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In relativistic quantum field theory particles of half-integer spin must obey Fermi-Dirac statistics. Their
quantum operators must anticommute at spacelike separation in contrast to commuting physical
observables. We show that Fermi-Dirac spin 1=2 operators can be emergent in a fully commuting field
theory forming directed strings and loops of spin 0 and 1 constituents, reproducing massive Dirac dynamics
with background fields. Such underlying description may violate relativistic invariance but there are no
manifest interactions at a distance and rotation symmetry remains preserved. We show that under some
constraints on the model there exists a well-defined ground state—Fermi sea that it is stable—fermions
cannot convert to bosons.
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I. INTRODUCTION

Fully relativistic quantum field theories, such as electro-
dynamics imply the existence of two kinds of fields:
commuting bosons (Bose-Einstein operators) and anticom-
muting fermions (Fermi-Dirac operators). The former are
realized for integer spinswhile the latter for half-integer. The
proof of spin-statistics correspondence requires relativistic
invariance and energy positivity [1–5] while relativity is a
postulate imposed on quantum field theories [6]. However,
physically observable quantities correspond only to com-
muting operators so fermion operators are solely elements of
mathematical descriptions—they are not directly observable
(unless one takes two fermion operators forming usually a
nonlocal object). The division into fermions and bosons
remains in all modern theories, including standard model,
string or superstring and M-theory [7–10].
Some time ago it has been proposed a theory reducing

fermions to composite states of bosons—string-nets—at
very high energy/momentum scale [11,12]. The rough idea
is that the fermions are emergent as endpoints of strings
fluctuating in empty space. Even sacrificing relativity this
concept is an interesting alternative to standard string
theories, where fermions are always fundamental—not
emergent (even if supported by spin-statistics theorem
and supersymmetry). Although the idea is an attractive
alternative direction of progress in quantum field theory

including quantum gravity [13,14], the so far developed
models (mostly in 2 spatial dimensions, usually on lattice)
fail to address clearly many important issues:

(i) symmetry (relativity, rotation in 3D)
(ii) emergence of the spin 1=2 out of spin 0 and 1

constituents and antisymmetry
(iii) recovering effective massive fermions
(iv) depth of the Fermi sea
(v) collapse of fermions to bosons
(vi) background field
In this paper, we will construct a general family of

models, addressing these points, identifying the parameter
range of validity. A general property of the models
presented here is lack of full relativistic invariance. It is
known that relativity considerably reduces available
composite theories [15]. However, this cannot invalidate
our models because the models are still local in the sense of
lack of action at a distance and some further improvements
like extra dimensions may restore full invariance. The
locality means here that the Hamiltonian connects configu-
rations differing only in a finite range (i.e., Ĥ ¼ R

dr⃗Hðr⃗Þ
whereHðr⃗Þ depends only on the part of the configuration in
a generally bounded distance from r⃗). We will work in 3
spatial and 1 temporal dimension. Instead of action and path
integrals [16], being often the starting point for usual strings,
our whole model is Hamiltonian-based. As in earlier works,
the basic object remains a directed string but we will show a
correct construction of a Hamiltonian which preserves
rotation symmetry SOð3Þ and recovers effective low-energy
Dirac dynamics. The spins 1=2 at the string endpoints
combine through spinless singlet states along the string to
integer-spin structures, forming an SUð2Þ Wilson line/loop
[17]. Therefore the only constituents are here integer spin
bosons. TheHamiltonian couples locally different strings by
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a kind of small sheet/plaquette terms [18], remainingSOð3Þ-
invariant. Special terms of the Hamiltonian form the bottom
of the Fermi sea and prevent from transition into a bosonic
state, i.e., collapse to the symmetric state of lower energy.
Incorporation of background potentials allows to replace
them with fields. The model is mainly tailored to electro-
dynamics but its key features make it possible to generalize
them to other theories. We failed to present a Lorentz
invariant model but we cannot judge if such construction
is just more complicated or impossible.
The paper is organized as follows. First, the standard

description of fermions in quantum electrodynamics is
recalled. Then, the model of directed strings is proposed
and the goal—one-to-one correspondence between integer
spin bosonic states in the string-net and spin-1=2 fermions
is stated. The necessary terms of the Hamiltonian are
outlined in the next sections with technical details left in
the Appendix. Finally, we reconstruct effective Dirac
Hamiltonian, including background electromagnetic fields.
We close the paper with the discussion of the high-energy
deviations and proposed further development of the
models.

II. FERMIONS IN QUANTUM
ELECTRODYNAMICS

The standard theory of free fermions (e.g., electrons and
positrons) of mass m starts with Dirac wave equation

ðγμði∂μ − AμÞ −mÞψðxÞ ¼ 0 ð1Þ

where ψ is a four-component field in spacetime defined as
x ¼ ðx0 ¼ ct; x1; x2; x3Þ with x⃗ ¼ ðx1; x2; x3Þ representing
spatial position while x0 is time t multiplied by the speed
of light c ¼ 1 (x can be replaced by y or r). Here we
use standard conventions, including flat metric tensor
gμν ¼ gμν ¼ diagð1;−1;−1;−1Þ, summation convention
XμYμ ¼

P
μ X

μYμ, derivatives ∂μ ¼ ∂=∂xμ, four potential
AμðxÞ (with charge included) and Dirac 4 × 4 matrices γμ

(Hermitian γ0 and anti-Hermitian γ1;2;3) satisfying anti-
commutation rule fγμ; γνg ¼ 2gμν. Here we adopt Weyl
convention

γ0 ¼
�
0 I

I 0

�
; γi ¼

�
0 σi

−σi 0

�
ð2Þ

with Pauli matrices

I ¼
�
1 0

0 1

�
; σ1 ¼

�
0 1

1 0

�
;

σ2 ¼
�
0 −i
i 0

�
; σ3 ¼

�
1 0

0 −1

�
ð3Þ

We distinguish left/right two-dimensional components,
ψL=R, respectively, in ψ ¼ ðψL;ψRÞT .
The problem of anticommutation appears at the level of

second quantization. One constructs Lagrangian density in
the form

LðxÞ ¼ ψ̄ðxÞðγμði∂μ − AμÞ −mÞψðxÞ ð4Þ
with ψ̄ ¼ ψ†γ0 and Hamiltonian [1–5]

