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We generalize the scalar triplet neutrino mass model, the type II seesaw. Our model displays compelling
theoretical and experimental features. First, lepton number violation is dynamically generated, without
introducing a naturalness problem, nor relying on arbitrarily small parameters. Second, we identify a
smoking gun signature at the LHC that both probes the triplet structure of our seesaw mechanism and
allows to disentangle it from the usual type II scenario. Additionally, we discuss other interesting
phenomenological aspects of the model such as the presence of a massless Goldstone boson and deviations
of standard model Higgs couplings.

DOI: 10.1103/PhysRevD.98.035045

I. INTRODUCTION

The presence of nonzero neutrino masses, as inferred by
neutrino oscillation experiments, is the only laboratory-
based evidence of physics beyond the standard model [1,2].
Strictly speaking, neutrinos have no mass in the standard
model (SM). There is no unique prescription of how
neutrinos could become massive. Perhaps the simplest
way of generating neutrino masses is via the seesaw
framework. In its naïve realizations, seesaw types I, II
and III [3–10], a large suppression of the electroweak
breaking scale provides an explanation for the smallness of
neutrino masses. Without a full underlying framework, like
grand unified theories or supersymmetry, these mecha-
nisms typically introduce a hierarchy problem due to the
large mass gap [11] or rely on very small (but technically
natural [12]) parameters.

In general, the seesaw mechanism generates a small
parameter from the ratio of two disparate physics scales,
e.g., electroweak versus grand unification scales. Therefore,
when we set the new heavy states to the weak scale (such as
done in studies of type II seesaw at colliders [13,14]), the
“seesaw” mechanism is exchanged by a small parameter.
This can be appreciated in a model independent way by
writing down schematically theWeinberg effective operator
that generates neutrino masses [15], namely

L5 ¼
c
Λ
LLHH ð1Þ

(H and L are the Higgs and lepton doublets) and observing
that ifΛ ∼ hHi then theWilson coefficient c needs to be tiny
in order to obtain sub-electronvolt neutrino masses. We will
show in this Letter that a simple generalization of the type II
seesaw, replacing the seesaw by a chain of seesaws, can
completely avoid the postulation of a new scale. The model
is entirely at the weak scale, and a small lepton number
breaking is dynamically generated.
More concretely, in type II seesaw a scalar triplet

Δ ¼
�

δþ=
ffiffiffi
2

p
δþþ

ðvΔ þ δþ iaδÞ=
ffiffiffi
2

p
−δþ=

ffiffiffi
2

p
�

ð2Þ

obtains its vacuum expectation value (vev) after electro-
weak symmetry breaking
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vΔ ≃
μffiffiffi
2

p v2

M2
Δ
; ð3Þ

where μ is a dimensionful lepton number breaking param-
eter of the scalar potential, v ¼ 246 GeV is the Higgs
doublet vev, and MΔ is approximately the physical mass
of Δ. Neutrino masses are given by mν ¼

ffiffiffi
2

p
YvΔ, with Y

being a matrix of Yukawa couplings.
We can immediately see that the smallness of neutrino

masses can only be obtained by having small Yukawas,
large MΔ, and/or small ad hoc lepton number breaking
parameter μ. For instance, if MΔ is accessible at the LHC,
say at the TeV scale, and the Yukawas are taken to be of
order 1, we obtain

μ ≃ 1.6 eV

�
mν

0.1 eV

�
: ð4Þ

Since μ ¼ 0 restores a symmetry of the Lagrangian, it is not
generated by other couplings due to quantum corrections,
thus being technically natural in the t’Hooft sense [12].
Nevertheless, it is unappealing to have this enormous
hierarchy of scales μ=v≲Oð10−11Þ put in arbitrarily. As
suggested by the considerations made before regarding the
Weinberg operator, this is not exclusive to type II seesaw.
In this paper we present a generalization of the type II

seesaw scenario which dynamically generates a very low
lepton number breaking scale from a small hierarchy. The
model is naturally found at the weak scale, introducing no
new fine-tuning neither arbitrarily small couplings. Our
mechanism engenders a rich phenomenology, including
deviations of SM Higgs couplings, presence of a massless
Majoron, lepton flavor violation and a smoking gun
signature at the LHC that distinguishes this model from
the usual type II seesaw.

