matter constitutes a small fraction of the total density or models in which the late-time annihilation is
suppressed at low velocities or late times. We present concrete examples of models that satisfy all these
constraints and in which the LHC resonance search is the most sensitive probe of the dark sector.
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I. INTRODUCTION

The existence of dark matter (DM) is well established by
observations of its gravitational effects. However, the
particle nature of DM is still very much a mystery, despite
the ongoing efforts of many complementary experimental
searches. Constraints set by XENON [1], LUX [2], and
PandaX [3] have strongly ruled out generic DM candidates
that interact in a spin-independent manner through a Z
exchange and are now starting to probe Higgs-mediated
interactions (e.g., Ref. [4]). These direct-detection experi-
ments are complemented by dark sector searches at
colliders. The main DM search strategy at the LHC is
based on missing transverse momentum (MET) balanced
by a jet, electroweak (EW) gauge boson, or Higgs, known
generically as mono-X searches. Searches for dijet or
dilepton resonances, while not directly probing the exist-
ence of DM, can also effectively constrain models in which

a mediator particle is responsible for interactions between
the Standard Model (SM) and a “dark sector” containing
the DM, limiting the parameter space for the mediator.
Finally, indirect searches for DM annihilation or decay to
SM particles, as well as the well-measured relic abundance
of the DM, set powerful limits on the strength and nature of
the interaction of DMwith the SM. Any model of DMmust
successfully contend with all of these constraints.
With no hint yet of what the dark sector may look like,

we might look to the SM for clues as to its possible
composition and structure. In this light, we should not be
surprised to find bound states in the dark sector; after all,
bound states are ubiquitous in the SM, and even the
simplest dark sector models with a DM candidate and a
force carrier can potentially support the existence of bound
states. Asymmetric dark matter may even form atomic
bound states, mediated by a hidden U(1) gauge symmetry,
in complete analogy with the SM [5–7]. Dark sector bound
states, much like QCD bound states, may be produced
when a pair of heavy dark sector particles is produced close
to their kinematic threshold and have a sufficiently strong
attractive interaction between them. The subsequent decay
of these bound states into lighter SM particles can lead to
distinctive signatures at the LHC. This strategy has been
studied in the context of bound states formed by super-
symmetric (SUSY) particles and has been shown to be a
potential search channel at the LHC [8–11], capable of
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probing regions of parameter space where traditional
searches are challenging.
Dark sector bound states and their potential collider

signatures have been studied extensively in the literature.
Bound states formed from weakly interacting massive
particles (WIMPs) that are charged under the SM SUð2ÞL ×
Uð1ÞY gauge group or non-SM forces, known as
WIMPonium [12], can be detected at the LHC through
resonant decays into a pair of leptons, provided the
coupling to the mediator that supports the bound state is
large enough. Other model-specific dark sector bound-state
collider searches that have been proposed include searches
for Higgsino bound states in λ SUSY and bound states
within the self-interacting DM framework [13]; DM bound
states in a U(1) vector portal model decaying into multi-
lepton final states, which can be searched for at B factories
[14]; dark sector baryons of a new confining gauge
interaction [15]; and asymmetric DM bound states in a
Higgs portal model with decays to electrons [16].
Monophoton searches at lepton colliders can also poten-
tially be used to probe the full resonance structure of the
dark sector [17]. However, the large couplings typically
required for detectable bound states often predict large
signals in direct-detection experiments, especially if the
light force carrier responsible for the bound-state formation
also couples to the SM; likewise, in this light-mediator
regime, searches for the mediator are often a more
promising dark sector discovery channel than searches
for the bound states [18].
In this paper, we broadly explore the challenges of

building a dark sector model that can be discovered through
the production of a bound state at the LHC, in light of the
current stringent and complementary experimental con-
straints. Direct-detection limits can be evaded in models
with TeV-mass DM if the DM candidate only has an off-
diagonal coupling to the SM that couples the DM, the
mediator and a heavier dark sector state, so that at tree level
the DM only scatters into this heavier state when interacting
with the SM [19,20]. At the LHC, dark sector particles can
be produced on their kinematic threshold and form a bound
state B, which can subsequently undergo annihilation
decay into a pair of SM leptons, showing up as a dilepton
resonance at the LHC.1

We will show that in models in which the mediator
between the SM and the dark sector couples to two different
states in the dark sector it is possible to arrange for such a
resonance to occur and have a substantial branching ratio
into SM leptons. In these scenarios, searches for a dilepton
resonance from B are complementary to the existing mono-
X and vector resonance searches that are already deployed
for dark sector searches at the LHC, with the ability to

probe higher mass scales for the mediator and DM. Since B
can have the same quantum numbers as the SM mediator,
we explore the importance of mixing between bound states
and mediator particles with equal quantum numbers and
similar masses.
Models with bound states that are detectable at the LHC

can also possess large indirect signals, as the long-range
potential implied by the existence of bound states generi-
cally enhances the annihilation cross section for slow-
moving DM particles, and the bound-state formation and
decay can also serve as an annihilation channel. We will
study the constraints from indirect detection and cosmol-
ogy that result from considering these effects.
The rest of the paper is structured as follows. In Sec. II,

we will make some remarks on the general features of dark
sector models in which the bound-state resonance search is
the most sensitive channel. We will discuss why the bound-
state resonance search is complementary to the current dark
sector search strategies used by the LHC experiments for
such models and discuss their general phenomenology in
direct, indirect, and collider DM searches. In Sec. III, we
will lay out some specific models containing bound states
in the dark sector and study their phenomenology. We will
first discuss the minimal supersymmetric standard model in
the pure wino/Higgsino limit, which already meets some of
the criteria needed for a successful model with bound
states, although the production rate at the 13 TeV LHC is
too small for detection. We will then discuss two vector
portal models that realize the requirements needed for a
viable dark sector with bound states to be probed by the
LHC. In Sec. IV, we compute and discuss the potential
experimental signatures of these models. Our conclusion
will then follow in Sec. V.

II. PHENOMENOLOGY OF BOUND STATES

The existence of DM bound states has implications for
the phenomenology of the dark sector and for its signatures
in direct, indirect, and collider searches. In this section, we
consider the circumstances under which collider searches
for bound states can probe otherwise unexplored regions
of DM parameter space. Aside from these searches, DM
bound states with long lifetimes have also recently been
shown to have potentially interesting implications for
neutrino experiments [21].
As we will show, models in which bound-state resonance

searches at the LHC probe new regions of parameter space
are most easily realized in the presence of several common
features:
(1) DM couples to at least two distinct force carriers:

one of these, Y, is light and mediates the bound-state
formation, while the other, V, is heavier and couples
appreciably to the SM. The constraints from LHC
resonance searches of the bound state are most
competitive when the SM mediator V is heavier
than twice the DM mass.

1Dijets are also a plausible search strategy, but the back-
grounds and triggers make this much more challenging to
explore.
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(2) The coupling of the DM to the light mediator, which
we denote αB ≡ g2B=4π, should be fairly large, as the
bound-state production rate is proportional to the
third power of this parameter.

(3) Decay of s-wave bound states with the same spin as
the heavy mediator into a pair of light mediators is
suppressed so that decays through the heavier
mediator into two SM fermions dominate.

(4) The relevant spin-independent direct-detection cross
section is suppressed, e.g., by loops, by momentum-
dependent factors, or by small couplings. This is
particularly easy to achieve in models in which the
DM is part of a multiplet with small mass splittings,
and the heavy mediator has an off-diagonal coupling
to the mass eigenstates, so that elastic scattering off
nuclei occurs only at one-loop level. An alternate
approach to this criterionwould be to consider flavor-
dependent couplings between V and the quarks.

The mono-X process, resonant production of the mediator
V, and resonant production of the bound state B are the
main collider signatures of this general setup and are
depicted in Fig. 1. When discussing generic models, we

will denote the heavy mediator as V and its mass bymV and
the light mediator by Y and its mass as mY (for “Yukawa”).
In the example models we present, V will be a vector in all
cases, but Y can be either a scalar or vector. In principle, V
could also be a scalar (or a scalar bound state can mix
directly with the Higgs sector [16]), but we will leave the
analysis of such scenarios to future work; as we will see, a
vector mediator facilitates a sizable production cross
section and a large branching ratio to leptons, while
evading direct-detection bounds.
Many of the earlier works in the literature on bound

states exhibit some of these features. Both Refs. [12,13]
introduce an additional mediator to support the bound state
formed from DM charged under the EW gauge group so
that the couplings between the DM and the light mediator
can be made large. An additional mediator was also
introduced in Ref. [21] to alleviate the tension between
a suitably light mediator that can support a bound state and
the need for a massive enough SM mediator that can decay
into electron pairs. In Ref. [14], direct-detection limits are
avoided by having sub-GeV DM. Furthermore, there is
only one vector boson to mediate both the bound-state
formation and the interaction with the SM, at the cost of
allowing the bound state to decay into four- or six-lepton
final states. This is an important signature in B factories for
DM with a mass on the order of a GeV [14]. In principle,
this scenario can be probed at the LHC by multilepton
searches or by diphoton searches in which two eþe− pairs
are detected as fake photons [16]. However, multilepton
signatures turn out to be relatively unimportant for the
kinetic mixing models that we will study later.
We will demonstrate that the characteristics listed above

can be achieved in Higgsed dark sector models, with a
vector portal between the dark sector and the SM. But
before we give examples of such models, we will first
discuss each of these criteria in more detail.

A. General model building considerations

The existence of DM bound states in a Yukawa potential
with range 1=mY is only possible if [14,22]

αBmχ

mY
> 1.68; ð1Þ

where mχ is the DM mass. Thus, the presence of a bound
state supported by scalar or vector exchange requires a
relatively light force carrier—certainly lighter than the dark
matter itself, for weak couplings. For more complex dark
sectors with potentials that couple multiple two-particle
states (e.g., the neutralino sector of supersymmetric mod-
els), the details of this criterion may be modified, but it is
still generically true that there must be a force with range
longer than the Bohr radius of the bound state; i.e., there
should be at least one mediator with mY ≲ αBmχ .

FIG. 1. Feynman diagrams for relevant dark sector processes at
colliders. These processes are (top) the mono-X process, (middle)
the resonant production of V decaying into a pair of jets or
leptons, and (bottom) the resonant production of B, subsequently
undergoing a similar decay. The coupling of the mediator
between the dark sector and the SM to quarks (gq) and to the
DM (gχ) as well as the coupling responsible for the Yukawa
potential that forms the bound state B (αB ≡ g2B=4π) are shown.
In our models, V is always a vector, while Y can be either a scalar
or a vector.

COMPLEMENTARITY FOR DARK SECTOR BOUND STATES PHYS. REV. D 98, 036015 (2018)

036015-3



If this force carrier is also the mediator between the DM
and the SM, then searches for the force carrier will
generally offer a more accessible probe of dark sector
physics than searches for the heavier DM, both because the
force carrier is lighter and because it couples directly to SM
particles (see, e.g., Ref. [18]). This leads us to consider
models in which there are at least two distinct particles that
couple to the DM: one that has appreciable interactions
with the SM (and can be heavier than the DM itself) and the
other of which mediates the bound-state formation and so
must be light.
One alternative to this structure is the case in which the

DM is charged under the SM SUð2ÞL EW gauge group, and
the photon, W and/or Z support the bound state; this is
possible, e.g., for bound states consisting of neutralinos
and/or charginos [23]. However, as we will show later in
this work, at present-day colliders, the production rate for
such EW bound states is undetectably low.
Returning to dark sector models with at least two

mediators, the presence of the light mediator has some
immediate implications. First, the DM will generically
annihilate into the light mediators. If these mediators are
absolutely stable, they will constitute some fraction of
the DM relic density, which must be sufficiently small;
if they are below the ∼MeV scale in mass, they may be
constrained by limits on the number of effective relativistic
degrees of freedom in the early Universe (e.g.,
Refs. [24,25]). We will generally assume that these medi-
ators decay through some small mixing with the SM, on
timescales less than 1 sec, so that they do not affect big
bang nucleosynthesis; in this case, while the coupling can
be made small enough that these mediators do not
contribute substantially to collider signals and direct
detection, indirect-detection constraints from this annihi-
lation channel must be considered. For a weak enough
mixing, a displaced vertex search can be a good search
strategy if the bound state decays primarily into these light
mediators [13,26].
Resonance searches for bound states will typically

become difficult when there is a significant branching ratio
of the bound state into dark sector states (while the dark
sector states could decay promptly to SM particles as in
Ref. [14], for the heavy DM models considered in this
paper, which are most relevant for LHC searches, we expect
this signature to be relatively unimportant, as we will
explain later). Thus, a model in which collider searches for
bound-state resonances are effective must ensure that the
branching ratio of the bound state (formed at a collider) into
two light mediators is small relative to the decay of the
bound state via the off-shell heavy mediator into a pair of
SM particles. One way that this can be achieved is if both
the heavy and light mediators are vectors. Suppression of
the spin-1 bound state decay to two light mediators is then
automatic: charge parity symmetry forbids the decay of a
spin-1 s-wave bound state into two vectors, so any decay

into dark sector vectors must be a three-body process. In
fact, decays into any number of the light mediators can be
completely forbidden if the bound state is formed not from
a particle-antiparticle pair but from two different fermions
in the bound state with nontrivial quantum numbers, which
cannot be conserved if the bound state could decay into
states containing only light mediators. This behavior is
natural in cases in which the mediator V couples off-
diagonally to the multiplet containing the DM. Models of
this type have additional advantages in evading constraints
from direct detection.
Note that if the mediator to the SM is a vector then the

bound states formed at the LHC by resonant production
will dominantly be spin-1 s-wave states; if the mediator is a
scalar, they will instead dominantly be spin-0 s-wave states.
The spin and angular momentum of the bound states
determine their possible decays.