Ĥðx0Þ¼
Z

dx⃗ ˆ̄ψðx⃗Þðγ⃗ · ð−A⃗ðxÞ− i∇Þþmþ γ0A0ðxÞÞψ̂ðx⃗Þ

ð5Þ
Here we work in 3D spatial space, ℏ ¼ 1, dx⃗ ¼ dx1dx2dx3,
X⃗ ¼ ðX1; X2; X3Þ, ∇ ¼ ð∂1; ∂2; ∂3Þ with the standard
scalar product X⃗ · Y⃗ ¼ P

i¼1;2;3 X
iYi. The standard spin-

statistics theorem, which assumes relativity and positive
energy, implies anticommutation rule

fψ̂†
aðx⃗Þ; ψ̂bðy⃗Þg¼ δabδðx⃗− y⃗Þ; fψ̂aðx⃗Þ; ψ̂bðy⃗Þg¼ 0 ð6Þ

or, using equivalent path integral formulation
Z

Dψ exp
Z

iLðxÞd4x ð7Þ

the integration runs over Grassmann variables ψaðxÞψbðyÞ¼
−ψbðyÞψaðxÞ and dx ¼ dx0dx⃗. The dynamics under (5) is
usually described by diagonalization of ψ̂ → ψ̂ ϵ using
eigenstates of single-particle Dirac equation (1) with i∂t ¼
ϵ as single-particle energy. The ground state has all states
with ϵ < 0 occupied while all other states can be written
using anticommuting eigenstate operators ψ̂ ϵ. For time-
dependent potentials A one uses time-dependent orthonor-
mal solutions of (1) [1–5].
The aim of this paper is to construct a model of directed

strings, whose dynamics at low energies reduces effectively
to Dirac Hamiltonian (5) with anticommutation rules (6).
Our model will not be relativistic so the standard spin-
statistics theorem does not apply and so the anticommu-
tation must be justified in a different way.

III. DIRECTED STRING

As left and right ψR=L, we define left/right-handed
operators ψ̂L=R and ψ̂†

L=R in

ψ̂ ¼
�
ψ̂L

ψ̂R

�
; ψ̂† ¼ ðψ̂†

L; ψ̂
†
RÞ: ð8Þ

Let us start with some initial state (not necessarily ground)
with all right-handed states empty and all left-handed states
occupied. The state is jΩi with the property

ψ̂RjΩi ¼ ψ̂†
LjΩi ¼ 0 ð9Þ
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Now the basic excitation reads ψ̂Laðx⃗Þψ̂†
Rbðy⃗Þ or

jx⃗Lay⃗Rbi ¼ ψ̂Laðx⃗Þψ̂†
Rbðy⃗ÞjΩi ð10Þ

where a and b are indices in the 2-dimensional respective
spin space. Let us identify this excitation with a string
directed from x⃗ (left point) to y⃗ (right point). Taking just a
straight line would suffice but then locality is manifestly
broken. It will be anyway broken anyway in the relativistic
sense but we will assume finite range of the Hamiltonian.
Therefore we consider the whole family of continuous
directed strings between these points. Such strings are
homotopic to an interval so they are open. We allow
additional separate directed closed strings (loops), see
Fig. 1. We do not yet impose any condition on the shape
of the strings and the number of loops but such constraint
will appear in particular models discussed later.
Our aim is to find a Hamiltonian model of the strings that

leads to the effective Dirac dynamics in low energy
approximation. The basic element of such a model will
be the directed string with spin 1=2 ends (if open). In
particular the string will be temporarily represented by 2n
local spins 1=2 interchanging between R and L, i.e., a
generic state reads

jψfr⃗gi ¼
Yn
j¼1

jajiLjbjiR ð11Þ

with the string going through a chain of n points x⃗ ¼
r⃗1; r⃗2;…; r⃗n ¼ y⃗ such that subsequent points are close
to each other (in the case of a closed loop r⃗1 follows r⃗n)

andaj,bj ¼ �, corresponding to states jaiL and jbiRwitha,
b ¼ � (basis order jþi, j−i) in the above mentioned
excitation. For a moment the chain is finite but we will
consider a continuum limit. There are in principle 2n

possible states for a given string trajectory r⃗. We want to
reduce the degeneracy to a 2 × 2 combination of endpoint
states ja1iL and jbniR. Such states can be obtained
by combining the intermediate state into singlets
ðj þRj þLjþ1i þ j −Rj −Ljþ1iÞ=

ffiffiffi
2

p
, splitting r⃗j → r⃗Lj, r⃗Rj

with x⃗ ¼ r⃗L1 and y⃗ ¼ r⃗Rn, see Fig. 2. This definition of the
singlet differs from familiar j þ −i − j −þi because of the
transpose used in the spinor convention here. This state reads

jψfr⃗giab¼
jaiLjbiRffiffiffi

2
p

n−1

Yn−1
j¼1

ðjþRjþLjþ1iþj−Rj−Ljþ1iÞ ð12Þ

For a closed string (denoted by subscript l) we have only
singlets

jψfr⃗gil ¼ 2−n=2
Yn
j¼1

ðj þRj −Ljþ1i þ j −Rj þLjþ1iÞ ð13Þ

with n≡ 0. Now we apply spin swapping, see Fig. 3, i.e.,
couple the pairs of the same j and project onto one of the
singlet and triplet statesffiffiffi

2
p

j0ji ¼ j þRj þLji þ j −Rj −Lji;ffiffiffi
2

p
j3ji ¼ j þRj þLji − j −Rj −Lji;ffiffiffi

2
p

j1ji ¼ j þRj −Lji þ j −Rj þLji;ffiffiffi
2

p
j2ji ¼ ij −Rj þLji − ij þRj −Lji; ð14Þ

L

R

FIG. 1. General idea of directed string. The open string has left
and right opposite particles at its ends. The closed string has its
direction with no distinguished endpoint.

L

R

x

y

1 3

3
4

4

2 2
5 5

6

6
7

FIG. 2. The string with inserted singlets (solid lines) both in the
case of an open and closed string.
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The generic state in the space of these states along the string
will be denoted

jci ¼
Yn
j¼1

jcji ð15Þ

with c ¼ 0, 1, 2, 3. Now the states (12) and (13) can be
expressed as entangled states of singlets and triplets with

hcjψiab ¼ 21=2−nðσc1σc2…σcnÞab
hcjψi ¼ 2−nTrσc1σc2…σcn ð16Þ

ignoring position r⃗ for a moment. Singlet and triplet states
correspond to the total integer spin, 0 and 1, respectively, and
so they belong already to the bosonic description. It will be
clear later when reconstructing Dirac equation. From now
on, the singlets and triplets become the bosonic constituent
systems of the whole dynamics. There are neither funda-
mental spin 1=2 particles nor antisymmetric (fermionic)
states. Spin 1=2 antisymmetric fermions will emerge effec-
tively at low energy as collective states of integer-spin
bosons. This description can be generalized further, assum-
ing almost arbitrary space along the string, where we can
define a complex scalar v0 and a vector v⃗ ¼ ðv1; v2; v3Þ to
decompose

hvjψiab ∝ hajV1V2…Vnjbi
hvjψil ∝ TrV1V2…Vn ð17Þ

with Vj ¼
P

k v
k
jσk ≠ 0, being a general nonzero complex

2 × 2matrix. The string and the sequence of V matrices can

be defined continuously, with the string parametrized by real
s on an interval. Then the string position is r⃗ðsÞwhile Vj →
I þ iσ⃗ · v⃗ds (removing c-number v0) with the complex
vector function v⃗ðsÞ. Then we get SUð2Þ Wilson line/loop
[17] matrix

