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In orbifold family unification on the basis of SU(N) gauge theory on the six-dimensional space-time
M*x T?/Z,, (m =2, 3, 4, 6), enormous numbers of models with three families of the standard model
matter multiplets are derived from a massless Dirac fermion in a vectorlike representation [N,3]+[N,N—3]
of SU(N) (N =8, 9). They contain models with three or more than three neutrino singlets and without
any non-Abelian continuous flavor gauge symmetries. The relationship between flavor numbers from a
fermion in [N,N — k| and those from a fermion in [N, k] are studied from the viewpoint of charge

conjugation.
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I. INTRODUCTION

One of the most intriguing riddles in particle physics is
the origin of family replication in standard model (SM)
matter multiplets. Various investigations have been per-
formed, using models on the four-dimensional Minkowski
space-time M* [1-7], but, in most cases, we encounter
difficulties relating to the chiralness of fermions.
Concretely, chiral fermions do not, in general, come from
a fermion in an anomaly-free representation of a large
gauge group, e.g., 2"~! for SO(2n) (n > 6), or a vectorlike
(nonchiral) set of representations, e.g., N + N for SU(N),
as an extension of grand unified theories (GUTs). In
most cases, particles with opposite quantum numbers
under the SM gauge group SU(3). x SU(2), x U(1)y,
called mirror particles, appear and the survival hypothesis
is adopted to get rid of them from the low-energy
spectrum. Then, the SM family members can also
disappear. Here, the survival hypothesis is stated such
that if a symmetry is broken down into a smaller one at a
scale Mg, then any fermion mass terms invariant under
the smaller group induce fermion masses of O(Mg) and
such heavy fermions disappear from the low-energy
spectrum [3,8].1
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"There is a possibility that extra particles are confined at a
high-energy scale by some strong dynamics [2,6].
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The above difficulty can be overcome by extending the
structure of space-time. That is, extra particles, including
mirror ones, can be eliminated using an orbifold breaking
mechanism, as originally proposed in superstring theory
[9-11]. Hence, a candidate realizing the family unification
is an extension of GUTs defined on a higher-dimensional
space-time including an orbifold.” These studies have been
carried out intensively [14-25], and three replicas of matter
multiplets are derived from characteristics of extra dimen-
sions. For instance, three replication SU(5) multiplets have
been derived from a single bulk fermion in the rank & totally
antisymmetric tensor representation [N,k| (N >9) of
SU(N) on M* x S'/Z, [20]. Enormous numbers of models
with three families of the SM matter multiplets have been
obtained from a single massless Dirac fermion in [N, k]
(N >9)of SUN)on M* x T?/Z,, (m = 2, 3, 4) [23]. The
relationship between the flavor numbers of chiral fermions
and the Wilson line phases has been studied in these models
[26]. Using models originated from SU(9) gauge theory on
M* x T?/Z,, their reality has been examined from the
structure of the Yukawa interactions [27].

In Ref. [23], we find that the number of neutrino singlets
is less than 3, the smallest gauge group is SU(9), and most
models contain an extra non-Abelian continuous gauge
group relating to a flavor symmetry, under the precondition
that three SM families are derived from a massless
Dirac fermion in a chiral representation [N, k] of SU(N).
Then, we need extra neutrino singlets to produce massive
neutrinos and extra scalar fields to break extra gauge

*Five-dimensional supersymmetric GUTs on M* x §'/Z,
possess the attractive feature that the triplet-doublet splitting of
Higgs multiplets is elegantly realized [12,13].
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symmetries. By changing the precondition such that three
SM families are derived from a massless Dirac fermion in a
vectorlike representation [N, k| + [N,N —k] of SU(N),
there is a possibility that some models possess features
such that the number of neutrino singlets is 3 or more than
3, the smallest gauge group is less than SU(9), and all extra
gauge symmetries are Abelian. Furthermore, extra gauge
symmetries could be broken down by the vacuum expect-
ation values of superpartners of neutrino singlets.

In this paper, we study the possibility of family uni-
fication on the basis of SU(8) and SU(9) gauge theory on
M* x T?/Z,, using the method in Refs. [20,23]. We
investigate whether or not three families of the SM matter
multiplets are derived from a single massless Dirac fermion
in a vectorlike representation [8, k] + [8,8 — k] or [9, k] +
[9,9 — k], through the orbifold breaking mechanism. We
clarify the relationship between flavor numbers from a
fermion in [N, N — k| and those from a fermion in [N, k]
from the viewpoint of charge conjugation.

