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We perform a study of the Bð�Þ, Dð�Þ semileptonic decays, using a different method than in conventional
approaches, where the matrix elements of the weak operators are evaluated and a detailed spin-angular
momentum algebra is performed to obtain very simple expressions at the end for the different decay modes.
Using only one experimental decay rate in the B or D sectors, the rates for the rest of decay modes are
predicted and they are in good agreement with experiment. Some discrepancies are observed in the τ decay
mode for which we find an explanation. We perform evaluations for B� andD� decay rates that can be used
in future measurements, now possible in the LHCb Collaboration.
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I. INTRODUCTION

Semileptonic decays of mesons have been thoroughly
studied, and are a source of information on the Cabibbo-
Kobayashi-Maskawa (CKM) matrix elements [1–7], chiral
dynamics [8], heavy quark symmetry [9]. The process is
relatively well understood, to the point that some discrep-
ancies seen in ratios of rates are proposed as signals of new
physics [10–12]. Concerning the decays of mesons with
heavy flavors, the decay of B̄ → Dν̄l− and D → K̄νlþ and
the related reactions with B� or D� offer a good ground to
study heavy flavor symmetry.
In the conventional approaches, the amplitudes of the

processes are conveniently parametrized in terms of certain
structures and their associated form factors, and some
information is taken from experiment. Quark models can
provide information on these form factors and structures
and have been often used [2,3,13,14]. QCD sum rules have
also done their share predicting rates and form factors
[15–17].
The purpose of this paper is to see how far one can go,

assuming basic facts of heavy quark symmetry, with some
caution that will be discussed later, which allows us to
conclude that the relevant form factors would be the same

for D or D� and B or B�. However, the structures can be
very different due to the angular momentum combinations
that the quarks undergo to produce the pseudoscalar or
vector meson states. This is what is accomplished in the
present work, where a detailed study is done of the
amplitudes for each of the four Bð�Þ → Dð�Þν̄l− cases,
and the corresponding ones with Dð�Þ, evaluating explicitly
the weak matrix elements in the rest frame of the νl and
performing the angular momentum algebra which relates
all the processes. We then fit the results to one experimental
branching ratio for the B and D sectors and then the rest of
the results are predictions.
The derivation requires some patience, but we succeed

using Racah algebra to write the final amplitudes and the
sums over polarizations of their modulus square in terms
of very simple analytical expressions, which allow us to
explain easily some of the features of the reactions, as the
relative rates in the different sectors and peculiarities of
the differential width distribution in the invariant mass of
the νl system.
One of the outputs of the work is the prediction of rates

for B� and D� decays, which have received attention
recently [18,19] in view of the possibility that such decay
rates are observed by the LHCb Collaboration. We argue
that the method proposed is highly accurate to make
predictions for these decay widths.
As to the predictions for the observed rates, the method is

rather accurate for the case of production of light leptons,
and has some discrepancy for the production of τ lepton,
for which a justification is given, but even then ratios of
different decay rates with τ leptons in the final state are also
well reproduced.
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II. FORMALISM

We shall study reactions of the type B̄0 → ν̄ll−Dþ, or
Dþ → νllþK̄0 and the corresponding ones with vector
mesons, with the aim of relating them assuming that the
form factors do not change practically when changing
B → B� or D → D�, which is the essence of heavy quark
symmetry [20,21]. Work on these reactions assuming this
symmetry is done in Ref. [13]. The process is depicted in
Fig. 1 for the B̄0 → ν̄ll−Dþ.
The weak interaction is given by the Hamiltonian

H ¼ CLαQα; ð1Þ

where in C one has the couplings of the weak interaction,
but, since we are only concerned about ratios of rates, it
plays no role in our study. The leptonic current is given by

Lα ¼ hūljγαð1 − γ5Þjvνi; ð2Þ

and Qα, the quark current, by

Qα ¼ hūcjγαð1 − γ5Þjubi: ð3Þ

In order to obtain the B̄0 decay width, we need

X
lep pol

LαLβ�X
quark

X
pol

QαQ�
β ≡ Lαβ

XX
QαQ�

β; ð4Þ

where Lαβ stands for
P

polL
αLβ� and is easily evaluated

with the result [22]

Lαβ ¼ 2
pα
νp

β
l þ pα

l p
β
ν − pν · plgαβ − iϵρασβpνρplσ

mνml
; ð5Þ

where we adopt the Mandl and Shaw normalization for
fermions [23]. The mass of the neutrino and the lepton get
cancelled in the final formula of the width.
In Ref. [22], a similar sum and an average and sum over

the quark spin third components were done. Here, we pay a
special attention to the vector or pseudoscalar components,
and the coupling of spins to given quantum numbers has to

be done prior to the sums over the third components in
the final QαQ�

β term. For this purpose, we must evaluate
explicitly the quark current Qα. We use the ordinary
spinors [24]

ur ¼ Ã

�
χr

B̃σ · pχr

�
; Ã ¼

�
Ep þm

2m

�
1=2

; B̃ ¼ 1

Ep þm
;

ð6Þ

where χr are the Pauli bispinors and m, p and Ep are
the mass, momentum and energy of the quark. Next, we
use [22]

pb

mb
¼ pB

mB
;

Eb

mb
¼ EB

mB
; ð7Þ

and the same for the c quark. Theses ratios are related to the
velocity of the quarks or B mesons and neglect the internal
motion of the quarks inside the meson. We evaluate the
matrix elements in the frame where the ν̄l system is at rest,
where pB ¼ pD ¼ p and both have a sizeable velocity.
We have, in general,

p ¼ λ1=2ðm2
in;M

2ðνlÞ
inv ; m2

finÞ
2MðνlÞ

inv

; ð8Þ

wheremin,mfin are the masses of the initial, final mesons in

the decay, and MðνlÞ
inv is the invariant mass of the νl pair.

Using Eq. (7), we can now write

ur ¼ A

�
χr

Bσ · pBχr

�
; A ¼

�EB
mB

þ 1

2

�1=2

;

B ¼ 1

mBð1þ EB
mB
Þ : ð9Þ

We also use the γμ representation of Ref. [24]:

γ0 ¼
�
I 0

0 −I

�
; γ5 ¼

�
0 I

I 0

�
;

γi ¼
�

0 σi

−σi 0

�
; i ¼ 1; 2; 3: ð10Þ

As a consequence, we have

γ0 − γ0γ5 ¼
�
I −I
I −I

�
; γi − γiγ5 ¼

�
−σi σi

−σi σi

�
;

ð11Þ

where we denote the Pauli matrices as σi, σi (i ¼ 1, 2, 3),
but they are the same thing,

FIG. 1. Diagrammatic representation of B̄0 → ν̄ll−Dþ at the
quark level.