V1V2…Vn → V ¼ P exp
Z

idsσ⃗ · v⃗ðsÞ ð18Þ

where P denotes ordering along growing s in the power
expansion, i.e., σ⃗ · v⃗ðsÞσ⃗ · v⃗ðs0Þ for s0 > s. We will define
jψiab as the collective state of strings using the above
representation as building blocks.

IV. COLLECTIVE STATES OF STRINGS

The example with spin swapping shows that the effective
spinor state (particular values of a and b at the endpoints)
can be an entangled state of the states defined by v and
specific trajectories r. Suppose the space of allowed v is
given. In the case of a chain it can be discrete, e.g.,
vð0Þ ¼ ð1; 0; 0; 0Þ, vð1Þ ¼ ð0; 1; 0; 0Þ, vð2Þ ¼ ð0; 0; 1; 0Þ,
vð3Þ ¼ ð0; 0; 0; 1Þ, or continuous, e.g., v ¼ ð1; v⃗Þ with real
unit v⃗ or completely arbitrary complex four vector v. In the
continuous string v⃗ can be real or otherwise restricted. The
configuration space contains string position r and matrix
function v which is a chain of points r⃗1;…; r⃗n and matrices
v1;…; vn or functions r⃗ðsÞ and v⃗ðsÞ with s being
1-dimensional real parameter along the string between
for s ∈ ½sL; sR�. The endpoints are x⃗≡ r⃗L ¼ r⃗ðsLÞ and
y⃗≡ r⃗R ¼ r⃗ðsRÞ, In the case of the loop r⃗L ¼ r⃗R ¼ r⃗ðsLÞ ¼
r⃗ðsRÞ with s≡ sþ sR − sL (loop topology). The configu-
ration state jrvi denotes vector functions r⃗ðsÞ (real) and
v⃗ðsÞ (real, imaginary, complex or otherwise restricted)
for all available s, orthonormal in the functional
sense hr0v0jrvi ¼ δðr⃗0 − r⃗Þδðv⃗0 − v⃗Þ in the functional
measure

R
DrDvδðr⃗Þδðv⃗Þ ¼ 1 with completeness 1̂ ¼R

DrDvjrvihrvj. We shall assume the effective spinor state
and loop state of the form

hrvjx⃗Lay⃗Rbi ¼ fðr; vÞVab

hrvjΩi ¼ fðr; vÞTrV ð19Þ

with V ¼ V1V2…Vn in the case of a chain and V ¼
P exp

R
idsσ⃗ · v⃗ðsÞ in the continuous case. Here fðr; vÞ is

an assumed wave function, quite general with only several
reasonable conditions

(i) r⃗L1 ¼ x⃗, r⃗Rn ¼ y⃗ in an open string, 0≡ n in a
closed loop

(ii) normalization (decay at large values), e.g.,
−
R
dsjv⃗ðsÞj2 term in ln f

(iii) rotation invariance, i.e., f must be a scalar function
of r and v

(iv) translation invariance, i.e., fðr⃗; v⃗Þ ¼ fðr⃗þ r⃗0; v⃗Þ
for an arbitrary constant vector r⃗0.

L

R

FIG. 3. The states from Fig. 2 with swapped links to combine
the endpoints into singlets and triplets.
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Of course, the collective states can contain a single
open string and an arbitrary number of closed loops. In
general we can a have an arbitrary number of fundamental
excitations, i.e.,

jx⃗1; a1; x⃗2; a2…; x⃗N; aN ; y⃗1; b1; y⃗2; b2;…; y⃗N; bNi
¼ ψ̂La1ðx⃗1Þψ̂†

Rb1
ðy⃗1Þ…ψ̂LaN ðx⃗NÞψ̂†

RbN
ðy⃗NÞjΩi ð20Þ

Due to Fermion anticommutation rule we have the Pauli
property

jx⃗1; a1;…; x⃗N; aN ; y⃗τð1Þ; bτð1Þ;…; y⃗τðNÞ; bτðNÞi
¼ sgnτjx⃗1; a1;…; x⃗N; aN ; y⃗1; b1;…; y⃗N; bNi ð21Þ

for the permutation τ. We will assume that the state (20) is a
collective state ofN open strings and an arbitrary number of
closed strings. The reference empty state jΩi is represented
by only closed loops. Each open string starts at some x⃗j and
ends at y⃗τðjÞ with some permutation τ. Then the collective
state (20) reads

X
r;v;S;l

ð−1ÞMsgnτfðr; vÞjrvi

× ðVS1Þa1bτð1Þ…ðVSN ÞaNbτðNÞTrVl1…TrVlM ð22Þ

with open strings Sj from x⃗j to y⃗τðjÞ and closed loops
lj and local and rotationally invariant function f. It
means in general that f must be normalizable (i.e.,R
DrDvjfj2 < ∞) and have cluster property, i.e., it is a

product of local functions, involving v for which r⃗ are
close. In particular

lnfðr;vÞ¼
Z

dsκ1ðr⃗ðsÞ; v⃗ðsÞ;sÞ

þ
Z

dsds0κ2ðr⃗ðsÞ; r⃗ðs0Þ; v⃗ðsÞ; v⃗ðs0Þ;s;s0Þþ �� �

ð23Þ

with κ2 vanishing at large r⃗ðsÞ − r⃗ðs0Þ or js − s0j. Some
reasonable terms that can appear in − ln f are

Z
dsðαjdr⃗ðsÞ=dsj2 þ βjdv⃗ðsÞ=dsj2 þ ηjv⃗ðsÞj2Þ ð24Þ

This condition is essential to achieve locality. Otherwise,
we could apply just nonlocal coupling of pairs of particles
and claim bosonization. Instead, we want to show that the
underlying model is formally local in space (but not
necessarily in the relativistic sense of invariance and
communication limited by the speed of light). The nominal
length of the continuous string is sR − sL although the
actual length

R
dsjdr⃗=dsj may be different (the string can

be stretched or squeezed).