II. THE MECHANISM

The idea simply amounts to replicate the induced vev
suppression mechanism with additional scalar singlets, as
shown in Fig. 1. In our concrete setup, all mass parameters
are near the electroweak scale and all dimensionless
couplings are of similar order, thus yielding a natural
model of neutrino masses accessible at the LHC. We will
focus on a scenario with two extra scalar singlets, as this is
the most minimal realization that successfully implements

the mechanism and also exhibits all important phenom-
enological features of our framework.
First, we require dynamical lepton number breaking. To

that end, we promote Uð1Þl lepton number to a global
symmetry in which leptons have charge lleptons ¼ þ1=2
(the normalization has been chosen for convenience) and
quarks have no charge. The neutrino Yukawa coupling

Lν
Yuk ¼ −YLciσ2ΔLþ H:c: ð5Þ

(σ2 is the second Pauli matrix, Y is a matrix of Yukawa
couplings in flavor space, and c denotes charge conjuga-
tion) requires lΔ ¼ −1, forbidding the triple coupling
μHTiσ2Δ†H. We introduce the first complex SM singlet
scalar S1 with lepton number l1 ¼ þ1 so its vev may play
the role of lepton number violating parameter μ. Then, we
generalize the type II seesaw model by invoking another
extra scalar singlet with charge l2 ¼ 1=3, allowing for a
term S�1S

3
2 in the scalar potential. All scalars but the Higgs

and S2 have positive bare mass terms. The crucial point is
that when S2 develops a vev spontaneously, it induces a
suppressed vev for S1, which then induces an even smaller
vev for Δ. The model can easily be generalized for any
number N of scalar singlets, see Appendix A. We identify
the usual type II seesaw with a N ¼ 1-step version of the
generalized model in which S1 is integrated out. Our model
bears similarities with multiple seesaw and clockwork
models (see, for instance, Refs. [16–24]).
As we will see later, a simple 2-step realization can lead

to small neutrino masses given that some quartic couplings
and neutrino Yukawas are of order 10−2–10−3 (larger
couplings can be obtained in realizations with extra steps).
Without further ado, we write down the scalar potential

V ¼ −
m2

H

2
H†H þm2

ΔhΔ†Δi þm2
1S

�
1S1 −

m2
2

2
S�2S2 þ

λH
4
ðH†HÞ2 þ λ2

4
ðS�2S2Þ2

þ λ1HðS�1S1ÞðH†HÞ þ λ2HðS�2S2ÞðH†HÞ þ
�
λAHTiσ2Δ†HS�1 −

2

3
λ012S

�
1S

3
2 þ H:c:

�

þ λΔ
4
hΔ†Δi2 þ λ0Δ

4
hΔ†ΔΔ†Δi þ λ1

4
ðS�1S1Þ2 þ λ12ðS�1S1ÞðS�2S2Þ

þλHΔðH†HÞhΔ†Δi þ λHΔ
0hH†ΔΔ†Hi þ λ1ΔhΔ†ΔiðS�1S1Þ þ λ2ΔhΔ†ΔiðS�2S2Þ;

)
“incidental” terms ð6Þ

FIG. 1. Illustration of the generalized type II seesawmechanism
for neutrino mass generation.
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where the parameters more relevant for the mechanism and
phenomenology are in the first two lines. Although the
quartic couplings on third and fourth lines are important for
the potential stability, they play almost no role otherwise
(thus called “incidental”). The potential stability is not a
primary concern of this manuscript, but it is important to
note that the quartic couplings λA and λ012 tend to destabilize
the potential, and hence are expected to be small. For more
considerations regarding stability see Appendix B. We
define the neutral components of the fields as H0 ¼
ðvþ hþ iaÞ= ffiffiffi

2
p

, Δ0 ¼ ðvΔ þ δþ iaδÞ=
ffiffiffi
2

p
and Sj ¼

ðvj þ sj þ iajÞ=
ffiffiffi
2

p
, for j ¼ 1, 2.