B. Vector–bound state mixing

When V and B have similar masses or the coupling
between V and the constituents of B is large, significant
mixing can occur between the two states if they have the
same quantum numbers. Both the V-resonance and B-
resonance diagrams in Fig. 1, together with higher-order
diagrams with more interconversions between V and B,
need to be resummed. The new mass eigenstates that result
from the mixing have masses and widths that are shifted
with respect to their unmixed values by an amount
determined by the strength of the mixing.
The formalism that accounts for the mixing was used to

study Z-toponium mixing [27–31] and more recently to
study Higgs-stoponium mixing [32]. The mixing shifts the
masses and widths of the unmixed states, denoted V0 and
B0, to new values given by the eigenvalues of the mass
matrix

M¼
 
m2

V;0− imV;0ΓV;0ðsÞ −f

−f m2
B;0− imB;0ΓB;0ðsÞ

!
; ð2Þ

where all masses and widths are for the unmixed states and
f is a model-dependent parameter determined by the
coupling between V0 and B0.
If f is small compared to the difference in the diagonal

entries [see Eq. (4) below], the final mixed states V and B
are approximately their respective initial unmixed states,
up to higher-order corrections. The width of V0 should be
evaluated at the appropriate energy scale

ffiffiffi
s

p
at which the

final mixed resonances V or B are produced; this scale
dependence is important, especially when mB lies below
the χχ open production threshold while mV;0 lies above it.
The width of B0 should not include decays through mixing
with the V; such effects are exactly what the mixing
accounts for. For the kinetic mixing models that we will
consider later, we take ΓB;0 ¼ 0, since the dark sector
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particles do not have any tree-level coupling to the SM, and
the unmixed width of the bound state excluding mixing into
the SM is always much smaller than ΓV;0.
After mixing, the mixed mass eigenstates are rotated by a

complex mixing angle θ with respect to the unmixed states,
and the masses and widths are shifted by [28,30]

QV ¼ QV;0cos2θ þQB;0sin2θ þ f sin 2θ;

QB ¼ QV;0sin2θ þQB;0cos2θ − f sin 2θ; ð3Þ

where Qj ≡m2
j − imjΓj, with

tan 2θ ¼ 2f
QV;0 −QB;0

: ð4Þ

The rotated mass eigenstate B therefore develops a cou-
pling to the SM through its V0 component.
When the mixed masses mV and mB are nearly equal, a

resonance search for each individual mass eigenstate
becomes impossible, since the s-channel diagrams with
intermediate V- and B-states interfere with each other, and
the end result is a cross section that may not have a Breit-
Wigner form. However, if θ is small, Eq. (3) shows that the
mixed mass eigenstates are separated by Δm2 ∼ 4fReðθÞ,
where ReðθÞ is the real part of θ. Furthermore, the shift in
the masses defined by Eqs. (3) and (4) always results in a
mass eigenstate that is lighter than both mV;0 and mB;0 and
is therefore always strictly below the threshold for open
production of χχ. These two facts can ensure that the lighter
resonance is always narrow, as it cannot decay into χχ, and
is always well separated from the heavier resonance. We
have checked that this is always the case for the models that
we consider later.
Finally, in the limit of small θ, this mixing procedure

gives a final decay width ΓB that agrees with the perturba-
tive calculation to Oðθ2Þ, i.e., with the result obtained by
summing the partial widths of B0 decaying through mixing
with V0 (with ΓV;0 evaluated at s ¼ m2

B;0), which then
decays into SM final states [27,28]. Throughout this paper,
we will therefore qualitatively discuss the nature of the B
resonance using the perturbative picture, while taking the
mixing fully into account quantitatively. We will also not
make a distinction between B0 and B or V0 and V, unless
we are explicitly discussing the mixing.

C. Collider signatures

There are three important classes of collider signatures
for models of the type we have discussed: (i) mono-X,
where the DM state χ is produced and observed as MET
recoiling against a SM final state such as X ¼ j, h, W, Z;
(ii) V resonant production with subsequent decay, produc-
ing dilepton, dijet or other SM final states; and (iii) B
resonant production withmB ≈ 2mχ , decaying into a pair of
leptons or jets.

The three channels probe different physics, as well as
different regions of the dark sector parameter space. The
mono-X channel is an unavoidable signature of DM. The
properties of the B resonance are completely determined by
the DM mass and its self-interaction through the light
mediator Y; therefore, by analyzing its properties, we study
the DM directly. The V resonance on the other hand probes
the structure of the dark sector but is not directly related
to the puzzle of DM.
The mono-X signature has been discussed previously

[33–37], and there are ongoing searches at the LHC. We
will demonstrate that for the models we consider monojet
searches probe a different region of parameter space than
bound-state resonance searches.
The production rate for the bound state B at a pp collider

is given by (see Refs. [10,13,38] and also Appendix A)

σB ≈
X
q

ζð3Þ 8π
2ð2J þ 1Þ
9m3

B

ΓB→qqLqqðτBÞ; ð5Þ

where J is the spin of the bound state; for a bound
state produced from a vector mediator, J ¼ 1: ζðsÞ is the
Riemann ζ function, which takes into account the cross
section for the production of all of the excited states of the
bound state. Here, τB ≡m2

B=s,mB is the mass of the bound
state, and

ffiffiffi
s

p
is the collider center-of-mass energy. Lqq is

the parton luminosity function defined as

LqqðτÞ ¼ τ

Z
1

τ

dx
x
fqðxÞfqðτ=xÞ; ð6Þ

with fqðxÞ being the parton distribution functions (PDFs),
taken from Ref. [39] for calculations in this paper.
In the perturbative limit, we can write

σB ≈
X
q

8πζð3Þ
3mB

g2qg2χ jψð0Þj2LqqðτBÞ
ðm2

B −m2
VÞ2 þ Γ2

Vðs ¼ m2
BÞm2

V
; ð7Þ

where gqðgχÞ sets the coupling of the mediator V to quarks
(DM) and ψð0Þ is the wave function of the bound state at the
origin. For a Coulomb-like potential with coupling αB (i.e.,
where the mass of the bound-state mediator mY can be
neglected), jψð0Þj2 ¼ α3Bm

3
χ=8π. Throughout this paper, αB

is always evaluated at the darkmatter mass scale, andwewill
only consider αB < 1. Although the relevant energy scale for
bound-state formation should strictly be theBohrmomentum
αBmχ ,wewill only considermodels inwhich the hierarchyof
energy scales is mY < αBmχ < mχ , with all other scales
lying above mχ . As noted in Ref. [13], since there are no
relevant energy scales betweenmY andmχ , the running of the
coupling is expected to be insignificant between αBmχ and
mχ , the primary scales of interest throughout.
This perturbative B production cross section can be

understood in three limits: (i) the heavy-mediator limit,
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mV ≫ mB; (ii) the light-mediator limit, mV ≪ mB; and
(iii) mV ≈mB. The cross section in each limit is

σB ¼ 4πζð3Þ
3mχ

g2χ jψð0Þj2

×
X
q

g2qLqqðτBÞ

8>>><
>>>:

1
m4

V
; mV ≫ mB;

1
m4

B
; mV ≪ mB;

1
Γ2
Vm

2
B
; mV ≈mB:

ð8Þ

These equations show that the B production cross section is
enhanced when its mass is close to the mediator mass and
suppressed in the other two limits. Thus, we expect stronger
sensitivity in this channel when mV ≈mB. Moreover, if
mB ≫ mV , which is in the limit at which V can also support
dark matter bound states, the B production cross section is
suppressedbyΓ2

V=m
2
B relative to themV ≈mB region.Wealso

can see that for models in which B is heavy enough to decay
primarily into two or three V’s which then decay into four or
six leptons at theLHC, the production rate of the bound state is
suppressed relative to the regime in which mV ≈mB.
The mediator production cross section, V, is

σV ≈
X
q

8π2

3

ΓV→qq

m3
V

LqqðτVÞ; ð9Þ

where τV ≡m2
V=s. As we pointed out above, the V

resonance search does not directly probe the dark matter
content. Further searches must be used to uncover the dark
sector after discovering the mediator between the SM and
the dark sector. Most importantly, when mV > 2mχ and
gχ ≫ gq; gl (the coupling to leptons), the branching ratio of
V to SM particles becomes small, and resonance searches
for V grow ineffective. The full mixing calculation also
bears out this conclusion: once mV;0 > 2mχ , the V reso-
nance is heavier and lies above the χχ threshold and is a
wide resonance, while the lighter B resonance remains
narrow and below the threshold.
The comparison between mono-X and bound-state

production is more complicated as the backgrounds for
the two searches are different, and a more detailed
comparison is required; we will show results for some
specific models below. On generic grounds, the mono-X
cross section is reduced because of the PDF price of the
additional jet. However, the two production cross sections
scale as αsg2qg2χ and α3Bg

2
qg2χ , for the mono-X and bound-

state cases, respectively. Thus, for α3B ≪ αs, we expect a
reduced sensitivity in the bound-state searches; this sug-
gests αB rather close to 1 will be required to make bound-
state searches competitive. Moreover, the monojet search
becomes ineffective once mV < 2mχ , since the monojet
process must then proceed through an off-shell V.
In summary, the monojet search probes the region of

parameter space where mV > 2mχ , while the V resonance

search is more sensitive to the region where mV < 2mχ .
The bound-state production cross section, on the other
hand, is enhanced precisely in the intermediate region and
outperforms the other two searches whenmV ≳ 2mχ . These
three searches are thus complementary and probe different
parts of parameter space, as we will show explicitly in our
models below.

D. Direct-detection limits

Direct-detection searches are very sensitive probes of
DM, especially for DM with substantial couplings to
hadrons, and mass at the EW scale or higher. Thus, viable
models of dark resonance signals at the LHC must evade
direct-detection bounds.
A naive estimate of the DM-nucleon scattering cross

section at tree level, in terms of the parameters discussed
in the previous subsection, gives σ ∼ g2qg2χm2

N=m
4
V ∼

10−40 cm2g2qg2χðTeV=mVÞ4, assuming mV is much larger
than the typical momentum transfer in the scattering andmχ

is much larger than the nucleon mass mN . For comparison,
under standard assumptions, the limit from XENON 1T on
this scattering cross section is of order 10−45 cm2ðmχ=TeVÞ
[1]. Thus, if the elastic scattering spin-independent cross
section is unsuppressed, we infer that the product of
couplings g2qg2χ ≲ 10−5m4

Vmχ=TeV5. This simple estimate
is broadly consistent withmore carefully obtained limits on a
dark sector interacting with nucleons through a vector
mediator for current and future direct-detection experiments
[40,41]. Reasonably large couplings and sufficiently low
dark sector masses are necessary for the significant produc-
tion of the bound-state resonance, but this parameter region
of interest (gqgχ ∼ 1 and mV ∼ 2mχ ∼ 1–4 TeV) is generi-
cally in tension with direct-detection bounds.
However, any suppression to the naive tree-level cross

section can alleviate this tension. As mentioned above, a
simple scenario (“inelastic dark matter”) that leads to sup-
pressed direct-detection signals posits that the coupling
between the DM χ1 and the mediator V involves an unstable
partner particle χ2, and the mass splitting between the DM
and its partner is greater than themaximumkinetic energy of
DMparticles in the halo [19,20]. Figure 2 shows the relevant
Feynman diagrams for direct detection of the DM particles.
Such models also have interesting consequences for bound-
state formation at the LHC. If the bound state is produced in
the s-channel from the mediator V, it may be composed of
the DM χ1 and its partner particle χ2. Alternatively, the
bound state may involve dark sector particles in the same
multiplet as the DM, and not the DM at all, as may be the
case for wino DM, where the charginos can be produced at
the LHC and form a bound state.
In such models, elastic scattering can still occur, but only

at loop level. The direct-detection spin-independent cross
section for scattering off a nucleon with target mass mT is
given by [42]
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σSI ¼
4

π

�
mχmT

mχ þmT

�
2

ðnpfp þ nnfnÞ2; ð10Þ

where np;n are the numbers of protons and neutrons,
respectively, and fp;n are the corresponding matrix ele-
ments. We can generalize the effective operator analysis of
Ref. [43] to the dark sector models that will be of interest to
us. Then,

fN
mN

¼
X
q

�
fqfTq

þ 3

4
ðqð2Þ þ qð2ÞÞðgð1Þq þ gð2Þq Þ

�
; ð11Þ

where N ¼ n, p and we sum over u, d, s quarks. Here, the
first term comes from a one-loop diagram involving the
Higgs, while the second term is a box diagram with two V
propagators. qð2Þ and qð2Þ are the second moments of the
quark and antiquark PDFs, and fTq

¼ hNjmqqqjNi=mN is
the nuclear form factor. For these, we use the numeric
values from Ref. [43]. In the wino scenario discussed in
Ref. [43] these two contributions fq and g1;2q are non-
negligible but of opposite sign, thus leading to a cancella-
tion. In the case of the dark sector models that we
will consider later, the second contribution is suppressed
by the small coupling between the SM mediator
and the SM, while the first contribution will be negligible
as the dark sector coupling to the SM Higgs will

always be very small. Explicitly, we can write gð1;2Þq ¼
ðg2χeϵcWQ=4πm3

VÞgTð1;2Þðm2
V=m

2
χÞ, where gTð1;2Þ are func-

tions computed in Ref. [43], ϵ is the small mixing
parameter, and Q is the charge of the quark. We find that
in regions of parameter space of interest to the present work
the contribution from loops to direct detection is thus no
larger than σSI ∼ 10−48 cm2 and is thus unconstrained.

E. Overclosure and indirect searches

In general, if annihilation to the light mediators that
support the bound state is allowed, this process will tend to
dominate freeze-out. The same attractive potential that
permits bound-state formation will also generically
enhance annihilation through the Sommerfeld enhance-
ment [44,45], potentially giving rise to large indirect
signals in the present day. Formation of bound states
followed by their decay can also significantly enhance

indirect signals (e.g., Ref. [46]), if the mediator supporting
the bound state is light enough that radiative capture of two
DM particles into the bound state is kinematically allowed.
Let us first note that there are several possible annihi-

lation channels that are p-wave suppressed at late times
[47]; if these processes dominate freeze-out, the late-time
indirect-detection signals will generally be very sup-
pressed. We will see an example of this when we consider
a model in which the dominant annihilation is of Majorana
fermions to light scalars. Furthermore, if DM-DM scatter-
ings experience a repulsive potential rather than an attrac-
tive one, the DM-DM annihilation will be exponentially
suppressed at low velocities [48]. Note that in order for
bound-state searches to be interesting in such a scenario
there must be at least one other particle with which the DM
can form a bound state, and the DM must have an attractive
interaction with that particle. In this initial discussion,
therefore, we assume the dominant annihilation is s-wave
and experiences an attractive Sommerfeld enhancement
to explore when indirect searches can set interesting
constraints.
Let us consider the simple case in which the effective

potential experienced by the DM is a Yukawa potential, as
discussed above. The s-wave Sommerfeld enhancement for
a Yukawa potential with coupling αB and mediator massmY
can be well approximated by [49,50]

S ¼ 2παB
vrel

sinh ð6π
mχvrel
mY

Þ
cosh ð6π

mχvrel
mY

Þ − cos θ

≥
2παB
vrel

sinh ð6π
mχvrel
mY

Þ
cosh ð6π

mχvrel
mY

Þ þ 1
; ð12Þ

where vrel is the relative velocity between the DM
particles and in the second line we use cos θ > −1 with

θ ¼ 2π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6
π2

mY
αBmχ

− ð3mχvrel
π2mY

Þ2
q

an angle controlling the reso-

nance positions. The inequality is saturated for real values
of θ, at the minima between resonances in which
cos θ ¼ −1. (It is also approximately saturated where
mY → 0 and vrel ≪ αB, where S ≈ 2παB=vrel.)
Note that for fixed mχ , requiring the correct relic

density fixes αB, if the assumptions are made that (a) this
channel dominates during freeze-out and (b) the mass of the
mediator is irrelevant during freeze-out. The latter
assumption is approximately true away from resonances
and if mV=mχ is smaller than the typical velocity of
particles around freeze-out (v ∼ 1=3). For large values of
mY (requiring large αB, sincemY=mχ < αB=1.68), or values
ofmY corresponding to resonant Sommerfeld enhancement
(cos θ → 1 as vrel → 0), freeze-out may be more compli-
cated and needs to be studied more carefully; we will
include the full mY dependence when we examine specific
models.