In our model f will be a product of individual strings/
loops i.e.,

fðr; vÞ ¼ ZfðrS; vS1Þ…fðrSN ; vSN Þ
× fðrl1 ; vl1Þ…fðrlN ; vlN Þ ð25Þ

with the normalization factor Z but one can also include
factors modifying f when strings are close to each other at
some point.
The states are defined in a 3D box of dimensions

Ω1, Ω2, Ω3, with periodic boundary conditions r⃗þ
ðn1Ω1; n2Ω2; n3Ω3Þ≡ r⃗ for arbitrary integers n1, n2, n3.
In the thermodynamic limit Ω1;Ω2;Ω3 → ∞ we keep
jSj ∝ Ω ¼ Ω1Ω2Ω3, where jSj is the total nominal length
of all loops and strings (counted along parameter s).
In the construction of string states, it is important that

they are not just a bunch of vectorlike particles scattered in
space but they contain information about string order. In
other words, every segment of the string contains also
information about its successor and predecessor in a chain
or direction of a continuous curve.

V. BASIC HAMILTONIAN

The existence states constructed in the previous section
must follow from the structure of a model Hamiltonian. The
general form is

Ĥ ¼
Z

Dr0Dv0DrDvhðr⃗0v⃗0; r⃗ v⃗Þjr0v0ihrvj ð26Þ

with local, rotationally invariant kernel function h.
Optionally, functional derivatives like δr⃗ ¼ δ=δr⃗ acting
or either jrvi or hrvj are allowed. We will construct such
a Hamiltonian Ĥ that all the states (22) are annihilated by Ĥ
(i.e., they are eigenstates with eigenvalue 0), while all other
states have strictly positive eigenvalues, larger than the
energy scale of the effective theory. We also stress that the
family of Hamiltonian reproducing the low-energy collec-
tive states is quite large, analogously to quantum phase
transitions, and the model presented here is only one
example yet with many freedom parameters.
Before the proper construction let us outline its idea in

the simple example—harmonic oscillator. The ground
wave function of 1-dimensional oscillator has the form
e−αx

2

. Applying derivative (local) operator d=dx we obtain
−2αxe−αx2 so it is obvious that ĉ ¼ d=dxþ 2αx annihilates
the state. Now Ĥ ¼ ĉ†ĉ is a positive operator and its only
0-eigenvalue eigenstates ψðxÞ must satisfy ĉψ ¼ 0 which
gives back the assumed state as the only solution. The other
eigenvalues must be nonzero. In the case of the oscillator
we are able to find them exactly but in general it is possible
to make an estimate. Note that those positive eigenvalues
can be scaled up arbitrarily multiplying Ĥ by an appropriate
factor. A multidimensional oscillator ground state e−αjx⃗j2 is
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distinguished by defining ˆc⃗ ¼ ð∇x þ 2αx⃗Þ and Ĥ ¼ ˆc⃗† · ˆc⃗
so the idea easily extends to an arbitrary state and space.
We shall apply that above outlined construction to the

family of states (22). Just like in the harmonic oscillator, we
have to find local operators connecting different constituent
states, e.g., with a string (or a couple of them) wiggled (or
swapped) inside a localized volume, see Figs. 4 and 5.
Wiggling means combining parts of the string sequence
(link) V̄ ¼ VlVlþ1…Vm and V̄0 ¼ V 0

l0V
0
l0þ1

…V 0
m0 or V̄ ¼

P exp
R
w idsσ⃗ · v⃗ to V̄ 0 ¼ P exp

R
w idsσ⃗ · v⃗0 (subscript w

indicated restriction to the wiggled part) and corresponding
parts wave functions f̄ and f̄0 depending only on the string
part around the wiggled part while leaving the rest
unchanged, i.e., f ¼ gf̄ and f0 ¼ gf̄0 with g factor covering
the not wiggled rest of the string(s). Both f̄ and f̄0 must
depend only on the local neighborhood of the wiggled part.
In this case, the nominal length remains constant. More
generally we will consider a family f̄1; V̄1; f̄2V̄2; ...; f̄KV̄K

with K > 1 and fj ¼ gf̄j. For K ¼ 2 we can assign
f̄1 ¼ f̄, V̄1 ¼ V̄ and f̄2 ¼ f̄0,V̄ð2Þ ¼ V̄0. Each matrix Vj

is 2 × 2 dimensional. Let us consider Slater determinant in
ð2 × 2ÞK dimensional space [19]

WK ¼
X
σ

sgnτf̄τð1ÞV̄τð1Þf̄τð2ÞV̄τð2Þ…f̄τðKÞV̄τðKÞ ð27Þ

with the sum over permutations τ. It is clear that the
determinant is zero for K > 4 because there are maximally
4 independent 2 × 2 matrices.

Let us define annihilation operator acting on 2 × 2

matrices with a ð2 × 2ÞK−1 matrix as a result

ĉðr; vÞ ¼
X
τ

sgnτf̄τð2ÞV̄τð2Þ…f̄τðKÞV̄τðKÞhrvτð1Þj ð28Þ

It is clear that it annihilates the postulated ground states for
K > 4 but ĉ is zero identically for K > 5 so the best choice
is K ¼ 5. For K < 5 we have to add the condition that
WK ¼ 0 by e.g., δðWKÞ modeled by exp½−ΛTrðW†

KWKÞ�
with Λ → ∞. However, K ¼ 2 is anyway insufficient
because W2 ¼ 0 binds a single matrix up to a constant
factor. Then instead of 4-fold open string degeneracy, we
get a much larger bunch of independent states for each V
between endpoints. Therefore we should take at least
K ¼ 3. The output space of ĉ is spinorlike but only
auxiliary. The complete Hamiltonian traces ĉ with ĉ† to
get a scalar and reads