The positive mass terms for Δ and S1 ensure that if λA ¼
λ012 ¼ 0 then the vevs for these fields are zero. These two
quartic couplings are protected from loop corrections by
accidental global Uð1Þ symmetries. Moreover, λA and λ012
can be made real by rephasing the scalar singlet fields. As
long as vΔ and v1 are much smaller than v and v2, we can
obtain the former vevs by treating H and S2 as background
fields. First, we obtain the approximate vevs ofH and S2 by
setting other scalar fields to zero,

m2
H ¼ 1

2
λHv2 þ λ2Hv22; m2

2 ¼
1

2
λ2v22 þ λ2Hv2: ð7Þ

Then, by replacing H and S2 by their vevs, we can easily
calculate the vevs and spectrum of other scalars:

v1 ¼
λ012v

3
2

3M2
1

; vΔ ¼ λAv2v1
2M2

Δ
; ð8Þ

and

M2
h ¼

1

2
λHv2; ð9aÞ

M2
1 ¼ m2

1 þ
1

2
ðλ1Hv2 þ λ12v22Þ; ð9bÞ

M2
2 ¼

1

2
λ2v22; ð9cÞ

M2
Δ ¼ m2

Δ þ 1

2
½λ2Δv22 þ ðλHΔ þ λ0HΔÞv2�: ð9dÞ

The physical masses of the scalars are approximately
given by theM’s in Eqs. (9). Here we see the mechanism at
work: λ012 induces a suppression from v2 to v1, and λA
induces a further suppression from v1 to vΔ. It is useful to
write these quartics in terms of the scalar masses and vevs,

λA ¼ 0.008

�
MΔ

500 GeV

�
2
�
vΔ=keV
v1=MeV

�
; ð10aÞ

λ012 ¼ 0.03
ðM1=100 GeVÞ2ðv1=MeVÞ

ðv2=10 GeVÞ3 : ð10bÞ

These relations do not depend on the number of steps, as
long as perturbation theory holds.

III. SPECTRUM AND MIXING
PHENOMENOLOGY

The scalar spectrum of this 2-step scenario consists of
the 4 aforementioned neutral scalars (h, δ, s1, s2), singly
and doubly charged scalars δþ and δþþ, with masses
approximately given by MΔ, two massive pseudoscalar
degrees of freedom (aδ, a1) with masses approximately
given byMΔ andM1, and two massless Goldstone bosons.
One of the Goldstones is the longitudinal polarization of the
Z boson while the other is a massless Majoron, J [25–27].
We will analyze the Majoron phenomenology in the
following section.
The mixings among CP even scalars will have important

phenomenological impacts (see Table I for a summary).
The mixings between h − s2, δ − s1 and h − s1 are given by

θh2 ≃
λ2Hv2v
M2

h −M2
2

≃ 0.16λ2H

�
v2

10 GeV

�
βh2; ð11aÞ

θδ1 ≃
λA
2

v2

M2
1 −M2

Δ
≃ 10−3

�
vΔ=keV
v1=MeV

�
β1δ; ð11bÞ

θh1 ≃
λ1Hv1v
M2

h −M2
1

≃ 1.5 × 10−5λ1H

�
v1
Mev

�
βh1; ð11cÞ

where βab ≡ ð1 −M2
b=M

2
aÞ−1. First, the Higgs mixing

with s2 could in principle be sizable. Observations
of Higgs production and decay modes together with
precision electroweak measurements constrain the mixing
angle α with a scalar singlet to be about sin θh2 ≲ 0.2–0.3
for a 200–800 GeV singlet mass [28]. If the scalar is
much lighter than the Higgs, for instance in the region
1 < M2 < 10 GeV, the constraints on the mixing range
from sin θh2 ≲ 10−3–10−1 [29]. This Higgs-singlet mixing
can lead to very interesting phenomenology, but it is not an
exclusive signature of our model. For small values of v2,
the invisible Higgs decay to a pair of Majorons strongly
constrains this mixing, as we will see later.
The mixing between δ and s1 is quite special, as it leads

to drastic deviations from usual type II seesaw phenom-
enology. For δþþ, a new decay channel may open up,

TABLE I. Sizable scalar mixings and their phenomenological
impact.