FIG. 2. Direct-detection Feynman diagrams for inelastic DM
models, with (left) tree-level inelastic scattering and (right) one-
loop, elastic scattering off nuclei in these experiments.
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However, if we consider αB to be fixed given mχ ,
and hold vrel fixed, then our expression for the lower
bound on the Sommerfeld enhancement is a monoto-
nically decreasing function of mY ; thus, indirect detection
will set a lower bound on mY (all values of mY below
this threshold will be ruled out). Since the requirement
for bound-state formation sets an upper bound on mY ,
one can ask whether these two criteria are in conflict.
Equivalently, requiring mY < αBmχ=1.68 implies that

S > 2παB
vrel

sinhð3.21vrelαB
Þ=ðcoshð3.21vrelαB

Þ þ 1Þ. For the model to
avoid exclusion by indirect detection (except possibly
where mY is important to freeze-out), this minimal
Sommerfeld enhancement must be permitted by the data.
Note that for αB ≫ vrel (vrel ∼ 10−3 in the present-day
Milky Way halo) this minimal enhancement will reduce to
an αB- and vrel-independent prefactor of

Smin ¼ 2π × 3.21=2 ≈ 10: ð13Þ

This minimal Sommerfeld-enhanced cross section is rather
close to indirect-detection bounds for a DM species that
comprises 100% of the DM and of which the abundance is
set by thermal freeze-out, for DM masses below ∼1 TeV
(e.g., Refs. [51,52]); permitting mY ≲mχvrel would gen-
erally significantly overproduce limits from indirect
detection, unless Y decays primarily into invisible
channels. If we assume mY ≫ mχvrel in the present day,
then we can approximate S≳ 6αBmχ=mY , and thus if the
maximum allowed Sommerfeld factor is Smax, then
mY ≳ 6αBmχ=Smax. Of course, smaller values for mY are
permissible if the species that forms bound states comprises
only a small fraction of the overall dark matter density.
If the dominant annihilation channel consists of s-wave

annihilation to mediators coupled to the DM with strength
αB, then the annihilation cross section at low velocities
is of order hσvreli ≈ πα2B=m

2
χ [this expression is exact for

Dirac or pseudo-Dirac DM annihilating to U(1) dark
gauge bosons]. Requiring that this cross section falls below
the thermal value of hσvreli ≈ 2 × 10−26 cm3=s ≈ 1.7 ×
10−9 GeV−2 suggests an overclosure bound of
mχ ≲ αB × 43 TeV. As we will see, we will generally be
interested in masses around a few TeVand αB ≳ 0.1, so the
overclosure bound will not typically be particularly con-
straining. This estimate ignores Sommerfeld enhancement
and bound-state formation during freeze-out, which can be
important [53,54]. For αB ≳ 0.1, the Sommerfeld enhance-
ment is non-negligible during the freeze-out epoch; how-
ever, for attractive Sommerfeld enhancement, including
this effect only reduces the late-time relic abundance. This
further relaxes the overclosure bound and, since it reduces
the abundance of the species in question, also weakens
constraints from indirect detection. (However, it makes it
more challenging to generate 100% of the DM abundance
by the same species that forms bound states.)

Likewise, radiative formation of bound states can
also contribute to the depletion of DM at early times
and indirect signals at late times [46,54–56]. These radi-
ative processes are only kinematically unsuppressed if
enough energy is available to produce an on-shell light
mediator, i.e., the binding energyþ kinetic energy of the
particles is greater thanmY . Bound-state formation can also
occur through radiation of an off-shell heavy mediator that
decays to SM particles, but such processes will be sup-
pressed by a small mixing with the SM and also by the
mass of the heavy mediator. Thus, there are two distinct
regimes for mY from an indirect-detection perspective:
αBmχ=1.68≳mY ≳ α2Bmχ=4, where bound states exist
but radiative capture into them is suppressed, and
mY ≲ α2Bmχ=4, where radiative capture processes are
unsuppressed. We will ignore bound-state effects in the
former case but account for their impact on indirect-
detection signatures in the latter case.
However, we will ignore the effects of bound-state

formation during freeze-out. A careful treatment of
bound-state effects during freeze-out requires accounting
for dissociation of the bound states through interactions
with the light-mediator bath. If mY ≲ α2Bmχ=4, then for
αB ≲ 0.5, we expect the temperature at freeze-out to be
comparable to or larger than the binding energy (taking the
standard estimate Tfreeze-out ∼mχ=20), and so dissociation
effects could be substantial. Thus, while the presence of
radiative capture into bound states during freeze-out may
further deplete the DM abundance, relaxing both the
overclosure and indirect limits further, a full calculation
would require a careful analysis (as performed in,
e.g., Ref. [54]).
We will show that the indirect-detection constraints and

overclosure limit cannot fully exclude the regions of
parameter space relevant to collider searches for the bound
states, even without taking the impact of bound-state effects
on freeze-out into account, for both models we consider.
Since including the bound-state effects during freeze-out
would only relax these constraints further, we are justified
in neglecting them for purposes of this work.

F. Dark matter self-interactions

Constraints on DM self-interactions require that σ=mχ ≲
1 cm2=g ≈ 1=ð60 MeVÞ3 [57–59]. As we are interested in
the regime in which a long-range potential exists and can
support bound states, we cannot use the Born approxima-
tion to estimate scattering rates. However, if mY=mχ ≳ vrel
while still satisfying Eq. (1), the typical relative velocity of
DM particles in galaxies and galaxy clusters, then we can
make the approximation that s-wave scattering dominates
and use the analytic estimate for the scattering cross section
derived in Refs. [60,61].
The scattering cross section is approximated in the low-

velocity limit by [60,61]
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σT ¼ 4π

ðmχvrelÞ2
j1 − e2iδj2; ð14Þ

where δ ¼ −½2γ þ lnðcÞ þ π cotðπ ffiffiffi
c

p Þ�ac, a ¼ vrel=2αB,
c ¼ αBmχ=1.6mY , and γ ≈ 0.577 is the Euler-Mascheroni
constant. We see that away from resonances, which occur
when cotðπ ffiffiffi

c
p Þ diverges, the size of the phase shift is

controlled by ac ¼ mχðvrel=2Þ=ð1.6mYÞ. The regime in
which the s-wave contribution dominates is thus a regime
in which (away from resonances) this phase shift is small,
and we can write

σT ∼
4π

ðmχvrel=2Þ2
a2c2 ∼

4π

m2
Y
; ð15Þ

which is just the geometric cross section.
Assuming this geometric cross section, we see that

the self-interaction bound will be satisfied, provided
ðmχm2

YÞ1=3 ≳ 100 MeV, which for 1 TeV DM requires
only that mY ≳ 1 MeV. Thus, away from points in the
parameter space where there is a near-zero-energy bound
state, we expect the self-interaction rate to be undetectable,
despite the rather large couplings we invoke.

III. DARK-SECTOR MODELS WITH
DETECTABLE BOUND STATES

We now consider two examples of phenomenologically
viable DM models containing bound states, which can lead
to interesting signatures at the LHC. These models serve as
examples of how to build nonsupersymmetric models that
realize the requirements laid out in Sec. II. We will show
that in these models, the search for bound-state resonances
can probe parameter space, which is not accessible to
monojet searches and resonance searches for the mediator.
In the first model, which we label the “pseudo-Dirac”

model, the dark sector consists of a pair of almost-
degenerate Weyl fermions that are charged under a dark
sector Uð1ÞD gauge group, which is broken by a dark
Higgs-like scalar. These fermions can form bound states
with the dark Higgs as the mediator. The second model,
which we refer to as the “triple-Higgs”model, is based on a
completely broken SUð3ÞD gauge theory, with the dark
matter candidate being a Dirac fermion in the fundamental
of the gauge group. Much of the phenomenology of this
model, including bound-state formation and couplings to
the SM, is derived from the symmetry-breaking pattern of
the theory, with both the mediator that supports the bound
state and the mediator to the SM being massive gauge
bosons of the broken SUð3ÞD group. In both cases, the dark
sector interacts with the SM via a vector portal with kinetic
mixing, and the DM direct-detection cross section is
suppressed by the fact that at tree-level the DM scatters
into a heavier state.

Before introducing these models, however, we will
consider a simpler scenario that is familiar from SUSY,
that of pure wino/Higgsino DM (Sec. III A). We will show
that the production rate of wino/Higgsino-onium bound
states at the LHC is too small to be constraining, but this
scenario shares many of the properties of our more
complicated dark sector models and thus has pedagogical
value. We will then review the details of kinetic mixing
between new dark gauge bosons and the SM neutral gauge
bosons (Sec. III B), since this mechanism describes the
leading interaction of the SM with the dark sector in both
dark sector scenarios we consider, before describing in
detail the two models (Secs. III C and III D).

A. Weakly interacting example: SUð2ÞL
minimal dark matter

Sub-TeV superpartners of the EW bosons and of the two
Higgs doublets in SUSY theories can potentially be
produced and detected at the LHC, with the lightest
neutralino being a particularly well-motivated, weakly
interacting DM candidate. Outside of SUSY theories,
models of “minimal dark matter” in which the DM trans-
forms under a low-dimensional representation of SUð2ÞL
have phenomenology similar to neutralino DM [48,62,63].
Pure wino or Higgsino DM corresponds to the lowest-lying
mass eigenstates from, respectively, an SUð2ÞL triplet of
Majorana fermions or an SUð2ÞL Dirac fermion doublet
with hypercharge 1=2. The hypercharge-0 SUð2ÞL quintu-
plet is also a viable minimal dark matter candidate.
If the DM transforms as part of a SUð2ÞL multiplet, then

it will be accompanied by heavier charged partner particles
in the same multiplet. After EW symmetry breaking, the
wino triplet separates into a lighter neutral Majorana
fermion χ0 and a heavier charged Dirac fermion χ�; the
Higgsino multiplet gives rise to two neutral Majorana states
χ1 and χ2 and a charged Dirac fermion χ�. These charged
partners can always form Coulombic bound states; when
the DM is sufficiently heavy, W and Z exchange may also
support bound states including the DM itself (e.g.,
Ref. [23]). Numerical calculations indicate that for wino
DM there is a crossover point at a DM mass of around
5 TeV, where the ground state transitions from being
primarily composed of χþχ−, bound by photon exchange,
to being composed of an admixture of χ0χ0 and χþχ−,
bound by the gauge bosons of an approximately unbroken
SUð2ÞL symmetry.
SUð2ÞL-DM models have many attractive features of the

type discussed in Sec. II and behave as prototypes for the
models of interest to us. They naturally possess multiple
mediators, one of which is massless and supports bound
states, while the other massive mediators are all known
particles in the SM. The SUð2ÞL multiplets contain several
states nearly degenerate with the DM; the couplings of
the gauge bosons with the DM and its partners are naturally
off diagonal, and so the elastic scattering relevant to
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direct-detection proceeds only at one-loop level (and also
suffers from additional cancellations that suppress the
rate further [64]). Direct and indirect constraints on wino
and Higgsino DM have been studied extensively; thermal
wino DM constituting 100% of the DM is in tension
with H.E.S.S. observations of the Galactic center (e.g.,
Refs. [65–71]), but a subdominant wino DM contribution at
lower wino masses is difficult to exclude. Pure Higgsino
DM is not currently experimentally testable by either direct
or indirect detection [72,73]. Finite temperature effects on
the freeze-out of weakly interacting DM have also been
studied [74,75].
A complicating factor in SUð2ÞL DM models is the

presence of multiple mediators that can potentially support
a bound state, which become most important if the DM is
heavy enough that αWmχ ≳mW;mZ with αW ¼ g2W=4π ≈
1=30. In this case, there is a long-range potential that mixes
the two-body DM-DM state with other particle/antiparticle
states; i.e., χ0χ0 mixes with χþχ− in the wino case, and χ1χ1

can mix with χ2χ2 and χþχ− in the Higgsino case. This can
lead to χþχ− states that are only pseudobound, despite the
presence of the photon-mediated Coulomb potential; if the
combined W=Z=γ-exchange potential is not deep enough
to also bind the χ0χ0 component, then the χþχ− state (or,
e.g., χþþχ−− in representations, such as the quintuplet, in
which higher-charge states exist) may decay rapidly to
unbound χ0χ0 through t-channel exchange of W bosons.
Parametrically, the cross section for χþχ− → χ0χ0 through
this channel, for heavy DM with mχ ≫ mW , is σvrel∼ffiffiffiffiffiffiffiffiffiffiffiffi
Δ=mχ

p
α2Wm

2
χ=m4

W , where Δ is the available energy (i.e.,
the splitting between the mass of the χþχ− two-body state,
including any binding energy, and the mass of the final χ0χ0

state). By comparison, the cross section for annihilation to
SM quarks, leptons, and gauge bosons is of order
σvrel ∼ α2W=m

2
χ . Thus, we expect the former to dominate

over the latter when
ffiffiffiffiffiffiffiffiffiffiffiffi
Δ=mχ

p ≳ ðmW=mχÞ4.
However, there is an important caveat to this argument:

in fermionic models of this type, this mixing between
χ0χ0 and χþχ− occurs only in the states with even Lþ S
(where L and S are the quantum numbers describing the
total orbital angular momentum and total spin of the
bound state); states with odd Lþ S have symmetric wave
functions and cannot support two identical fermions.
Since the mediator to the DM is an EW gauge boson,
the bound state dominantly produced at colliders has
L ¼ 0 and S ¼ 1; these are true bound states, not
pseudobound, and cannot decay rapidly to pairs of
identical DM particles. In particular, in the pure wino
case, the χþχ− bound state with L ¼ 0, S ¼ 1, denoted
Bw, decays dominantly via an s-channel γ=Z to SM
fermion pairs or through a t-channel exchange of a χ0

into a WþW− final state [23]; final states involving the
DM are suppressed. We will see this behavior arise again
in our example dark sector models.

The pure Higgsino limit serves as an example of a model
in which there are two neutral mass eigenstates that can be
close in mass, denoted as χ01 and χ02, the lighter of which
(χ01) is the DM. In this case, the decay of χþχ− to χ01χ

0
2 may

be allowed. If Δþ0 ≡ 2mχ� −mχ0
1
−mχ0

2
< 0, the χþχ−

bound state never mixes into the χ01χ
0
2 from kinematic

considerations. When Δþ0 > 0 however, the χþχ− can
simply decay into free χ01χ

0
2, and if the width for this decay

is significantly larger than the width of the χþχ− bound
state, the bound state is effectively never formed.2 Thus,
for the pure Higgsino case, the sign of the parameter Δþ0 is
critical to the bound-state phenomenology, at least for DM
masses below the TeV scale. This parameter is positive
when the lightest neutralino is a pure Higgsino and both the
wino and the bino are taken to be infinitely massive, but
there exists a range of SUSY-breaking parameters that can
produce a lightest neutralino that is almost purely Higgsino
with a significantly more massive bino and wino, while
having Δþ0 < 0 [76]. With this choice, a χþχ− Higgsino
bound state Bh can be formed and can decay in the same
way as Bw, albeit with different coupling constants to the
EW bosons.
Unfortunately, if the DM is part of an SUð2ÞL doublet or

triplet, the bound-state production rate at the LHC is too
small to be observed. This is due to the smallness of the EW
couplings, which controls the production rate. Figure 3
shows the production cross section times the branching
ratio into leptons of chargino-onium states for fermions
charged under the EW gauge group in different represen-
tations. Chargino-onia from both pure winos and pure
Higgsinos have production cross sections that are far too

Chargino Bound State Limits

Doublet, Y 1
2

Triplet Quintuplet,

9 plet, Dilepton 95 CL, 36.1 fb 1

500 1000 1500 2000
10–12

10–8

10–4

1

104

FIG. 3. The production cross section times branching ratio into
leptons for chargino-onium states made up of: (green) pure
Higgsino χþχ−; (blue) pure wino χþχ−; (orange) SUð2ÞL
quintuplet, zero hypercharge χ2þχ2−; and (purple) SUð2ÞL 9-
plet, zero hypercharge χ4þχ4−. The 95% confidence limits from a
dilepton resonance search for Z0 with 36 fb−1 of data are also
shown (red, dashed).

