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Electric fields may decay by quantum tunneling: as calculated by Schwinger, an electron-positron pair
may be summoned from the vacuum. In this paper, I calculate the pair-production rate at nonzero
temperatures. I find that, at high temperatures, the decay rate is dominated by a new instanton that involves
both thermal fluctuation and quantum tunneling; this decay is exponentially faster than the rate in the
literature. I also calculate the decay rate when the electric field wraps a compact circle (at zero temperature).
The same new instanton also governs this rate: I find that, for small circles, decay is dominated by a process
that drops the electric field by one unit, but does not produce charged particles.
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I. INTRODUCTION

A uniform electric field is classically stable but quantum
mechanically unstable. In the semiclassical regime, the
dominant decay channel is the nucleation of an electron-
positron pair, which discharges a single unit of flux.
Heisenberg and Euler [1] and then Schwinger [2] calculated
the exponential dependency of the tunneling rate to be

decay rateT¼L−1¼0 ∼ exp

�
−
1

ℏ
πm2

ejE⃗j

�
: ð1Þ

Here m is the positron mass, e is the positron charge, and
jE⃗j is the electric field strength.
Barriers that may be traversed by quantum tunneling

may also be traversed by thermal fluctuation. I will show

that at high temperature (T > Tc ≡ ℏ ejE⃗j
2m ) the electric field

decays by a process in which the electron-positron pair first
thermally fluctuates partway up the barrier to nucleation,
and only then quantum tunnels through the rest. For T > Tc
this thermally assisted quantum tunneling rate,

decay rateT>Tc
∼ exp
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−
1

ℏ
2m2
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�
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T

�
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m
T

ffiffiffiffiffiffiffiffiffiffiffiffiffi
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T2
c

T2

r #
;

ð2Þ
is exponentially faster both than the purely quantum
Schwinger process [Eq. (1)] and than the purely thermal
Boltzmann process (rate ∼ exp½−2m=T�).

I will also consider the (zero-temperature) decay of an
electric field that points down a compact direction of
circumference L. I will show that for small circles
(L < Lc ≡ 2m

ejE⃗j) a real electron-positron pair is not pro-

duced; instead, the energy from discharging the flux is
dumped into photons. For L < Lc this is exponentially
faster than the Schwinger process:

decay rateL<Lc
∼ exp

2
4−1

ℏ
2m2

ejE⃗jarcsin
�
L
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�
−
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ffiffiffiffiffiffiffiffiffiffiffiffi
1−

L2

L2
c

s 3
5:
ð3Þ

Throughout I will work in the semiclassical (small ℏ) and
analogous ‘semicold’ (small T) approximations. This is
justified if the Compton wavelength ℏm−1 of the electron
is short compared to the other length scales in the problem:
the electron-positron separation at nucleation 2m

ejE⃗j, the thermal

wavelength ℏT−1, and the circumference of the circle L.
In the semiclassical regime, decay is slow and exponentially
dominated by the tunneling exponent. I will calculate the
tunneling exponent at leading order in ℏ · ejE⃗jm−2 and
leading order in T ·m−1 but at all orders in the ratio of these
two expansion parameters ℏejE⃗jm−2=Tm−1 ∼ Tc=T.
In calculating the rate, there are a number of different

formalisms that can be used to perform essentially the same
mathematical maneuvers [3–6]. In the next section, I will
do a direct WKB calculation; in the Appendix, I will
rederive the same results using an instanton.

II. WKB METHOD

A uniform electric field can release its energy by
nucleating electron-positron pairs. But there is a barrier.
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To summon the pair from the vacuum has an upfront cost of
2m, and this can only be repaid once the pair are far enough
apart, Δx ≥ 2x̄0 with

x̄0 ¼
m

ejE⃗j : ð4Þ

If the center of nucleation is x ¼ 0, the positron moves in
the potential1 of Fig. 2,

Veþ½x� ¼
�
0 for x ¼ 0

m − ejE⃗jx for x > 0;
ð5Þ

and the electron moves towards negative x is a similar
potential. To make the positron costs m, but the farther it
goes in x, the more of that energy it recovers from the
electric field.
At zero temperature, the barrier is traversed by tunneling.