Mixing Phenomenology

h − s2 Higgs observables, direct s2 production
δ − s1 New LHC signatures, s1 decay modes
h − s1 s1 decay modes
s1 − s2 Irrelevant

NATURAL AND DYNAMICAL NEUTRINO MASS MECHANISM … PHYS. REV. D 98, 035045 (2018)

035045-3



δþþ → WþWþs1 with s1 typically decaying to neutrinos
(via mixing with δ), quarks or gauge bosons (both via
mixing with the Higgs) depending on its mass. Similarly,
one can have δþ → Wþs1 and δ → hs1. Another distinctive
feature is the possibility of having sizable visible pseudo-
scalar decays, aδ → Zs1. Differently from type II seesaw,
these decays are controlled uniquely by gauge coupling and
mixing angle θδ1, see Table II. As can be seen in Fig. 2, the
new decays can dominate a large region of parameter space
in the generalized type II seesaw (solid lines) compared to
the usual case (dotted lines). We stress that the mixing angle
θδ1 essentially drives the large, novel branching ratio,
making the model more predictive. As we will see later,
these new decays provide a smoking gun signature at the
LHC, not only opening the possibility for discovering new
particles, but also distinguishing the model from the type II
seesaw.

Finally, the mixing between the Higgs and s1 given in
Eq. (11), although small, plays a significant role in the
scalar phenomenology. The s1 decay to charged fermions,
driven by θh1, will compete with the invisible decay to
neutrinos, sourced by θδ1. By analyzing the ratio of these
partial widths (see Appendix C for more details),

Γs1→νν

Γs1→ff
≃
3.1
Nc

�
θδ1=10−3

θh1=10−5

�
2
�
mν=0.1 eV
mf=GeV

�
2
�
keV
vΔ

�
2

;

we can see that either visible or invisible s1 decays can
dominate in large natural regions of the parameter space.
In this manuscript we will focus on the latter. Besides,
there is some region of parameter space in which s1 decays
to b quarks and gives rise to displaced vertices at the
LHC. We will nevertheless refrain from analyzing that
possibility here.

IV. MAJORON PHENOMENOLOGY

Although a massless particle in the spectrum may at first
seem problematic, its couplings to standard model fermions
are extremely suppressed due to hierarchy of vevs. The
Majoron field is the linear combination

J ≃
1

l2v2

�
l1v1a1 þ l2v2a2 þ

1

2
vΔaδ −

v2Δ
v
a

�
; ð12Þ

where l1 ¼ 1 and l2 ¼ 1=3 are lepton numbers of the
corresponding scalars. It is straightforward to see that the
Majoron has very small couplings to charged fermions
given by

GJff ¼ yfffiffiffi
2

p v2Δ
l2v2v

¼ 1.6 × 10−18

l2

ðmf=GeVÞðvΔ=keVÞ2
ðv2=10 GeVÞ ;

GJνν ¼
ffiffiffi
2

p
yν

vΔ
l2v2

¼ 5 × 10−12

l2

ðmν=0.1 eVÞ
ðv2=10 GeVÞ ; ð13Þ

easily avoiding constraints from neutrinoless double beta
decay with Majoron emission GJνν < ð0.8 − 1.6Þ × 10−5

[30], as well as astrophysical bounds GJee < 4.3 × 10−13

[31]. Although a thermalized Majoron would contribute to
increase the effective number of relativistic degrees of
freedom by 4=7, the tiny coupling in this scenario leads to
very little Majoron production in the early universe.
A stringent bound on Higgs-s2 mixing comes from

Higgs decaying invisibly to a pair of Majorons [32]. It
is straightforward to obtain the approximate constraint [33]

θh2 < 1.5 × 10−3
�

v2
10 GeV

��
Γh

4.2 MeV
BRh→inv

0.22

�
1=2

ð14Þ

where Γh is the Higgs total width and BRh→inv is its
invisible branching ratio. The Higgs total width has only
been measured indirectly, via comparison between on-
shell and off-shell Higgs production, yielding the model-
dependent bound Γexp

h < 13 MeV at 95% C.L. [34]. The

FIG. 2. Branching ratios of δþ (upper panel) and δþþ (lower
panel) as a function of the triplet vev vΔ for the usual type II
seesaw model (dotted) and our generalized version (solid). We
considered m0 ¼ 0.1 eV, as the lightest neutrino mass, Mδþ ¼
Mδþþ ¼ 500 GeV, M1 ¼ 100 GeV, and θδ1 ¼ 0.005.