The contents of this paper are as follows. In Sec. II, we
provide general arguments on the orbifold breaking based
on the two-dimensional orbifold 72/Z,,. In Sec. III, we
give formulas for numbers of the SM matter multiplets. In
Sec. IV, we study the possibility of the family unification in
six-dimensional SU(8) and SU(9) gauge theories contain-
ing a massless Dirac fermion in a vectorlike representation.
Section V is devoted to conclusions and discussions.

II. Z,, ORBIFOLD BREAKING, FERMIONS, AND
DECOMPOSITION OF FIELD

We explain the orbifold 72/Z,, (m = 2, 3, 4, 6), a six-
dimensional fermion and a decomposition of field in [N, &|.

A. Z,, orbifold breaking

On a two-dimensional lattice 72, the points z 4 e¢; and
7 + e, are identified with the point z, where e; and e, are
basis vectors and z takes a complex value. The orbifold
T?/Z,, is obtained by dividing T2 by the Z,, transformation
7 — pz, where p is the mth root of unity (p” =1).
Then, z is identified with pz, or z is identified with
p¥z + ae, + be,, where k, a, and b are integers. For more
details, see Appendix A.

We explain the Z, transformation properties of a
six-dimensional scalar field ®(x,z,z), using T°/Zs,
whose basis vectors are given by e; = 1 and e, = i. The
extension of other fields (fermions and gauge bosons) and
other orbifolds is straightforward. From the requirement
that the Lagrangian density £ should be invariant under
the Z; transformations sy,:z = wz and s;:z = wz+1
(w = €?"/3) or it should be a single-valued function,

L(P(x,0z,@7)) = L(D(x,2,7)),

L(®(x,wz+ 1, @Z7+1)) = L(D(x,2,2)), (2.1)

the boundary conditions of fields on 7%/Z are determined
up to some overall Z; factors, which we refer to as
intrinsic Z; elements of fields and denote as 7,4 corre-
sponding to the Z; transformations s, (¢ = 0, 1). When
@ is a multiplet of some transformation group G concern-
ing some internal symmetries (including gauge sym-
metries), £ should be invariant under the transformation
®(x,z,7) = D' (x,2,Z) = Te®D(x,z,27), such that

L(Te®(x,2.2)) = L(P(x,2,2)), (2.2)
where T¢ is a representation matrix of G on ®. For
instance, if a theory has SU(N) gauge symmetry, L is,
in general, invariant under a (global) U(N) transformation,
ie, G=U(N). From (2.1) and (2.2), the following
boundary conditions on @ are allowed:

O(x,wz,02) = Te[Ug, o0) P(x, 2.2),

d>(x,a)z+ 1,52—1—1) = Tq,[Ul,mq,}(I)(x,Z,Z), (23)
where T¢[Uy, o] and Te[U |, n1e] represent appropriate
representation matrices, which are elements of G on ®@. The
To[U, nae) are factorized into To[Uy, 0] = NaoTo[Ul)
(a=0, 1), using representation matrices U, for the
fundamental representations of G and the intrinsic Z;
elements 7,5 [see (2.13)], and some relations can appear
among the intrinsic Z; elements [see (2.6) or (B20)].
Arbitrary U and U, can be diagonalized by using a global
unitary transformation and a local gauge transformation or
each equivalence class of boundary conditions contains
diagonal representatives [28]. Hence we use diagonal
ones later.

We list basis vectors and the transformations relating to
identifications of points on 7%/Z,, and we denote its
representation matrices for the fundamental representation
as U, (a=0, 1, 2 for T?/Z,; a =0, 1 for T?>/Z; and
T?/Z,; and a = 0 for T?/Z) in Table 1 [29,30]. Note that
there is a choice in transformations independently of
each other.