2When the widths are comparable, bound-state decays into
χ01χ

0
2 become an additional decay channel, together with decays to

WþW− or SM fermions.
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small for dilepton searches at the LHC to be effective.
However, for DM in a larger representation of SUð2ÞL,
fermions having large electromagnetic charges Q can be
produced. The production cross section of these states
scales rapidly with Q, while the partial widths into SM
particles remain unchanged. The enhancement factor
relative to the pure wino is Q8, with Q6 coming from
the wave function of the bound state at the origin jψð0Þj2
and an additional Q2 from the coupling of these fermions
to the γ and Z. For charginos with Q ¼ 4 in an SUð2ÞL
9-plet, the production cross section for the χ4þχ4−
chargino-onium becomes large enough to be probed
by the current dilepton resonance search results. Such
large representations are generally disfavored since they
lead to nonperturbative values of αW below the Planck
scale [62]; however, these results more broadly demon-
strate that models with large coupling constants or large
charges are particularly suited for bound-state searches at
the LHC. Searches for multicharged lepton bound states
decaying into two photons, e.g., have been shown to be
effective in searches for leptons with a sufficiently large
hypercharge [77].

B. Kinetic mixing

We now turn our attention the dark sector models that we
briefly described above. Both of the models we will
consider interact with the SM through a vector portal, with
kinetic mixing with the SM Uð1ÞY ,

Lkin-mix ¼ −
1

4
VμνVμν −

ϵ

2
BμνVμν −

1

4
BμνBμν

þ 1

2
m2

VVμVμ þ 1

2
m2

ZZμZμ; ð16Þ

where Vμν (Bμν) is the field strength of the dark gauge
boson (SM hypercharge) and we have included the mass
term for both V and the SM Z. Here, Vμν can be non-
Abelian; such a mixing term appears in the triple-Higgs
model in the form of a dimension-5 operator Ha

DV
a
μνBμν,

where Ha
D is an adjoint scalar that acquires a vacuum

expectation value (VEV) and a ¼ 1;…; 8 is an SUð3ÞD
color index.
This interaction can be diagonalized in the mass basis; a

detailed description of this diagonalization procedure is
discussed in Refs. [78,79] and reviewed in Appendix B. In
the non-Abelian case, only the Abelian portion of the field
strength is diagonalized, with the non-Abelian portion
remaining as an interaction term in the model. The
diagonalization introduces an ϵ-suppressed coupling
between the physical dark gauge boson and the SM
electromagnetic, JμEM, and weak-neutral, JμZ, currents as
well as an ϵ-suppressed coupling between the SM Z-boson
and the dark sector current, JμD,

JμEMAμ → JμEMðAμ − ϵcWVμÞ;

JμZZμ → JμZ

�
Zμ þ

ϵsW
1 − r2

Vμ

�
;

JμDVμ → JμD

�
Vμ − r2

ϵsW
1 − r2

Zμ

�
; ð17Þ

where A is the SM photon, sW (cW) is the sine (cosine) of
the weak mixing angle, and r≡mZ=mV . All of the fields
are given in the mass basis; note that the DM fermionic
current couples directly to the Z, so both V and Z mediate
the production of dark sector particles with qq interactions,
and both must be included in amplitude calculations.
The mixing between V and Z also shifts their masses by

a fraction of Oðϵ2Þ; the shift in the Z mass has important
consequences for EW precision constraints on these mod-
els, which we will discuss below, but otherwise, these shifts
will be neglected for the rest of the paper. We will always
assume that r ≪ 1 throughout in both models.

C. Uð1ÞD pseudo-Dirac dark matter

We now consider a simple, viable dark matter model, in
which the bound-state signature gives complementary
information about the dark sector and probes different
regions of the parameter space than the mono-X searches.
Our model is based on the “minimal model” of Ref. [80]
(loosely based on the “excited dark matter” scenario of
Ref. [81]), but we use an ordinary Yukawa interaction
between the dark Higgs and the fermions in the dark sector
instead of a dimension-5 operator.
This model contains a gauged Uð1ÞD field, V, kinetically

mixed with the SM Uð1ÞY , a Dirac fermion Ψ, and a
dark Higgs, which in unitary gauge can be written as
ΦD ¼ ðvD þ hDÞ=

ffiffiffi
2

p
, with vD as its VEV. The Uð1ÞD

charges for the fermion Ψ and ΦD are 1 and 2, respectively.
The Lagrangian is

Ldark−Maj ¼ iΨ=DΨþ ðDμΦDÞ†ðDμΦDÞ −mDΨΨ

− yDðΨCΨΦ�
D þ H:c:Þ þ Lkin-mix; ð18Þ

where Dμ ≡ ∂μ − igDVμ is the covariant derivative for Ψ
and Dμ ≡ ∂μ − 2igDVμ is the covariant derivative for ΦD,
with C denoting charge conjugation. Following Ref. [82],
we write Ψ as a Weyl fermion pair ðχ; η†Þ. Thus, the
Yukawa interaction becomes

LYD
¼ −yDðχχΦ�

D þ ηηΦD þ H:c:Þ: ð19Þ
After the dark Higgs gets a VEV, the Yukawa interaction
generates a fermion mass splitting. The fermion mass
matrix is

1

2
ð χ η Þ

�
mM mD

mD mM

��
χ

η

�
þ H:c: ð20Þ
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with mM ¼ ffiffiffi
2

p
yDvD. The mass eigenstates are then given

by χ1 ¼ ðηþ χÞ= ffiffiffi
2

p
and χ2 ¼ iðη − χÞ= ffiffiffi

2
p

, with masses
m1;2 ¼ mM �mD. In the mass basis, the dark Yukawa
interaction terms can be written as

LYD
¼ −

yDffiffiffi
2

p ðvD þ hDÞðχ1χ1 − χ2χ2 þ H:c:Þ; ð21Þ

and the interaction with the dark photon is then given by

−igD
�
Vμ − r2

ϵsW
1 − r2

Zμ

�
ðχ†1σμχ2 − χ†2σ

μχ1Þ: ð22Þ

The interaction with the SM is thus off diagonal, and
the direct-detection constraint is significantly relaxed
because the χ1 − χ2 mass splitting means the elastic
scattering cross section is suppressed at one loop (and
the one-loop contribution is expected to be small as
previously discussed).
In this model, a DM bound state can be produced at the

LHC through the process shown in Fig. 1, supported by the
exchange of either a dark Higgs or a dark photon. We will
focus on the case in which the dark Higgs is light and
supports the bound state, while the dark photon is heavier
and is the principal mediator to the SM, in order to ensure a
one-loop suppression in the direct-detection cross section
while maintaining a large coupling between the quarks and
the mediator to the SM and a sizable branching ratio of the
bound state to leptons. The dark Higgs is assumed to have
some small mixing with the SM Higgs that allows it
to decay.
Because of the symmetry-breaking pattern, there are only

three independent parameters among fmχ ; mV; αD; yDg.
The mass hierarchy required above can be achieved by
choosingmD ≪ mM, so thatmD is the small mass splitting,
and m1;2 ≃mM. The spectrum of particles in this model is
shown in Fig. 4.
A large value of αD leads to a Landau pole in a broken

U(1) theory at a scale above mV [83]. However, since we
are mainly interested in the phenomenology of bound states
below the scalemV , we assume that a UV completion of the
model will avoid the Landau pole. We will later discuss

another model with a non-Abelian gauge group in the dark
sector that will avoid the need for a UV completion.
If the dark bound state, B, is produced from SM initial

states, it must be produced from a Z or V exchange.
Since the couplings of these gauge bosons to the dark
Majorana fermions are off diagonal, the resulting bound
state must be composed of a χ1 and a χ2 particle, and for
an s-wave state, it must have spin 1. Moreover, since hD
only couples χ1 to χ1 and χ2 to χ2, decays into final
states containing only hD are forbidden, and if mV > mB,
the only available decay modes for B are through V back
into the SM particles.

D. SUð3ÞD triple-Higgs model

We now consider a dark sector model based on a
completely broken SUð3ÞD gauge theory, in which all of
the phenomenologically desirable properties of the dark
sector emerge from the breaking pattern of the gauge
symmetry. This model has some similarities with the non-
Abelian DM models of Ref. [84], featuring small mass
splittings among the components of the DM multiplet that
suppress the direct-detection cross section. Because the
mediator supporting the bound state is a vector in this
model as opposed to a scalar in the pseudo-Dirac model
above, the indirect-detection constraints of the two models
turn out to be quite different.
A completely broken SU(3) gauge group was chosen to

allow for a sufficiently large gauge coupling, which is
favorable for the production of bound states that are
supported by gauge bosons.3 A broken U(1) theory, such
as the one found in the pseudo-Dirac model, with a
coupling strength αD ≳ 0.5 at momentum scales above
the gauge boson mass quickly runs into a Landau pole.
Thus, a broken U(1) theory with a large coupling constant
is likely to have emerged from a larger, non-Abelian
gauge group in the first place [83]. We choose an SU(3)
gauge group rather than SU(2), because for a fermion in
the fundamental of a completely broken SU(2) theory with
an off-diagonal coupling to the SM, the gauge boson
corresponding to the diagonal generator produces a
repulsive potential between the two components of the
fermion, making it difficult for a phenomenologically
viable bound state to exist without introducing additional
light mediators.
As in the previous model, the coupling between the dark

sector and the SM is mediated by the mixing of the dark and
SM gauge bosons; in this non-Abelian case, the mixing
operator is nonrenormalizable. Bound states in this model
are supported by the exchange of one of the SUð3ÞD gluons,
which acquires a relatively small mass during the symmetry
breaking.

FIG. 4. Spectrum of particles in the pseudo-Dirac model.

3DM models with an unbroken gauge group are constrained by
the fact that dark matter is effectively collisionless in galactic
dynamics [85].
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The dark sector contains a triplet of Dirac fermions χ ¼
ðχ1; χ2; χ3Þ charged under SUð3ÞD, with a Dirac mass, mχ .
After symmetry breaking, the components acquire a small
mass splitting so that mχ1 < mχ2 ¼ mχ3 , with χ1 and χ2
ultimately forming an s-wave, spin-1 bound state, B, which
can be produced at colliders. χ1, being the lightest fermion
in this theory, serves as our DM candidate.
The SUð3ÞD breaking occurs via three Higgs-like fields:

two scalars in the adjoint representation of SUð3ÞD,H1 and
H2, and another scalar in the fundamental, H8. The dark
sector Lagrangian is given by

Ldark¼
X
1;2

1

2
DμHa

i D
μHa

i þ
1

2
jDμH8j2

−VðH1;H2;H8Þþχði=D−mχÞχ−
1

4
VμνVμν; ð23Þ

where Vμν is the SUð3ÞD field strength of the dark gluons,
a ¼ 1;…; 8 is an SUð3ÞD index, and τa ≡ λa=2 with
λa being the Gell-Mann matrices. Dμ ≡ ∂μ − igDVa

μτ
a

for fields in the fundamental and DμHa
i ≡ ∂μHa

i þ
gDfabcVb

μHc
i for the two adjoint Higgs fields. The structure

of the Gell-Mann matrices is such that V1 and V2 couple χ1
to χ2, V4 and V5 couple χ1 to χ3, and V6 and V7 couple χ2
to χ3; V3 couples diagonally to χ1 and χ2, while V8 couples
diagonally to all three fermions; the interaction vertices are
shown in Appendix C. The scalar potential VðH1; H2; H8Þ
can be chosen to satisfy the symmetry-breaking pattern that
we will describe below.
We impose a Z2 × Z2 symmetry at the renormalizable

level; each adjoint Higgs transforms under the correspond-
ing Z2 as Ha

i → −Ha
i for i ¼ 1, 2. This forbids any

marginal interaction terms between the Higgs sector and
the fermion sector, including a Yukawa interaction term.
Therefore, we can treat both sectors as decoupled to first
order. However, the following dimension-5 operator is
allowed,

Lmass ¼
1

Λm
ðH†

8τ
aH8ÞðχτaχÞ; ð24Þ

so that after H8 acquires a suitable VEV a mass splitting
occurs among the components of χ. Finally, we introduce
the following operators that encapsulate the mixing of the
dark sector with the SM:

Lmix ¼ −
1

Λ1

Ha
1V

a
μνBμν −

1

Λ2
8

ðH†
8τ

aH8ÞVa
μνBμν: ð25Þ

Notice that the first term introduces a small breaking of the
Z2 symmetry. This term can originate from a dimension-6
operator that respects this discrete symmetry, such as
ϕHa

1V
a
μνBμν, with ϕ being a scalar field that is odd under

Z2, which acquires a VEVas well. The details of the origin

of this operator are unimportant, as we will focus instead on
the phenomenology resulting from the kinetic mixing.4

At the point of symmetry breaking, H1 and H2 acquire a
VEV v1 and v2 in the 1- and 2-components, respectively,
andH8 acquires a VEV given by hH8i ¼ v8ðcos θ; 0; sin θÞ,
with v8 ≲mχ ≪ v1; v2 and some arbitrary angle θ. This
symmetry-breaking pattern can be accomplished by choos-
ing an appropriate Higgs potential. Note that similar
phenomenology can be obtained even if the VEVs of
H1 andH2 are not orthogonal and the second component of
hH8i is of the order of v8. This choice of the breaking
pattern is therefore not fine-tuned but is made to avoid
unnecessary complications. Further details on the Higgs
potential and the symmetry-breaking pattern can be found
in Appendix C. The VEV of H1 in the first term of Lmix
leads to the conventional kinetic mixing term discussed
above, with ϵ≡ 2v1=Λ1 and with V1 as the mediator to the
SM. The second term in Lmix guarantees the prompt decay
of the other dark gluons through small mixings into the SM:
details are discussed further in Appendix C. The choice of
hH8i gives a small mass splitting to the Dirac fields in χ,
leading to the following fermion masses:

mχ1 ¼ mχ −
v28
3Λm

;

mχ2 ¼ mχ3 ¼ mχ þ
v28
6Λm

: ð26Þ

We will always neglect the mass splitting when not
considering its role in suppressing the direct detection of
DM so thatmχ1 ≃mχ2 ¼ mχ3 ≃mχ . The lightest fermion χ1
is the DM candidate, and it is stable; the other particles in
the theory decay promptly. More details are provided in
Appendix C.
Finally, the dark gluons remain approximately diagonal

after the symmetry breaking, with squared masses (up to
order g2Dv

2
8 ≪ g2Dv

2
1;2) given by

m2
1 ¼ g2Dv

2
2;

m2
2 ¼ g2Dv

2
1;

m2
3 ¼ g2Dðv21 þ v22Þ;

m2
4 ¼ m2

5 ¼ m2
6 ¼ m2

7 ¼
1

4
g2Dðv21 þ v22Þ;

m2
8 ¼

1

24
g2Dv

2
8ð5 − 3 cos 2θÞ: ð27Þ

m1 also receives Oðϵ2Þ corrections from the kinetic mixing
with Z, which we will neglect as was explained above.
Thus, the dark gluon masses satisfy the hierarchy

4One can, in principle, include the interaction term Ha
2V

a
μνBμν,

but this term does not affect the main features of this model. With
the symmetry-breaking pattern discussed later, the gauge bosons
V1 and V2 couple to the same dark fermions, χ1 and χ2. We will
leave this term out of the Lagrangian for simplicity.
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m8 < mχ < m1;…;7; ð28Þ

and V8 serves as a good candidate for a bound-state
mediator. Figure 5 illustrates the spectrum of particles in
this model.
As in the Majorana case, if the dark bound state B arises

from SM processes, then it must be produced from the
mediator V1; the resulting bound state must be χ1χ2, or its
antiparticle equivalent B. Again, since the mediator is spin
1, s-wave bound states must be in the spin-triplet
configuration.
In the mass basis, the interaction term responsible

for the production is (all fields now denote their mass
eigenstate)

L ⊃
gD
2
χ1γ

μ

�
V1
μ − r2

ϵsW
1 − r2

Zμ

�
χ2 þ H:c: ð29Þ

with r≡mZ=m1. With m8 < mχ and the other gluons
being significantly more massive thanmχ , B’s are mediated
by V8 through the interaction terms

LB ¼ gD
2
ffiffiffi
3

p γμðχ1V8
μχ1 þ χ2V8

μχ2Þ; ð30Þ

which leads to an attractive potential between the constitu-
ents of B. The coupling between V8 and the fermions
in B is therefore αB ¼ αD=12. The mass hierarchy of this
model forbids decays into any of the dark gluons Va for
a ¼ 1;…; 7. Furthermore, the decay of B into any number
of V8 is forbidden by the conservation of the SUð3ÞD color
charge in the unbroken SU(3); V8 only couples χ1 to χ1 and
likewise χ2 to χ2 and cannot carry away the net color charge
of B.