L. R. DAI, X. ZHANG, and E. OSET PHYS. REV. D 98, 036004 (2018)

036004-2



hūcjγ0 − γ0γ5jubi ¼ AA0fð1þ BB0p2Þhχcjχbi − ðBþ B0Þhχcjσ · pjχbig; ð12Þ

where p2 stands for p2 from here on, and A0, B0 stand for the D meson.
Similarly,

hūcjγi − γiγ5jubi ¼ AA0f−hχcjσijχbi þ Bhχcjσiσ · pjχbi
þ B0hχcjσ · pσijχbi − BB0hχcjσ · pσiσ · pjχbig: ð13Þ

The explicit calculation is simplified if we take p in the z direction. Then, considering the spins, s, s00, s0 (of the d̄ in the p
direction) of Fig. 1 one has

hχcjσ · pjχbi ¼ phs00jσzjsi ¼ pð−1Þ12−sδss00 ≡ p
ffiffiffi
3

p
C
�
1

2
1
1

2
; s; 0; s00

�
δss00 ; ð14Þ

where in the last step we evaluate the σz matrix element using the Wigner-Eckart theorem. Hence,

hūcjγ0 − γ0γ5jubi≡M0 ¼ AA0
�
ð1þ BB0p2Þδss00 − ðBþ B0Þpδss00

ffiffiffi
3

p
C
�
1

2
1
1

2
; s; 0; s00

��

¼ AA0δss00
�
1þ BB0p2 − ðBþ B0Þp

ffiffiffi
3

p
C
�
1

2
1
1

2
; s; 0; s

��
: ð15Þ

hūcjγi − γiγ5jubi≡ Ni ¼ AA0f−hs00jσijsi þ Bphs00jσiσzjsi þ B0phs00jσzσijsi − BB0p2hs00jσzσiσzjsig
¼ AA0f−hs00jσijsi þ Bphs00jσijsið−1Þ12−s þ B0phs00jσijsið−1Þ12−s00

− BB0p2ð−1Þ12−sð−1Þ12−s00 hs00jσijsig: ð16Þ

If we keep the covariant form γi − γiγ5, we have

hūcjγi − γiγ5jubi ¼ AA0hs00jσijsif1 − Bpð−1Þ12−s − B0pð−1Þ12−s00 þ BB0p2ð−1Þ1−s−s00g: ð17Þ

In order to work out the angular momentum algebra, it is more convenient to evaluate the spherical component of σi → σμ,
μ ¼ 1, 0, −1 in the last equation, and we define M0 for the γ0 − γ0γ5 matrix element of Eq. (15) and Nμ for the matrix
element of Eq. (16) substituting σi by σμ.
The explicit evaluation is done in the Appendix for the M0 and Nμ matrix elements and we show here the results.
(A) M0 matrix element
(1) J ¼ 0, J0 ¼ 0

M0 ¼ AA0ð1þ BB0p2ÞδM0δM00 ð18Þ

(2) J ¼ 0, J0 ¼ 1

M0 ¼ −AA0ðBþ B0ÞpδM0δM00 ð19Þ

(3) J ¼ 1, J0 ¼ 0

M0 ¼ −AA0ðBþ B0ÞpδM0δM00 ð20Þ

(4) J ¼ 1, J0 ¼ 1

M0 ¼ AA0fð1þ BB0p2Þ −
ffiffiffi
2

p
ðBþ B0ÞpCð111;M; 0;MÞgδMM0 ð21Þ

(B) Nμ matrix element
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(1) J ¼ 0, J0 ¼ 0

Nμ ¼ −AA0ðBþ B0ÞpδM0δM00δμ0 ð22Þ

(2) J ¼ 0, J0 ¼ 1

Nμ ¼ AA0f1þ BB0p2ð−1Þ−M0 þ
ffiffiffi
2

p
ðBpþ B0pð−1Þ−M0 ÞCð111;M0; 0;M0Þgδμ;M0δM0 ð23Þ

(3) J ¼ 1, J0 ¼ 0

Nμ ¼ AA0fð1þ BB0p2ð−1ÞMÞð−1Þ−M
−

ffiffiffi
2

p
ð−1ÞMðBpþ B0pð−1ÞMÞCð111;M; 0;MÞgδμMδM00 ð24Þ

(4) J ¼ 1, J0 ¼ 1

Nμ ¼ AA0fð1þ BB0p2ð−1ÞM−M0 Þ
ffiffiffi
2

p
Cð111;M;M0 −M;M0Þ − ðBpþ B0pð−1ÞM−M0 ÞδM0

− 2ðBpþ B0pð−1ÞM−M0 ÞCð111;M0 −M;M;M0ÞCð111; 0;M;MÞgδμ;M0−M ð25Þ
(C) Next we must evaluate LαβQαQ�

β and sum and average over polarizations. In terms of the M0 and Ni terms defined
before we have the combination

XX
jtj2 ¼ L00M0M�

0 þ L0iM0N�
i þ Li0NiM�

0 þ LijNiN�
j : ð26Þ

The explicit evaluation is done in the Appendix and we show here the final results.
(1) J ¼ 0, J0 ¼ 0

XX
jtj2 ¼ ðAA0Þ2

mνml

�
m2

l ðM2ðνlÞ
inv −m2

l Þ
M2ðνlÞ

inv

ð1þ BB0p2Þ2 þ 2

�
ẼνẼl þ

1

3
p̃2
ν

�
ðBþ B0Þ2p2

�
; ð27Þ

where the magnitudes with tildes are evaluated in the νl rest frame. Thus,

Ẽl ¼
M2ðνlÞ

inv þm2
l −m2

ν

2MðνlÞ
inv

;

Ẽν ¼
M2ðνlÞ

inv þm2
ν −m2

l

2MðνlÞ
inv

;

p̃ν ¼
λ1=2ðM2ðνlÞ

inv ; m2
ν; m2

l Þ
2MðνlÞ

inv

: ð28Þ

(2) J ¼ 0, J0 ¼ 1

XX
jtj2 ¼ ðAA0Þ2

mνml

�
m2

l ðM2ðνlÞ
inv −m2

l Þ
M2ðνlÞ

inv

ðBþ B0Þ2p2

þ 2

�
ẼνẼl þ

1

3
p̃2
ν

�
ð3 − 6BB0p2 þ 2ðB2 þ B02Þp2 þ 3ðBB0p2Þ2Þ

�
; ð29Þ

(3) J ¼ 1, J0 ¼ 0

XX
jtj2 ¼ 1

3

XX
jtj2ðJ ¼ 0; J0 ¼ 1Þ; ð30Þ

where the factor 1
3
comes because we average over the initial J ¼ 1 polarizations.
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(4) J ¼ 1, J0 ¼ 1

XX
jtj2 ¼ 1

3

ðAA0Þ2
mνml

�
3m2

l ðM2ðνlÞ
inv −m2

l Þ
M2ðνlÞ

inv

�
ð1þ BB0p2Þ2 þ 2

3
ðBþ B0Þ2p2

�

þ 2

�
ẼνẼl þ

1

3
p̃2
ν

�
½6þ 7ðB2 þ B02Þp2 − 4BB0p2 þ 6ðBB0p2Þ2�

�
: ð31Þ

These techniques have also been used successfully in
the evaluation of weak decays M1 → M2M3 [25] and in
τ− → M1M2 decays [26].