Components of @ possess discrete charges associated
with eigenvalues of T [U,, 17,0]- When the eigenvalues are
given as e>//™ (1 =0,1,...,m — 1), the discrete charges
are assigned as numbers [/m. We refer to e>™!/™ as Z,,
elements. In the absence of contributions from the Wilson
line phases, the massless six-dimensional fields whose Z,,
elements for all a are equal to 1 contain zero modes, but
those including a Z,, element different from 1 do not
contain zero modes.’ Here, zero modes mean four-dimen-
sional massless fields. If the size of extra dimensions is
small enough, massive modes called Kaluza-Klein modes

*In the presence of nonvanishing Wilson line phases, gauge
symmetries and particle spectra are rearranged via the Hosotani
mechanism [31-34].
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TABLE 1. The characters of T%/Z,,,.
T%/Z, Basis vectors Transformations Representation matrices
T%/7, 1,i 7> -z,2—>1-z,72>i—-2 Uy, Uy, U,
TZ/Z3 ]’82ni/3 7= eZm’/fiz’Z - eZni/3Z +1 UO’ U1
T%/Z, Li z—-iz,z > iz + 1 Uy, U,
T?/Zg 1,(=3+iV3)/2 7 — el Uy
do not appear in low-energy theories. Unless all compo- NatR = PNa+L> Na—R = Plla-L (2.6)

nents of a nonsinglet field have a common Z,, charge,
a symmetry reduction occurs upon compactification.
This type of symmetry breakin§ mechanism is called an
“orbifold breaking mechanism.”

B. Fermions

We explain fermions in six dimensions. For more details,
see Appendix B. A massless Weyl fermion in six dimen-
sions is regarded as a Dirac fermion or a pair of Weyl
fermions with opposite chiralities in four dimensions. The
six-dimensional Dirac fermion consists of two six-dimen-
sional Weyl fermions such that

14T
¥, = 17y (Ve ,
2 ViR

L (W‘R>,
2 VL

(2.4)

where W and W_ are fermions with positive and negative
chirality, respectively, and I'; is the chirality operator in six
dimensions. Here and hereafter, the subscript + and L(R)
stand for the chiralities in six and four dimensions,
respectively. The charge conjugation of a six-dimensional
Dirac fermion ¥ is defined as

Y¢ = BY*, B~'TMB = —(TM)*, (2.5)
where '™ (M =0, 1, 2, 3, 5, 6) are six-dimensional gamma
matrices, B = —i[’;I°’I> up to a phase factor, and the
asterisk * means the complex conjugation.5 Note that the
chirality in six dimensions does not flip under the charge
conjugation, as shown in (B12) and (B13).

From the Z,, invariance of the kinetic term and the
transformation property of the covariant derivatives
D. - pD. and D: — pD: with p(=p*) = e /™ and
p = ¥/ we have the relations

“The Z, orbifolding was used in superstring theory [35] and
heterotic M-theory [36,37]. In field theoretical models, it was
applied to the reduction of global supersymmetry (SUSY)
[38,39], which is an orbifold version of the Scherk-Schwarz
mechanism [40,41], and then to the reduction of gauge symmetry
[42].

In this paper, the complex conjugation is also represented by
the overlined one.

where z = x7 +ix® and 7 = x> — ix®, and 7,4, (x) are the

intrinsic Z,, elements of v,/ ). For the derivation of (2.6),
see (B14)-(B20).

Chiral gauge theories including Weyl fermions in even-
dimensional space-time become, in general, anomalous in
the presence of gauge anomalies, gravitational anomalies,
mixed anomalies, and/or a global anomaly [43,44]. Here
we consider a nonsupersymmetric model for simplicity.
In SU(N) gauge theories in six dimensions, the global
anomaly is absent because of z4x(SU(N)) = 0 for N > 4.
Here, 75(SU(N)) is the sixth homotopy group of SU(N).
Other anomalies must be canceled out by the contributions
from several fermions. For instance, they are canceled out
by the contributions from fermions with different chiralities
such as (‘I‘Q,‘P’_), where r stands for the r-dimensional
representation of SU(N). Each pairin (¥, , W7.); (¥, , ¥");
and (W', , ¥") does not contribute to the anomalies, where F
stands for the complex conjugate representation of r.
It is understood that the cancellation in six dimensions
occurs from the fact that the gauge anomaly is proportional
to a group-theoretical factor such as

D St (TOTRTHTS) =y “Ste(TUTTET),  (2.7)
9 v_

where Str stands for the trace over the symmetrized product
of the gauge group generators 7%, and this trace is invariant
under the exchange between 7% and —(7“)*, correspond-
ing to the exchange between a fermion in r and one in 7.
The gravitational anomaly is canceled out, if the following
condition is fulfilled:

N,=N._ (2.8)

where N are the numbers (including degrees of freedom)
of ‘P:t'

C. Decomposition of representation
With suitable diagonal representation matrices U,, the
SU(N) gauge group is broken down into its subgroup such
that
SU(N) = SU(py) x SU(py) x -+ x SU(p,) x U(1)""~1,
(2.9)
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where N = p; + p, + -+ - + p,,. Here and hereafter, SU(1)
unconventionally stands for U(1), SU(0) means nothing,
and 7’ is a sum of the number of SU(0). A concrete form of
U, will be given in the next section.