IV. EXPERIMENTAL CONSTRAINTS
ON DARK-SECTOR MODELS

In this section, we will first discuss in Sec. IVA the range
of viable model parameters in each of the dark sector
models detailed above. We will then study the phenom-
enology of each of these models at the LHC in Sec. IV B
and their cosmology and indirect-detection signatures in
Sec. IV C.

A. Viable model parameters

In both models, the bound state χ1χ2 (or its antiparticle
equivalent, if applicable) is formed from a stable dark
matter candidate χ1 and an unstable fermion χ2. For the
decay of χ2 to not dilute the production of the bound state,
we must ensure that the decay width of χ2 is much smaller
than the decay width of B. In both models, χ2 decays
through an off-shell SM mediator to χ1 and two SM
particles. In the pseudo-Dirac model, this three-body decay
width is parametrically Γχ2 ∼ ϵ2g2Dg

2
SMðΔmÞ5=m4

V, where
gSM is a coupling constant to the SM, which depends on
the actual SM particle considered, and Δm ¼ mχ2 −mχ1 ,
which we always take to be small. On the other hand, the
bound-state decay width is ΓB ∼ ϵ2g2Dg

2
SMm

2
χ jψð0Þj2=m4

V .
The relative ratio of these widths is therefore

Γχ2

ΓB
∼
ðΔmÞ5
α3Bm

5
χ
≪ 1; ð31Þ

where αB ¼ y2D=4π ∼Oð0.1 − 1Þ for situations in
which LHC production of bound states is important. An
identical relationship holds for the triple-Higgs model,
with αB ¼ αD=12.
In both of the models we have presented, the interaction

between the dark sector and the SM is controlled by a single
vector boson: V in the pseudo-Dirac model of Sec. III C and
V1 in the triple-Higgs model of Sec. III D. The mixing of
the SM and dark sectors shifts the Z mass and is thus
constrained by EW precision tests (EWPTs). In particular,
the ρ parameter is shifted by an amount [78],

Δρ ¼ −
m2

W

m2
V
t2W · ϵ2 þO

�
m4

W

m4
V

�
; ð32Þ

where mV is the mass of the SM mediator in either model
and tW is the tangent of the weak mixing angle. The global
fit for the central value of ρ to EWPT data is ρ0 ¼
1.00037� 0.00023 [86]. Constraints are set by requiring
that any choice of ϵ leads to a minimum value of mV such
that Δρ is consistent with the 2σ limit for the value of ρ0.
Next, for a bound state to be possible, the constraint given

in Eq. (1) must be satisfied. This condition can be satisfied
by ensuring that the mass of the particle supporting the
bound state is sufficiently small. For the pseudo-Dirac
model, Eq. (1) can be satisfied by choosing a sufficiently
small Higgs mass such that y2Dmχ > 21.1mhD , and for the
triple-Higgs model, ensuring that αDmχ > 20.16m8.
Finally, to avoid direct-detection constraints, the mass

splitting must exceed the typical kinetic energy of DM in
the solar circle. Taking the velocity dispersion of DM to be
v ∼ 10−3, this means that the mass splitting has to exceed
approximately 10−6mχ. A small mass splitting, albeit large
enough to be consistent with this lower bound, can be
achieved by picking suitable values for the Dirac bare mass

FIG. 5. Spectrum of particles in the triple-Higgs model.
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mD in the pseudo-Dirac model and Λm in the triple-
Higgs model.
In both theories, there are two parameters (mD and mhD

for the pseudo-Dirac model and m8 and Λm for the triple-
Higgs model) that can be set to naturally satisfy both the
criterion for bound states and avoid direct-detection con-
straints, while having little impact on the LHC phenom-
enology. However, these parameters can have some
influence on the relic abundance of DM in these theories
as well as on indirect-detection bounds. This will be
discussed after the next section.

B. LHC phenomenology

We now turn our attention to the production and
detection of bound states at the LHC for both theories.
In the perturbative picture, bound states B are produced by
quark/antiquark parton interactions through an s-channel V
and Z (mass-eigenstate) boson, with the only available
decay mode of B being an off-shell V or Z back into SM
particles, leading to resonance signatures. The more accu-
rate procedure of taking into account the mixing of V
and B yields a qualitatively similar result; we use the
full mixing calculation in all of the plots shown but focus
our qualitative discussion primarily on the perturbative
picture.5

The mono-X þMET search can be effective in setting
constraints on these dark models, particularly in the range of
parameter space where 2mχ < mV , the region of interest for
both dark sector models. To study the constraints that
monojetþMET searches can place on our models, we
use FEYNRULES [87] and MADGRAPH [88] to obtain the
MET distribution for a wide range of mχ and mV . The
distribution is thencompared to theobserved95%confidence
upper limit on the number of monojetþMET events in ten
inclusive MET bins obtained by ATLAS with 36.1 fb−1 of
data [89]. Any value ofmχ andmV with a MET distribution
that has more events in any inclusive bin than the 95% upper
limit is deemed to be ruled out by the experiment.
Next, we recast bounds from a search for resonance in

dilepton events in 36.1 fb−1 of 13 TeVATLAS data [90] to
set constraints on the production of B. In the models
considered here, B decays entirely into SM particles with a
significant branching ratio to pairs of leptons, making the
dilepton resonance search a particularly powerful probe.
This search constrains the production cross section times
the branching ratio of a Z0 boson assuming some minimal
vector couplings to the SM fermions, which allows us to
directly interpret these constraints as a limit on the
production of the cross section times the branching ratio
of the bound state B.

These searches are also sensitive to the resonant pro-
duction of the vector mediator V itself, which tends to be
significantly more constraining than monojetþMET
searches when the coupling of the mediator to SM quarks
is comparable to the coupling to DM. However, in portal
models like the ones we are considering, the mixing into the
SM ϵ is small, while the coupling to DM αD can be large. In
the range of parameter space where the mediator mass
mV ≳ 2mχ , V overwhelmingly decays into χ1χ2 or χ2χ1,
which correspond to final states with MET and are vetoed
in dilepton resonance searches to suppress W and Z
backgrounds [90]. The search for B, however, faces no
such limitation in this region of parameter space.
The production cross section of B (and equivalently of

V) can be computed from Eq. (5), assuming the narrow
width approximation. In the perturbative picture, B decays
through an ϵ-suppressed coupling to Z, or through V, which
has an ϵ-suppressed coupling to both JμEM and JμZ. The
resulting expression for the bound-state width to quarks is

ΓB→qq¼
16πNmr4m2

χ

c2Wðm2
Z−4m2

χÞ2
ααDϵ

2jψð0Þj2
ðm2

Z−4r2m2
χÞ2þr2m2

ZΓ2
Vðs¼m2

BÞ

×

�
ðc2WQðm2

Z−4m2
χÞþ4gVm2

χÞ2þ16g2Am
4
χ

þ r2

ð1−r2Þ2Γ
2
Vðs¼m2

BÞðg2Vþg2AÞ
�
; ð33Þ

where α is the EM fine structure constant; Q is the
electric charge of the quark; and gV and gA are the
vector and axial couplings of q to Z, respectively, given
by gV ¼ f0.25;−0.0189; 0.0959;−0.1730g and gA ¼
f0.25;−0.25; 0.25;−0.25g for fνe; e; u; dg and for the
other two generations, respectively. Nm ¼ 4 for the
pseudo-Dirac model, and Nm ¼ 1 for the triple-Higgs
model, which accounts for the difference in coupling
and fermion types. As previously, jψð0Þj2 is the squared
amplitude of the wave function of the bound state at the
origin, given explicitly by

jψð0Þj2 ¼

8>>><
>>>:

�
y2D
4π

�
3m3

χ

8π
; pseudo-Dirac;

�
αD
12

�
3m3

χ

8π
; triple Higgs:

ð34Þ

Note that we have assumed throughout that the bound state
is well approximated by nonrelativistic quantum mechani-
cal results, which is a valid assumption so long as the
binding energy of B is far less thanmχ . For this bound state,
we thus require

1

4
α2Bmχ ≪ 2mχ ; ð35Þ

5We neglect any mixing between V and B with Z, since we will
usually take V and B to be much heavier than Z, and the coupling
between Z and the dark sector particles is suppressed by ϵ.
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where αB ¼ y2D=4π for the pseudo-Dirac case and αB ¼
αD=12 for the triple-Higgs model.
For sufficiently large values of αB, next-to-leading-order

(NLO) corrections may be significant. For our benchmark
values yD ¼ 2.5 and αD ¼ 3.0, the NLO corrections can be
roughly estimated to be of order αB=4π ∼ 5%. Even if the
NLO corrections turn out to be larger, we do not expect our
results to change qualitatively, since the parameter space
that is both probed by the bound-state dilepton search and
unconstrained by indirect detection for our benchmark
couplings is significant. A proper NLO calculation is thus
beyond the scope of our work.
As we argued earlier, the production cross section of B

crucially depends on the total width of V; this means that
the total width of V should be included in the computation
of the width shown in Eq. (33). Importantly, the width of V
should be evaluated at s ¼ m2

B, since B lies below the χχ
open production threshold [86]. The perturbative partial
widths of B as well as V into all possible SM final states are
shown in Appendix D.
In the mixing picture, the partial widths of V calculated

here correspond to ΓV;0. We take ΓB;0 ¼ 0, since
ΓB;0 ¼ Γχ2 ≪ ΓB, as shown in Eq. (31). In the pseudo-
Dirac model, there is only one bound state, and the mixing
calculation proceeds in the same fashion as described in
Sec. II B. The sum of the perturbative partial widths of B,
calculated in Appendix D, is numerically a good approxi-
mation to the width after mixing, ΓB. For the triple-Higgs
model, there are two bound states, B and B, and so all three
states need to be simultaneously diagonalized. However, B
and B maximally mix to form two CP eigenstates,

B� ¼ jBi � jBiffiffiffi
2

p : ð36Þ

Since V1 is a CP-even state, it does not mix with the CP-
odd combination B−, and the diagonalization is performed
over V1 and the CP-even Bþ; the CP-odd state B− does not
interact with the SM. In both models, the unmixed mass
matrix is given by Eq. (3), with the mixing parameter f
given by [27,28,31]

f ¼ 4Nfψð0Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
παDmB;0

p
; ð37Þ

where Nf ¼ 1 for the pseudo-Dirac model, and Nf ¼
1=

ffiffiffi
2

p
for the triple-Higgs model, which accounts for the

differences in coupling and bound-state mixing.
In both models, B cannot decay into final states that only

contain the mediator that supports the bound state; this is
because both the dark Higgs in the pseudo-Dirac model and
V8 in the triple-Higgs model have couplings with the DM
fermion number that conserves the number of each of χ1
and χ2.

Decays of B into dark sector final states become possible
once mB ≳mV in the pseudo-Dirac model or mB ≳m1 in
the triple-Higgs model; the final states are VhD and
V1V8V8, respectively. Because of the large coupling
between the DM fermions and the mediators, these dark
sector decays are the main decay modes of B, rendering the
dilepton resonance search for B ineffective. These dark
sector final states all mix with the SM and can in principle
lead to multilepton signatures at the LHC. Earlier studies
have exploited this signature to look for bound states
[14,16], but we do not explore this possibility here for
two reasons. First, once mB becomes significantly greater
than the SM mediator mass, the resonant enhancement
derived in Eq. (8) becomes ineffective, and the cross section
for producing B drops quickly away from mB ∼mV or m1.
Furthermore, the branching ratio of these mediators to
leptons is small, since they kinetically mix through the
Uð1ÞY and decay predominantly into quarks. Second, a
direct search for the V or V1 resonance is significantly more
constraining, since the mediator is lighter than the bound
state, and there is one fewer factor of the branching ratio to
leptons with which to contend. In both models, the
mediator dilepton resonance search rules out all of the
parameter space for mB > m1 or mV once the coupling to
the SM is sufficiently large.
At tree level, we are therefore only interested in the

decay modes of B and V into the SM; both particles can
decay into a pair of SM fermions as well asWþW− and Zh,
where h is the SM Higgs, through the mixing of V with
Z=γ. Neither particle can decay into ZZ or γγ final states,
since these processes are forbidden by charge conjugation
symmetry.
The sensitivity of the dilepton resonance search depends

strongly on the width of the resonance, and the 13 TeV
ATLAS limits with 36.1 fb−1 of data as a function of the
ratio of the width of the resonance to its mass Γ=m are
presented in Ref. [90]. The total widths of both states are
fully taken into account when computing the limits of the
search, and the search is assumed to be completely
ineffective once Γ=m > 0.32.
The resulting 95% confidence limits from monojetþ

MET, dilepton resonance, and EWPTare shown in Fig. 6 in
the mχ-mV plane and in Fig. 7 in the mχ–bound state
coupling plane for both models.
The dilepton resonance search results presented in both

figures are searches for the lighter resonance state in the
mixing picture; the search switches from V to B along the
line mV;0 ¼ mB;0, where the lighter resonance changes
rapidly from being mostly V0 to mostly B0 as one moves
from below to above this line.6 As we argued earlier, since

6In spite of this, the partonic cross section including both V
and B is continuous across this line; it is only the particle that
should be identified with the narrow Breit-Wigner signal at the
low-mass eigenvalue that changes.
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the mass eigenstates are always well separated and the
lighter resonance is always narrow, we can simply assume
that the total cross section is given by a Breit-Wigner
profile with a width given by either the V (mV;0 < mB;0) or

the B (mB;0 > mV;0) and neglect interference effects. In
both cases, the search for the B resonance when mV;0 >
mB;0 extends the reach of experimental constraints signifi-
cantly into this region of parameter space, as compared to

(a) (b)

FIG. 6. 95% confidence limits in themχ-mV;0 plane of the pseudo-Dirac model (left) and in themχ-m1;0 plane for the triple-Higgsmodel
(right).mV;0 andm1;0 are the unmixedmasses of the mediator in each respective model. All resonance calculations are made using the full
mixing calculation. Experimental constraints frommonojetþMET (blue), dileptonB resonance (orange), dileptonV resonance (purple),
and EWPT constraints (green) are shown for yD ¼ 2.5, ϵ ¼ 0.2 for the pseudo-Dirac model, and αD ¼ 3, ϵ ¼ 0.3 for the triple-Higgs
model. All dilepton resonance searches are for the lighter mass eigenstate after mixing. For the pseudo-Dirac model on the left, the dark
sector coupling αD is completely fixed by a choice of fmχ ; mV; yDg; contours (black, dashed) indicate the value of αD on themχ-mV plane
when yD ¼ 2.5.