III. RESULTS

The invariant mass distribution dΓ=dMðνlÞ
inv is given for

B → ν̄lD by

dΓ

dMðνlÞ
inv

¼ 2mν2ml

ð2πÞ3
1

4M2
B
pDp̃ν

XX
jtj2; ð32Þ

where pD is theDmomentum in theB rest frame and p̃ν the
ν̄ momentum in the νl rest frame,

pD ¼ λ1=2ðm2
B;M

2ðνlÞ
inv ; m2

DÞ
2mB

: ð33Þ

By integrating dΓ=dMðνlÞ
inv over MðνlÞ

inv we obtain the width
that we show in the tables.

A. B and B� decays

We study only the most Cabibbo-favored processes,
b → c and c → s. We show in Table I the B̄, B̄s, and B̄c
semileptonic decays. Since we can only provide ratios, we

fix one decay rate to the experiment and the rest are
predictions, In this case we fix our rate to B− → D0e−ν̄e.
We then observe that the predictions done for six decays
are all in agreement with experiment, except for the B̄0 →
Dþτ−ν̄τ that we will discuss later. The e−ν̄e and μ−ν̄μ decay
rates are very similar, since the masses of e− and μ− are
very small compared to the meson masses. The term
proportional to m2

l in Eq. (B3) is negligible for e− and
μ−, but not for τ−. This term is responsible for a bigger rate
than expected from phase space for the τ−ν̄τ decays. In
Table I, we also show predictions for B̄0

s and B−
c decays, for

which there are not yet experimental data in the PDG [27].
For the B̄0 → Dþτ−ν̄τ we get a rate about a factor of two
smaller than experiment. This has to be seen from the
perspective that we are implicitly using the same form
factors as for B̄0 → Dþe−ν̄e. However, because of the
larger τ− mass, the momentum transfers are smaller in
this latter case and by taking the same form factors as in
B̄0 → Dþe−ν̄e we are reducing the B̄0 → Dþτ−ν̄τ rate more
than one should. This is telling us implicitly the strength of
the form factors in the present reactions. For B− → D0τ−ν̄τ
the experimental error is relatively large, such that the
rate is compatible with the theoretical one, but also with
double its value.
We would like to call the attention to the rates for B− →

D0e−ν̄e (B− → D0μ−ν̄μ). These rates are identical exper-
imentally within experimental errors, and also theoretically

TABLE II. The same as Table I but for ðPVÞ case.
Decay process BR (Theo.) BR (Exp.)[27]

B̄0 → D�þe−ν̄e 4.86 × 10−2 ð4.93� 0.11Þ × 10−2

B̄0 → D�þμ−ν̄μ 4.83 × 10−2 ð4.93� 0.11Þ × 10−2

B̄0 → D�þτ−ν̄τ 1.03 × 10−2 ð1.67� 0.13Þ × 10−2

B− → D�0e−ν̄e 4.88 × 10−2 ð5.69� 0.19Þ × 10−2

B− → D�0μ−ν̄μ 4.86 × 10−2 ð5.69� 0.19Þ × 10−2

B− → D�0τ−ν̄τ 1.04 × 10−2 ð1.88� 0.2Þ × 10−2

B̄0
s → D�þ

s e−ν̄e 4.60 × 10−2

B̄0
s → D�þ

s μ−ν̄μ 4.58 × 10−2

B̄0
s → D�þ

s τ−ν̄τ 9.64 × 10−3

B−
c → J=ψe−ν̄e 9.47 × 10−3

B−
c → J=ψμ−ν̄μ 9.41 × 10−3

B−
c → J=ψτ−ν̄τ 1.88 × 10−3

TABLE I. Branching ratios for ðPPÞ semileptonic decay of B
meson. We consider the same mean life τ for B̄0, B−, B̄0

s , but
τðB−

c Þ
τðB−Þ ¼ 0.31.

Decay process BR (Theo.) BR (Exp.) [27]

B̄0 → Dþe−ν̄e 2.19 × 10−2 ð2.19� 0.12Þ × 10−2

B̄0 → Dþμ−ν̄μ 2.17 × 10−2 ð2.19� 0.12Þ × 10−2

B̄0 → Dþτ−ν̄τ 4.97 × 10−3 ð1.03� 0.22Þ × 10−2

B− → D0e−ν̄e fit the exp ð2.20� 0.11Þ × 10−2

B− → D0μ−ν̄μ 2.19 × 10−2 ð2.20� 0.11Þ × 10−2

B− → D0τ−ν̄τ 5.02 × 10−3 ð7.7� 2.5Þ × 10−3

B̄0
s → Dþ

s e−ν̄e 2.07 × 10−2

B̄0
s → Dþ

s μ
−ν̄μ 2.07 × 10−2

B̄0
s → Dþ

s τ
−ν̄τ 4.69 × 10−3

B−
c → ηce−ν̄e 3.93 × 10−3

B−
c → ηcμ

−ν̄μ 3.90 × 10−3

B−
c → ηcτ

−ν̄τ 8.49 × 10−4
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(up to small difference due to the different masses of the
mesons). This should be the case, since from one reaction
to the other the only change has been to substitute the d̄
spectator quark in Fig. 1 by a ū.
In Table II, we show results for B̄ decays into D� and

related reactions. This corresponds to the case J ¼ 0,
J0 ¼ 1 studied in the former sections. We do not fit now
one rate, because the idea is to make a prediction for these
decays based on the B → D reactions. We can see that the
predicted rates for the case of light leptons are compatible
with experiment, This should be seen as an accomplish-
ment of the present framework, which shows that assuming
the same form factors for D or D� decay, as we would
induce from heavy quark symmetry [13], the rates for these
two decays are a consequence of the angular momentum
structure with the dynamics of the weak interaction.
We can also observe that the branching ratio for B̄0 →