Ĥw ¼
Z

DKrDKvwðr; vÞTr½ĉ†ðr; vÞĉðr; vÞ� ð29Þ

with some real function w positive for the local link
wiggling and configuration measure taken K times.
The trace gives a scalar because of Pauli matrices

multiplication σjσk ¼ δjkI þ iϵjklσl for jkl ¼ 1, 2, 3 and
Trσk ¼ 0 and so (29) is defined only in the string space
with the spinor traced out to a scalar.
Before considering swap Hamiltonian note that already

the space of ground states of wiggling is quite restricted.
The only elementary operation—swap between fragments
of different strings (or even the same), see Fig. 5—applied
twice must return to the original state. In other words, the
double swap is identity and so there are only two
eigenspaces of the swap, with �1 eigenvalue. Obviously,
þ1 would give a bosonic state while −1 is desired for
fermions. We can try to construct the swap annihilation
operator like we did it for wiggling. Unfortunately, the
swap counterpart of (27) is more complicated, having 16
entries instead of 4 matrix elements. We shall assume that
the swap preserves the sum of nominal lengths of the
swapping strings but this is not obligatory.
In principle, we can simply generalize Slater matrix (27)

and (28) replacing V with a tensor product of two links. In
addition, the tensor can be written in both representations,
linkingA − B andC −D orA −D andC − B. Let us denote
such a tensor by a 2 × 2 × 2 × 2 matrix W with entries
Wabcd, a, b, c, d ¼ �: For A − B and C −D links V and U
respectively we define Wabcd ¼ V̄abŪcd while for A −D
and C − B links V 0 and U0 respectively we define Wabcd ¼
−V̄ 0

adŪ
0
bc (the − sign is to get antisymmetric fermions,

with þ we get bosons). Generalizing (27) we define

SK ¼
X
τ

sgnτf̄τð1ÞWτð1Þf̄τð2ÞWτð2Þ…f̄τðKÞWτðKÞ ð30Þ

where Wj can be either of linkings with appropriate fj and

V

V'

a b

FIG. 4. Local wiggling of a string fragment (solid → dotted).

V U
V'

U'

a

b

d

c

A

B C

D

FIG. 5. Local swap between fragments of two different strings
(solid → dotted).
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ĉðr; vÞ ¼
X
τ

sgnτf̄τð2ÞWτð2Þ…f̄τðKÞWτðKÞhrvσð1Þj ð31Þ

The difference from wiggling is that now there are max-
imally 16 linearly independent matricesW so ĉ vanishes for
K > 17while forK < 17we need the constraint SK ¼ 0 by
adding δðSKÞ ∼ exp½−ΛTrðS†SÞ�. The optimal choice is
K ¼ 17 with generic random set of linkings. If such high
K seems awkward we can take a lower value. The minimal
K¼2would requireW1

abcd¼V̄abŪcd andW2
abcd¼−V̄ 0

adŪ
0
cb

but the constraint S2 ¼ 0 results in the proportionality
condition

V̄abŪcd ∝ V̄ 0
adŪ

0
cb ð32Þ

whereV,U,V 0,U0 are matrices of all links. Unfortunately, it
holds only if all the matrices are singular, see Appendix.
Therefore (32) and S2 ¼ 0 will be only satisfied if all the
involved matrices are singular (e.g., projection matrices,
appearing in the asymptotic limit jImv⃗j → ∞), which is the
case we wanted to avoid. Even S3 ¼ 0 only if some of the
matrices are singular (assuming they are not all for the same
linking) andS4 ¼ 0 if only oneW is from one of the linkings
while three are from the other linking (but already pairs for
each linking can combine to the same projection), see
Appendix. Despite the above obstacles, we will explain
that we can use even K ¼ 2 abandoning S2 ¼ 0 constraint
and construct annihilation operators based on (31),

ĉabcdðv;u;v0;u0Þ
¼ f̄ðvÞf̄ðuÞV̄abŪcdhv0u0jþ f̄ðv0Þf̄ðu0ÞV̄ 0

adŪ
0
cbhvuj ð33Þ

and

Ĥs¼
Z

DvDv0DuDu0
X
abcd

×wðv;u;v0;u0Þĉ†abcdðv;u;v0;u0Þĉabcdðv;u;v0;u0Þ ð34Þ

with some real function w positive for a local swap.
Explicitly

Ĥs¼
Z

DvDv0DuDu0wðv;u;v0;u0Þ

× ½jf̄ðvÞf̄ðuÞj2jv0u0ihv0u0jTrV†VTrU†U

þjf̄ðv0Þf̄ðu0Þj2jvuihvujTrV 0†V 0TrU0†U0

þ f̄�ðvÞf̄�ðuÞf̄ðv0Þf̄ðu0Þjv0u0ihvujTrV†V 0U†U0

þ f̄�ðv0Þf̄�ðu0Þf̄ðvÞf̄ðuÞjvuihv0u0jTrV 0†VU0†U� ð35Þ

In contrast to wiggling, the state (22) is not an eigenstate
of the above Hamiltonian with zero eigenvalue but it is not
necessary.We can treat Ĥs as a small perturbation and check
the average of Ĥs in the symmetric and antisymmetric state.

It suffices to get a smaller average for the antisymmetric state
which becomes stable in this way. Let us assume that the
average length of the string/loop is much longer than
the correlation length of v⃗. Then calculating the above-
mentioned averagewe can assume a random spin state of the
string endpoints because it will get randomized along the
string. If we extend V to in the direction of endpoints A and
B, U in C and D, V 0 in A and D, and U0 in C and B,
sufficiently far in such a way that V and V 0 have a long
common matrix factor in A direction, U and V 0 in D, V and
U0 iB andU andU0 inC then the average of jvuihv0u0j reads

�f̄�ðuÞf̄�ðvÞf̄ðu0Þf̄ðv0ÞTrV†V 0U†U0 ð36Þ

with þ for the symmetric and − for the antisymmetric
state, up to some positive prefactor. The last two lines of (35)
are equal

� 2
X

v;u;v0;u0
wðv; u; v0; u0Þjgðr; vÞf̄ðvÞf̄ðuÞf̄ðv0Þf̄ðu0ÞÞj2

× jTrV†V 0U†U0j2 ð37Þ

which is positive for the symmetric and negative for the
antisymmetric (fermionic) state. The antisymmetric state
has then lower energy (in the first order) than the symmetric
and so it is stable.
We have ignored string crossing. Like lines, the strings in

3D can cross each other at particular points and times. In
principle it could lead to some additional interaction, e.g.,
preventing from crossing by some repulsion or forcing a
discontinuous crossing. We could modify wiggling or
swapping by a factor controlling the relative position of
strings but it will not change the general idea. Assuming a
small density of strings (defined as nominal length per
volume) times the interstring interaction length (average
nominal length the other string that a given point of a string
interacts with, scaled by Hamiltonian), the repulsion will be
as negligible as e.g., collisions in an ideal gas.
The ambiguity or flexibility of the choice of swapping

and wiggling terms cannot alter the bosonization, because
the effective state depends on the reduced number of
degrees of freedom (endpoint position and spin), just like
the phase in a quantum phase transition is described by an
effective (order) parameter.
The Hamiltonian can have eigenstates whose energies

approach zero e.g., by slowly varying wave functions.
However, we can boost the prefactors w to increase the
relevant variation lengthscale beyond detectable infrared
bound, just like long photons are irrelevant.