(a) (b)

FIG. 7. 95% confidence limits in themV;0-yD plane of the pseudo-Dirac model (left) and in them1;0-αD plane of the triple-Higgs model
(right), similar to Fig. 6. Experimental constraints from dilepton B resonance (orange), dilepton V resonance (purple), and EWPT
constraints (green) are shown for mχ ¼ 800 GeV, ϵ ¼ 0.2 for the pseudo-Dirac model and mχ ¼ 800 GeV, ϵ ¼ 0.3 for the triple-Higgs
model. Contours (black, dashed) of αD, which is fixed for a given choice of fmχ ; mV; yDg for the pseudo-Dirac model, are also shown.
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what we might expect from just the vector resonance search
and the monojetþMET search combined.
For the values of αD and yD selected in these benchmark

models, the separation between the ground state and the
first excited state of the bound state is about 2%–10% of the
DM mass. These states may be resolvable into different
lepton resonances, since the mass resolutions for the
dielectron and dimuon channels are ∼1% and ∼5%,
respectively. The cross section of production of the ground
state in this case is still given by Eq. (5), but without the
factor of ζð3Þ ≈ 1.202. Resolvable resonances would be a
strong signature of bound states but will come after an
initial discovery of a new resonance, which is the main
focus of this paper.

C. Freeze-out and indirect detection

We now turn our attention to the freeze-out process for
the DM in each model as well as constraints derived from
indirect-detection experiments. Let us focus on the anni-
hilation channels that do not suffer a suppression by ϵ, in
order to be as model independent as possible. In the
pseudo-Dirac model, the potential kinematically available
final states (at late times) are hDhD and B0hD, with the latter
channel corresponding to radiative formation of a bound
state, B0 (which may be spin 1 or spin 0). The VhD final
state is forbidden, since V couples χ1 to χ2 and hD couples
χ1 to χ1. In the triple-Higgs model, if all the gauge bosons
and Higgses except V8 are heavier than the DM, the only
open final states are V8V8 and the radiative bound-state
formation. Note that in the limit in which the DM is slow
moving, radiative bound-state formation requires not
merely that the mediator is light compared to αBmχ , as
required for a bound state, but that it satisfies the stronger
condition that the mediator mass is smaller than the binding
energy, mY ≲ α2Bmχ=4. Thus, this process can be forbidden
by increasing the mediator mass, and indeed, we will see
that indirect-detection limits are much easier to satisfy in
regions of parameter space where αBmχ ≳mY ≳ α2Bmχ=4.
In this regime, the DM annihilation products will thus be
determined by the decays of the bound-state mediator.
During freeze-out, the partner particles χ2 (in the pseudo-

Dirac model) and χ2 and χ3 (in the triple-Higgs model) are
also present, and their annihilation and coannihilation
channels may also relevant.

1. Pseudo-Dirac model

If mV > 2mχ and the bound-state mediator is too heavy
for radiative bound-state formation, then the only annihi-
lation channel not suppressed by ϵ or kinematically for-
bidden is annihilation to hDhD. Both χ1χ1 and χ2χ2 pairs
can annihilate in this fashion, but there is no tree-level
coannihilation; χ1χ2 → hDhD does not occur for the same
reason that the χ1χ2 bound state does not decay into the
dark sector. The cross section for χiχi → hDhD in the limit

of low DM velocity, before accounting for the Sommerfeld
enhancement, is given by

σvrel ¼
π

6
v2rel

�
y2D
4π

�
2 ð9 − 8x2h þ 2x4hÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2h

p
ð2 − x2hÞ4m2

χ
; ð38Þ

where xh ≡mhD=mχ . Wewill assume that during freeze-out
the mass splitting between χ2 and χ1, set by mD, is small
compared to the freeze-out temperature; for OðTeVÞ DM,
this corresponds to requiring a mass splitting at the GeV
scale or below, which is not in tension with the requirement
that the mass splitting is large enough to prevent elastic
scattering in the present-day halo (where typical kinetic
energies for a TeV DM particle are of order 1 MeVor less).
In this case, the abundances of χ1 and χ2 remain equal
during freeze-out, as their equilibrium abundances are
equal and their annihilation channels are identical.
Consequently, each of χ1 and χ2 must constitute half the
DM abundance, with the χ2 subsequently decaying to χ1
(this occurs through emission of an off-shell V).
Since p-wave processes can dominate during freeze-

out, to compute the full rate, we will need the Sommerfeld
enhancement factor for higher-l processes. The Som-
merfeld enhancement for multipole l due to a Yukawa
potential can be numerically approximated by [49]

Sl ≈
π

ϵv

sinh ð2πδÞ
cosh ð2πδÞ − cosh ð2πδ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ϵ�ϕ=ϵ

2
v

q
Þ

×
Yl
k¼1

k4ϵ�2ϕ þ 2k2ð2ϵ2v − ϵ�ϕÞ þ 1

k2ϵ�2ϕ þ 4ϵ2v
; ð39Þ

where δ≡ϵv=ϵ�ϕ, ϵv¼vrel=ð2αBÞ and ϵ�ϕ¼ðπ2=6ÞmY=
ðαBmχÞ.
We determine the relic density by numerically solving the

Boltzmann equation (following the method of Ref. [91]) for
the χ1 state and then doubling the result to account for the
contribution from χ2. We integrate the Sommerfeld-
enhanced velocity-dependent cross section over the thermal
velocity distribution (assuming a Maxwell-Boltzmann dis-
tribution) for the DM at each time step. As discussed earlier,
we neglect radiative bound-state formation during freeze-
out. We define overclosure to occur when Ωχh2 > 0.1228,
corresponding to the 2σ upper limit (0.1198þ 2 × 0.0015)
from Ref. [92].
To estimate the signal in indirect detection, we first

compute the Sommerfeld-enhanced cross section for χ1χ1→
hDhD in the Milky Way halo, assuming the local DM
velocity distribution in the Galactic frame is Maxwellian,
fðvÞ¼ ffiffiffiffiffiffiffiffi

2=π
p

v2e−v
2=2σ2=σ3, with σ¼150km=s. This choice

corresponds to vc ¼
ffiffiffi
2

p
σ ∼ 220 km=s, consistent with the

standard halo model [93–96].
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FormhD smaller than the binding energy, we also account
for radiative formation of χ1χ1 bound states (followed by
decay into SM particles). To estimate the bound-state
formation rate via light scalar emission at low velocities,
we add to this rate the analytic low-velocity estimate of
Ref. [56] for the cross section for capture into the ground
state (which dominates the overall capture rate),

σvrel ≈
1

2

πα2B
m2

χ

26π2α2Be
−4

9ϵ�ϕsin
2ðπ= ffiffiffiffiffi

ϵ�ϕ
p Þ : ð40Þ

Note that Ref. [56] derives this expression from the Hulthén
potential, so in Eq. (40), we have replaced mϕ=ðαDmDÞ in
their result with the parameter ϵ�ϕ; the Hulthén potential
with this rescaled mass parameter gives a better approxi-
mation to the Yukawa potential [49]. Furthermore, we have
included an extra factor of 1=2 to account for the fact that
our annihilating particles are identical fermions, and thus
only spin-singlet configurations contribute to this s-wave
process (yielding a factor of 1=4), but the overall cross
section is increased by a factor of 2, as discussed
in Ref. [23].
The experimental sensitivity to this cross section will

depend on the final state to which the hD particles
eventually decay, which in turn depends on mhD and
whether hD mixes with the SMHiggs. However, in general,
hadronic decays will dominate the signal (due to the larger
number of hadronic degrees of freedom), and the photon

spectra from decays to different quark species are rather
similar, as they arise largely from the decays of neutral
pions produced in hadronic showers [97]. Thus, we can
estimate the sensitivity of indirect detection by examining
the constraints set by assuming a bb final state.
In the left panel of Fig. 8, we show limits on the

annihilation cross section to bb for Majorana DM from
the Fermi [51] and H.E.S.S. [52] gamma-ray telescopes,
and sample results for the predicted annihilation rate from
our two models. The H.E.S.S. limit, which dominates for
DM masses above 1 TeV, is based on a study of the region
within 300 pc of the Galactic center and assumes an Einasto
density profile for the dark matter; if the Milky Way
possesses a large core, these limits might be substantially
weakened. The Fermi limits are based on a study of
Milky Way dwarf spheroidal galaxies. The intermediate
step of light-mediator production will further broaden the
photon spectrum, but Ref. [98] demonstrated that the effect
on the constraints is modest for hadronic final states in
which the spectrum is already quite broad. Thus, to obtain
an estimate of the constraints, we simply adopt the cross
section limits for annihilation to bb. We compare the
maximum allowed cross section hσvrelimax to the predicted
cross section scaled by the fraction of DM in the χ1 state,
hσvreliðΩχ1h

2=0.1198Þ2; examples for the pseudo-Dirac
model with yD ¼ 2.5 and the triple-Higgs model with αD ¼
3.0 are shown in Fig. 8, both for mVðm8Þ ¼ 50 GeV.

(a) (b)

FIG. 8. Comparison of predicted DM annihilation rates (including Sommerfeld enhancement and radiative bound-state formation) to
constraints on the b̄b channel from Fermi observations of dwarf galaxies [51] and H.E.S.S. observations of the Galactic center region
[52]. The red solid line indicates the predicted cross section, rescaled by the fraction of DM squared, for thermally produced DM. For the
total DM abundance, we take Ωχh2 ¼ 0.1198 [92]. The red dashed line shows the predicted cross section only, corresponding to the
assumption that the annihilating species constitutes 100% of the DM. The region to the right of the vertical purple line is ruled out by
overproducing the DM abundance. The left panel shows the result for the pseudo-Dirac model with yD ¼ 2.5; the right panel shows the
result for the triple-Higgs model with αD ¼ 3.0.
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In the left panel of Fig. 9, we plot the regions in the
mχ-mhD plane where bound states exist, the Universe is not
overclosed, and indirect limits are not violated. We see that
there are almost no indirect constraints for DM masses
below a few TeV and mhD larger than the binding energy
(when mhD is below the binding energy, there remain
allowed regions, but they must be chosen to avoid resonant
Sommerfeld enhancement). We also plot the regions
allowed by indirect-detection bounds if a nonthermal history
is assumed to ensure that χ1 constitutes 100% of the DM,
withΩχh2 ¼ 0.1198. In this case, the indirect constraints are
much more stringent, but the bulk of the region where mhD
exceeds the binding energy is still unconstrained.

2. Triple-Higgs model

If the vector bosons other than V8 are all at a heavy mass
scale, then the dominant DM annihilation process (not
involving bound states) both during freeze-out and in the
present day is tree-level annihilation to two V8 bosons. This
channel is available for χiχi, where i ¼ 1, 2, 3; if σi denotes
the cross section for χiχi → V8V8, then we have

σ1vrel ¼ σ2vrel ¼
πðαD=12Þ2

m2
χ

¼ 1

16
σ3vrel: ð41Þ

This channel furthermore experiences an attractive s-wave
Sommerfeld enhancement, which for the purposes of this
estimate we approximate using Eq. (12).
Potential exchanges of V8 bosons, which have large rates

compared to processes involving the heavier gauge bosons,
do not couple the χiχi and χjχj states for i ≠ j. Likewise,
there is no (tree-level) coannihilation to the V8V8 final
state. Thus, we can treat the χi species as evolving
independently from each other, annihilating only with their
own antiparticles, each experiencing its own long-range
attractive Yukawa potential due to V8 exchange. The
effective couplings are αD=12 for χ1 and χ2 and αD=3
for χ3.
However, one important question is whether the different

χi fields truly evolve independently and, in particular,
whether decays and scatterings that interconvert between
the χi states are rapid enough to keep the various state
populations coupled during freeze-out. An example process
is χ1χ1 ↔ χ3χ3 scattering via t-channel V4 or V5 exchange
(see Appendix C). As all such processes involve the heavier
gauge bosons, they are slow compared to annihilation
into a V8V8 final state near the time of freeze-out. For the
χ1χ1 → χ3χ3 process, the cross section for this scattering
process is approximately σχ1χ1→χ3χ3 ∼ α2Dm

2
χ=M4, where

M ∼m4;5. Compared with χiχi → V8V8 ∼ α2D=m
2
χ , the rate

(a) (b)

FIG. 9. Indirect-detection and overclosure limits on the mχ-mhD plane of the pseudo-Dirac model (left) and the mχ-m8 plane of the
triple-Higgs model (right). Shaded regions indicate excluded regions where no bound states exist (green), the cosmological DM
abundance is overproduced (purple), and the estimated gamma-ray signal exceeds bounds from the Fermi and H.E.S.S. telescopes
(orange), for yD ¼ 2.5 for the pseudo-Dirac model and αD ¼ 3.0 for the triple-Higgs model. In the region below the dashed black line,
bound-state formation can proceed in the Milky Way halo through emission of an on-shell hD or V8 and contributes to the indirect-
detection signal. Dashed, dotted-dashed, and dotted purple lines indicate the more stringent overclosure limits for smaller values of the
coupling. In the left panel, the region below the solid red line is excluded by gamma-ray bounds if the DM candidate of the model is
assumed to be symmetric and to comprise 100% of the DM (from a nonthermal origin). In the right panel, for the case in which we
assume that the DM candidate comprises 100% of the DM, the entire parameter space for αD ¼ 3.0 is excluded.
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of processes that scatter one type of fermion into another is
suppressed by a factor of ∼m4

χ=M4. Thus, the process
χ1χ1 → χ3χ3 freezes out before the χ1χ1 → V8V8 and is
therefore not relevant to determining the relic abundance.
This estimate assumes that all of the gluons other than V8

are more massive than the DM; if this assumption breaks
down, the three dark matter–like populations will no longer
evolve independently, and freeze-out will be modified.
Under this assumption, we solve separate Boltzmann

equations for each of the χi species (accompanied by their
antiparticles) and require that the resulting mass density
2ðmχ1nχ1 þmχ2nχ2 þmχ3nχ3Þ matches the cosmological
density of dark matter. The masses of the three states
are assumed to be equal, with mass splittings small
compared to the temperature at freeze-out. The greater
annihilation rate of χ3χ3 causes its abundance to be
depleted faster than χ1χ1 and χ2χ2.
To estimate the late-time indirect-detection limits, we

proceed as for the pseudo-Dirac case above and present our
results in the right-hand panels of Figs. 8 and 9. The
allowed cross section for DM annihilation is doubled as the
DM χ1 is a Dirac fermion in this case. Since there is an
unsuppressed s-wave annihilation channel, there are useful
constraints from indirect detection even when radiative
bound-state formation is kinematically forbidden. To esti-
mate the contribution from bound-state formation, we
numerically calculate the cross section for capture into
the ground state by dipole photon emission and also add the
contribution from an s-wave initial state transitioning into
the first excited state by the emission of a dipole photon.
The former process dominates when the mediator mass can
be neglected [23] but is suppressed in the very-low-velocity
regime as it corresponds to a p-wave initial state [99]; thus,
we add the latter process to properly include the leading
contribution at very small velocities. We follow the
numerical method described in Ref. [23].
Note that in this case the scenario in which χ1 constitutes

100% of the DM at late times is essentially completely
excluded by indirect detection, for αD ¼ 3.0 and mχ below
10 TeV; such a scenario requires a nonthermal origin for the
DM,as the annihilation cross section iswell above the thermal
value and would deplete the DM density efficiently during
freeze-out. If nonthermal processes produce more DM at late
times, then the large bare annihilation cross section and
accompanying Sommerfeld enhancement (and possibly radi-
ative bound-state formation) give rise to very strong indirect-
detection signals, as shown in the right panel of Fig. 8.
Both the overdepletion of the DM density and the large

direct-detection signals may be avoided if the Dirac-
fermion DM possesses some tiny asymmetry, similar to
the baryon asymmetry of the SM. The large annihilation
cross sections found in these models can readily deplete the
DM abundance to the point where the asymmetry sets the
residual relic density, and then the indirect-detection signals
are suppressed by the absence of the symmetric component.