D�þτ−ν̄τ is about a factor 0.61 the experimental one, in line
with what was observed in Table I. The same happens for
B− → D�0τ−ν̄τ where the reduction factor is about 0.55.
However, if we evaluate the ratio of the rates of B̄0 →
D�þτ−ν̄τ to B̄0 → Dþτ−ν̄τ, we find a factor of 2.07 against
1.62� 0.37 experimentally, or 2.07 for the ratio of rates of
B− → D�0τ−ν̄τ to B̄− → D0τ−ν̄τ versus 2.44� 0.83 exper-
imentally. One expects these two ratios to be the same, and
so they are experimentally within errors, and also compat-
ible with the theory.
Once again we make predictions for six more decay

modes. It is interesting to observe that the rates for B− →
D̄�ν̄l are bigger experimentally than those of B− → D̄ν̄l,
something that is also obtained theoretically.
Recently, much work has been devoted to the ratios,

RD ¼ BRðB− → Dν̄ττÞ
BRðB− → Dν̄llÞ

¼ 0.407� 0.039� 0.024;

RD� ¼ BRðB− → D�ν̄ττÞ
BRðB− → D�ν̄llÞ

¼ 0.304� 0.013� 0.007; ð34Þ

from where one expects to observe new physics [11,12].
The values in Eq. (34) are taken from the HFLAV
Collaboration average [28]. The most precise single meas-
urement performed so far is the recent one of the LHCb
Collaboration [29] RD� ¼ 0.291� 0.019� 0.026� 0.013.
Our result for these ratios are RD ¼ 0.23, RD� ¼ 0.211.
As we can see, both RD and RD� are smaller than experi-
ment for the reasons discussed above. To put our results
in perspective, we can compare these result with Lattice
results [30,31] which give RD ¼ 0.299� 0.011, and
calculations based on the standard model obtaining ratios
of form factors from experiment [11] which give RD� ¼
0.252� 0.03, or RD� ¼ 0.258ð5Þðþ8

−7Þ from Ref. [7]. This
latter case is increased to 0.27 in [32] by taking into account
in the theoretical evaluation thatD� → Dπ, the mode where
the D� is observed experimentally.

Another ratio of interest is

RJ=ψ ¼ BRðBþ
c → J=ψνττþÞ

BRðBþ
c → J=ψνμμþÞ

¼ 0.71� 0.12� 0.18; ð35Þ

reported by LHCb [33]. We obtain 0.20 for this ratio, short
of the experimental one even considering errors, and one
must find the reason in the discussion in former points since
momentum transfer for Bþ

c → J=ψτþντ is smaller than in
Bþ
c → J=ψμþνμ. It is also useful to compare our results

with other theoretical works based on the standard model
which provide value around 0.25 ∼ 0.28 [34–37] for
this ratio.
There is another remark we can do in view of our easy

expressions for
P̄ P jtj2. If one looks at Eq. (B3) for

J ¼ 0, J0 ¼ 0, one can see that the term independent of p is
proportional to m2

l , which is very small for light leptons.
The important term is this case is the second term of that
equation, proportional to p2. This tells us that nonrelativ-
istic calculations, which would neglect this momentum, or
the strict use of heavy quark symmetry, neglecting terms of
Oðp=mQÞ [see B factor in Eq. (9)], would provide very bad
results for the rate of B̄ → D and light leptons.
In Table III, we also show the rate for the semileptonic

decays of B̄� → D. These decay rates have not been
observed and one reason maybe the fact that B� decays
electromagnetically in γB. In Ref. [18], these rates were
evaluated using the Bethe-Salpeter approach with the
instantaneous approximation. We compare our predictions
with those in Ref. [18]. These decay widths are also
evaluated in Ref. [19] in the Baner-Stech-Wirbel model
and in Table III we also show these results. Our results are
qualitatively similar to those of [19], about 25% smaller
and also smaller than those of [18] by a factor of about 0.6.
One should stress the simplicity of our approach with
respect to [18] where 14 form factors are evaluated and the
theory relies on several parameters [38], partly constrained

TABLE III. Widths for ðVPÞ semileptonic decay of B� mesons
in units of ΓðB− → D0e−ν̄eÞ.
Decay process Γ (Theo.) Γ (Ref. [18]) Γ (Ref. [19])

B̄�0 → Dþe−ν̄e 0.95
B̄�0 → Dþμ−ν̄μ 0.95
B̄�0 → Dþτ−ν̄τ 0.24
B�− → D0e−ν̄e 0.96 1.74 1.21
B�− → D0μ−ν̄μ 0.96 1.73 1.21
B�− → D0τ−ν̄τ 0.24 0.43 0.36
B̄�0
s → Dþ

s e−ν̄e 0.91 1.57 1.07
B̄�0
s → Dþ

s μ
−ν̄μ 0.91 1.56 1.07

B̄�0
s → Dþ

s τ
−ν̄τ 0.23 0.41 0.31

B�−
c → ηce−ν̄e 0.59 1.09

B�−
c → ηcμ

−ν̄μ 0.58 1.09
B�−
c → ηcτ

−ν̄τ 0.14 0.33
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from the masses of the mesons. We should stress that the
rates for B� → Dν̄l in our approach involve the same matrix
element as for B → D�ν̄l [J ¼ 1, J0 ¼ 0, versus J ¼ 0,
J0 ¼ 1 in Eqs. (29) and (30)]. Given the accuracy by which
we predicted the rate for B → D�ν̄l in Table II, our
predicted rates for B� → Dν̄l should be equally accurate.
However, seen from the perspective that these are the first
theoretical predictions for B� decay rates, the main message
is that the three calculations reported provide very similar
numbers and this should be sufficient for planning possible
experimental searches.
We complete this part by making predictions for B� →

D�νl in Table IV, in which we also compare our results with
those obtained in Ref. [18]. We observe now that in both
cases the widths are much bigger than for B� → Dνl, and
our predictions are again a factor of about 0.55 those of

Ref. [18], with a bit bigger discrepancies for decays in the τ
mode, as we would expect.
It is also interesting to look into the invariant mass

distribution dΓ=dMðνlÞ
inv . In Fig. 2, we show dΓ=dMðνlÞ

inv for
B− → D0e−ν̄e, B− → D�0e−ν̄e, and B− → D0τ−ν̄τ,
B− → D�0τ−ν̄τ. In the case of B− → D0e−ν̄e, the mass
distribution peaks around 1.7 GeV while for B− →
D�0e−ν̄e it peaks around 2.7 GeV. This difference is
surprising in view of the small difference of mass between
D andD�. One must see the reason for this behaviour in the
structure of Eqs. (B3) and (29). As we mentioned before,
the B− → D0e−ν̄e reaction gets most of its strength from
the p2 term of Eq. (B3) since the m2

l term is extremely
small. One gets a bigger contribution the larger p2, but

this means a smaller MðνlÞ
inv [see Eq. (8)]. In the case of

B− → D�0e−ν̄e, Eq. (29), there are large terms independent
of p and the argument does not hold. In the case of B− →
D0τ−ν̄τ and B− → D�0τ−ν̄τ, them2

l term is not so small and
the position of the peaks is much closer. The argument
discussed above become even more clear when we look at
the distributions of Fig. 3 for B�− → D0e−ν̄e, B�− →
D�0e−ν̄e and B�− → D0τ−ν̄τ, B�− → D�0τ−ν̄τ. In this case,PP jtj2 is given by Eqs. (29) and (A6) and both
expression are sizeable in the limit of p → 0, as a
consequence of which, the shapes of the mass distributions
are now very different than in the former case.