TABLE II. Typical decay modes in type II seesaw and new
modes in the generalized type II framework. In the last column it
is indicated the most relevant parameters governing the partial
widths.

Scalar Type II Generalized type II Parameters

δþþ lþlþ, WþWþ WþWþs1 vΔ, θδ1
δþ lþν, WþZ, Wþh, tb̄ Wþs1 vΔ, θδ1
δ νν, WþW−, ZZ, hh hs1 vΔ, θδ1
aδ νν, tt̄, Zh Zs1 vΔ, θδ1
s1 not present νν, qq̄, WþW−, ZZ vΔ, θδ1, θh1
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Higgs invisible branching ratio has been bounded to be
below 0.22 [35,36]. This strong bound on θh2 could be
alleviated by raising v2 to the TeV. Complementary con-
straints (though still not competitive) come from monojets
at the LHC [37].

V. COLLIDER PHENOMENOLOGY

In this section, we study the collider phenomenology for
the generalised type II seesaw model. The leading pro-
duction channels for this framework remain the same as in
the usual type II, i.e., the charged Higgs states will be
dominantly produced in pairs via s-channel electroweak
boson exchange, leading primarily to associated production
of double and single charged Higgs bosons δ��δ∓,
followed by double charged Higgs pair production
δþþδ−−.1 Although these two production channels do
not present differences in rate between the standard type II
seesaw and our new model construction, their correspond-
ing decays display new relevant phenomenological signa-
tures. The δ—s1 mixing engenders new interaction terms
from the triplet kinetic term

L ⊃ Tr½ðDμΔÞ†DμΔ�; ð15Þ

making the decays δ�� → W�W�s1 and δ� → W�s1
available. Note that these partial widths do not present
any vΔ suppression, instead they depend only on gauge
couplings, being equally large in a wide range of parameter
space vΔ ∼ 10−7–10−1 GeV, distinctly from the usual type
II, see Fig. 2.
Therefore, the pp → δ��δ∓ production channel not only

reveals the triplet structure nature of δ�� and δ� [13,14],
but can also differentiate our construction from the usual
type II model. To explore this phenomenology, we analyse
the pp → δ��δ∓ production at the

ffiffiffi
s

p ¼ 13 TeV LHC,
focusing on the trilepton plus missing energy signature,
with two same flavor and same sign leptons, e�e�μ∓ þ =ET

and μ�μ�e∓ þ =ET . The leptons arise from the W-boson
decays and relevant extra sources of missing energy follow
from the dominant s1 decay, s1 → νν̄.
Our model is implemented in FEYNRULES [38] and the

signal sample is generated with MadGraph5 [39]. A Next-
to-leading order QCD K-factor of 1.25 has been applied
[40]. To obtain a robust simulation of the background
components, that display large fake rates, our simulation
follows the recent 13 TeV CMS study [41]. Although CMS
targets a heavy neutral Majorana lepton N, it presents a set
of search regions for the high mass regime mN > mW ,
leading to a more sizable =ET , that also applies to our model.

In this analysis, jets are definedwith the anti-kT clustering
algorithm with R ¼ 0.4, pTj > 25 GeV and jηjj < 2.4 via
FASTJET [42]. Events with one ormore b-jets are vetoedwith
70% b-tagging efficiency and 1%mistag rate. Electrons and
muons are definedwith jηlj < 2.4 and the three leptonsmust
satisfy pTl > 55; 15; 10 GeV. Finally, the events are di-
vided in bins associated to three observables: (i) the trilepton
mass system m3l; (ii) minimum invariant mass of all
opposite sign leptons mmin

