
 

Axial anomaly and hadronic properties in a nuclear medium
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We investigate meson and nucleon dynamics at finite baryon density and temperature by coupling the
nucleon field and the omega meson to the three-flavor linear sigma model and calculate hadronic properties
around the nuclear liquid-gas transition. We apply the functional renormalization group method, and find
that mesonic fluctuations increase the strength of the coefficient of the UAð1Þ breaking determinant
operator as a function of the chiral condensate. As a consequence, we find that the actual value of the
anomaly increases discontinuously at the first order nuclear liquid-gas transition. We calculate how
mesonic masses and partial restoration of chiral symmetry are modified due to such an effect.
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I. INTRODUCTION

Understanding strongly interacting dynamics in dense
nuclear matter is a great challenge in nuclear many-
body theory. At present times, controlled results on
thermodynamics of the fundamental theory of quantum
chromodynamics (QCD) are unlikely to be acquired for
baryochemical potentials μB ≳ T [1], and therefore, one is
left without first principle calculations regarding the
behavior of cold nuclear matter at finite density. Related
phenomena, however, continuously receives huge atten-
tion. The equation of state (EOS) of cold dense nuclear
matter found the deep interior of neutron stars (NSs) has
been under several constrains since the discovery of two
solar mass objects [2,3], and the recent measurement of
gravitational waves of a NS-NS merger [4]. The hadron
spectrum which is expected to be modified due to partial
restoration of chiral symmetry in the nuclear medium has
also been of considerable interest, in particular regarding
meson-nucleon bound states, which is regarded as a unique
possibility of probing in-medium meson properties [5]. The
η0-nucleon interaction has in particular received attention,
in that if the mass of the η0 particle dropped about 100 MeV
at normal nuclear density [6–9], similarly to the Λð1405Þ
K̄-nucleon bound state, one might have the chance
of observing an η0-nucleon composite. Spectroscopy
experiments of the 12Cðγ; pÞ reaction via photon beam
have been proposed by the LEPS2 collaboration (SPring-8
facility) [10] and by the BGO-OD (ELSA accelerator).
Furthermore, at the JAEA Heavy Ion (HI) project it is
aimed to create conditions similar to that of a neutron star,
i.e., 5–10 times normal nuclear density, for the first time in

a laboratory setting [11]. The program will expectedly help
better understand and determine the QCD phase structure,
e.g., critical points, phase boundaries and the EOS of
nuclear matter.
Because of lack of first principle calculations, one

applies effective models, which are based on (approximate)
chiral symmetry of QCD. The most popular ones are the
two- or three-flavor linear sigma models, the Nambu-Jona-
Lasinio model, extended with the Polyakov loop, vector
mesons and the nucleon [12–20]. Typically, effective
models are not weakly coupled, therefore, one needs to
go beyond mean field and perturbative approximations,
and consider fluctuations to be important. Promising
approaches for taking them into account are e.g., various
functional methods, such as the Dyson-Schwinger tech-
nique [21], the 2PI method [22,23] or the functional
renormalization group (FRG) [24,25]. In this paper we
extend our earlier formulations [26,27] and apply the FRG
scheme. Through this method, it is possible to extract
nonperturbative information out of the corresponding
models by deriving a scale evolution equation for the
quantum effective action. An important aspect of the
formulation is that it opens up the possibility of calculating
field dependent coupling constants (functions), which can
be interpreted as partial resummation of combinations of
operators reflecting chiral symmetry.
This is in particular interesting for the UAð1Þ breaking

‘t Hooft determinant term, which describes the axial UAð1Þ
anomaly. A closely related question regarding the QCD
phase diagram and the physics of the η0 meson is the fate of
this anomaly at finite temperature and density. In [27] we
calculated how the anomaly coefficient changes in the
three-flavor linear sigma model extended with nucleons, as
quantum, thermal and density fluctuations are integrated
out. We obtained that on the one hand, as hinted above, the
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anomaly acquired condensate dependence, and on the other
hand it became temperature and density dependent. Due to
the combination of these effects we found that as one raises
the baryochemical potential and/or temperature, and thus
as the chiral condensate starts to melt, the anomaly shows
(a possibly intermediate) strengthening, before reaching a
regime, where perturbative instanton calculations of QCD
are applicable [28], and where the anomaly should gradu-
ally disappear.
Our findings showed that one should be more cautious

regarding a possible mass drop of the η0 particle, which was
predicted by mean field calculations in the Nambu-Jona-
Lasinio [6,7] and linear sigma models [8,9]. A shortcoming
of our earlier study, however, was that it could not
distinguish between the nuclear liquid and gas phases,
and it was not able to display the corresponding first order
transition. In this paper we are looking at the system more
carefully, and investigate to what extent the nuclear
transition affects the anomaly, the mesonic spectrum and
the partial restoration of chiral symmetry. In order to do so,
we include a neutral vector meson, the ω particle into the
system, which is modeling the repulsive short range
interaction between the nucleons, and which is indispen-
sable for proper description of the liquid-gas transition. For
asymmetric nuclear matter, the ρ meson is also necessary,
but in this study we restrict ourselves to isospin symmetry.
The paper is organized as follows. In Sec. II, we

introduce the model and the FRG formulation. We go into
the details of how our approximation scheme is built up,
and how model parameters are obtained from appropriate
inputs. In Sec. III, we discuss the results and show various
plots. Section IV contains the summary and outlook.

II. CHIRAL NUCLEON-MESON MODEL

A. Basics

The system we are interested in consists of the
pseudoscalar and scalar meson (M) nonets in a nuclear
[ψT

N ¼ ðp; nÞ], isospin symmetric environment. The
nucleon-nucleon repulsive interaction is modeled by a
vector particle (ω), and we are to describe how the system
behaves at finite temperature and baryochemical potential.
The Euclidean Lagrangian takes the following form:

L ¼ Tr½∂iM†∂iM� þ Vch½M� þ aðdetM† þ detMÞ

− Tr½HðM† þMÞ� þ 1

4
ωijωij þ

1

2
m2

ωωiωi

þ ψ̄Nð=∂ − μBγ0 þ gYM̃5 − igω=ωÞψN; ð1Þ

where the potential term Vch½M� reflects chiral symmetry:

Vch½M� ¼ m2Tr½M†M� þ λ1ðTr½M†M�Þ2
þ λ2Tr½M†MM†M� þ higher order terms: ð2Þ

(We will come back to the role of the higher order terms.)
The mesonic field can be written as