After the breakdown of SU(N), the rank k totally
antisymmetric tensor representation [N, k|, whose dimen-
sion is C,, is decomposed into a sum of multiplets of the
subgroup SU(p;) x SU(p,) x --- x SU(p,) as

k k=l k=lj=—l,
VA=) (5 Copo s Crys o009, € )
1,=0 ,=0 L,1=0
(2.10)
where [, =k—1;—---—1,_; and our notation is that

,C; =0 for [ > n and [ < 0. Here and hereafter, we use
«C; instead of [n, [] in many cases. We sometimes use the
ordinary notation for representations too, e.g., N and N in
place of ,C, and ,Cy_,.

The [N, k| is constructed by the antisymmetrization of
the k-ple product of the fundamental representation
N =N, 1]

[N.k] = (Nx...xN),,

k

(2.11)

where a tiny subscript A means the antisymmetrization. For
Weyl fermions W, in [N, k], the boundary conditions are
given by

W (x,p2,p7) = Tye[Up Wi (x,2,7),  (2.12)

where T.yi[Ua,n((lli] stand for appropriate representation
matrices, which are elements of U(N) on W., U, are the
representation matrices for the fundamental representation,

and nfﬁ are the intrinsic Z,, elements of ¥, in [N, k]. We

omit the subscripts L and R on 17‘(1]2 for simplicity. Note that

there are relations such as (2.6) between nﬁL and ’75;]21%-

Using (2.11) and (2.12), the Z,, transformation property of
[N, k| can be expressed by

(Nx...xN), > 1" (UN) x ... x (UN)),. (2.13)

By definition, 7751]2 take values of Z,, elements, i.e., e

(I=0,1,...

same as ;75,’1), and the chiral symmetry is still respected.

In the same way, the [N, N — k] is constructed by the
antisymmetrization of the (N — k)-ple product of N,

2zxil/m

,m — 1). Note that ;751’2 are not necessarily the

INNN—kl=(Nx...xN), (2.14)

N—k

or it is also constructed by the antisymmetrization of the
k-ple product of the complex conjugate representation N:

[N,N—k] =[N,k = (Nx...xN),.
k

(2.15)

Using (2.15), the Z,, transformation property is given by

(Nx...xN), » i (U:N) x ... x (U:N)),.  (2.16)

where U} are the complex conjugations of U, and 7732 are
the intrinsic Z,, elements of W. in [N, k]. If the field in

[N, k] is obtained by the charge conjugation of that in [N, ],

we have relations F],(Q = ’152 Strictly speaking, in this case,

the relations are written as ﬁ(aki)R = 1751’2 ,, and ﬁi’iL = nflki) R

because the four-dimensional chirality changes under the
charge conjugation. If a field in [N, k] is independent of that

in [N, k], there is no relation between ’732 and 7752

III. FORMULAS FOR NUMBERS
OF SM SPECIES

Let us investigate the family unification with the break-
ing pattern:

SU(N) = SU(3) x SU(2) x SU(p5)

x---x SU(p,) x U(1)™"=1 (3.1

where SU(3) and SU(2) are identified with SU(3). and
SU(2), in the SM gauge group. After the breakdown of
SU(N), [N, k| is decomposed into a sum of multiplets as

k=1, k=1,~1,

R30I

L=01L=0 L=

k===l s

XY (CaChpCrr e, )
=0

n—

(=}
~
(=)

(3.2)

The flavor numbers of down-type antiquark singlets
(dg)¢, lepton doublets /; , up-type antiquark singlets (ug)¢,
positron-type lepton singlets (eg)¢, and quark doublets g,
are denoted as ng, n;, ng, ng, and n,, respectively. Using the
survival hypothesis and the equivalence on charge con-
jugation in four dimensions, we define the flavor number of
each SM chiral fermion as

ng = (1GC2.,C), —#(C1.,Co)L)