The WKB tunneling suppression exp½−Ieþ=ℏ� can be
calculated by integrating the positron’s (imaginary)
momentum across the barrier; for a positron with no initial
energy the relativistic dispersion relation then gives [7]

Ieþ ¼ 2i
Z

x̄0

0

dxp ¼ 2i
Z

x̄0

0

dx
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðV −mÞ2 −m2

q

¼ 2

Z
x̄0

0

dx
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VðxÞ½2m − VðxÞ�

p
: ð6Þ

(This reduces to the standard 2
R ffiffiffiffiffiffiffiffiffiffi

2mV
p

in the nonrela-
tivistic limit V ≪ m; note that for V > m higher barriers
mean faster tunneling [7,8].) Applying Eq. (6) to Eq. (5)
and including both Ieþ and Ie− recovers the Schwinger
rate Eq. (1).

A. T > Tc

Now let us turn on a temperature. Decay will proceed by
a three step process: first absorb energy from the heat bath,
then quantum tunnel at fixed energy, then classically roll
down the potential [9]. To conserve energy, a positron
endowed by the heat bath with an energy Ei need only
tunnel out to

x̄Ei
¼ m − Ei

ejE⃗j ≤ x̄0: ð7Þ

The optimal value of Ei is determined by the interplay of a
thermal (Boltzmann) suppression that wants Ei to be small,
and a quantum (WKB) suppression that wants Ei to be big:

rateeþðEi; TÞ

¼ exp

�
−
Ei

T
−
2

ℏ

Z
x̄Ei

0

dx
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½V − Ei�½2m − ðV − EiÞ�

p �
ð8Þ
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ð9Þ
For T < Tc ≡ ℏ ejE⃗j

2m the decay rate is maximized at Ei ¼ 0

and we recover the Schwinger result. For T > Tc the
optimal tradeoff between the quantum and thermal factors
is given by ∂Ei

rateeþðEi; TÞ ¼ 0 as

2Eijfastest ¼ ET ≡ 2m

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

T2
c

T2

r
: ð10Þ

This energy has been extracted from the heat bath.
Applying Eq. (10) to Eq. (9) successfully recovers the
decay rate of Eq. (2).
(Indeed, this analysis also allows us to apportion the total

decay suppression between the Boltzmann factor and the
WKB factor as Itotal¼IthermalþIquantum where Ithermal ¼ 2Ei

T ¼
2m
T

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − T2

c
T2

q
and Iquantum ¼ 2m2

ejE⃗j arcsin½
Tc
T � − m

T

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − T2

c
T2

q
.)

At high temperature the decay rate is

rateT≫Tc
¼ exp

�
−
2m
T

�
1 −

1

6

T2
c

T2
þ � � �

��
: ð11Þ

The leading term in the exponent is the Boltzmann suppres-
sion of making a pair.
Schwinger pair production at nonzero temperature has

been considered before [10–19] without discovering this
process2 or the rate of Eq. (2).

B. L < Lc

Now consider an electric field at zero temperature that
points down a compact direction of circumference L. The
electric field lines formclosed loops, as in thebottompanel of
Fig. 1. This configuration is a perturbatively stable solution to
the sourceless Maxwell equations, but it will decay non-
peturbatively via quantum tunneling.
For L > Lc ≡ 2x̄0 the electric field decays by standard

Schwinger pair production. In this parameter regime, the
nucleation of the electron-positron pair is unaffected by
the compactness of the electric-field direction, so an
electron and a positron are produced at rest at a separation
Δx ¼ 2x̄0. The electric field then forces the pair to
classically accelerate apart. Since the direction in which

1As well as the force from the background E⃗, the positron also
has an Oðe2Þ attraction to the electron. This force is dimension
dependent and small for small e; it is easy to include but
customary to neglect.

2For example, according to the result advanced in [19], as the
temperature goes up the pair-production rate goes down; my rate
Eq. (2) has the opposite behaviour. Furthermore, since the
tunneling rate is only modified for T > Tc, the correction is
invisible to the analysis of [11,14].
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they are accelerating is compact, the electron and positron
will meet again, and then either collide with each other and
annihilate into photons, or miss each other and go round
again, discharging a unit of flux on each lap [20].
For L < Lc ≡ 2x̄0 the energy available from unwrapping

a single unit of flux from the compact direction

Energy Released ¼ ejE⃗jL < 2m ð12Þ
is insufficient to repay the 2m required to fabricate a pair.
So the Schwinger formula Eq. (4) predicts that, in order to
conserve energy, the electron-positron pair, having tun-
neled to Δx ¼ L, must continue tunneling all the way to
Δx ¼ 2x̄0. But there is another way to conserve energy:
finding themselves reunited at Δx ¼ L, the electron and
positron can immediately annihilate. Because this process
does not create an on-shell electron-positron pair, there
is no 2m to pay and energy can be conserved without
tunneling all the way to Δx ¼ 2x̄0. Since this process
doesn’t require any further tunneling beyond Δx ¼ L, this
process is exponentially faster than standard Schwinger
pair production; tunneling from Δx ¼ 0 to Δx ¼ L in
Eq. (6) recovers the decay rate of Eq. (3). Thus, for
L < Lc ≡ 2x̄0, the dominant decay process is a virtual
pair circumnavigating the circle once and then annihilating
into photons; the flux quantum jumps down by one unit
without ever creating an on-shell electron-positron pair.
For small circles, the decay rate, Eq. (3), becomes