M ¼
X8
a¼0

ðsa þ iπaÞTa; ð3Þ

where Ta ¼ λ̂a=2 are Uð3Þ generators (λ̂a being the Gell-
Mann matrices), while sa and πa correspond to the scalar
and pseudoscalar mesons. The term in (1) containing
determinants describes the UAð1Þ anomaly, while H ¼
h0T0 þ h8T8 is responsible for an explicit symmetry
breaking. In order to couple the nonstrange (ns) nucleon
field ψN into the three-flavor meson model, we need to
introduce a M̃ field, which belongs to a Uð2Þ subgroup of
Uð3Þ, which is spanned by some generators T̃a:

M̃ ¼
X

a¼ns;1;2;3

ðsa þ iπaÞT̃a: ð4Þ

Note that the nonstrange generator refers to the combina-
tion Tns ¼ ffiffiffiffiffiffiffiffi

2=3
p

T0 þ 1=
ffiffiffi
3

p
T8, but the T̃a matrices should

be considered as 2 × 2 (the Ta ones are 3 × 3). For
symmetry reasons, when coupling the nucleons to the
mesons one uses

M̃5 ¼
X

a¼ns;1;2;3

ðsa þ iπaγ5ÞT̃a; ð5Þ

where γ5 is the fifth Dirac matrix. Finally, ωij ¼
∂iωj − ∂jωi. Since fluctuations of ωwill not be considered,
and it will only serve as a background field, we may rescale
ωi → ωi=gω, and thus at this point the model parameters
arem2, λ1, λ2, a, h0, h8, gY , andGω ≔ g2ω=m2

ω (we will have
some more due to higher order terms in Vch). From (1), the
classical potential is the following:

VclðM;ω;ψNÞ ¼ VchðMÞ þ aðdetM† þ detMÞ

− Tr½HðM† þMÞ� − ω2

2Gω

þ ψ̄NðgYM̃5 − ðμB þ ωÞγ0ÞψN; ð6Þ

where we assumed that the (Euclidean) timelike component
of the ωi field acquires an expectation value as hωii ¼
−iωδi4. In what follows we take into account fluctuation
corrections of M and ψN to (6) and calculate the effective
potential of the system using the functional RG method.
In the FRG, the classical action corresponding to the

Lagrangian (1) serves as a starting point of the renormal-
ization group flows, defined at some ultraviolet (UV)
scale Λ. Having in mind that (1) is an effective theory
valid up to scales of Oð1 GeVÞ, we choose Λ ¼ 1 GeV.
Using the compact notation of the fields, Φ ¼ ðM;ψN;ωiÞ
(and defining the corresponding sources as J), the scale-
dependent quantum effective action Γk is
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Γk½Φ� ¼ − logZk½J� −
Z

JΦ −
Z

Φ†RkΦ;

Zk½J� ¼
Z

DΦe−ð
R

Lþ
R

J·Φþ
R

Φ†RkΦÞ: ð7Þ

Γk obeys the following flow equation:

∂kΓk ¼
1

2

Z
p

Z
q
Tr½ð−2ÞFðΓð2Þ

k þRkÞ−1ðq; pÞ∂kRkðp; qÞ�;

ð8Þ

where F ¼ 1 for indices of the trace that belongs to

fermionic variables, and F ¼ 0 for bosons. Γð2Þ
k is the

second derivative matrix of Γk with respect to the fields,
and Rk is a regulator matrix. In this paper, we choose for
bosonic eigenmodes in Rk the entries

RB
k ðq; pÞ ¼ RB

k ðqÞδðqþ pÞ
¼ ðk2 − q2ÞΘðk2 − q2Þδðqþ pÞ; ð9Þ

and

RF
k ðq; pÞ ¼ RF

k ðqÞδðqþ pÞ

¼ i=q

 ffiffiffiffiffi
k2

q2

s
− 1

!
Θðk2 − q2Þδðqþ pÞ ð10Þ

for fermionic ones, where boldfaced variables are
3-momenta. It is easy to show that, as mentioned above,
Γk¼Λ ¼ R L, and that Γk¼0 ¼ Γ1PI, the latter being the
ordinary 1PI quantum effective action.

B. Approximation scheme

The flow equation (8) can only be solved in approxima-
tion schemes. Fromnowon,we neglect all scale dependence
of the kinetic terms (i.e., wave function renormalizations) in
Γk, and since we are only interested in homogeneous field
configurations, we rather use the effective potential Veff;k,
defined through ΓkjΦ¼const ¼

R
x Veff;k. The ansatz for Veff;k,

based on (6) is as follows [26]:

Veff;k½M;ω;ψN � ¼ Vch;kðMÞ þ AkðMÞ · ðdetM† þ detMÞ

− Tr½HðM† þMÞ� − ω2

2Gω

þ ψ̄N(gYM̃5 − ðμB þ ωÞγ0)ψN; ð11Þ

where we are only interested in how the chiral potentials
evolve via the RG flow, and neglected the flows of the
Yukawa couplings gY and Gω, and also that of the explicit
symmetry breaking term proportional toH ≡ h0T0 þ h8T8.
These simplifications are expected to be good approxi-
mations at low enough temperatures [15]. The ansatz (11)

has to be compatible with the flow equation (8), therefore,
we have to split Vch;k into two parts:

Vch;kðMÞ ¼ VkðMÞ þ ṼkðM̃Þ; ð12Þ

where Vk reflects Uð3Þ × Uð3Þ symmetry, while Ṽk is
invariant under Uð2Þ ×Uð2Þ two-flavor rotations. The
necessity of such a splitting is due to the fact that nucleon
fluctuations do not contribute to the strange sector, thus their
presence has to introduce a part of Veff;k that only reflects a
two-flavor chiral symmetry, which is generated by the
nonstrange and isospin matrices.
Using (11), the flow equation (8) turns into the following

form for Veff;k at finite temperature T:

∂kVeff;k ¼
1

2
∂̃kT

X
n

Z
q
Tr log½Ω2

n þ q2 þ VBð2Þ
eff;k þ RB

k ðqÞ�

− ∂̃kT
X
n

Z
q
Tr log½Ω̃2

n þ q2 þ VFð2Þ
eff;k þ RF

k ðqÞ�;