B. D and D� decays

In Table V, we show results for Dþ → K̄0eþνe and
related reactions. We fix our results to the rate for
D0 → K−eþνe. Our results are in fair agreement for other
reactions.

(a) (b)

FIG. 2. The differential width of semileptonic decay of B meson decay.

TABLE IV. The same as Table III but for ðVVÞ case.
Decay process Γ (Theo.) Γ (Ref. [18])

B̄�0 → D�þe−ν̄e 2.52
B̄�0 → D�þμ−ν̄μ 2.50
B̄�0 → D�þτ−ν̄τ 0.51
B�− → D�0e−ν̄e 2.53 4.98
B�− → D�0μ−ν̄μ 2.51 4.95
B�− → D�0τ−ν̄τ 0.51 1.08
B̄�0
s → D�þ

s e−ν̄e 2.40 4.40
B̄�0
s → D�þ

s μ−ν̄μ 2.37 4.38
B̄�0
s → D�þ

s τ−ν̄τ 0.48 1.00
B�−
c → J=ψe−ν̄e

a 1.60 2.95
B�−
c → J=ψμ−ν̄μ 1.58 2.94

B�−
c → J=ψτ−ν̄τ 0.31 0.82
aHere we take the value mB�−

c
¼ 6.333 GeV predicted by the

quark potential model [39].
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In Table VI, we show the results for Dþ → K̄�0eþνe
reaction and related ones. The agreement with experiment
is fair. In particular, if we look at ratios for different final
vectors, we find

BRðD0 → K�−eþνeÞ
BRðDþ

s → ϕeþνeÞ
¼ 1.02; ð36Þ

when experimentally it is 0.9� 0.11, which is compatible
with Eq. (36).

Finally, in Tables VII and VIII, we give for completeness
the rate forD�þ → K̄0eþνe andD�0 → K−eþνe and related
reactions. However, the fact that the D� decays strongly
into Dπ makes the observation of these modes extremely
difficult, and we do not elaborate further on them.
To finish the section, we show in Fig. 4 the mass

distribution for D0 → K−eþνe, D0 → K�−eþνe and
D�0 → K−eþνe, D�0 → K�−eþνe. We can see that the
arguments discussed earlier about the relative peak posi-
tions of these kinds of reactions; J ¼ 0, J0 ¼ 0 versus
J ¼ 0, J0 ¼ 1 and J ¼ 1, J0 ¼ 0 versus J ¼ 1, J0 ¼ 1 also

TABLE V. Branching ratios for ðPPÞ semileptonic decay of D
meson. We have taken into account that τDþ

τD0
¼ 2.54 and

τDþ
s

τD0
¼ 1.23. For η and η0 production we consider that the weights

for the ss̄ components are 1
3
and 2

3
, respectively.

Decay process BR (Theo.) BR (Exp.) [27]

Dþ → K̄0eþνe 8.94 × 10−2 ð8.82� 0.13Þ × 10−2

Dþ → K̄0μþνμ 8.61 × 10−2 ð8.74� 0.19Þ × 10−2

D0 → K−eþνe fit the exp ð3.53� 0.028Þ × 10−2

D0 → K−μþνμ 3.40 × 10−2 ð3.31� 0.13Þ × 10−2

Dþ
s → ηeþνe 1.53 × 10−2 ð2.29� 0.19Þ × 10−2

Dþ
s → ημþνμ 1.48 × 10−2

Dþ
s → η0eþνe 5.16 × 10−3 ð7.4� 1.4Þ × 10−3

Dþ
s → η0μþνμ 4.87 × 10−3

TABLE VI. The same as Table V but for ðPVÞ case.
Decay process BR (Theo.) BR (Exp.) [27]

Dþ → K̄�0eþνe 4.21 × 10−2 3
2
× ð3.66� 0.12Þ × 10−2

Dþ → K̄�0μþνμ 3.96 × 10−2 3
2
× ð3.52� 0.10Þ × 10−2

D0 → K�−eþνe 1.66 × 10−2 ð2.15� 0.16Þ × 10−2

D0 → K�−μþνμ 1.56 × 10−2 ð1.86� 0.24Þ × 10−2

Dþ
s → ϕeþνe 1.63 × 10−2 ð2.39� 0.23Þ × 10−2

Dþ
s → ϕμþνμ 1.54 × 10−2

TABLE VIII. The same as Table VII but for ðVVÞ case.
Decay process Γ (Theo.) Γ (Exp.)

D�þ → K̄�0eþνe 0.85
D�þ → K̄0μþνμ 0.80
D�0 → K�−eþνe 0.86
D�0 → K�−μþνμ 0.80
D�þ

s → ϕeþνe 0.70
D�þ

s → ϕμþνμ 0.66

(a) (b)

FIG. 3. The differential width of semileptonic decay of B� meson decay.

TABLE VII. Widths for ðVPÞ semileptonic decay of D�

mesons in units of ΓðD0 → K−eþνeÞ.
Decay process Γ (Theo.) Γ (Exp.)

D�þ → K̄0eþνe 1.25
D�þ → K̄0μþνμ 1.21
D�0 → K−eþνe 1.25
D�0 → K−μþνμ 1.22
D�þ

s → ηeþνe 0.44
D�þ

s → ημþνμ 0.43
D�þ

s → η0eþνe 0.19
D�þ

s → η0μþνμ 0.18
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hold in this case, although the changes are not so drastic as
in Fig. 2 because of the restrictions on the phase space
for D0 → K�−eþνe.