2lOS0 ; and (iii) transverse mass

mT ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pTl=ETð1 − cosϕÞp

, where pTl corresponds to
the lepton which is not used in the mmin

2lOS0 calculation and
ϕ is the azimuthal angle between p⃗Tl and p⃗miss

T .
Using the CMS background estimate, we perform a

binned log-likelihood analysis based on the CLs method
[43], exploring all search regions with e�e�μ∓ þ =ET and
μ�μ�e∓ þ =ET displayed by Ref. [41]. In Fig. 3, we present
the luminosity required to observe pp → δ��δ∓ as a
function of MΔ at 2σ and 5σ confidence level. At the
high-luminosity LHC, L ¼ 3 ab−1, we can discover
charged Higgses at 5σ level up to MΔ ¼ 300 GeV and
exclude them at 2σ level up to MΔ ¼ 400 GeV.
A final comment is in order regarding two phenomeno-

logical aspects beyond the ones discussed so far. First, our
model may also induce lepton flavor violation processes,
very similar to the usual type II seesaw scenario [44].
Second, although the model does not have enough CP
violation, adding a second SUð2Þ triplet scalar [45] may
lead to successful leptogenesis. The study of such pos-
sibilities is beyond the scope of this manuscript.

VI. CONCLUSIONS

In this paper we have proposed a generalization of type II
seesaw in which lepton number is broken dynamically and
no hierarchy problem neither arbitrarily small parameters
are present. The rich phenomenology of the model includes

300 350 400 450

1

2

3

4

5

M GeV

pp
13 TeV LHC

5 CL 2 CL

L
ab

1

FIG. 3. Luminosity required to observe pp → δ��δ∓ as a
function of MΔ at 2σ (red full) and 5σ (blue dashed) confidence
level. We assume M1 ¼ 100 GeV and vΔ ¼ 10−6 GeV.

1We have checked that producing one triplet scalar in asso-
ciation with s1 is typically subleading, as it is suppressed by
the small mixing θδ1. Thus, these production modes will be
disregarded here.
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deviations of standard Higgs couplings, the presence of a
massless neutral pseudoscalar and more importantly a
novel smoking gun signature at the LHC. This distinctive
new signature may reveal the triplet nature of the charged
scalars and at the same time disentangle the framework
from the usual type II seesaw model.
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APPENDIX A: n-STEP GENERALIZED
TYPE II SEESAW

Here we present the generalization of our framework for
an arbitrary number of scalar singlets n. We define the
following scalar bilinears,

Bi ≡ S�i Si; BΔ ≡ TrðΔ†ΔÞ; BH ≡H†H; ðA1Þ
which allow to write the scalar potential in a compact form

V ¼ −
m2

H

2
BH þ

XΔ;1…n−1

φ

m2
φBφ −

m2
n

2
Bn þ

Xall
φ

λφ
4
B2
φ

þ
Xall

φ;φ0>φ

λφφ0BφBφ0 þ λ0Δ
4
TrðΔ†ΔΔ†ΔÞ þ λ0HΔH

†ΔΔ†H

þ
�
λAHTiσ2Δ†HS�1 −

2

3

Xn−1
i¼1

λ0i;iþ1S
�
i S

3
iþ1 þH:c:

�
:

ðA2Þ
The notation in the sum of the first term of the second line
indicates that permutations of λφφ0 should not be taken (to
avoid double counting). Without loss of generality, all λ0i;iþ1

and λA can be made real by rephasing the scalar singlet
fields. The masses and vevs in the n-step realization are
approximately given by

m2
H ¼ 1

2
λHv2 þ λnHv2n; ðA3aÞ

m2
n ¼

1

2
λnv2n þ λnHv2; ðA3bÞ

vi ¼
λ0i;iþ1v

3
iþ1

3M2
i

; for i ¼ 1;…; n − 1; ðA3cÞ

vΔ ¼ λAv2v1
2M2

Δ
; ðA3dÞ

M2
h ¼

1

2
λHv2; ðA3eÞ

M2
i ¼ m2

i þ
1

2
ðλiHv2 þ λinv2nÞ; i ¼ 1;…; n − 1; ðA3fÞ

M2
n ¼

1

2
λnv2n; ðA3gÞ

M2
Δ ¼ m2

Δ þ 1

2
½λnΔv2n þ ðλHΔ þ λ0HΔÞv2�: ðA3hÞ

These expressions should hold in the regime, vi ≪ viþ1,
that is,

ε≡ λ0i;iþ1

v2iþ1

3M2
i
≪ 1: ðA4Þ

In fact, it is straightforward to show that as long as
Eq. (A4) is satisfied, for any number n of scalar singlet
fields, the vev of sj, j < n, is simply given by