ð13Þ

where Ωn ¼ 2nπT, Ω̃n ¼ ð2nþ 1ÞπT are bosonic and
fermionic Matsubara frequencies, respectively, and ∂̃k acts
only on the regulators. We separated the second derivative

matrix Vð2Þ
eff;k into bosonic ðVBð2Þ

eff;kÞ and fermionic ðVFð2Þ
eff;kÞ

parts [one may think of them as matrices satisfying

Vð2Þ
eff;k ¼ ðVBð2Þ

eff;kÞ ⊕ ðVFð2Þ
eff;kÞ]. Note that, as mentioned

already, fluctuations of ω are not taken into account,

therefore in VBð2Þ
eff;k only second derivatives of the fields

of M are present.
Note that

∂kVeff;k ¼ ∂kVkðMÞ þ ∂kṼkðM̃Þ
þ ∂kAkðMÞ · ðdetM† þ detMÞ: ð14Þ

We need projections of the rhs of (13) to get individual
equations for the scale evolution of Vk, Ṽk and Ak.
Concerning Ṽk first, obviously the second term of (13)

gives the leading order, but note that it backreacts on VBð2Þ
eff;k,

and provides subleading contributions too. We do not take
these into account and, therefore,

∂kṼk ¼ −T
X
n

∂̃k

Z
q
Tr log½Ω̃2

n þ q2 þ VFð2Þ
eff;k þ RF

k ðqÞ�:

ð15Þ

Performing the momentum integral and dropping terms that
would contribute to the flow of the explicit breaking, we
arrive at
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∂kṼk ¼ −
2k4T
3π2

X
n

Tr
1

ðΩ̃n − iμðeffÞB Þ2 þ k2 þ g2YM̃
†M̃

;

ð16Þ

where μðeffÞB is an effective baryochemical potential cor-

rected by ω: μðeffÞB ¼ μB þ ω. A possible way to calculate
the trace in (16) is to substitute

g2YM̃
†M̃ → g2YΔÎ þ

g2Y
2
TrðM̃†M̃Þ; ð17Þ

and perform an expansion in terms of ΔÎ ≡ g2YðM̃†M̃−
1
2
TrðM̃†M̃ÞÞ:

∂kṼkðM̃Þ ¼ −
2k4

3π2
T
X
n

�
2

ω̃2
n þ E2

k

þ
X∞
m¼1

ð−1Þm
�
gY
2

�
m TrðΔÎÞm
ðω̃2

n þ E2
kÞm
�
; ð18Þ

where ω̃n ¼ Ω̃n − iμðeffÞB , E2
k ¼ k2 þm2

N , and m2
N ¼

g2Y
2
TrðM̃†M̃Þ is corresponding to the nucleon mass. Note

that for a background where M̃ ∼ 1 (i.e., in the presence of
a nonstrange diagonal condensate), ΔÎ ≡ 0, therefore, for
our purposes it is enough to consider

∂kṼkðM̃Þ ¼ −
2k4

3π2
T
X
n

2

ω̃2
n þ E2

k

¼ −
k4

3π2Ek

X
�

�
coth

�
Ek � μðeffÞB

2T

��
: ð19Þ

Note that since the flow of gY is neglected, one can integrate
(19) and get

Ṽk¼ΛðM̃Þ − Ṽk¼0ðM̃Þ ¼ −
1

3π2

Z
Λ

0

dk
k4

Ek

þ 2

3π2

Z
∞

0

k4

Ek

X
�
nFðEk � μðeffÞB Þ;

ð20Þ

where nFðxÞ ¼ ( expðx=TÞ þ 1)−1 is the Fermi-Dirac dis-
tribution. Since the first term on the rhs of (20) is an
environment independent function of M̃, one may combine
it with Ṽk¼Λ to introduce ṼL and arrive at

Ṽk¼0ðM̃Þ ¼ ṼLðM̃Þ − 4

3

Z
d3k
ð2πÞ3

k2

Ek

X
�
nFðEk � μðeffÞB Þ:

ð21Þ

Here ṼL is a chiral invariant function and plays the role of
the (corrected) initial value of the flow, i.e., has to be of a
Uð2Þ ×Uð2Þ form of the classical potential (2). One has to
adjust its parameters in order to reproduce appropriate
physical quantities in the vacuum (see the next subsection).
The second term is just the standard one-loop contribution.
It shows that without considering the flow of the Yukawa
coupling gY , one does not go beyond perturbation theory.
The real strength of the FRG emerges when we consider

the flows of VkðMÞ and AkðMÞ. Details of obtaining them
are worked out in detail in [26], here we just briefly review
the procedure. By definition,

∂kVk þ ∂kAkðdetM† þ detMÞ

¼ 1

2
∂̃kT

X
n

Z
q
Tr log½Ω2

n þ q2 þ VBð2Þ
eff;kðqÞ þ RB

k ðqÞ�;

ð22Þ

where VBð2Þ
eff;k, as explained before, contains only those

contributions that reflect Uð3Þ ×Uð3Þ symmetry (deriva-
tives of Ṽk do not count here). First, one separates the flow
of Vk. To reach that, Ak ¼ 0 is taken, and Vk is approxi-
mated via a chiral invariant expansion [29]:

VkðMÞ ¼ UkðI1Þ þ CkðI1Þ · I2 þ � � � ; ð23Þ

where

I1 ¼ TrðM†MÞ; ð24aÞ

I2 ¼ Tr(M†M − TrðM†MÞ=3)2: ð24bÞ

Projecting the flow equation onto a subspace where
I2 ¼ 0 leads to the flow of UkðI1Þ, while after projecting
(22) onto the subspace of OðI2Þ, one obtains the flow of
CkðI1Þ. Finally, we consider Ak and perform one more
projection, now onto the subspace of OðIdetÞ, where
Idet ¼ detM† þ detM. These flow equations can be found
in Appendix A, together with formulas that are helpful to

obtain the VBð2Þ
eff;k derivatives.