IV. CONCLUSIONS

We have performed the angular momentum algebra in
the evaluation of the weak matrix element in the semi-
leptonic decays of Bð�Þ, Dð�Þ mesons. The matrix elements
of the weak current are evaluated in the rest frame of the νl
pair, which require spinors with finite (and large) momen-
tum, and we obtain finally very simple expressions for the
matrix elements involved and the sum over polarizations of
their modulus squared. In terms of these analytical expres-
sions, we can give easy explanations for peculiarities in the
invariant mass distributions and the ratios of rates for
different reactions. By fixing the normalization of the
theoretical rates to the experimental one of a reaction in
the B sector and another one in the D sector, we can obtain
the rate for the rest of the reactions. The agreement with
experiment is good, with discrepancies for the production
of τ leptons which we can trace to the different momentum
transfers involved in the production of light e, μ leptons and
τ lepton.
One of the output of the study is the prediction of decay

rates for B� and D�, which have been the object of

discussion recently since they could be observed in future
measurements of the LHCb Collaboration. We justify that
our predictions for these decay widths should be very
accurate, which can be used in planning experiments to
observe them in the future.
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APPENDIX A: EVALUATION OF THE
MATRIX ELEMENTS

1. Evaluation of M0

We start from the expression of M0 in Eq. (15):

M0 ¼ AA0δss00
�
1þ BB0p2 − ðBþ B0Þp

ffiffiffi
3

p
C
�
1

2
1
1

2
; s; 0; s

��
: ðA1Þ

By looking at the spin third components of Fig. 1, we must combine s, s0 to give JM and s00, s0 to give J0M0. Thus,
we have

X
s;s0;s00

C
�
1

2

1

2
J; s; s0;M

�
C
�
1

2

1

2
J0; s00; s0;M0

�
AA0

�
1þ BB0p2 − ðBþ B0Þp

ffiffiffi
3

p
C
�
1

2
1
1

2
; s; 0; s

��
δss00 : ðA2Þ

(a) (b)

FIG. 4. The differential width of semileptonic decay of D or D� meson decay.
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From here, we conclude that sþ s0 ¼ M and s00 þ s0 ¼ M0, and since s00 ¼ s then M ¼ M0.
For the first two terms in Eq. (A2), we get

X
s

C
�
1

2

1

2
J; s;M − s;M

�
C
�
1

2

1

2
J0; s;M − s;M

�
¼ δJJ0 : ðA3Þ

For the third term, we have a combination of three Clebsch-Gordan coefficients (CGC). We follow the angular
momentum algebra of Rose [40] and write

C
�
1

2

1

2
J; s;M − s;M

�
¼ ð−1Þ12−s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2J þ 1

2

r
C
�
J
1

2

1

2
;M;−s;M − s

�
;

C
�
1

2

1

2
J0; s;M − s;M

�
¼ ð−1Þ12þ1

2
−J0C

�
1

2

1

2
J0;M − s; s;M

�
;

C
�
1

2
1
1

2
; s; 0; s

�
¼ ð−1Þ12−s

ffiffiffi
2

3

r
C
�
1

2

1

2
1; s;−s; 0

�
; ðA4Þ

and then

X
s

C
�
1

2

1

2
J; s;M − s;M

�
C
�
1

2

1

2
J0; s;M − s;M

� ffiffiffi
3

p
C
�
1

2
1
1

2
; s; 0; s

�

¼ ð−1Þ1−J0 ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2J þ 1

p
C
�
J
1

2

1

2
;M;−s;M − s

�
C
�
1

2

1

2
J0;M − s; s;M

�
C
�
1

2

1

2
1; s;−s; 0

�

¼ ð−1Þ1−J0 ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2J þ 1

p ffiffiffi
6

p
W

�
J
1

2
J0
1

2
;
1

2
1

�
CðJ1J0;M; 0;MÞ; ðA5Þ

where Wð� � �Þ is a Racah coefficient.
Altogether,

M0 ¼ AA0
�
ð1þ BB0p2ÞδMM0δJJ0

− ðBþ B0ÞpδMM0
ffiffiffi
6

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2J þ 1

p ð−1Þ1−J0W
�
J
1

2
J0
1

2
;
1

2
1

�
CðJ1J0;M; 0;MÞ

�
: ðA6Þ

Calculating explicitly the Racah coefficient and the CGC, we find
(1) J ¼ 0, J0 ¼ 0

M0 ¼ AA0ð1þ BB0p2ÞδM0δM00: ðA7Þ

(2) J ¼ 0, J0 ¼ 1

M0 ¼ −AA0ðBþ B0ÞpδM0δM00: ðA8Þ

(3) J ¼ 1, J0 ¼ 0

M0 ¼ −AA0ðBþ B0ÞpδM0δM00: ðA9Þ

(4) J ¼ 1, J0 ¼ 1

M0 ¼ AA0fð1þ BB0p2ÞδMM0 −
ffiffiffi
2

p
δMM0 ðBþ B0ÞpCð111;M; 0;MÞg: ðA10Þ

L. R. DAI, X. ZHANG, and E. OSET PHYS. REV. D 98, 036004 (2018)

036004-10



2. Evaluation of Nμ

As seen in Eq. (17), we had γi − γiγ5 written in the spherical basis,

Nμ ¼ AA0f1 − Bpð−1Þ12−s − B0pð−1Þ12−s00 þ BB0p2ð−1Þ1−s−s00 ghs00jσμjsi; ðA11Þ

and now we must project over JM and J0M0. Thus, we get the combination

X
s;s0;s00

C
�
1

2

1

2
J; s; s0;M

�
C
�
1

2

1

2
J0; s00; s0;M0

� ffiffiffi
3

p
C
�
1

2
1
1

2
; s; μ; s00

�
; ðA12Þ

which implies sþ s0 ¼ M and s00 þ s0 ¼ M0, and then we get s00 þM − s ¼ M0, and sþ μ ¼ s00, sþ μþM − s ¼ M0,
so μ ¼ M0 −M.
Hence, we get the sum

S ¼
X
s

C
�
1

2

1

2
J; s;M − s;M

�
C
�
1

2

1

2
J0;M0 −M þ s;M − s;M0

�

×
ffiffiffi
3

p
C
�
1

2
1
1

2
; s;M0 −M;M0 −M þ s

�
; ðA13Þ

which goes with the term “1” in the bracket of Eq. (A11).
Permuting indices in the CGC, we have

C
�
1

2

1

2
J; s;M − s;M

�
¼ ð−1Þ12−s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2J þ 1

2

r
C
�
J
1

2

1

2
;M;−s;M − s

�
;

C
�
1

2

1

2
J0;M0 −M þ s;M − s;M0

�
¼ ð−1Þ1−J0C

�
1

2

1

2
J0;M − s;M0 −M þ s;M0

�
;

C
�
1

2
1
1

2
; s;M0 −M;M0 −M þ s

�
¼ ð−1Þ12−s

ffiffiffi
2

3

r
C
�
1

2

1

2
1; s;M −M0 − s;M −M0

�
;