- (ﬁ(SCZ’ 2C2)R - u(fiCl?zCO)R)’ (33)
n; = (§(;G3,,C1) — 8(;C0.,C1)1)
- (ﬂ(SC:‘w 2C1)R - H(}CO’ 2C1)R)7 (34)
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1z = (1(;C2.,Co), — 1(:C1.,C),) TABLE II.  The projection operators P, (g)-
— (H(5C2.,Co)g — 8(;C1.2C)g),  (3.5)  T2/Zw  Purir Puiir Pt Pui—r
72/2, plLLD plt-l-h) pLLD pit-l-n)
k k k- -
nz = (8(:C0.,C2)L — 8(3C3.,C0),) 5 N o ’ ’
P A e
— (1(:C0.2Co) g — #(3C5.,C0))- (3.6) 5 ;1 ) (;i ) ;1 N i)
r/z, Py Py Py Py
= (6012 C1) = H:Co 21 S N S N
= (BGC12Cr = HGCoaCil) (37)
k=li=l,  k=lj——l,,
where f represents the number of zero modes for each B
multiplet. The SM singlets are regarded as the right-handed BGC, G = 12;0 o IZO Puksrp,Cpy -, €,
neutrinos, which can obtain heavy Majorana masses among - !
themselves as well as the Dirac masses with left-handed (3.9)
neutrinos. Some of them can be involved in the seesaw k=ly=ly, k=Ll
mechanism [2,45,46]. The total number of (heavy) (.c,,,C, ), = . P, C C,,
neutrino singlets (vg)¢ and/or vy is denoted by ny and (Ch-2C)r = z ;0 Rl
defined as (3.10)
ny = ﬁ(3CO’ ZCO)L + ﬂ(3c31 2C2)L + ﬁ(BCOv 2CO)R where the Pmld:L(R) (m=2, 3, 4, 6) are projection
+ #(;C3,,Ca)g- (3.8)  operators to pick out zero modes of w. ) in [N, k],
and they are listed in Table II. '
From (3.2), the number of zero modes for each multiplet In Table 11, ¢ = /3 and % = ¢~/3, and each operator
is given by the formulas is defined by
—1)m,(=1ym (~1)2) _ 1 ek ok ok
Pat VY = S {1 (1R (S P+ (1) PR (3.11)
@"0 "1 1 — — — —
P =51+ @ PR+ @ (P HI + @ P+ @t (P)), (3.12)
omy 1 ook ~None (k)22 3o (o (K)\3
Pi"™) = L 10+ (=i Py 4 (=)™ (PR + (=i (P)'}
k 2 (k)32 N3 (k)83
X {1+ (=i P (=) (P + (=P (P ) (3.13)
oy _ 1 e ®) | —n N2 —3n BN L —ane (o (K)\E | —sn e (K)\S
Py’ = o {1+ 9P+ 9 (PR + 9 (PR’ + 9™ (PR + 97 (PED)), (3.14)
where ng, ny, and n, are integers, and Pa - are the Z,, elements determined by U, and na i L(R) 38 will be given below. For
instance, Pg‘;; L ") is a projection operator to pick out modes with 730 4 = " and 771 =" in ¥,

From (3.3)-(3.10), we obtain following formulas for the SM species and neutrino singlets derived from a pair of six-
dimensional Weyl fermions (¥, ,¥_) in [N, k],

k=l1—l, k=ly==l, 5

n3|[N,k} = Z Z Z Z (_1)l|+lzpmkimcl3...pncl”’ (3.15)

+ (11,1)=(2.2),(1,0) L= Lp1=0
keli=l,  k=ly—el,_,
”1|[N,k]:Z Z (—l)l'Hszking"'pnCz,,’ (3.16)
T (1,.)=(.1).(0.1) =0 1 =0
k=lL=1, k=ly==1, 5
nz v :Z Z Z (_1)11+12Pmk:tp3cl3"'pnclnv (3.17)
T (1,.)=(20).(12) =0 1 =0

035039-5



YUHEI GOTO and YOSHIHARU KAWAMURA

PHYS. REV. D 98, 035039 (2018)

k=1,—1,

”z| NK — Z

+ (11,)=(0,2),(3,0) L=

Nyl g = Z Z

+ (I1.)=(1,1),(2,1) 15=0

k=1~

k—1,—

n17| NK — Z

£ (1,.1,)=(0,0).32) L=

where P, and P,(;,)C . are defined by

Pl(:lli = Pog+r + Puok+r>
(3.21)

Pois = Prpar = Prgsrs

respectively. By the insertion of (—1)1%2, we obtain
8GC)2C )y for Iy +1,=even integer and
—1#(;C,,2C)rry for I+ 1, =odd integer. Although
the above formulas (3.15)—(3.19) are derived with no
consideration for the Wilson line phases, they still hold
for the case with nonvanishing Wilson line phases relating
to extra gauge symmetries, thanks to a hidden quantum-
mechanical supersymmetry [26].