vj ¼
Yn−j−1
k¼0

�
λ0jþk;jþkþ1

3

v2n
M2

jþk

�
3k

vn: ðA5Þ

If, for simplicity, one takes all λ0ij ¼ λ0 and Mi ¼ M, then
we obtain a simplified expression,

vj ¼
�
λ0

3

v2n
M2

�
K

vn; K ¼ ð3n−j − 1Þ=2: ðA6Þ

We can clearly identify the parametric suppression εK

responsible for making v1 ≪ vn. For instance, if ε ¼ 0.01
and n ¼ 3 we obtain v1 ∼ 10−8vn. Note that the expres-
sions for the mixing angles defined in Eqs. (11) are valid for
any n, and thus the phenomenological considerations
regarding Higgs couplings, Majoron physics and LHC
signatures will still apply.

APPENDIX B: STABILITY OF THE
SCALAR POTENTIAL

Although a complete study on the stability of the scalar
potential are not the main focus of this Letter, we provide
here sufficient conditions for the stability. The key point is
that the quartic couplings λA and λ012 (or any λ0i;iþ1 in the
n-step scenario) can always yield negative contributions to
the potential when the values of the fields go to infinity,
independently of their sign. As these couplings are the core

JULIA GEHRLEIN et al. PHYS. REV. D 98, 035045 (2018)

035045-6



of the generalized type II seesaw mechanism, it is important
to understand how to control these contribution so that the
potential is bounded from below. Although a full analysis
of the stability would be very complicated, specially in the
n-step scenario, we can still derive useful sufficient con-
ditions to have stability. The idea is to split the scalar
potential into pieces that will isolate each λ012 or λA,

V ¼ VA þ V12 þ � � � þ V0 ðB1Þ

and require each piece to be independently positive. For
now we will focus on n ¼ 2-steps and generalize the
method in the end.
The first piece deals with λA. We define

VA ≡ λ1HðS�1S1ÞðH†HÞ þ λ1ΔhΔ†ΔiðS�1S1Þ
þ λHΔðH†HÞhΔ†Δi þ ðλAHTiσ2Δ†HS�1 þ H:c:Þ

ðB2Þ

and require it to be positive. By performing an SUð2Þ
rotation on the field one can always write [46]

iσ2Δ ¼
�
a 0

0 beiα

�
; H ¼

�
ceiβ

deiγ

�
; ðB3Þ

and Si ¼ Rieiϕi . Then, it is straightforward to obtain

λHΔ > 0; λ1Δ > 0; ðB4aÞ

λ1H > 0; jλAj2 < λ1HλHΔ: ðB4bÞ

Now, we handle λ012 by defining

V12 ≡ λ2
4
ðS�2S2Þ2 þ λ12ðS�1S1ÞðS�2S2Þ

−
�
2

3
λ012S

�
1S

3
2 þ H:c:

�
; ðB5Þ

and requiring V12 > 0. This yields

λ12 > 0; λ2 > 0; jλ012j2 <
9

16
λ12λ2: ðB6Þ

We still have to deal with seven quartic couplings. First
note that λ1, λ2H, and λ2Δ need to be positive, as there is no
other quartic left that can compensate for a negative
contribution to the potential sourced by these couplings.
The remaining parameters, λΔ, λ0Δ, λHΔ and λ0HΔ, essentially
define a usual type II seesaw potential and the stability
conditions for that case are known [46]. The requirements
for these seven quartics can be summarized as