¼ ð−1Þ12−s
ffiffiffi
2

3

r
C
�
1

2

1

2
1;−s;M0 −M þ s;M0 −M

�
: ðA14Þ

Then the expression S of Eq. (A13) becomes

S ¼ ð−1Þ1−J0 ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2J þ 1

p X
s

C
�
J
1

2

1

2
;M;−s;M − s

�

× C
�
1

2

1

2
J0;M − s;M0 −M þ s;M0

�
C
�
1

2

1

2
1;−s;M0 −M þ s;M0 −M

�

¼ ð−1Þ1−J0 ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2J þ 1

p ffiffiffi
6

p
W

�
J
1

2
J0
1

2
;
1

2
1

�
CðJ1J0;M;M0 −M;M0Þ: ðA15Þ

The term BB0p2ð−1Þ1−s−s00 in Eq. (A11) is easy, since sþ s00 ¼ M0 −M and we get the term 1þ BB0p2ð−1ÞM−M0
times

the expression Eq. (A12).
Next we must evaluate the other two terms in Eq. (A11) that have an extra phase,

ð−1Þ12−s; ð−1Þ12−s00 ¼ ð−1Þ12þM−M0−s ¼ ð−1Þ12−sð−1ÞM−M0
: ðA16Þ

Since ð−1ÞM−M0
is not affected by the s sum, we only have one structure to calculate. Incorporating an extra phase in the

sum is not trivial. To finally be able to reduce the sum over s to Racah coefficients, we write
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ð−1Þ12−s ¼ hsjσzjsi ¼
ffiffiffi
3

p
C
�
1

2
1
1

2
; s; 0; s

�
: ðA17Þ

We make the permutation

C
�
1

2
1
1

2
; s;M0 −M;M0 −M þ s

�
¼ ð−1ÞC

�
1
1

2

1

2
;M0 −M; s;M0 −M þ s

�
; ðA18Þ

and then write

C
�
1
1

2

1

2
;M0 −M; s;M0 −M þ s

�
C
�
1

2

1

2
J0;M0 −M þ s;M − s;M0

�

¼
X
j00

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð2j00 þ 1Þ

p
W

�
1
1

2
J0
1

2
;
1

2
j00
�
C
�
1

2

1

2
j00; s;M − s;M

�
Cð1j00J0;M0 −M;M;M0Þ: ðA19Þ

By means of the former equation, we have decoupled two CGC depending on s into one depending on s and one
independent of s. We can then combine the three s-dependent coefficients in term of a Racah and find

X
s

C
�
1
1

2

1

2
; 0; s; s

�
C
�
1

2

1

2
J; s;M − s;M

�
C
�
1

2

1

2
j00; s;M − s;M

�

¼ ½2ð2j00 þ 1Þ�12W
�
1
1

2
J
1

2
;
1

2
j00
�
Cð1j00J; 0;M;MÞ: ðA20Þ

Summing all the terms, we obtain

Nμ ¼ AA0
�
ð1þ BB0p2ð−1ÞM−M0 Þð−1Þ1−J0

ffiffiffi
6

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2J þ 1

p
W

�
J
1

2
J0
1

2
;
1

2
1

�
CðJ1J0;M;M0 −M;M0Þ

− 6ðBpþ B0pð−1ÞM−M0 Þ
X
j00

ð2j00 þ 1ÞW
�
1
1

2
J0
1

2
;
1

2
j00
�
W

�
1
1

2
J
1

2
;
1

2
j00
�

× Cð1j00J0;M0 −M;M;M0ÞCð1j00J; 0;M;MÞ
�
δμ;M0−M: ðA21Þ

The sum over j00 runs over 0,1 as one can see from the CGC Cð1
2
1
2
j00; s;M − s;MÞ of Eq. (A20).

We can apply this formula to the particular cases and we find
(1) J ¼ 0, J0 ¼ 0

Nμ ¼ −AA0ðBþ B0Þpδμ0δM0δM00: ðA22Þ

(2) J ¼ 0, J0 ¼ 1

Nμ ¼ AA0fð1þ BB0p2ð−1Þ−M0 Þ
þ

ffiffiffi
2

p
ðBpþ B0pð−1Þ−M0 ÞCð111;M0; 0;M0ÞgδμM0δM0: ðA23Þ

(3) J ¼ 1, J0 ¼ 0

Nμ ¼ AA0fð1þ BB0p2ð−1ÞMÞð−1Þ−M
−

ffiffiffi
2

p
ð−1ÞMðBpþ B0pð−1ÞMÞCð111;M; 0;MÞgδμMδM00: ðA24Þ

The minus sign −
ffiffiffi
2

p
in Eq. (A24) versus the

ffiffiffi
2

p
sign in Eq. (A23) looks surprising but turns out to be irrelevant inPP jtj2 because, as we shall show in the next subsection, the two terms in Eqs. (A23) or (A24) do not interfere

when summing over polarizations.
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(4) J ¼ 1, J0 ¼ 1

Nμ ¼ AA0fð1þ BB0p2ð−1ÞM−M0 Þ
ffiffiffi
2

p
Cð111;M;M0 −M;M0Þ

− ðBpþ B0pð−1ÞM−M0 ÞδM0

− 2ðBpþ B0pð−1ÞM−M0 ÞCð111;M0 −M;M;M0ÞCð111; 0;M;MÞgδμ;M0−M: ðA25Þ

APPENDIX B: EVALUTATION OF
PP jtj2

As shown in Eq. (26), we must evaluate

XX
jtj2¼L00M0M�

0þL0iM0N�
i þLi0NiM�

0þLijNiN�
j

ðB1Þ

by taking the expressions for M0, Nμ obtained above and
Lαβ from Eq. (5):

Lαβ ¼ 2
pα
νp

β
l þ pα

l p
β
ν − pν · plgαβ − iϵρασβpνρplσ

mνml
: ðB2Þ

We make the calculation for each J, J0 combination,
recalling that we are evaluating the matrix elements in
the frame of the νl at rest.
(1) J ¼ 0, J0 ¼ 0

(a) First we evaluate the L00 term of Eq. (B1). The
ϵρασβ term is zero since α ¼ β ¼ 0, By using
Eq. (B2), we find

L00 ¼ m2
l

mνml

M2ðνlÞ
inv −m2

l

M2ðνlÞ
inv

; ðB3Þ

and then summing over the polarizationsM,M0,
we find

X
M

X
M0

L00M0M�
0 ¼

m2
l

mνml

M2ðνlÞ
inv −m2

l

M2ðνlÞ
inv

× ðAA0Þ2ð1þ BB0p2Þ2:
ðB4Þ

(b) The terms from L0i,Li0 are zero in the sum over
polarizations and integration over phase space.
Indeed, since pν ¼ −pl in the νl rest frame,

p0
l p

i
ν þ p0

νpi
l ¼ p0

l p
i
ν − p0

νpi
ν; ðB5Þ

and

Z
dΩpνi →

Z
dΩY1μðp̂νÞ ¼ 0: ðB6Þ

The ϵρασβ term is now ϵρ0σi and

ϵρ0σipνρplσ ¼ −ϵρσipνρplσ ¼ ϵρσipνρpνσ ¼ 0:

ðB7Þ
A similar approach can be used for the ϵ term in
all the other cases and one can show that it
always vanishes.