Note that if no such asymmetry is present indirect-detection
limits may also pose challenges for sub-GeV DM and
mediators as studied by Ref. [14]; thermal relic DM can be
quite generically excluded for sub-GeV mediators and sub-
TeV DM [100].
This behavior does not occur for the pseudo-Dirac model

because the principal annihilation channel is p-wave sup-
pressed; this both makes it possible for TeV-scale χ1
particles to constitute 100% of the DM with a thermal
history and ensures that large regions of parameter space
that are not excluded by current indirect-detection bounds
remain (although bound-state formation can provide indi-
rect-detection signals, as in Ref. [56]).

V. DISCUSSION

The resonant production of dark sector bound states at the
LHC can be an important complementary search channel to
themissing energy andmediator resonance searches. Unlike
amediator resonance search, a bound-state resonance search
directly probes the properties of the DM. Such a search can
also be more sensitive than mediator resonance searches
when the mediator decays primarily to invisible DM
particles, and superior to a missing energy search strategy
at high DM masses. In addition, a bound-state resonance
search can be more sensitive than a missing energy search
strategy at high DM masses.
We have studied the general features of models that can be

probed by bound-state resonance searches at the LHC while
remaining consistent with other powerful experimental con-
straints. These models generally require a sufficiently strong
coupling to a light mediator that can support the bound state
and a heavy mediator that couples the dark sector to the SM.
We also carefully take into account the mixing between the
heavy mediator and the dark matter bound state. Bound-state
decays into the light mediator should also be suppressed to
allow for a significant partial width into SM particles.
These requirements must be reconciled with constraints

from both direct- and indirect-detection experiments. Spin-
independent direct-detection cross sections can be sup-
pressed by having only loop-level interactions between the
dark sector and nucleons, which can result from an off-
diagonal coupling between the SM and two DM states with
a mass splitting between them. Constraints from gamma-
ray experiments and overclosure must be carefully con-
sidered, taking into account Sommerfeld enhancement due
to the presence of a light mediator and radiative bound-state
formation both during freeze-out and in the present day.
The SUð2ÞL minimal DM models possess many of the

properties that we have discussed above, but pure wino or
Higgsino DM chargino bound states have a production
cross section that lies well below the sensitivity of dilepton
resonance searches, although DM particles in larger rep-
resentations of SUð2ÞL with a large electric charge forming
a deeply bound electromagnetic bound state can potentially
be discovered.
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We propose two dark sector models with kinetic mixing
into the SM that contain bound states that can be probed
effectively through bound-state resonance searches at the
LHC, while remaining consistent with direct- and indirect-
detection constraints. The pseudo-Dirac model contains
two Weyl fermions with a small mass splitting between
them, capable of forming bound states through a light
Higgs mediator, while the triple-Higgs model is an SU(3)
gauge theory with a single Dirac fermion in the funda-
mental representation, with all of the properties required for
a viable model being generated by symmetry breaking of
the gauge group. We study the LHC phenomenology of
these models and find that bound-state searches are
complementary to both missing energy and vector mediator
resonance searches and are particularly powerful at high
DM masses. A simple rescaling of our constraints indicates
that future 27 TeV or 100 TeV pp colliders could
potentially probe DM bound states with masses in the
Oð10Þ TeV range.
We find that these models naturally avoid overclosure of

the Universe and (assuming a thermal history) are uncon-
strained by indirect-detection searches in broad swaths of
parameter space. This result holds despite the presence of
the bound state implying model-independent large
enhancements to the low-velocity annihilation rate. The
indirect limits are most easily satisfied when radiative
capture to the bound state in the local DM halo is
kinematically forbidden, because the mass of the mediator
supporting the bound state exceeds the binding energy.
If the bound state–forming species is required to con-

stitute 100% of the DM, through a nonthermal history, but
is symmetric in the present day, then the indirect searches
are sufficient to rule out almost all of the parameter space of
interest in the LHC bound-state resonance search for the
triple-Higgs model; the pseudo-Dirac model evades this
fate through a late-time velocity suppression of its anni-
hilation rate. When a DM species has a greater-than-
thermal annihilation cross section but still constitutes
100% of the observed DM density, a viable model that
can be first detected by resonance searches at the LHC
should possess some suppression to the annihilation cross
section at late times, due, e.g., to a dominant p-wave
annihilation channel or a small primordial asymmetry.
To summarize, dark sectors with bound states can be

probed at the LHC through resonance decays to SM
particles. Models with multiple force carriers and DM-like
states, in which the DM scatters inelastically off SM quarks
at tree level, can naturally give rise to a sufficiently large
production cross section while evading direct-detection
constraints. The presence of a light mediator, needed to
support the bound state, modifies freeze-out and leads to
stringent indirect-detection limits; however, these con-
straints leave a wide region of parameter space open, while
suggesting a preferred mass spectrum in which the media-
tor mass exceeds the binding energy. DM models with

bound states possess a rich phenomenology, allowing
complementary probes from many different experimental
directions.
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APPENDIX A: BOUND-STATE MATRIX
ELEMENTS

The Feynman diagram for vector-mediated bound-state
formation from qq interactions is shown in Fig. 1. To
calculate the matrix element associated with bound-state
formation, we adopt the nonrelativistic QCD formalism
used in Ref. [10]; see also Refs. [14,38]. Let the amplitude
associated with the production of a pair of free dark matter
particles from qq, with the external spinors for the DM
fermions amputated, be denoted by A0. The corresponding
amplitude for the formation or decay of a nonrelativistic,
spin-triplet, L ¼ 0 bound state B is then given by

AB ¼ ϵαTr½ΠαA0�; ðA1Þ

where ϵα is the polarization vector associated with a
massive spin-1 particle. The mass of B is taken to be
mB ¼ 2mχ .Πα is a projection operator that gives the correct
final spin state of the DM particles and accounts for the
wave function overlap associated with the bound state,
given by

Πα ¼ ψ�ð0Þffiffiffiffiffiffiffiffiffi
8m3

χ

q ð=p −mχÞγαð=pþmχÞ; ðA2Þ

where p is the final 4-momentum of each of the two DM
particles and ψð0Þ is taken to be the hydrogenlike ground-
state wave function,
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jψð0Þj2 ¼ α3Bm
3
χ

8π
; ðA3Þ

where αB is the coupling constant between χ and the
bound-state mediator. We stress here that in a generic
model with multiple dark sector mediators, the mediator
that produces the bound state need not be the same as the
mediator that binds the dark matter (see Fig. 1).

APPENDIX B: DETAILS OF KINETIC MIXING

The kinetic mixing term in both the pseudo-Dirac U(1)
model and the triple-Higgs SUð3ÞD model is of the form

L ⊃ −
1

4
VμνVμν −

ϵ

2
VμνBμν −

1

4
BμνBμν; ðB1Þ

where Vμν is the dark sector gauge field strength. To
diagonalize this, we define the new field B0

μ ¼ Bμ þ ϵVμ

and thus B0
μν ¼ Bμν þ ϵVab:

μν , where “ab.” indicates the
Abelian part of the field strength tensor. All terms of
Oðϵ2Þ are neglected here. Then,

L ⊃ −
1

4
VμνVμν −

1

4
B0
μνB0μν −

ϵgD
2

fabcVb
μVc

νB0μν: ðB2Þ

The last term is an additional interaction that is unimportant
in the diagonalization. In terms of the new field, we have
the SM fields

Zμ ¼ cWW3
μ − sWBμ ¼ cWW3

μ − sWðB0
μ − ϵVμÞ

¼ Z0
μ þ ϵsWVμ;

Aμ ¼ sWW3
μ þ cWBμ ¼ sWW3

μ þ cWðB0
μ − ϵVμÞ

¼ A0
μ − ϵcWVμ; ðB3Þ

where we have defined Z0
μ¼cWW3

μ−sWB0
μ and A0

μ ¼
sWW3

μþcWB0
μ. In terms of these new fields, the mass

terms for Z and V are

L ⊃
1

2
m2

ZZμZμ þ 1

2
g2v2VμVμ

¼ 1

2
m2

ZZ
0
μZ0μ þ ϵsWm2

ZZ
0
μVμ þ 1

2
g2v2VμVμ: ðB4Þ

Diagonalizing this and defining r≡mZ=mV [we neglect
the Oðϵ2Þ shift in the masses], we get the mass eigenstates
to first order in ϵ (marked by tildes),

Z̃μ ¼ Z0
μ − r2

ϵsW
1 − r2

Vμ;

Ṽμ ¼ Vμ þ r2
ϵsW
1 − r2

Z0
μ; ðB5Þ

with A0 being the massless mode. With this, we see that the
original SM fields become

Zμ ¼ Z̃μ þ
ϵsW
1 − r2

Ṽμ; ðB6Þ

Aμ ¼ A0
μ − ϵcWṼμ; ðB7Þ

and

Vμ ¼ Ṽμ − r2
ϵsW
1 − r2

Z̃μ: ðB8Þ

This is the result shown in Eq. (17).

APPENDIX C: DETAILS OF THE
TRIPLE-HIGGS MODEL

Figure 10 shows all the gauge-fermion-fermion inter-
action vertices in the triple-Higgs model. These vertices are
important in the discussion of the stability of the non-DM
fermions and thermal freeze-out.
In the triple-Higgs model of Sec. III D, H1 and H2

acquire a VEV v1 and v2 in the 1- and 2-directions,
respectively, at a scale above the bare Dirac mass mχ .
This breaks the gauge symmetry down to a residual U(1).
Subsequently, this remaining symmetry group is broken
at a lower scale than mχ by H8, which acquires a VEV
given by

hH8i ¼

0
B@

v8 cos θ

0

v8 sin θ

1
CA; ðC1Þ

FIG. 10. Gauge-fermion-fermion vertices for the triple-Higgs
model.
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with v8 ≪ mχ . This symmetry-breaking pattern can be
achieved with the following Higgs potential, which obeys
the Z2 symmetry mentioned above:

VðH1;H2;H8Þ¼
X
i¼1;2

λiðHa
i H

a
i −v2i Þ2þλ8ðH†

8H8−v28Þ2

þλ12ðHa
1H

a
2Þ2þ

1

Λ2
H

X
i¼1;2

ðH†
8τ

aH8Ha
i Þ2:

ðC2Þ

Note that terms like Ha
1H

a
2 and Ha

1H
a
2H

†
8H8 are forbidden

by the Z2 symmetry that holds separately for H1 and H2.
The last two terms forbid a VEV in the second component
of H8, which would make H†

8τ
aH8 nonzero for a ¼ 1. This

symmetry-breaking pattern produces the mass hierarchy for
the dark gluons and the mass splitting between the Dirac
fields in χ, which were discussed in the main text.
Note that the symmetry-breaking pattern has been

chosen for simplicity, and not because fine-tuning is
required. If the VEVs of H1 and H2 are not orthogonal,
but now lie in some plane in color space that we can take to
be the 1- and 2-components without loss of generality, the
mass hierarchy of the dark gluons remains unchanged as
long as the VEVs are not close to parallel. We must now
consider both V1

μνBμν and V2
μνBμν in the mixing with the

SM, but as we point out in the footnote after Eq. (25), this
does not affect the phenomenology significantly, since V1

and V2 couple in the same manner to the dark fermions.
Allowing a nonzero second component λ in hH8i also

does not alter the mass hierarchy of the gluons as long as
λ ∼ v8 ≪ v1; v2. λ introduces mixing between χ1 and χ2 so
that the mass splitting is altered and flavor eigenstates are
no longer mass eigenstates; however, V1 and V2 couple in a
similar manner to both χ1 and χ2, and so the phenomenol-
ogy is once again not altered significantly, provided the
mass hierarchy has a lowest-energy state that is made up of
χ1 and/or χ2. For the rest of the discussion, wewill therefore
only consider the special case introduced in the main body
of the paper.
After symmetry breaking, the kinetic mixing terms with

the SM become

Lmix ¼ −
ϵ

2
V1
μνBμν −

ϵ8
2
½cos2θV3

μν þ sin 2θV4
μν�Bμν

−
ϵ8
2
ffiffiffi
3

p ðcos2θ − 2sin2θÞV8
μνBμν; ðC3Þ

where we have defined ϵ8=2≡ v28=Λ2
8, taking ϵ8 ≪ ϵ ≪ 1.

The first term represents the kinetic mixing between dark
sector and the SM discussed in the main text, while
the remaining mixing terms are highly suppressed but
nonzero for generic values of θ; their existence guarantees
that the gluons V3, V4, and V8 decay to SM particles over
cosmological time scales.