rateL≪Lc
¼ exp

�
−
2mL
ℏ

�
1 −

1

6

L2

L2
c
þ � � �

��
: ð13Þ

III. DISCUSSION

In this paper, we have explored two complications we
can add to the standard Schwinger story about tunneling in
a uniform electric field: we have added a temperature, and
we have compactified the direction down which the electric
field points. In both cases, the rates are exponentially faster
than that derived by Schwinger.
Associated with the faster processes is some new

phenomenology. In the thermal case, we found that the
total energy of the electric field plus particles is not
conserved. Energy is taken from the heat bath during the
nucleation process that is never returned. In the compact
case, the deviation is more dramatic. Unlike in the
Schwinger process, no real pair is created. Instead, a virtual
pair mediates the unwrapping of a single unit of flux, but
the pair annihilates before the tunneling process is com-
plete, dumping the liberated energy into photons. In this
process, not only is the generated current quantized in
space, it is also quantized in time.
Let us compare thermally assisted quantum tunneling in

the potential of Fig. 2 to thermally assisted quantum
tunneling in two better-studied examples [9,21–26];
we’ll find differences caused by the nonanalyticity of the
potential atΔx ¼ 0. The first well-studied example is either
quantum mechanics or quantum field theory when the
barrier to be traversed is smooth. In that case, even at
arbitrarily low nonzero temperatures the dominant process
does not tunnel the whole way but instead receives at least a
small thermal assist from the heat bath (ET > 0); and
furthermore above a critical temperature the process is
purely thermal, meaning it fluctuates straight to the top
of the barrier and doesn’t quantum tunnel at all [27,28].
The second well-studied example is tunneling of three-
dimensional quantum fields whose barriers have been
rendered nonanalytic by taking the thin-wall limit. In this
case, there is a first-order transition in the decay rate: at a
critical temperature, dominance jumps from purely quan-
tum (spherical instantons) to purely thermal (cylindrical
instantons). Thermal Schwinger pair production is different
from both of these examples. Instead, at low temperature

FIG. 1. The three processes considered in this paper. Top:
standard zero-temperature Schwinger pair production. An electric
field line is snipped by the nucleation of an e−eþ pair. Middle:
T > Tc Schwinger pair production has the pair nucleated closer
together, using energy extracted from the heat bath. Bottom:
When the electric field wraps a circle of small circumference
L < Lc, decay drops the flux by one unit without producing a real
pair; instead the energy is dumped into photons.

FIG. 2. Traversing the barrier to nucleation. At zero temper-
ature, the pair start colocated and then tunnel to Δx ¼ 2x̄0. For
T > Tc, the pair first thermally fluctuate to an energy ET, then
quantum tunnel to 2x̄T .
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(T < Tc) the dominant process is purely quantum (as in the
thin-wall three-dimensional case), but there is then a
higher-order transition in the decay rate, with the decay
acquiring an at-first-small thermal assist; furthermore, no
matter how high the temperature the process never becomes
purely thermal.
The nonanalyticity of the tunneling exponent at T ¼ Tc

is an artifact of having taken the semiclassical limit, and
Oðℏm−1Þ corrections will smooth it to a finitely sharp
crossover. (See e.g., the discussion in Sec. IV of [29].)
One might have worried that thermally-assisted quantum

tunneling is the answer to an ill-posed question, since even
with ℏ ¼ 0 the electric field is discharged by the Boltzmann
disassociation of electrons and positrons. But Eq. (2)
proves this concern is unfounded. Thermally assisted
quantum pair production can be cleanly distinguished from
purely thermal pair production because the rate for the first
[Eq. (2)] is exponentially faster than the rate for the second
(exp½−2m=T�). (This is essentially the same reason as
assures the well-posedness of [9,21,22].)
Equations (2) and (3) give the exponential contribution

to the decay rate; in the semiclassical regime this is
exponentially the most important contribution. A next step
would be to calculate the leading contribution to the
prefactor. This can be done using the instanton discussed
in the Appendix by calculating the determinant of the
matrix of small perturbations [30].
This determinant is negative because, as befits a tunneling