ðiÞ λH >0; λ1>0; λ2H >0; λ2Δ>0; ðB7aÞ

ðiiÞ λΔ þ λ0Δ > 0; 2λΔ þ λ0Δ > 0; ðB7bÞ

ðiiiÞ 2λ0HΔ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λHðλΔ þ λ0ΔÞ

q
> 0; ðB7cÞ

ðivÞ 2λ0HΔ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λΔ þ λ0Δ

q
þ ð2λΔ þ λ0ΔÞ

ffiffiffiffiffiffi
λH

p
> 0: ðB7dÞ

We emphasize that if inequalities (B4), (B6), and (B7) are
all satisfied, then the potential is stable.
The generalization to more n-steps is now straightfor-

ward. By defining

Vi;iþ1 ≡ λiþ1

4
ðS�iþ1Siþ1Þ2 þ λi;iþ1ðS�i SiÞðS�iþ1Siþ1Þ

−
�
2

3
λ0i;iþ1S

�
i S

3
iþ1 þ H:c:

�
; ðB8Þ

and requiring Vi;iþ1 > 0 we obtain

λi;iþ1>0; λiþ1>0; jλ0i;iþ1j2<
9

16
λi;iþ1λiþ1 ðB9Þ

for i ¼ 1…n − 1. Again, there are no quartic couplings left
to compensate for λiH or λiΔ, which demands

λi > 0; λiH > 0; λiΔ > 0; i ¼ 1…n: ðB10Þ

These conditions are by no means necessary, but only
sufficient for having stability in the n-step realization. More
general conditions may be obtained with the techniques
of Ref. [47].

APPENDIX C: PARTIAL WIDTHS

We present in this Appendix the partial widths for
the novel decay channels of some of the extra scalars in
the generalized type II seesaw framework. In the case of δ,
we will have three new channels: δ → hs1, δ → hhs1, and
δ → hs1s1. As the latter is suppressed by v21, we will safely
neglect it in the remainder. The partial widths for the first
two channels are

Γðδ→hs1Þ≃
v2

1024πMΔ
ð8λA cosð2θδ1Þ−λ1H sinð2θδ1ÞÞ2;

Γðδ→hhs1Þ≃
MΔ

8192π3
ð2λAcosð2θδ1Þ−λ1H sinð2θδ1ÞÞ2;

where we have neglected the phase space factor by
assuming M1 þ 2Mh ≪ MΔ. The phase space for 2-body
decay can easily be incorporated by multiplying the partial
width by

β̄δ→hs1 ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2ðM2
1 þM2

hÞ
M2

Δ
þ ðM2

1 −M2
hÞ2

M4
Δ

s
: ðC1Þ
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The decay width ratios with respect to the leptonic channel,
δ → ννþ ν̄ ν̄, are approximately given by

Γ½δ → hs1�
Γ½δ → ννþ ν̄ ν̄� ≃ λ2A

v2ΔP
im

2
νi

v2

M2
δ

;

Γ½δ → hhs1�
Γ½δ → ννþ ν̄ ν̄� ≃

λ2A
512π2

v2ΔP
im

2
νi

:

In the case of the single-charged scalar δþ, the additional
channel δþ → Wþs1 is the most relevant. Its decay width is
given by

Γ½δþ → Wþs1� ¼ cos2η
sin2ðθδ1Þ

8π

M3
δþ

v2
β̄3δþ ;

with

cos2η≡ 1 −
2v2Δ
v2

;

β̄δþ ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2ðM2
1 þM2

WÞ
M2

δþ
þ ðM2

1 −M2
WÞ2

M4
δþ

s
:

The ratio with the leptonic channel is approximately

Γ½δþ → Wþs1�
Γ½δþ → lþν� ≃ 2sin2ðθδ1Þ

v2Δ
m2

νi

M2
δþ

v2
:

For s1, we have the decay into charged fermions and
neutrinos

Γ½s1 → ff̄� ¼ Nc
M1

8π

m2
f

v2
sin2θh1β̄1; ðC2aÞ

Γ½s1 → νν� ¼ M1

16π

m2
ν

v2Δ
sin2θδ1; ðC2bÞ

where Nc is the number of colors and β̄1 ≡ ð1 − 4m2
f=

M2
1Þ3=2. We do not present the analytic expressions for the

new 3-body decay channel δþþ → WþWþs1, as it is not
particularly illuminating.
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