(c) For the term from LijNiN�
j , this evaluation is

made easy recalling that we take p in the z
direction and we found in Eq. (A22) that Nμ is
proportional to δμ0 (μ ¼ 0, i ¼ 3). Hence, we get

L33N3N�
3 ¼ L33N0N�

0; ðB8Þ
and

L33 ¼ 2

mνml
f2p̃l3p̃ν3 þ δ33p̃l · p̃νg

¼ 2

mνml
f−2p̃ν3p̃ν3 þ ẼνẼl þ p̃2

νg

¼ 2

mνml

�
−
2

3
p̃2
ν þ ẼνẼl þ p̃2

ν

�
; ðB9Þ

where the last step uses the fact p̃νip̃νj becomes
1
3
δijp̃2

ν upon integration over dΩðp̂νÞ in the phase
space.
Then we find

X
M

X
M0

LijNiN�
j ¼

2

mνml

�
ẼνẼl þ

1

3
p̃2
ν

�

× ðAA0Þ2ðBþ B0Þ2p2;

ðB10Þ

and altogether

XX
jtj2 ¼ ðAA0Þ2

mνml

�
m2

l ðM2ðνlÞ
inv −m2

l Þ
M2ðνlÞ

inv

× ð1þ BB0p2Þ2

þ 2

�
ẼνẼl þ

1

3
p̃2
ν

�
ðBþ B0Þ2p2

�
:

ðB11Þ
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(2) J ¼ 0, J0 ¼ 1
(a) Using Eqs. (A8) and (B3), we find

XX
L00M0M�

0

¼ m2
l

mνml

M2ðνlÞ
inv −m2

l

M2ðνlÞ
inv

ðAA0Þ2ðBþ B0Þ2p2:

ðB12Þ

(b) The ϵ term and L0i also vanish when integrating
over dΩðp̂νÞ.

(c) For the term from LijNiN�
j we need Eq. (A23)

and

Lij ¼ 2

mνml
f−2pi

νp
j
ν þ δijðpν · plÞg: ðB13Þ

We now write in the spherical basis

X
i

pνiNi ¼
X
α

ð−1ÞαpναN−α;

X
i

pνiN�
i ¼

X
β

pνβN�
β: ðB14Þ

One evaluates first the p̃νip̃νj term, writes

p̃να ¼
ffiffiffiffiffiffi
4π

3

r
p̃νY1αðp̂νÞ; ðB15Þ

and uses that

Z
Y1αðp̂νÞY1βðp̂νÞdΩðp̂νÞ ¼ δαβ; ðB16Þ

and we get

X
M

X
M0

−
4

mνml
p̃i
νp̃

j
νNiN�

j ¼ −
4

mνml
ðAA0Þ2 1

3
p̃2
νδM0

× fð1þ BB0p2ð−1Þ−M0 Þ þ
ffiffiffi
2

p
ðBpþ B0pð−1Þ−M0 ÞCð111;M0; 0;M0Þg2: ðB17Þ

Explicit evaluation of the square of the bracket and the sum over M, M0 gives at the end

X
M

X
M0

−
4

mνml
p̃i
νp̃

j
νNiN�

j

¼ −
4

mνml
ðAA0Þ2 1

3
p̃2
νf3 − 6BB0p2 þ 2ðB2 þ B02Þp2 þ 3ðBB0p2Þ2g: ðB18Þ

The term δijðpν · plÞNiN�
j is evaluated in the same way, and we find

X
M

X
M0

LijNiN�
j

¼ 2

mνml
ðAA0Þ2

�
ẼνẼl þ

1

3
p̃2
ν

�
f3 − 6BB0p2 þ 2ðB2 þ B02Þp2 þ 3ðBB0p2Þ2g; ðB19Þ

and summing the L00M0M�
0 contribution, we obtain at the end

X
M

X
M0

jtj2 ¼ ðAA0Þ2
mνml

�
2

�
ẼνẼl þ

1

3
p̃2
ν

�
½3 − 6BB0p2

þ 2ðB2 þ B02Þp2 þ 3ðBB0p2Þ2� þm2
l ðM2ðνlÞ

inv −m2
l Þ

M2ðνlÞ
inv

ðBþ B0Þ2p2

�
: ðB20Þ

(3) J ¼ 1, J0 ¼ 0

We obtain the same result as before, but must multiply by 1
3
to take into account the average over the initial

polarizations.
(4) J ¼ 1, J0 ¼ 1

(a) L00M0M�
0 term

We need the expression of Eq. (A10). We can see that, in M0M�
0, we have terms like
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X
M

Cð111;M; 0;MÞ ¼ 0;

X
M

Cð111;M; 0;MÞCð1; 1; 1;M; 0;MÞ ¼ 1

2
þ 0þ 1

2
¼ 1; ðB21Þ

then

X
M

X
M0

L00M0M�
0 ¼ ðAA0Þ2 m2

l

mνml

M2ðνlÞ
inv −m2

l

M2ðνlÞ
inv

�
ð1þ BB0p2Þ2 þ 2

3
ðBþ B0Þ2p2

�
: ðB22Þ

(b) For the same reasons as before L0iM0N�
i , L

i0NiM�
0 vanish in the integration over phase space.

(c) LijNiN�
j term

Lij is given by Eq. (B13), proceeding as we have done before. The extra CGC in this term are easily handled
since Cð111; 0; 0; 0Þ, and the other coefficients are all 1ffiffi

2
p except for a phase. We need the expression of Eq. (A25),

and we can easily see that in the sum over M, M0 the three terms of this equation do not interfere. Explicit
bookkeeping and some algebra allow us to write, finally,

X
M

X
M0

jtj2 ¼ 1

3

ðAA0Þ2
mνml

�
3m2

l ðM2ðνlÞ
inv −m2

l Þ
M2ðνlÞ

inv

�
ð1þ BB0p2Þ2 þ 2

3
ðBþ B0Þ2p2

�

þ 2

�
ẼνẼl þ

1

3
p̃2
ν

�
½6þ 7ðB2 þ B02Þp2 − 4BB0p2 þ 6ðBB0p2Þ2�

�
: ðB23Þ
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