instanton, one of the eigenvalues is negative. Eigenmodes
that leave the vertex unchanged are all positive [19], but the
eigenmode that “reconnects” the vertex is negative. This
mode deforms the sharp corner at which the two walls meet,
smoothing it into an avoided crossing with lower Euclidean
action.
If both T > Tc and L < Lc then both Euclidean direc-

tions are compact. For β < L the dominant process is

thermal nucleation, as in Sec. II. For β > L the dominant
process is a quantum jump in the flux without producing
charged particles, as in Sec. III. There is also a process in
which the quantum jump receives a thermal assist
(governed by a Euclidean solution with four conjoined
less-than-quarter-circular arcs) but it can be shown that this
is subdominant. Giving the heat bath momentum in the
compact direction would induce a chemical potential and
make the Euclidean space in which the instanton lives
deform from a rectangle to a parallelogram.
The two rates Eqs. (2) and (3) are related by the duality

β ↔ L. Mathematically, this is because the same instanton
controls both decays, only with relabelled axes. Since this
relates large and small values of L=β, this is a high-
temperature/low-temperature duality.
Experimentalists have sought to detect Schwinger pair

production and measure the decay rate, Eq. (1), using
graphene [31,32]. Both Eqs. (2)and (3) are of the right
order to be detectable with state-of-the-art techniques.
For example, consider bilayer graphene with a mass-gap
of order 200 meV, a sample size of 10μ, a total voltage
drop of a few mass-gaps, and at a temperature 300 K:
decay is semiclassical and prompt enough to be detect-
able, and since T ≳ Tc this is a good system in which to
test Eq. (2).
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APPENDIX: INSTANTON METHOD

In Sec. II, we calculated the decay rate using the
WKB formalism. In this section, I will provide an alter-
native perspective by rederiving the same result using an
instanton.

1. T =L− 1 = 0
Schwinger pair production can be thought of as the

decay of the false vacuum of a 1þ 1-dimensional quantum
field. In this language, pair production is the nucleation of a
bubble of true vacuum [4–6]. The interior of the bubble has
reduced electric field, and hence a lower energy density,
Δð1

2
jE⃗j2Þ ¼ −ejE⃗j þ Oðe2Þ; the surface of the bubble is the

charged particle, which forms a thin wall of thickness ℏm−1

and tension m. Thus, for Schwinger pair production, the
semiclassical and thin-wall regimes coincide.
Since the electric field is uniform, the perpendicular

spatial directions are passive spectators that can be inte-
grated out. Consequently, we can use the results of

FIG. 3. The Schwinger pair-production instanton is a bubble of
radius x̄0 ¼ m=ejE⃗j. Inside the bubble (shaded), the electric field
is reduced and so the energy density is lower. The slice through
τ ¼ 0 gives the t ¼ 0 state immediately following nucleation: a
momentarily stationary electron and positron separated by 2x̄0.
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1þ 1-dimensional field theory, including Eqs. (1)–(3), in
any number of spatial dimensions.3

The Euclidean action for a bubble of true vacuum with
surface at xðτÞ is

IEuclidean ¼ m × perimeter − ejE⃗j × area

¼
Z

dτðm
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ _x2

p
− ejE⃗jxÞ: ðA1Þ

(Not coincidentally, this is also the action of a relativistic
particle in a uniform electric field.) The tunneling instanton is
a saddle point of the Euclidean action with a single negative
mode. The Euler-Lagrange equation tells us that, for these
boundary conditions, the instanton is a circular bubble of
radius x̄0 (which w.l.o.g. we may center at the origin)

x2 þ τ2 ¼ x̄20; ðA2Þ

as despited in Fig. 3. The exponential of the instanton action
exp½−IEuclidean=ℏ� ¼ exp½−ðm × 2πx̄0 − ejE⃗j × πx̄20Þ=ℏ�
gives the decay rate, Eq. (1). The classical Lorentzian
evolution after nucleation is given by analytically continuing
τ → it:

x2 − t2 ¼ x̄20: ðA3Þ

The electron and positron are nucleated at rest at x ¼ ∓x̄0,
and then accelerate apart.