VI. ENDPOINTS DYNAMICS

So far we have considered states with fixed endpoints.
All these states are degenerate with zero energy, optionally
(if using SK with K ¼ 2 or generally K < 17) corrected by
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a constant term hĤsi assuming the swaps are rare. Since the
so far considered Hamiltonian has not changed positions of
endpoints, the states of open strings are parametrized by
this position leaving them degenerate. For instance, a state
with a localized endpoint has still zero energy. Towards our
final goal—effective reconstruction of Dirac Hamiltonian,
we will need to keep minimum energy for delocalized
states, such that f depends only on relative positions, i.e.,
fðr⃗þ r⃗0; vÞ ¼ fðr⃗; vÞ for an arbitrary r⃗0. This is possible
by adding any positive term tracking dependence on r⃗L and
r⃗R, applying the same wiggling term (29) as in the case of
the internal part of the string, see Fig. 6. A possible
Hamiltonian reads

Ĥe ¼ α
X
P¼R;L

Z
DrDvjf̄j2

�
δjrvi=f̄�

δr⃗P

�
·

�
δhrvj=f̄
δr⃗P

�
ð38Þ

with sufficiently large positive α > 0 and f ¼ f̄g such that
g is independent of r⃗L=R. Here the functional derivatives at
the endpoints are taken in the one-sided limit along the
string, i.e., δ=δr⃗R ¼ lims→sR−δ=δr⃗ðsÞ, assuming f regular
or regularized at sR=L. Then the only state with zero energy
is the absolutely delocalized one. However, the states (20)
slowly varying,

jk⃗; a; q⃗; bi ¼
Z

dx⃗dy⃗
Ω

expðik⃗ · x⃗þ iq⃗ · y⃗Þjx⃗; a; y⃗; bi

have the first order effective Hamiltonian

hk⃗0; a0; q⃗0; b0jĤejk⃗; a; q⃗; bi
¼ αðjk⃗j2 þ jq⃗j2Þδaa0δbb0δðk⃗ − k⃗0Þδðq − q⃗0Þ ð39Þ

which goes to zero asymptotically for k, q → 0. The above
Hamiltonian generalizes immediately to N open string. In
position space k⃗ ¼ −i∇ so jk⃗j2 ¼ −Δ. Note that Δ term is
absent in Dirac equation but we can make α so small to
keep this term negligible in the accessible regime.
Now, suppose we add another very small term

ĤP ¼
Z

DrDr0DvDv0hPðr⃗0 v⃗0; r⃗ v⃗Þjr0v0ihrvj ð40Þ

where h is rotationally invariant functional of r⃗, v⃗, r⃗0, v⃗0
Invariance essentially requires that h depends on scalars
(pseudocalars), i.e., scalar or mixed products r⃗ · r⃗, r⃗ · v⃗,

r⃗0 · v⃗0, r⃗ · ðr⃗0 × v⃗Þ etc., we also demand that hĤL=Ri ¼ 0 for
k ¼ q ¼ 0 (reference state). From perturbation theory, the
first nonvanishing correction due to ĤL=R to the effective

Hamiltonian on the states (39) is linear in k⃗ Since the states
have already spinor structure

hk⃗0; a0; q⃗0; b0jĤL þ ĤRjk⃗; a; q⃗; bi
¼ δðk⃗ − k⃗0Þδðq⃗ − q⃗0Þ½cLðk⃗ · σ⃗Þaa0δbb0 þ cRðq⃗ · σ⃗Þb0bδaa0
þOðk2 þ q2Þ� ð41Þ

An example reads

ĤP¼
Z

DrDv

��
iξPv⃗iPþωP

δ

δv⃗rP

�
jrvi

�
·
f̄δhrvj=f̄

δr⃗P
þH:c:

ð42Þ

with v⃗ ¼ v⃗r þ iv⃗i (real and imaginary part). For large k⃗ we
will get nonlinearities and/or interaction (excitations are no
longer independent). This scale is determined by the
density of string and interactions, but in our thermody-
namic limit the linear, noninteracting regime of low k⃗
always exists.
The last term we need is string splitting, Fig. 7, necessary

to recover mass in Dirac equation. It will change the
number of open strings but remains local. The split
Hamiltonian, connecting and disconnecting string, reads
in general

Ĥm¼
Z

DrDvDr0Dv0dshmðr0v0ð→ sÞ;r0v0ðs→Þ;rvÞjr0v0i

× hrvjþH:c:; ð43Þ

where the configuration r0v0 is split into the left and right
part (see Fig. 7) preserving the total nominal length. Here
rvð→ sÞ denotes the part of string/loop rv ending at swhile
rvðs →Þ is the part starting at s scanned along all strings/
loops. The Hamiltonian must be local and rotationally
invariant. The Hamiltonian is still local, i.e., it does not
know if the string before splitting is open or closed. In the
first case, the output is two open strings while in the second
case the output is one open string. In any case the number
of open strings increases (decreases) by one for splitting
(joining). The simplest example reads

V

V'

FIG. 6. Local wiggling of the string endpoint.

V

A
B

FIG. 7. Splitting of the string to create to endpoints L and R.
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Ĥm ¼
Z

DrDvdsmjrvð→ sÞ; rvðs →Þihrvj þ H:c: ð44Þ

It essentially only breaks/joins the string/loop leaving the
configuration unchanged. However, once the endpoints are
created, the endpoint dynamics uncouples them. The value
of mass m must be certainly small within the validity range
of linear approximation.

VII. RECONSTRUCTING DIRAC EQUATION

Now we want to lift this degeneracy and recover Dirac
dynamics, i∂t ¼ Ĥ. The evolution of the excitation

ϕjΩiþ
X
ab

Z
dx⃗dy⃗ψbaðx⃗; y⃗Þjx⃗La;y⃗Rbi

þ
X
abcd

Z
dx⃗dy⃗dz⃗dw⃗ξdcbaðx⃗; y⃗; z⃗;w⃗Þjx⃗Laz⃗Lcy⃗Rbw⃗Rdi ð45Þ

with ξdcbaðx⃗; y⃗; z⃗; w⃗Þ¼−ξbcdaðx⃗; w⃗; z⃗; y⃗Þ¼−ξdabcðw⃗; y⃗; z⃗; x⃗Þ
reads

i∂tϕ ¼ −m
X
a

Z
dx⃗ψaaðx⃗; x⃗Þ; i∂tψba

¼ ði∇x − A⃗ðx⃗ÞÞ · ðψσ⃗Þba − ði∇y þ A⃗ðy⃗ÞÞ · ðσ⃗ψÞba
− ðA0ðx⃗Þ − A0ðy⃗ÞÞψba −mϕδbaδðx⃗ − y⃗Þ