We explain how the Z, elements Pg’i of multiplets
in (3€,.,,Cp, ..., ,,C, ) decomposed from ¥, in
[N,k](=5C,) are determined by the intrinsic Z,, elements

11(02 and the representation matrices U, for the fundamental

representation N = [N, 1]. Here, W, are six-dimensional
Weyl fermions in [N, k], and those boundary conditions are

specified by representation matrices Ty [U,, nﬁ], which

are factorized into Ty, [U,, nﬁ] = 1752 Tw.[U,], using

overall factors r/iki) intrinsic to fields and ,C; x yC;

U, = diag([+1]
U, = diag([+1]
U, = diag([+1]

where [£1], represents +1 for all p; elements. Then, the Z, elements ’PEQ of (3C;,,Cp,, -

2

(=) 2Py, €, 2.0, (3.18)
=0
k=ly—=l,
( 1)11+12Pmkip3cl 'P”Cl”’ (3.19)
1520
b )
Z Pmld:P3C o Pncln’ (320)

n l_0

|
matrices Ty, [U,]. Because Pg’i are obtained as eigenval-

ues of Ty, [U,. ngi} we need to know how Ty, [U,, ;12]2]
act as multiplets in (;C;,.,C,,. ..., C; ). The components
of W, are written in the form of the antlsymmetnzatlon of
the k-ple product of N, such as [N,k] = (N x ... xN),,
where a tiny subscript A means the antisymmetrization,

and the operation of T\yi[Ua,l’[((lli] on [N, k| is given by

n(a]z((U N) x ... x (U,N)),. We consider a simple exam-
ple of a Z, element with Uy = diag([+1], , [-1],,) where
(1], represents £1 for all p; elements. Then the [N, k] of
SU(N) is decomposed into a sum of multiplets of
SU(py) x SU(py) as [N, k] =321 5 (,,C, . ,C,,), where
N = p; + p, and k = [; + [,. From the observation that
(p, Ciom sz) is multiplied by +1 /; times and multiplied
by —1 [, times through the operation of T.Pi[UO,n((Q]
on [N.k], we see the Z, element of (,C,.,,C, ) as
73(()12 = 11812(+1)11(—1)12 = (—l)ll‘kngg, where we use
k=1, +1, and (—=1)" = (=1)™" (n is an integer). In this
way, if ngi and U, are given, Pg’i are determined for each

multiplet, as will be done below.
We take the representation matrices for 77%/Z,,

1’ P2

(3.22)

»,C, ) are determined as
n

k i (k
7)((&) _ (_1)1]+12+13+l4 knéi)’
k

7;( ) _ (_1)1]+lz+15+16—k,7§/2’

k i (k
Pk _ (=1)h+s+is+h kngi).

In the same way, with the representation matrices for 72/Z5,

(3.23)

035039-6
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Up = diag([1],,,, [1],,,. [1],,: [@] ., [@] . [@] . (@], |
Uy = diag([l],,,, [@],,,. [@],,. [1],,,, [@],,, [@] 5, [1],, |

we obtain the relations

k _ k
pf) i> — ol 2Lt ) kné ﬁ

k _ k
7;( ) _ phiHatl+2(L+Is+ls) k;,](li)'

1+ —

With the representation matrices for 72/Z,,

Up = diag([+1],,,, [+1],,, [+, [+ 0 (=1 s [= 1 g (=], [ )

Uy = diag([+1],,,, [=1],,. =], [l =1 110 [, (=)

we obtain the relations

7;(()1;) _ ill+lz+2(l3+l4)+3(15+16)—k’,,(()/2’

7;5’2 _ ill“6*2(’4”7”3(’2“5*";75’2. (3.27)
With the representation matrix for 7%/Z,
Uy = diag([1], . [¢],,. [¢°],.. [#°],,. [0"],.. [#°],,,)-
(3.28)
we obtain the relations
7;8’2 _ CIJI‘+212+313+4l4+515_k'7(()2- (3.29)

The subscripts L and R on the intrinsic Z,, elements are
omitted in (3.23), (3.25), (3.27), and (3.29). When we use

ones with L or R, ;1{(1/2 r are determined from nfﬁ . as

k k k _ (k
nile =l 0=l (3.30)
as seen from (2.6). Intrinsic Z,, elements satisfy the
consistency conditions such as (A4), (A8), and the corre-

sponding ones for 72/Z, and T?/Z. Hence the product of

) and n*) should be 1 or —1 for T2/Z,.