With the m8 < 2mχ < m1;…;7 mass hierarchy, the only
stable dark sector particle is χ1, since we can assign a
conserved dark baryon number to the fermions and χ1 is the
lightest dark fermion. The heavy gluons Vi for i ¼ 1;…; 7
can decay into a pair of dark fermions since their masses
exceed 2mχ . Decays into a pair of dark fermions for Vi with
i ¼ 2, 5, 6 and 7 occur promptly for an Oð1Þ coupling gD.
For V8, which mixes directly into the SM and can decay

into a pair of SM fermions, its lifetime is approximately

τ8 ∼
�
10−11

ϵ8

�
2
�
100 MeV

m8

�
× 10 s: ðC4Þ

Since V8 couples the dark sector to the SM at tree level,
ϵ8 must be sufficiently small to evade stringent direct-
detection constraints. Following the approximate limits
on the couplings derived in Sec. II D, we require
ϵ28g

2
De

2 ≲ 10−5m4
8mχ=TeV5, and for m8 ≳ GeV, we require

ϵ8 ≲ 10−8. Any choice of 10−11 ≲ ϵ8 ≲ 10−8 therefore
ensures that V8 decays to SM particles well before big
bang nucleosynthesis (BBN).
For the fermions, both the χ2 and χ3 fermion can decay to

χ1ff, where f is a SM fermion through an off-shell V1 and
V4, respectively. The decay lifetimes for the heavier dark
fermions are approximately

τχ2 ∼
�
0.1
ϵ

�
2
�

m1

TeV

��
TeV
mχ

�
5
�

10−6

Δmχ=mχ

�
5

× 1 s;

τχ3 ∼
�
0.1
ϵ8

�
2
�

m4

TeV

��
TeV
mχ

�
5
�

10−6

Δmχ=mχ

�
5

× 1 s; ðC5Þ

where Δmχ ≡ v28=2Λm is the mass splitting between χ2, χ3,
and χ1. For ϵ8 to be small enough to evade direct-detection
constraints, χ3 can only decay significantly after BBN, so
some care must be taken to ensure that such a long lifetime
is not in contradiction with cosmic microwave background
(CMB) [104] or BBN constraints [105–107]. Given the
suitable range of ϵ8 found earlier, 10−11 ≲ ϵ8 ≲ 10−8, it is
easy to find Δmχ ≳ 10−6 so that χ3 decays before recombi-
nation (∼1013 s), avoiding the CMB limits. On the
other hand, the BBN limits are only applicable when the
fraction of the energy density released in the decay of
χ3 is greater than 10−6Ωχh2. Keeping in mind that after
freeze-out Ωχ3=Ωχ1 ∼ 1=16 owing to the larger coupling of
χ3 to V8, we can avoid the BBN constraints with
Δmχ=mχ ≲ 16 × 10−6 ∼ 10−5. This limit should relax fur-
ther in some cases given a more careful calculation, since a
larger mass splitting rapidly decreases τχ3 , which signifi-
cantly weakens the BBN constraints.
For sufficiently small values of ϵ8, the V8 decay width

into SM particles may be smaller than the Hubble rate
during the freeze-out of χ1, potentially taking it out of
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thermal equilibrium with the SM particles. However, we
have checked that χ1 stays in kinetic equilibrium with the
SM through the χ1e� → χ2e� scattering process, while V8

stays in kinetic equilibrium with χ1 even long after the
freeze-out of χ1 through χ1V8 → χ1V8. Number-changing
processes such as χ1V8 → χ1V8V8 also do not freeze out
until significantly later. These facts guarantee that the V8

bath remains at the same temperature as the SM with zero
chemical potential and thus follows the standard equilib-
rium distribution with zero chemical potential through the
freeze-out of χ1.

APPENDIX D: DECAY WIDTHS

Table I shows the perturbative partial decay widths of the
dark sector bound state B in both models into SM final
states, through mixing with the SMmediator V. The bound-
state wave function is given in Eq. (34). In addition, Table II
shows the perturbative partial decay widths of the SM
mediator V into all possible final states.

APPENDIX E: BOUND-STATE FORMATION VIA
INITIAL-/FINAL-STATE RADIATION

In addition to the resonant formation process that has
been our main focus in the body of this work, bound states
can also form in conjunction with radiation of other
particles in the initial or final state. This process is very
important in the context of electron accelerators in which
the center-of-mass energy of the colliding particles is fixed
and does not overlap the bound-state resonance (as dis-
cussed, e.g., in Refs. [14,108]), and so the resonant signal is
absent.
This process could also be critical if the decays of spin-0

bound states were much more observable than those of
spin-1 bound states and the mediator with the SM were a
vector (or if the spin-1 states were more observable and the
mediator were a scalar); emission of additional particles
would then allow the production of the rarer but more
observable bound state. However, in the examples we have
studied, the latter situation does not hold; indeed, the spin-0
s-wave bound states can generally decay into light

TABLE I. Table of perturbative partial widths for the bound state B in both the dark sector models. Nm ¼ 4 for the pseudo-Dirac
model, and Nm ¼ 1 for the triple-Higgs model; this factor accounts for differences in the type of fermion in each theory, as well as the
value of the coupling between the DM and the SM mediator. Nc ¼ 3 for quarks and 1 otherwise; gV ¼ gV;Z ≡
f0.25;−0.0189; 0.0959;−0.1730g and gA ¼ gA;Z ≡ f0.25;−0.25; 0.25;−0.25g are the vector and axial couplings to the Z boson
for fνe; e; u; dg and for the other two generations, respectively. Q is the electric charge of each species, and α is electromagnetic fine
structure constant; ΓV is the width of the SMmediator in each model (V in the pseudo-Dirac model and V1 in the triple Higgs),mH is the
mass of the SM Higgs, andmhD is the mass of the dark sector Higgs in the pseudo-Dirac model. The last expression is only applicable to
the pseudo-Dirac model.

Decay process ΓðB→XÞ
αDjψð0Þj2

B → ff̄ 16πNmNcr4αϵ2m2
χ ½ðc2WQðm2

Z−4m
2
χÞþ4gVm2

χ Þ2þ16g2Am
4
χþr2Γ2

Vm
2
Zðg2Vþg2AÞ=ð1−r2Þ2�

3c2Wðm2
Z−4m

2
χÞ2½ðm2

Z−4r
2m2

χÞ2þr2Γ2
Vm

2
Z �

B → WþW− 4πNmr4c2Wαϵ2ðm2
χ−m2

WÞ3=2ð4m4
χþ20m2

χm2
Wþ3m4

WÞ½m4
Zþr2Γ2

Vm
2
Z=ð1−r2Þ2�

3mχm4
Wðm2

Z−4m
2
χÞ2½ðm2

Z−4r
2m2

χÞ2þr2Γ2
Vm

2
Z �

B → Zh0 πNmr4αϵ2½m4
Zþ2m2

Zð20m2
χ−m2

HÞþðm2
H−4m

2
χÞ2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m4

Z−2m
2
Zðm2

Hþ4m2
χÞþðm2

H−4m
2
χÞ2

p
½16m4

χþr2Γ2
Vm

2
Z=ð1−r2Þ2�

192c2Wm4
χðm2

Z−4m
2
χÞ2½ðm2

Z−4r
2m2

χÞ2þr2Γ2
Vm

2
Z �

BpD → VhD παD½m4
Vþ2m2

V ð20m2
χ−m2

hD
Þþðm2

hD
−4m2

χÞ2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m4

V−2m
2
V ðm2

hD
þ4m2

χ Þþðm2
hD

−4m2
χÞ2

p
3m4

χðm2
V−4m

2
χÞ2

TABLE II. Table of perturbative partial widths for the SM mediator V for both the dark sector models. Nc ¼ 3 for quarks
and 1 otherwise. gV ¼ gV;Z − c2Wð1 − r2ÞQ and gA ¼ gA;Z, where gV;Z ≡ f0.25;−0.0189; 0.0959;−0.1730g and gA;Z ≡
f0.25;−0.25; 0.25;−0.25g are the vector and axial couplings to the Z boson for fνe; e; u; dg and for the other two generations,
respectively, and Q is the electric charge of the fermion. r≡mZ=mV , x≡mW=mV , and y≡mH=mV .

Decay process Partial width

V → χχ̄ g2D
12π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

V − 4m2
χ

q
V → ff̄ Nce2ϵ2

12πc2Wð1−r2Þ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

V − 4m2
f

q
½ðg2V þ g2AÞ þ

2m2
f

m2
V
ðg2V − 2g2AÞ�

V → WþW− ϵ2e2c2Wr4mV

192πð1−r2Þ2
ð1−4x2Þ3=2

x4 ð1þ 20x2 þ 12x4Þ
V → Zh0 ϵ2e2mV

192πc2Wr2ðr2−1Þ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðy2 − 1Þ2r4 − 2r2ðy2 þ 1Þ þ 1

p
½r4ðy2 − 1Þ2 − 2r2ðy2 − 5Þ þ 1�
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mediators and are thus likely to be more difficult to detect
than their spin-1 counterparts.
Since initial- and final-state radiation inevitably involves

extra powers of the coupling relative to the resonant case, we
expect processes of this type to be suppressed relative to the
resonant production. However, onemight wonder whether or
not threshold enhancements to the production and interaction
cross section for unbound but slow-moving DM particles, in
the presence of a lightmediator, couldmodify this conclusion
and lead to a large contribution from the threshold region.
Note that this is a very different parameter regime to that

considered for muonium production in Ref. [108] and for
light darkonium production in Ref. [14], in which the beam
energy is presumed to be large relative to the resonance
energy, and the extra particle(s) emitted as initial-/final-
state radiation carry away much of the beam energy;
it is more similar to the situation in indirect detection, in
which slow-moving DM particles may radiatively capture
into a bound state, i.e., emit a light particle carrying away
enough energy to form a bound state (see, e.g.,
Refs. [46,55]). The rate for such radiative bound-state
formation scales as 1=v close to threshold, for a massless
mediator. However, we will show that in the case in which
the particles are produced near threshold and then form a
bound state this 1=v scaling is canceled out by the small
phase space for the particle production near threshold.
Similar contributions to bound-state formation from soft

gluon emission have been studied in the context of
quarkonium formation using nonrelativistic effective field
theory techniques [109,110]. In that case, p-wave color-
singlet quarkonia can be formed either directly or through
an intermediate s-wave color-octet pair of heavy quarks;
relatedly, the s-wave quarkonium state jQQi can be
described as having a small Oðv2Þ admixture of a Fock
state jQQgi containing an additional soft gluon. This
approach suggests that the admixture term can be neglected
to leading order when dealing with s-wave bound states and
should not experience large enhancements near threshold.
To see explicitly how this works in our case, note that we

can write the matrix element for production of the bound
state (plus a light mediator with momentum ⃗l), via an
intermediate state of two near-threshold (i.e., highly non-
relativistic) but unbound DM particles, as

iMði→ fÞ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2M
ð2mχÞð2mχÞ

s Z
d3p1

ð2πÞ3
2πδðEin−Ep1

−Ep2
Þ

ð2Ep1
Þð2Ep2

Þ

×
Z

d3a
ð2πÞ3 ψ̃

�
p1;p2

ða⃗ÞiMði→ a⃗1; a⃗2Þ

×
Z

d3b
ð2πÞ3 ψ̃p1;p2

ðb⃗Þ×
Z

d3q
ð2πÞ3 ψ̃

�
Bðq⃗Þ

× iMðb⃗1; b⃗2 → q⃗1q⃗2l⃗Þ: ðE1Þ
Here,Mði → a⃗1; a⃗2Þ is the hard matrix element describing
the production of two free DM particles with momenta

a⃗1; a⃗2 from the initial state i, and likewise, Mðb⃗1; b⃗2 →
q⃗1q⃗2 ⃗lÞ is the hard matrix element describing the radiation of
a light mediator with momentum ⃗l from the DM-DM state
with particle momenta b⃗1; b⃗2, to produce final-state DM
particles with momenta q⃗1; q⃗2. The wave functions convert
the plane-wave states to the full intermediate and final
states accounting for potential effects. p⃗1 and p⃗2 act as
labels on the intermediate state with momentum-space
wave function ψ̃p1;p2

, describing the momenta of the
constituent particles at large separation. ψ̃B denotes the
momentum-space wave function of the bound state (which
in principle is labeled by the quantum numbers n, l, m; we
suppress these indices).mχ is the DMmass andM ≈ 2mχ is
the bound-state mass.
In the nonrelativistic limit in which the potential is

neglected, the leading-order matrix element for light vector
boson radiation from one of a pair of heavy fermions (with
gauge coupling gB and fermion masses m1, m2) is given by

iMðb⃗1; b⃗2 → q⃗1q⃗2 ⃗lÞ
¼ igBϵ⃗�ðlÞ · ½ðb⃗1 þ q⃗1Þ2m2ð2πÞ3δð3Þðb⃗2 − q⃗2Þ
− ðb⃗2 þ q⃗2Þ2m1ð2πÞ3δð3Þðb⃗1 − q⃗1Þ�: ðE2Þ

Inserting this expression into Eq. (E1), setting the masses
of the two heavy fermions equal, m1 ¼ m2 ¼ mχ ; working
in relative momentum coordinates; and choosing the
center-of-mass frame, we obtain

iMði→fÞ¼2igB
ffiffiffiffiffiffiffi
2M

p
ϵ⃗�ðlÞ ·

Z
d3p1

ð2πÞ3
2πδðEin−Ep1

−Ep2
Þ

ð2Ep1
Þð2Ep2

Þ

×

�Z
d3a
ð2πÞ3 iMði→ a⃗1; a⃗2Þψ̃�

p1;p2
ða⃗Þ
�

×
Z

d3q
ð2πÞ3 ψ̃

�
Bðq⃗Þq⃗ðψ̃p1;p2

ðq⃗þ l⃗=2Þ

þ ψ̃p1;p2
ðq⃗− l⃗=2ÞÞ: ðE3Þ

The integral over d3q on the last line also appears in the
matrix element for radiative bound-state formation and
has been previously computed in the nonrelativistic
limit for massless vector mediators [23,111]. In the near-
threshold regime, l≲ α2mχ (as the binding energy must
provide the necessary energy to radiate the mediator),
and the l dependence of the integral can be neglected; in
this case, the integral simply scales as 1=

ffiffiffiffi
p

p
, where

p⃗ ¼ ðp⃗1 − p⃗2Þ=2. (This factor, when squared, is respon-
sible for the 1=v scaling of the radiative bound-state
formation cross section.)
If we further suppose that the hard matrix element for

production of the intermediate state from the initial state is
independent of the final-state relative momentum a⃗, i.e., we
can write iMði → a⃗1; a⃗2Þ ¼ iMði → DM;DMÞ, then the
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integral over d3a simplifies to give iMði → DM;
DMÞψ�

p1;p2
ð0Þ, where ψ denotes the position-space wave

function. The wave function at the origin in a Coulomb-like
potential scales as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αBmχ=p

p
(e.g., Ref. [111]), which yields

the usual Sommerfeld enhancement when squared.
Putting these pieces together and performing the phase-

space integral over
R
d3p1, writing Ep1

¼Ep2
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

χþjp⃗j2
q

since we are working in the c.m. frame, we find that
(keeping only scaling relationships, dropping order-1
factors)

iMði → fÞ ∼ gB
ffiffiffiffiffiffi
mχ

p
iMði → DM;DMÞ

×
1

E2
in

Z
d3p
ð2πÞ3 2πδ

�
Ein − 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

χ þ jp⃗j2
q �

×
ffiffiffiffiffiffiffiffiffiffiffi
αBmχ

p

r ffiffiffiffi
1

p

s

∼Mði → DM;DMÞgBmχ

ffiffiffiffiffiffi
αB

p
Ein

∼Mði → DM;DMÞαB: ðE4Þ

Note that, as mentioned previously, the phase-space inte-
gral over the intermediate-state momentum d3p has can-
celed out the 1=p scaling from the wave functions.

Thus, we see that the bound-state production
cross section through this channel should scale as
jMði → DM;DMÞj2α2B, multiplied by a two-body phase-
space factor. Since the momenta in the final state are small,
of order l ∼ α2Bmχ, the overall scaling of the cross section
with the couplings is α4B × jMði → DM;DMÞj2.
By comparison, the resonant production cross section

scales as jMði → DM;DMÞj2α3B, where the αB depend-
ence arises from the B wave function. Thus, the rate to
produce an extra light mediator by emission from a near-
threshold intermediate state, in conjunction with the bound-
state formation, is suppressed by one power of αB overall.
This is the same suppression one would naively expect for
emission of a hard photon from the initial or final state, with
no small phase-space factors or threshold enhancements.
We self-consistently neglect all such diagrams in the body
of this work.
Here, we have neglected the mediator mass mY in

estimating the scalings; in particular, the intermediate-state
position-space wave function may be steeply peaked near
the origin for special values of mY , corresponding to the
presence of near–zero energy bound states (e.g., Ref. [45]).
However, it seems likely that any apparent enhancement
from this behavior can be reinterpreted as resonant capture
into a bound state with near-zero binding energy, which is
already accounted for in our formalism. We leave a more
detailed study of the resonant regime to future work.
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