−m
Z

dz⃗
X
c

ξccbaðx⃗; y⃗; z⃗; z⃗Þ ð46Þ

The mass term changes the number of excitation pairs. It is
easy but lengthy to write down evolution for higher
excitations. Without the mass, the evolution is simply an
analog of the equation for ψ while the massm allows jumps
between one more or one less pair. To recover (46) without
gauge potential we simply need to have cR ¼ 1 ¼ −cL and
negligible α in (41) and (39), respectively.
The Δ-term is critical to keep the finite bottom of the

Fermi sea. The effective Dirac Hamiltonian we recon-
structedwill have its ground state different from jΩi because
filling the negative energy levels will lower the total energy.
Without the Δ-term the levels would continue until cutting
all strings into short intervals, ruining themodel. Remember
that the sign of energy of levels far from zero does not
depend on chirality (L=R) but helicity (sign of eigenvalue of
k⃗ · σ⃗). To prevent such a collapse, at very large jk⃗j the energy
must go up so that further cutting the strings becomes
energetically unfavorable. The energy scale can be set safely
far from the expected regime of validity of Dirac equation.
For large k⃗ the fermions may be also no longer noninteract-
ing. The Δ-term can be viewed as an analog of fermion
doubling [20–22], occurring when discretizing space. The
energy crosses zero at some large value of k⃗ which could be
identified as an extra quasiparticle but such an excitation is

unlikely because of momentum conservation (e.g., a back-
ground field Fourier component of the comparable k⃗). This
quasiparticle will be important in renormalization when
dynamics of field is included, but it is beyond the scope of
this work.
To incorporate the influence of the gauge potential we

could of course simply add appropriate potentials to
endpoint dynamics. Instead, we propose a construction
which not only recovers (46) but requires only electro-
magnetic fields (not potentials) in the Hamiltonian. We
modify f in the definition of the string wave function,

f̃ðr; vÞ ¼ fðr; vÞ exp
Z

dsA⃗ðr⃗ðsÞÞ · dr⃗=ids: ð47Þ

Let us consider the gauge covariant derivatives

δ̃r⃗ðsÞhrvj ¼
δhrvj
δr⃗ðsÞ − iB⃗ðr⃗Þ × dr⃗

ds
hrvj

δ̃r⃗ðsÞjrvi ¼
δjrvi
δr⃗ðsÞ þ iB⃗ðr⃗Þ × dr⃗

ds
jrvi ð48Þ

with B⃗ ¼ ∇ × A⃗ and E⃗ ¼ −∂tA⃗ −∇A0, and gauge drag

h̃ðr0v0; rvÞ ¼ hðr0v0; rvÞ exp
Z

idsdλðB⃗ðr⃗Þ × ∂sr⃗Þ · ∂λr⃗;

ð49Þ

resembling Kogut-Susskind plaquette Hamiltonian [18]
with r⃗0 ¼ r⃗ðλ1Þ and r⃗ ¼ r⃗ðλ0Þ with r⃗ðs; λÞ spanning the

surface between r⃗ and r⃗0 where they differ. It essentially
means that the Hamiltonian connecting two different
trajectories depends also on the path (drag along a sheet)
between them. The situation is analogous to pointlike
particles with hopping. The hopping means that we care
only about the initial and final point. Replacing hopping by
moving we keep track of the continuous path between the
points, see Fig. 8. In our case, the wiggling/swapping

FIG. 8. Comparison between hopping and moving of point
particles. Hopping (upper row) depends only on the initial (black)
and final (white) position. Moving (lower row) depends on the
continuous path from the initial to the final position. A compli-
cated moving contains splitting or hub points.
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containing the information only about the initial and
final trajectory will be replaced by the dragging when
we scan the whole two-dimensional sheet between the
trajectories. In some cases, the dragging—like moving—
contains splitting or hub points, see Fig. 9.
Now we recover (46) by replacing f with f̃ in (22) while

modifying Ĥ by replacing kernel h in (26) by h̃ and δr⃗ by δ̃r⃗
in derivative-based kernels and adding ĤE,

Ĥ → ˆ̃H þ ĤE ð50Þ

with the electric term

ĤE ¼ −
Z

DrDvdsE⃗ðr⃗Þ · dr⃗
ds

jrvihrvj ð51Þ

All fields here depend also on time, hidden in the notation
for brevity.

VIII. DISCUSSION

We have proposed an improved string-net model of
bosonization of fermions recovering Dirac dynamics in
low-energy regime. It is based on SUð2ÞWilson lines along
strings connecting opposite charges of loops. We postulated
the family of ground states and deliberately defined
the Hamiltonian such that these states have the lowest
energy zero, with help of Slater determinant. The final
reconstruction of Dirac dynamics required some constraints
on the perturbative part. The model is rotationally invariant,
bosonic, spin 1=2 appears only effectively and potentials
have been replaced by fields. It is spatially local but
obviously we lost Lorentz invariance.
Despite the minimal goal achieved, there are many

puzzles arising in this concept demanding further research.
For instance, the general effective Dirac-like equation we
could obtain is

i∂t

�
ψL

ψR

�
¼ iσ⃗ ·∇

�
cLψL

cRψR

�
þm

�
ψR

ψL

�
−αΔ

�
ψL

ψR

�
: ð52Þ

We have at present no clue why the free parameters cL, cR
and α satisfy cL þ cR ¼ 0 (then we can rescale time to
cR ¼ 1) and small α but it is expected to be connected with
restoring effective Lorentz invariance. Another task is to
include the dynamics of fields E⃗ and B⃗, while here they are
only background. They can appear among other excitations
beyond the Dirac fermions (e.g., controlled by the magnetic
flux traversed by the string) but one has the renormalization
to deal with. It is also worth to generalize the model beyond
electrodynamics and try to include Lorentz symmetry (e.g.,
by adding extra dimensions) or prove that it is impossible.
The Δ-term can lead to a quantum phase transition. The

eigenvalue of i∂t ¼ ϵ and −i∇ ¼ k⃗, is depicted in Fig. 10.

V

V'

a b

V U
V'

U'

a

b

d

c

A

B C

D

V

V'

V

A
B

FIG. 9. Dragging counterparts of Figs. 4–7. In the case of
swapping there is a hub/saddle of tangent vectors ∂λr⃗. The
endpoint dragging will produce edge path. The mass term
contains a splitting/tearing point.