In Appendix C, we give formulas for flavor numbers
from a fermion in [N,k|(=[N,N —k|) and study the
relationship between flavor numbers from a fermion in

[N, k] and those from a fermion in [N, k] from the viewpoint
of charge conjugation.

5]178 ’ [E]Ih))’

@) s [@] ), (3.24)
(3.25)
(3.26)

IV. ORBIFOLD FAMILY UNIFICATION USING
VECTORLIKE REPRESENTATION

Now, we study whether or not three families of the SM
matter multiplets are derived from a massless six-dimensional
Dirac fermion (or a pair of six-dimensional Weyl fermions) in
a vectorlike representation [N, k| + [N,N — k| of SU(N)
(N =8, 9), through the orbifold breaking mechanism.

First, we explain that complete three SM families cannot be
derived from a Dirac fermion in [N, 1]+ [N,N —1] or
[N,2] 4+ [N,N —2] of SU(N) in our setup given in the
previous section. After the breakdown of SU(N), dy and
(I1)¢ can appear from a Dirac fermion in [NV, 1] and (dg )¢ and
I; can appear from a Dirac fermion in [N, N — 1], but ¢;,
(ug)¢, and (eg)¢ cannot come from them. In the same way,
after the breakdown of SU(N), a Dirac fermion in [N, 2] only
generates one g ,one (ug)¢, and/orone (e )¢ atmost, and that
in [N, N — 2] only generates one (¢, )¢, one ug, and/or one ey
atmost. Hence, a Dirac fermionin [N, 3] + [N, N — 3] hasthe
smallest components among a possible candidate that pro-
duces three complete SM families.

Second, we present the total numbers of models with the
three SM families, which originate from a Dirac fermion in
[N,3] 4+ [N,N —3] of SU(8) and SU(9). They are sum-
marized in Table III. In Table III, the figures in parentheses
represent numbers of models with three or more than three
neutrino singlets. We list numbers p; (i = 1,...,9) speci-
fying representation matrices U, and the intrinsic Z;
elements, to derive both the three families of the SM
multiplets and the three neutrino singlets from a fermion in
8,3] +[8,5] of SU(8) on M* x T?/Z3, in Table IV. In
Table IV, only the intrinsic Z5 elements for the y; are
written, and those for the . can be seen from (3.30).

TABLE III.  Total numbers of models with the three families of the SM multiplets.

SU(N) Representations T2/7, T?/Z, T%/Z, T?/Z
SU(8) [8.3] +[8.5] 0 (0) 336 (4) 56 (0) 0 (0)
SU(9) [9.3] +[9.6] 1152 (768) 1188 (600) 512 (416) 0 (0)
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TABLE IV. Models with the three families of the SM multiplets and three neutrino singlets from a fermion in

[8,3] +[8,5] on M* x T?/Z5.

(P1: P2: P3: Pas Ps» Pe» P74 P8 Po) (”I(QL»’?QL) (’70 L7’72 )L) (’7(<)S+>L”7QL) (’7(<)5)L”7§ )L)
(3,2,0,0,1, 1, 1,0, 0) (@?,1) (@, ®?) (@?,1) (w, ®?)
(3,2,0,0,1,1,1,0,0) (a) 1) (@?,1) (@?, 1) (0?1
(3,2,0,0,0,1,1,0, 1) ( ) (o, 2) (a)z, 1) (o, 2)
(3a 2’ 05 07 O’ ]s 1a 05 ]) ( ) ( w, 2) ((U, (Uz) (CU, (l)z)

Third, we give examples concerning the appearance of
three SM families, using the first and second models in
Table IV. By taking (py. pa, P3, 4. Ps. Pe> P7- P8 Po) =
(3,2,0,0,1,1,1,0,0), the SU(8) gauge symmetry is
broken down as

U(8) = SU(3)- x SU(2), x U(1)*. (4.1)
Note that the residual gauge symmetry does not contain any
non-Abelian continuous flavor symmetry. Then, 56(=(8, 3])
and 56(=[8, 5]) are decomposed into particles with the SM
gauge quantum numbers and its opposite ones, as shown in
Tables Vand VI, respectively. In the first and second columns,
particles are denoted by using the symbols in the SM, and
those with primes are regarded as mirror particles, which are
particles with opposite quantum numbers under the SM
gauge group. In the third column, any /;’s not on the list

are zero. In the fourth column, the subscripts L and R are
omitted on the intrinsic Z5 elements.