2. T > Tc

At nonzero temperature, a particle may thermally fluc-
tuate partway up the barrier before tunneling through the
rest. The nonzero temperature makes Euclidean time
compact [9,21] with period β≡ ℏ

T,

IEuclidean ¼
Z β

2

−β
2

dτðm
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ _x2

p
− ejE⃗jxÞ: ðA4Þ

For T < Tc (equivalently β > βc ≡ 2x̄0) the complete
Schwinger bubble still fits into the compact direction and
the temperature has no effect on the tunneling exponent.
For T > Tc the circular bubble no longer fits. Instead, the

dominant instanton is a lens-shaped bubble4 bounded by
two less-than-semicircular arcs, as shown in Fig. 4. Since
the equations of motion are locally the same as for T ¼ 0,
the bubble walls must still be segments of a circle of
radius x̄0. The bubble has maximum width at τ ¼ 0 where
x ¼ �x̄T with

x̄T ¼ x̄0

 
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

T2
c

T2

r !
; ðA5Þ

and narrows to a vertex5 at x ¼ 0, τ ¼ �β=2. The exponential
of the instanton action exp½−IEuclidean=ℏ� ¼ exp½−ðm ×
perimeter − ejE⃗j × areaÞ=ℏ� gives the decay rate, Eq. (2).

FIG. 4. Left: for the nonzero-temperature instanton, Euclidean time is compact. Two less-than-semicircular arcs, each of radius of
curvature x̄0, meet at x ¼ 0, τ ¼ �β=2. Inside the bubble (shaded), the electric field is reduced and so the energy density is lower. The
slice through τ ¼ 0 gives the t ¼ 0 state immediately following nucleation: a momentarily stationary electron and positron separated by
2x̄T . Right: the same instanton does double duty, also describing the decay of a zero-temperature electric field pointing down a compact
spatial direction of circumference L. Instead of producing an electron-positron pair, tunneling instead dumps the discharged energy into
photons.

3Ironically, the only number of dimensions in which the results
of this paper cannot be trusted is 1þ 1, since QED in 1þ 1
dimensions has no dynamical photons, and so no dense spacing of
energy levels to underwrite the semiclassical approximation. The
spectator degrees of freedomdo not directly contribute to theWKB
tunneling rate—rather they are required for the WKB approxima-
tion to be valid at all. (For an analogous consideration in conven-
tional one-dimensional quantum mechanical tunneling, see [33]).

4This same lens-shaped extremal surface has appeared in the
literature before, though without the connection being made to
Schwinger pair production at finite temperature or with compact
directions [34–38].

5That the vertex itself satisfies the equation of motion follows
from the two Z2 reflection symmetries, which guarantee that the
forces on the vertex cancel. Within a Compton wavelength of the
vertex the electron-positron bilateral interaction is important—
this produces a force that causes the trajectories to “bounce,” but
does not contribute to the action beyond O(e2) since the action
has no extrinsic curvature terms.
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The classical Lorentzian evolution after nucleation is
given by analytically continuing τ → it. The electron and
positron are initially at rest at x ¼∓ x̄T , and then accelerate
apart with α ¼ x̄−10 . Since x̄T < x̄0, the trajectory of the
nucleated pair breaks the boost symmetry and gives a
preferred frame. This preferred frame is inherited from the
rest frame of the heat bath.
A stationary electron-positron pair separated by 2x̄T has

energy given by ET from Eq. (10). The instanton thus
automatically calculates the optimal value of Ei that gives
the fastest decay path [9].
The purely thermal solution with two conjoined thin

walls has extra negative modes, analogous to [39], and
never dominates tunneling.

3. L < Lc

Let’s re-derive the result of Sec. II B using an instanton.
Pleasingly, we will find that the pertinent instanton is the
same one that also mediated the thermal decay of Sec. A 2.
Consider the zero-temperature decay of a constant

electric field that points down a compact direction of
circumference L. The instanton that describes this process

is shown in Fig. 4; the lens-shaped bubble extends as far
as τ ¼ �τ̄T ≡�x̄0ð1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − L2=L2

c

p
Þ.

To interpret this instanton, recall that the classical
configuration immediately after tunneling (t ¼ 0) is given
by the τ ¼ 0 time slice through the instanton. As shown
in Fig. 4, this process drops a unit of flux throughout the
entire space. The t ¼ 0 time slice also includes the vertex,
confirming the interpretation of Sec. II B which is that after
tunneling there are no electrons or positrons left over, and
instead the flux has quantum jumped down by one unit
without the production of on-shell charged particles.
The finite-L instanton is the same mathematical solution

as the finite-β instanton, only now with the two compact
Euclidean directions swapped. Since the value of the
Euclidean action is insensitive to how we label the axes,
the rate Eq. (3) follows directly by substituting β → L into
the thermal rate Eq. (2). There is thus a high-temperature/
low-temperature duality between the two decay processes
considered in this paper.
(A similar instantonmay be used to calculate the discharge

rate of an electric field between two capacitive plates, a
problem considered without the use of instantons in [40].)
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