0
k

−µ

FIG. 10. The difference between Dirac (dashed) and our (solid)
dispersion relation ϵðkÞ. In our case there is an absolute minimum
at k ¼ κ, ϵ ¼ −μ.
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The fermion antisymmetry implies the ground state with
the single excitation with ϵ < 0 occupied only once—the
Fermi sea. In the original Dirac dispersion, ϵ2 ¼ k2 þm2 is
unbounded from below leading to the breakdown of the
string-net into short pieces. Adding our Δ-term we get a
minimum at k ¼ κ, ϵ ¼ −μ. If κ−1 is much larger than the
string correlation distance then our linear and independent
approximation (no higher powers of k, no coupling
between levels) is valid in the whole Fermi sea.
However, if the swap Hamiltonian like (37) is small
(e.g., for a small density of strings) then the energy
difference between antisymmetric fermions and symmetric
bosons competes with the Bose-Einstein condensation at
ϵ ¼ −μ (bosons, unlike fermions, will simply occupy the
same lowest state). Both states are string-nets but their
properties are fundamentally different. It is an open ques-
tion how to model best this transition.
Summarizing, the presented model is only an intermedi-

ate step toward the full bosonization of fermions, but it
shows that—sacrificing relativity—some construction
exists. The deviations from perfect Dirac equation (52)
can be experimentally tested but due to corrections from
theories beyond electrodynamics the clearest signature at
this stage would be a violation of Lorentz invariance. It is
also possible that further exploration of excited states will
allow us to identify other known or new emergent particles.
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APPENDIX: SWAP CONDITION FOR K ≤ 4

We will show that swap condition SK ¼ 0 is impossible
for K ¼ 2, 3 and nonsingular links, K ¼ 4 and nonsingular
links if on of linkings is represented only once. Case
K ¼ 2. If V and U are invertible, then

δabδcd ∝ ðV−1V 0ÞadðU−1U0Þcb ðA1Þ

If some ðV−1V 0Þad element is nonzero then only ðU−1U0Þda
is nonzero so U−1U0 has zero determinant and U0 cannot
be invertible and similarly V 0. Since matrices in (32) must
have equal ranks and rkV ⊗ U ¼ rkVrkU ¼ rkV 0rkU0 ¼ 1
contradicts the assumption that V and U are invertible. If V
is invertible then rank implies that either V 0 or U0 is
invertible, too. If both V and U0 are invertible then
ðU0−1UÞcdδab ∝ ðV−1V 0Þadδcb. Taking a ¼ b ≠ c we see
that U0−1U vanishes, contradiction.
Case K ¼ 3. We will show that linear dependence of

W1
abcd ¼ V1

abU
1
cd, W

2
abcd ¼ V2

abU
2
cd and W3

abcd ¼ V 0
adU

0
cb

implies singularity of at least one of matrices V1, V2, U1,

U2, V 0,U0. Suppose all they are nonsingular. By scaling, we
get W3 ¼ W1 þW2, giving 16 equations

V1
abU

1
cd þ V2

abU
2
cd ¼ V 0

adU
0
cb ðA2Þ

We multiply the above set of equations by ðV1Þ−1αaðU2Þ−1dγ
summing over a and d and replacing α and γ back to a and
d respectively to get

δabŨ1
cd þ Ṽ2

abδcd ¼ Ṽ 0
adU

0
cb ðA3Þ

with Ũ1¼U1ðU2Þ−1, Ṽ2¼ðV1Þ−1V2, Ṽ 0 ¼ ðV1Þ−1V 0ðU2Þ−1
Nowmultiply the result by ðṼ 0Þ−1αa Ṽ 0

bβ and sum over a and b
replacing finally α and β by a and b, respectively, to get

δabAcd þ Babδcd ¼ δadCcb ðA4Þ

with A ¼ Ũ1, B ¼ ðṼ 0Þ−1Ṽ2Ṽ 0, C ¼ U0Ṽ 0. Now for
abcd ¼ −þþ−, þ − −þ we get Cþþ ¼ C−− ¼ 0, for
þþ−þ, −þ−−, þþ−− we get C−þ ¼ A−þ ¼
B−þ ¼ A−− þ Bþþ, for þ −þþ, − −þ−, − −þþ we
get Cþ−¼Bþ−¼Aþ−¼AþþþB−−. For þþþ−, − − −þ,
−þþþ, þ − −− we get Aþ− ¼ A−þ ¼ B−þ ¼ Bþ− ¼ 0
and for þþþþ, −−−− we get Aþþ þ Bþþ ¼
A−− þ B−− ¼ 0. The result is C ¼ 0 and A ¼ −B ¼ λI,
contradiction.
Case K ¼ 4. The singularity is implied also in the case

K¼4 if W1
abcd¼V1

abU
1
cd, W2

abcd¼V2
abU

2
cd W3

abcd ¼
V3
abU

3
cd, W4 ¼ V 0

adU
0
cb. As above we assume that all

matrices are nonsingular, by the same multiplication the
equation W4 ¼ W1 þW2 þW3 can be simplified to

δabAcd þ Babδcd þDabEcd ¼ δadCcb ðA5Þ

with nondegenerate A, B, C, D, E. For abcd ¼ þ −þ−,
−þ −þ we get Dþ−Eþ− ¼ D−þE−þ ¼ 0 so one of each
pair (Dþ−, Eþ−) and (D−þ, E−þ) must vanish. Without loss
of generality Dþ− ¼ 0. Then for þ −þþ, þ − −þ, þ −
−− we get Bþ− ¼ Cþ−, C−− ¼ 0, Bþ− ¼ 0 ¼ Cþ−.
Moreover, if D−þ ¼ 0, too, then analogously Cþþ ¼
C−þ ¼ 0 so C ¼ 0. If D−þ, Eþ− ≠ 0 and E−þ ¼ 0 then
for þþ −þ, − − −þ we get A−þ ¼ C−þ, A−þ ¼
0 ¼ C−þ. Taking −þþ−, þþþ−, −þþþ we get
D−þEþ− ¼ Cþþ, Aþ− ¼ −DþþEþ−, B−þ ¼ −D−þEþþ.
Taking þþ −−, − −þþ, −þ −−, − −þ− we get
A−−þBþþ¼−DþþE−−, Aþþ þ B−− ¼ −D−−Eþþ, B−þ ¼
−D−þE−−, Aþ− ¼ −D−−Eþ− so Eþþ ¼ E−− and Dþþ ¼
D−−. Finally þþþþ, − − −− give Aþþ þ Bþþ þ
DþþEþþ ¼ Cþþ and A−− þ B−− þD−−E−− ¼ 0 so
Aþþ ¼ A−−, Bþþ ¼ B−− and Cþþ ¼ 0 so again C ¼ 0,
contradiction.
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