Now we need to choose initial conditions for Uk¼Λ,
Ck¼Λ, Ak¼Λ and Ṽk¼Λ. We restrict ourselves to renorma-
lizable operators in the three-flavor sector, and based on (2),
we choose

Uk¼Λ ¼ m2I1 þ ðλ1 þ λ2=3ÞI21;
Ck¼Λ ¼ λ2; Ak¼Λ ¼ a: ð25Þ

At this point it has to be emphasized that, for Ṽk¼Λ, we also
need higher order contributions. These terms are non-
renormalizable, but given the fact that we are dealing
with an effective theory, and the cutoff Λ ¼ 1 GeV is
rather small, one must not rule out the presence of such
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interactions. While one can perform physically meaningful
parametrizations without introducing these types of terms
in Vk¼Λ if the properties of nuclear matter are not of
importance, here it turns out that one does need (in the RG
sense) irrelevant operators for the two-flavor piece, Ṽk¼Λ
(or ṼL). The reason is that via Ṽk the model has to be
capable of describing the liquid-gas transition of nuclear
matter, therefore, one needs a double-well potential to
obtain the corresponding first order transition. This can
only be achieved by not neglecting nonrenormalizable
interactions at the UV scale. Keeping this in mind, the
complete effective potential at this point takes the form of

Veff;k¼0½M;ω� ¼ Uk¼0ðI1Þ þ Ck¼0ðI1Þ · I2
þ Ak¼0ðI1Þ · Idet − hsss − hnssns

þ ṼLðM̃Þ − ω2

2Gω
;

−
4

3

Z
d3k
ð2πÞ3

k2

Ek

X
�
nFðEk � μðeffÞB Þ; ð26Þ

where we also performed a basis change in the 0–8 sector
and introduced nonstrange (ns) and strange (s) variables:

�
sns
ss

�
¼ 1ffiffiffi

3
p
� ffiffiffi

2
p

1

1 −
ffiffiffi
2

p
��

s0
s8

�
; ð27Þ

and similarly for ðh0; h8Þ ↔ ðhns; hsÞ. One notices that it is
unnecessary after all to specify Ṽk¼Λ, as only ṼL appears in
(26). The condition that determines the latter function is
that one should get an effective two-flavor description of
the liquid-gas transition at T ¼ 0 (similarly as in [19,20]),
after minimizing the effective potential with respect
to ss. (We denote the minimum point by ss;min, which is

a function of sns.) Keeping in mind that nonrenormalizable
interactions can be present and tuned in ṼLðM̃Þ, we
combine the first four terms with ṼLðM̃Þ and let it equal
a chiral expression, expanded around the nonstrange
minimum in the vacuum that is eight order in the fields:

UT¼0
k¼0 ðI1jsðT¼0Þ

s;min
Þ þ CT¼0

k¼0 ðI1jsðT¼0Þ
s;min

Þ · I2jsðT¼0Þ
s;min

þ AT¼0
k¼0 · IdetjsðT¼0Þ

s;min
− hss

ðT¼0Þ
s;min þ ṼLðM̃Þ

≡X4
n¼1

bn

�
Ĩ1 −

1

2
ðvðT¼0Þ

ns;minÞ2
�

n
; ð28Þ

where the fbng ðn ¼ 1…4Þ coefficients represent four new
model parameters. Ĩ1 is the analog of I1: Ĩ1 ¼ TrðM̃†M̃Þ=2,
and vT¼0

ns;min is the true minimum of sns in the vacuum (i.e.,
the pion decay constant, as we will see shortly). Note that
I1jss;min, I2jss;min and Idetjss;min has to be interpreted as
functions of Ĩ1, as we wish to obtain an effective two-flavor
chiral invariance. Operators such as Ĩ2 ≡ Tr(M̃†M̃ −
TrðM̃†M̃Þ=2)2 should not appear due to our choice of
(19), i.e., we are interested in field configurations where
M̃ ∼ 1. In a background of sns, Ĩ1 ¼ s2ns=2, and therefore, in
the minimum ss;min, we may associate invariants with each
other through the following identifications:

I1jss;min
→ Ĩ1 þ

s2s;min

2
; I2jss;min

→
1

6
ðĨ1 − s2s;minÞ2;

Idetjss;min
→ Ĩ1

ss;minffiffiffi
2

p : ð29Þ

Expressing ṼL from (28), and adding an irrelevant constant

to (26), hnss
ðT¼0Þ
ns;min, for convenience, we arrive at

Veff;k¼0ðM;ωÞ ¼ Uk¼0ðI1Þ þ Ck¼0 · I2 þ Ak¼0ðI1Þ · Idet

−
�
UT¼0

k¼0 ðĨ1 þ s2ðT¼0Þ
s;min =2Þ þ CT¼0

k¼0 ðĨ1 þ s2ðT¼0Þ
s;min =2Þ · 1

6
ðĨ1 − s2ðT¼0Þ

s;min Þ2 þ AT¼0
k¼0 ðĨ1 þ s2ðT¼0Þ

s;min =2Þ · Ĩ1
sðT¼0Þ
s;minffiffiffi
2

p
�

− hsðss − sðT¼0Þ
s;min Þ − hnsðsns − vðT¼0Þ

ns;minÞ þ
X4
n¼1

bn

�
Ĩ1 −

1

2
ðvðT¼0Þ

ns;minÞ2
�

n
−

ω2

2Gω

−
4

3

Z
d3k
ð2πÞ3

k2

Ek

X
�
nFðEk � μðeffÞB Þ: ð30Þ

Via this construction, after minimizing (30) with respect to ss at T ¼ 0, we manage to have the following form of the
effectively two-flavor potential:

VT¼0
eff;k¼0½M̃;ω� ¼

X4
n¼1

bn

�
Ĩ1 −

1

2
ðvðT¼0Þ

ns;minÞ2
�

n
− hnsðsns − vðT¼0Þ

ns;minÞ −
ω2

2Gω
−
4

3

Z
d3k
ð2πÞ3

k2

Ek

X
�
nT¼0
F ðEk � μðeffÞB Þ: ð31Þ
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At this point it is important to mention that at k ¼ 0 not all
fbng coefficients are compatible with the solution of the
flow equation, as at k ¼ 0 the effective potential has to be
convex. In particular, we intend to choose fbng such that it
leads to a double-well potential, which should never
come out as a result given the flow equation is solved
numerically. We do not feel that it is of serious problem,
because it has been shown in earlier works [30,31] that
there exists a critical scale kc beyond which position of the
minima of a double-well potential does not change, and
convexity is built up by flattening of the hill between
those minima. Therefore, we think of (31) as a construction
which only models the positions of the minima, but
not the structure in between. As a consequence, e.g., we
will not be using (31) to calculate surface tension of a liquid
droplet.
Now we are in a position to determine the model

parameters. Note that from the three-flavor sector we have
m2, g1, g2, h0, h8 (or hns and hs), a, and b1, b2, b3, b4 from
the additional two-flavor piece. Furthermore, one needs to
determine gY and Gω Yukawa couplings. That is 12
parameters in total, which are to be dealt with in the next
subsection.

C. Parametrization

We start the parametrization by recalling that the
partially conserved axialvector current (PCAC) relations
give

m2
πfπ ¼ hns; m2

KfK ¼ hns
2

−
hsffiffiffi
2

p ; ð32Þ

where m2
π ¼ ∂2VT¼0

eff;k¼0=∂π2i [i ¼ 1, 2, 3] and m2
K ¼

∂2VT¼0
eff;k¼0=∂π2j [j ¼ 4, 5, 6, 7]. Using physical pion

(mπ ¼ 140 MeV) and kaon (mK ¼ 494 MeV) masses
and decay constants (fπ ¼ 93 MeV, fK ¼ 113 MeV),
one gets

hns ¼ m2
πfπ ≈ ð122 MeVÞ3;

hs ¼
1ffiffiffi
2

p ð2m2
KfK −m2

πfπÞ ≈ ð335 MeVÞ3; ð33Þ

or

h0 ¼
ffiffiffi
2

3

r
ðm2

πfπ=2þm2
KfKÞ ≈ ð285 MeVÞ3;

h8 ¼
2ffiffiffi
3

p ðm2
πfπ −m2

KfKÞ ≈ −ð310 MeVÞ3: ð34Þ

Ward identities of chiral symmetry lead to

∂VT¼0
eff;k¼0

∂πi¼1;2;3
¼ m2

πsns − hns; ð35aÞ

∂VT¼0
eff;k¼0

∂πi¼4;5;6;7
¼ m2

K −m2
πffiffiffi

2
p sns þm2

Kss − hs; ð35bÞ

i.e., that no matter what the remaining parameters are, if we
use (33), in the minimum of the effective potential

vðT¼0Þ
ns;min ¼ fπ; vðT¼0Þ

s;min ¼
ffiffiffi
2

p
ðfK − fπ=2Þ: ð36Þ

Note that ss;min that we used earlier equals vs;min only when

the nonstrange condensate is set to fπ: sðT¼0Þ
s;min jsns¼fπ ¼

vðT¼0Þ
s;min .
Now we make use of some of the zero temperature

properties of nuclear matter. First one notes that the nucleon
mass in the current model entirely comes from the
spontaneous breaking of chiral symmetry, mNðsnsÞ ¼
gYsns=2, and since mNðfπÞ ≈ 939 MeV in the vacuum

(i.e., at sns ¼ vðT¼0Þ
ns;min ≡ fπ), we get gY ≈ 20.19. Normal

nuclear density, nN ≈ 0.17 fm−3 ≈ ð109.131 MeVÞ3 deter-
mines the Fermi momentum of the nucleons, as at T ¼ 0

one has nN ¼ 4
R
p nFð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

N

p
− μðeffÞB ÞjT¼0 ≡ 2

3π2
p3
F,

thus pF ≈ 267.9 MeV ≈ 1.36 fm−1. This immediately
leads to the value of the nonstrange condensate in the
nuclear liquid phase, since the Landau mass, which is

defined as ML ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
F þm2

Nðvns;liqÞ
q

(note that vns;liq ≠ fπ
as it corresponds to the liquid phase) is known to be
ML ≈ 0.8mNðfπÞ ≈ 751.2 MeV, and therefore vns;liq≈
69.52 MeV. The Landau mass also determines the value
of the ω condensate in the liquid phase (at the critical
point), as it is nothing but the critical effective chemical
potential: ML ¼ μB;c þ ωc, where the real chemical poten-
tial equals μB;c¼mNðfπÞ−B≈922.7MeV, B ≈ 16.3 MeV
being the binding energy per nucleon. This calculation
yields ωc ≈ −171.5 MeV. For the sake of an example, we
can calculate the compression modulus K of nuclear
matter:

K ¼ 9
nN

∂nN=∂μB
����
T¼0

¼ 3
M2

L −m2
Nðvns;liqÞ

ML
; ð37Þ

for which we get K ≈ 287 MeV, in decent agreement with
the experimentally established value [32].
All in all, we need to adjust Gω and bi (i ¼ 1, 2, 3, 4) in

(31) such that a first order transition occurs at T ¼ 0, μB ¼
922.7 MeV from sns ¼ fπ to sns ¼ vns;liq, while ω acquires
its critical value ωc.
First, one minimizes (31) at T ¼ 0 with respect to ω:
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∂VðT¼0Þ
eff;k¼0½M̃;ω�

∂ω ¼ −
ω

Gω
þ 4
X
�

Z
d3p
ð2πÞ3

�1

exp½ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

N

p
� ðμB þ ωÞÞ=T� þ 1

����
T¼0

: ð38Þ

Setting the left-hand side of (38) to zero and evaluating the
integral we get

0 ¼ −
ω

Gω
−

1

6π2
½ðμB þ ωÞ2 − g2Ys

2
ns=4�3=2

× ΘððμB þ ωÞ2 − g2Ys
2
ns=4ÞÞ: ð39Þ

One solves this equation for ω ¼ ωðsnsÞ and the constraint
that determines Gω is ωðvns;nuclÞ ¼ ωc at μB ¼ μB;c. We get
G−1

ω ≈ 7573.17 MeV2.
Now, if we plug ω ¼ ωðsnsÞ into (38) numerically, we

obtain an effective potential for M̃ (or sns) only. This
potential has to have the following properties:

VðT¼0Þ
eff;k¼0½M̃ ¼ fπTns� ¼ 0 ð40aÞ

∂VðT¼0Þ
eff;k¼0½M̃�
∂sns

����
M̃¼fπTns

¼ 0; ð40bÞ

VðT¼0Þ
eff;k¼0½M̃ ¼ vns;liqTns� ¼ 0; ð40cÞ

∂VðT¼0Þ
eff;k¼0½M̃�
∂sns

����
M̃¼vns;liqTns

¼ 0: ð40dÞ

Note that by construction (40a) and (40b) are automatically
satisfied by (31). In addition to (40c) and (40d), we require
the pion mass to be physical, i.e., mπ ¼ 140 MeV, as it
is entirely determined by the two-flavor piece of the
effective potential. Furthermore, we tune the parameters
such that the critical end point of the nuclear transition is at
Tcep ¼ 18 MeV [33]. These conditions determine the fbig
parameters:

b1=f2π ≈ 2.266; b2 ≈ 25.043;

b3 · f2π ≈ −12.572; b4 · f4π ≈ 169.312: ð41Þ
We still have to determine four more parameters (i.e.,m2,

g1, g2, a) related to the three-flavor piece Vk of Veff;k. The
requirements here are only to reproduce physical masses
[34]. Using (30), we calculate all meson masses (see also
Appendix B) and require the kaon, η, η0, and a0 to get their
physical values. Note that, as mentioned already, due to the
construction of (30), the pion mass cannot be used to
determine model parameters of the three-flavor piece, as
due to cancellations of the first two lines, it is insensitive to
the yet undetermined parameters. The following choices
reproduce all the aforementioned masses within a 10%
accuracy compared to their physical value:

m2 ≈ −0.95 GeV2; g1 ≈ 2.67

g2 ≈ 62.3; a ≈ −2.8 GeV: ð42Þ

It has to be noted that all the flow equations for VkðI1Þ,
CkðI1Þ and AkðI1Þ are solved on a grid, with a step size of
δI1 ¼ ð10 MeVÞ2 in an interval of I ¼ ½0∶2� GeV2. In
k-space we initialize the flows at Λ ¼ 1 GeV and integrate
down to k ¼ 0 with a step size δk ¼ 10−2 MeV. Field
derivatives are crucial to be calculated accurately, and we
were using the seven-point formula (except for close to the
boundaries, where five- and three-point formulas were
employed).
Also note that, one always needs to solve all equations at

T ¼ 0, as even the finite temperature expression of Veff;k¼0

contains the corresponding functions at T ¼ 0. Once this
step is done, one recalculates the aforementioned functions
at T ≠ 0 to obtain the complete effective potential at any
temperature. As for the masses, one needs to go through
differentiations with respect to the field variables, which
always come in through chiral invariants, as required by
symmetry. They can be calculated with the help of some
useful formulas that can be found in Appendix B.

III. RESULTS

Now we review the results of the paper. In Fig. 1 the
effective potential is shown around the liquid-gas transition
as a function of the baryochemical potential for different
temperatures. It is demonstrated how the first order
transition is turning into second order and a crossover
for T > 18 MeV. Related plots can also be found in Fig. 2,
where the nonstrange and strange condensates are shown as
a function of μB for T ¼ 0 and at T ¼ 18 MeV. The latter
belongs to the critical end point (i.e., a second order
transition). It can be seen that even though nucleon
fluctuations do not couple to the strange sector, the non-
strange condensate “pulls” the strange one toward a lower
value as it changes.
In Fig. 3 we plot how the anomaly coefficient in the

minimum of the effective potential, i.e., Ak¼0½I1 ¼
ðv2ns;min þ v2s;minÞ=2�, behaves at various temperatures as a
function of μB − μB;c, where μB;c is the critical baryochem-
ical potential at a given temperature. For practical reasons
we define and plot an anomaly difference function,

ΔjAjðμB;TÞ ¼ jAk¼0jμB − AT¼0
k¼0 jμB¼0j: ð43Þ

There is a clear tendency of strengthening, which can be
understood by taking a look at Fig. 4 showing the Ak¼0ðI1Þ
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profile function [26] (note that it does not depend on μB).
First, we note that the change of AkðI1Þ as a function is
negligible in the temperature interval in question (i.e.,
½0∶18� MeV), but as vns;min and vs;min decreases at the
nuclear liquid-gas transition, the actual anomaly strength
goes up. Notice how important the functional nature of our
method is, as no condensate dependence of the anomaly
function could have been obtained using conventional
perturbation theory. The corresponding term, AkðI1Þ · Idet,
can be interpreted as an infinite resummation of In1 · Idet=n!
operators.
The next thing we are interested in is the phase boundary

on the μB − T plane, which is shown in Fig. 5. As described
in the previous subsection, through parametrization the end
point is set to 18 MeV [33], and our calculations show that
the curve is not really sensitive to the inclusion of mesonic
fluctuations. This is appealing from the point of view that
even a mean field calculation [19] (i.e., inclusion of
fermionic one-loop effects only) is quite stable. Mesonic
fluctuations seem to be only crucial from the point of view
of the anomaly and the mass spectrum. The latter can be
seen in Figs. 6 and 7. Figure 6 corresponds to the full

calculation, where one notices a flat η0 mass, which is
consistent with the earlier study [27]. This can be under-
stood as follows. Even though the condensates abruptly
decrease at the transition point, at the same time the
anomaly goes up, therefore, “anomaly” × “condensate”
type of terms do not necessarily decrease: there is a
competition between the increasing anomaly and the
decreasing condensates. In our case it seems that the
opposite effects almost exactly cancel each other leading
to a flat η0 mass as a function of the chemical potential (or
nuclear density).
For comparison, we plot in Fig. 7 a spectrum, where the

anomaly coefficient is set to its vacuum value and not
allowed to change as the condensates vary. In this case the
η0 mass indeed decreases about Oð10%Þ, as no change in
the anomaly can compensate the drop of the chiral con-
densates. This result reproduces many earlier studies, which
treated, as a somewhat crude approximation, the anomaly
coefficient as a constant. Note that we have performed no
reparametrization, thus masses deviate from their physical
values. This shows that inhomogeneities of the anomaly
function also carry significant contributions to the masses.

 55  60  65  70  75  80  85  90  95

μB=930 MeV

μB=922.7 MeV

μB=915 MeV

V
ef

f

vns [MeV]

T = 0 MeV

 55  60  65  70  75  80  85  90  95

μB=923 MeV

μB=915 MeV

μB=907 MeV

V
ef

f

vns [MeV]

T = 12 MeV

 55  60  65  70  75  80  85  90  95

μB=914 MeV

μB=905.85 MeV

μB=898 MeV

V
ef

f

vns [MeV]

T = 18 MeV

FIG. 1. Shape of the effective potential for three different temperatures, as a function of μB. The plots demonstrate how the critical end
point is approached and how the first order transition is gradually turning into second order and a crossover.
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FIG. 3. Plot of the change in the strength of the anomaly in the
minimum of the effective potential as a function of μB − μB;c, for
different temperatures. Note that μB;c corresponds to the critical
chemical potential and it depends on the temperature.
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FIG. 4. Profile function Ak¼0 at zero temperature, as a function
of the chiral invariant I1jvns;vs ¼ ðv2ns þ v2s Þ=2. In the temperature
range that corresponds to a first order transition (i.e.,
0 ≤ T ≲ 18 MeV), change of the shape is not visible.
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FIG. 5. Phase boundary in the μB-T plane. Once the end point is
set via parametrization, the shape is not really sensitive to the
inclusion of mesonic fluctuations.
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FIG. 6. Mass spectrum at zero temperature. Notice how the
increasing anomaly flattens the η0 mass.
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FIG. 2. Partial restoration of chiral symmetry due to the nuclear liquid-gas transition. We show how the condensates depend on μB at
T ¼ 0 (left) and at T ¼ 18 MeV (right), which corresponds to the critical end point, i.e., a second order transition.
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IV. SUMMARY

In this paper we calculated the thermodynamic properties
of the three-flavor linear sigma model extended with
nucleon degrees of freedom. The nucleon-nucleon short-
range interaction was modeled by a vector-particle ω, and
the method which we employed to calculate fluctuation
effects was the functional renormalization group technique.
We found that the coefficient of the determinant operators,
which describe the UAð1Þ anomaly in the effective field
theory setting, acquires field dependence due to mesonic
fluctuations, and as a result, the melting of the nonstrange
and strange condensates can cause elevation of the anomaly.
We saw that this indeed happens at finite temperature and

density, in particular during the nuclear liquid-gas transition.
Since the latter is of first order at low temperatures, a
corresponding jump also takes place in the anomaly if
T ≲ 18 MeV. As expected, this qualitatively changes the
mass spectrum in the medium compared to earlier studies,
e.g., we observed an η0 mass that did not drop at the phase

transition, but stayed rather smooth as a function of the
chemical potential (or nucleon density). If the spectrum in
nuclearmedium indeed shows such a behavior, an η0-nucleon
bound state formationmight be out of reach.Wewish to point
out that the obtained results are consistent with our earlier
study that did not take into account any nucleon-nucleon
interaction, and the corresponding liquid-gas transition.
We also argued that mesonic fluctuations, while being

crucial from the point of view of anomaly evolution and the
mass spectrum, does not affect the critical end point of the
liquid-gas transition. This shows that a mean fieldlike
approximation, where only one-loop fermionic contribu-
tions are considered [19,20], is quite reliable, if one is
interested in the thermodynamics of the nonstrange sector.
The study can be extended in various directions. First of

all, we have not taken into account any instanton effect. The
anomaly evolution is solely driven by mesonic fluctuations
in this study, and one is interested in how the results would
change if instantons were included via an environment
dependent bare anomaly coefficient. Furthermore, isospin
asymmetric nuclear matter could also be studied (it is of
importance for neutron star physics), where the isovector ρ
particle also has to be introduced. Finally, a more complete
study of the system would also include all the baryons, in
particular hyperons, which is expected to be relevant at
higher densities than we have studied in the present paper.
This requires an extension of the model toward a complete
flavor SUð3Þ symmetry. These directions represent future
works to be reported elsewhere.

APPENDIX A: FLOW EQUATIONS IN THE
THREE-FLAVOR SECTOR

The procedure of obtaining flow equations for UkðI1Þ,
CkðI1Þ and AkðI1Þ is described in Sec. II B. Here we list the
corresponding results:

∂kUkðU1Þ ¼
k4T
6π2

X∞
n¼−∞

�
9

Ω2
n þ E2

π
þ 8

Ω2
n þ E2

a0

þ 1

Ω2
n þ E2

σ

�
; ðA1aÞ

∂kCkðI1Þ ¼
k4T
6π2

X∞
n¼−∞

�
4ð3Ck þ 2I1C0

kÞ2=3
ðΩ2

n þ E2
a0Þ2ðΩ2

n þ E2
σÞ

þ 128C5
kI

3
1=9

ðΩ2
n þ E2

πÞ3ðΩ2
n þ E2

a0Þ3
þ 24CkðCk − I1C0

kÞ
ðΩ2

n þ E2
a0Þ3

þ 4ð3CkC0
kI1 þ 4I21C

0
k
2 þ Ckð3Ck − 2C00

kI
2
1ÞÞ=3

ðΩ2
n þ E2

a0ÞðΩ2
n þ E2

σÞ2
þ 64C3

kI
2
1ðCk − I1C0

kÞ=3
ðΩ2

n þ E2
πÞ2ðΩ2

n þ E2
a0Þ3

−
48C2

kI
2
1C

0
k

ðΩ2
n þ E2

πÞðΩ2
n þ E2

a0Þ3

þ 6Ck − 17I1C0
k

ðΩ2
n þ E2

a0Þ2
1

I1
−
6Ck þ 9I1C0

k þ 2I21C
00
k

ðΩ2
n þ E2

σÞ2
1

I1
þ 4Ckð6Ck þ 9I1C0

k þ 2I21C
00
kÞ=3

ðΩ2
n þ E2

a0ÞðΩ2
n þ E2

σÞ2
�
; ðA1bÞ

∂kAkðI1Þ ¼
k4T
6π2

X∞
n¼−∞

�
−

9A0
k

ðΩ2
n þ E2

πÞ2
−

9Ak

I1ðΩ2
n þ E2

πÞ2
−

8A0
k

ðΩ2
n þ E2

a0Þ2
þ 12Ak

I1ðΩ2
n þ E2

a0Þ2

−
3Ak

ðΩ2
n þ E2

σÞ2I1
þ 7A0

k

ðΩ2
n þ E2

σÞ2
þ 2I1A00

k

ðΩ2
n þ E2

σÞ2
�
; ðA1cÞ
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FIG. 7. Mass spectrum at zero temperature, without taking into
account the field dependence of the anomaly coefficient (model
parameters are the same as in Fig. 6).
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where Ωn ¼ 2πnT, and

E2
π ¼ k2 þU0

kðI1Þ; ðA2aÞ

E2
a0 ¼ k2 þ U0

kðI1Þ þ
4

3
I1CkðI1Þ; ðA2bÞ

E2
σ ¼ k2 þU0

kðI1Þ þ 2I1U00
kðI1Þ: ðA2cÞ

Every Matsubara sum in Eq. (A1) can be generated via
taking derivatives of the functions

Sð1ÞðEÞ ¼ T
Xþ∞

n¼−∞

1

Ω2
n þ E2

¼ cothðE=2TÞ
2E

; ðA3Þ

and

Sð2ÞðE1; E2Þ ¼ T
Xþ∞

n¼−∞

1

ðΩ2
n þ E2

1ÞðΩ2
n þ E2

2Þ

¼ 1

2E1E2

E1 cothðE2=2TÞ − E2 cothðE1=2TÞ
E2
1 − E2

2

:

ðA4Þ

APPENDIX B: FIELD DERIVATIVES

Evaluating the flow equations and calculation of the
mass spectrum require the determination of field derivatives
of the effective potential. As described in Sec. II C, the
latter is a function of chiral invariants, and here we list
various field derivatives of them.
For the sake of readability, we repeat some definitions:

I1 ¼ TrðM†MÞ; I2 ¼ Tr(M†M − TrðM†MÞ=3)2;
Idet ¼ detM† þ detM; Ĩ1 ¼ TrðM̃†M̃Þ: ðB1Þ

Note that [Ta are Uð3Þ, T̃a are Uð2Þ generators]

M ¼
X8
a¼0

ðsa þ iπaÞTa ðB2Þ

while

M̃ ¼
X

a¼ns;1;2;3

ðsa þ iπaÞT̃a; ðB3Þ

and in accordance, I1, I2 and Idet are invariant under the
ULð3Þ ×URð3Þ group [Idet breaks UAð1Þ as it should],
while Ĩ1 shows ULð2Þ ×URð2Þ invariance only.

We impose a background of

Mjv0;v8 ¼ v0T0 þ v8T8 ≡ vnsTns þ vsTs; ðB4Þ

[for the transformation matrix between (0,8) and (ns, s) see
(27)] and correspondingly

M̃jv0;v8 ¼ vnsT̃ns: ðB5Þ

In this background, the invariants are

I1jv0;v8 ¼
v20 þ v28

2
; I2jv0;v8 ¼

v28
24

ðv8 − 2
ffiffiffi
2

p
v0Þ2; ðB6Þ

Idetjv0;v8 ¼
1

3
ffiffiffi
6

p
�
v30 −

3

2
v0v28 −

1ffiffiffi
2

p v38

�
;

Ĩ1jv0;v8 ¼
1

3

�
v0 þ

1ffiffiffi
2

p v8

�
2

; ðB7Þ

while their derivatives turn out to be

∂I1
∂sa
����
v0;v8

¼ v0δa0 þ v8δa8;

∂I1
∂πa
����
v0;v8

¼ 0; ðB8Þ

∂I2
∂sa
����
v0;v8

¼
�
2v0v28
3

−
1

3
ffiffiffi
2

p v38

�
δa0

þ
�
2v20v8
3

−
v0v28ffiffiffi

2
p þ v38

6

�
δa8;

∂I2
∂πa
����
v0;v8

¼ 0; ðB9Þ

∂Idet
∂sa

����
v0;v8

¼ 2v20 − v28
2
ffiffiffi
6

p δa0 −
v8ð

ffiffiffi
2

p
v0 þ v8Þ

2
ffiffiffi
3

p δa8;

∂Idet
∂πa

����
v0;v8

¼ 0; ðB10Þ

∂ Ĩ1
∂sa
����
v0;v8

¼
ffiffiffi
2

p

3
ð
ffiffiffi
2

p
v0 þ v8Þδa0 þ

1

3
ð
ffiffiffi
2

p
v0 þ v8Þδa8;

∂ Ĩ1
∂πa
����
v0;v8

¼ 0: ðB11Þ

The second derivatives are
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∂2I1
∂sa∂sb

����
v0;v8

¼ δab;
∂2I1

∂πa∂πb
����
v0;v8

¼ δab; ðB12Þ

∂2I2
∂sasb

����
v0;v8

¼

8>>>>>>>>>>>><
>>>>>>>>>>>>:

2
3
v28; if a ¼ b ¼ 0

− v2
8ffiffi
2

p þ 4
3
v0v8; if a ¼ 0; b ¼ 8 or a ¼ 8; b ¼ 0

2
3
v20 þ v2

8

2
−

ffiffiffi
2

p
v0v8; if a ¼ b ¼ 8

2
3
v20 þ v2

8

6
þ ffiffiffi

2
p

v0v8; if a ¼ b ¼ 1; 2; 3

2
3
v20 þ v2

8

6
− 1ffiffi

2
p v0v8; if a ¼ b ¼ 4; 5; 6; 7

0; else;

ðB13Þ

∂2I2
∂πaπb

����
v0;v8

¼

8>>>>>>>>>>><
>>>>>>>>>>>:

0; if a ¼ b ¼ 0

− v2
8

3
ffiffi
2

p þ 2
3
v0v8; if a ¼ 0; b ¼ 8 or a ¼ 8; b ¼ 0

v2
8

6
−
ffiffi
2

p
3
v0v8; if a ¼ b ¼ 8

− v2
8

6
þ

ffiffi
2

p
3
v0v8; if a ¼ b ¼ 1; 2; 3

5
6
v28 − 1

3
ffiffi
2

p v0v8; if a ¼ b ¼ 4; 5; 6; 7

0; else;

ðB14Þ

∂2Idet
∂sisj

����
v0;v8

¼

8>>>>>>>>>>><
>>>>>>>>>>>:

ffiffi
2
3

q
v0; if i ¼ j ¼ 0

− v8ffiffi
6

p ; if i ¼ 0; j ¼ 8 or i ¼ 8; j ¼ 0

− v0ffiffi
6

p − v8ffiffi
3

p ; if i ¼ j ¼ 8

− v0ffiffi
6

p þ v8ffiffi
3

p ; if i ¼ j ¼ 1; 2; 3

− v0ffiffi
6

p − v8
2
ffiffi
3

p ; if i ¼ j ¼ 4; 5; 6; 7

0; else;

ðB15Þ

∂2Idet
∂πaπb

����
v0;v8

¼

8>>>>>>>>>>><
>>>>>>>>>>>:

−
ffiffi
2
3

q
v0; if a ¼ b ¼ 0

v8ffiffi
6

p ; if a ¼ 0; b ¼ 8 or a ¼ 8; b ¼ 0

v0ffiffi
6

p þ v8ffiffi
3

p ; if a ¼ b ¼ 8

v0ffiffi
6

p − v8ffiffi
3

p ; if a ¼ b ¼ 1; 2; 3
v0ffiffi
6

p þ v8
2
ffiffi
3

p ; if i ¼ j ¼ 4; 5; 6; 7

0; else;

ðB16Þ

∂2Ĩ1
∂sasb

����
v0;v8

≡ ∂2Ĩ1
∂πaπb

����
v0;v8

¼

8>>>>>>>><
>>>>>>>>:

2
3
; if a ¼ b ¼ 0ffiffi
2

p
3
; if a ¼ 0; b ¼ 8 or a ¼ 8; b ¼ 0

1
3
; if a ¼ b ¼ 8

1; if a ¼ b ¼ 1; 2; 3

0. else:

ðB17Þ
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