We give an assignment of intrinsic Z; elements and
particle contents to derive three SM families and three
neutrino singlets as zero modes in Table VII. As seen
from Table VII, just three sets of SM fermions
[qi,(u}'e)c,(dje)“,li,(e}})“] and three kinds of neutrino
singlets [(vg)¢ and vR| are originated as zero modes from

U/[ﬂ] + l//[iR] + w[g 2 w[g ) with suitable intrinsic Z;

elements, using the survival hypothesis. Mirror particles

can disappear by acquiring heavy masses, that is, the /; in
(8.3]

w’;" can be massive with one of /;, (;)° or a mixture of

them and the ¢} in z//[_S’LS] can be massive with one of ¢;,

(g.)¢ or a mixture of them.
In the same way, we can obtain particle contents with just
three SM families and three neutrino singlets as zero modes

TABLE V. Decomposition of 56 for (p;, ps, p3, P4s Ps» Pe> TABLE VI. Decomposition of 56 for (pi,ps, ps. PasDs»
p7. s, po) = (3,2,0,0,1,1,1,0,0). Pe: P7. Pg: Po) = (3.2,0,0,1,1,1,0,0).
yl yiy (L.l s s, 17) (e P vy iy (. 115, 1, 17) (Pl P
@ @ 00000 o e GOLLO ()
9 ()¢ 2,1,0,0,0) (5. o) 3,0,1,0,1) (72 o)
W w 02000 o) 00010 )
(1) U 2,0,1,0,0 (ong oni)) 9L (g0)¢ @ 1,1,1,0 (@5 oni)
0010 ) arton
(2,0,0,0, 1) (@Pn.ni)) 2 1,0, 1,1 (i)
qL (q1)° (1, 1, 1,0, 0) (a)n((,i),a) ngi)) (up) ug (1,2,1,1,0) ((UZHg)Si),a, nsi)
(1,1,0,1,0 (i ni)) (1,2, 1,0, D (1162,1752)
(1,1,0,0,1) (@62 ony’) (1,2,0,1, 1) m)f n.i)
(er)© e 0, 2,1,0,0) (w'lé)i) ’7(11)) (ug)© ulp 2,0,1, 1, 1) (“”701”711)
©,2,0,1,0 (onplsoni)) 4 (a,)° (41,111 (s, ont?)
©,2,0,0,1) (@5, o)) (er) K ©,2,1, 1,1 (onsl, 0™ni?)
(dz)* d (1,0,1,1,0 (@nilnl) (e’ d 2,2,1,0,0 (@l 7i?)
(1,0,1,0,1) (n6 o)) 2,2,0,1,0 (s, ont)
(1,0,0,1,1) (n6. &*ni2) 2,2,0,0, 1) (@2 @?n)Y)
i ()* ©,1,1,1,0 (@il on)) ke ()" G, 1,1,0,0 (onyl, 0™ni?)
©,1,1,0,1) (n6. &?n2) (3, 1,0, 1,0 (s ni2)
©,1,0,1, D (62 112) 3, 1,0,0, 1) (@06 onl’)
(v) VR ©,0 1,11 (ons). i) w)’ VR 3,2,0,0,0 (n6, 0niY)
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TABLE VII.  The particle contents as zero modes obtained from
56 and 56.
ultiplets (o2, m2) (dg) L (ug)® (er)* qr  (vg)
l//[jf] (@, 1) | (er) qr  (vr)°
y/[f};’] (1, w) dg (L) ug
s (0, 0?) I qr
yl® (Lo)  dp ()" ug
W[ff] (@,1)  (dp)* I (ug)
q/[fﬁ] (1, ) er  (qL) e
B3l (@, @?) Iy qL
[_81’5] (1w) er  (qu)" vk
TABLE VIII.  Another assignment of intrinsic Z3 elements and

the particle contents as zero modes obtained from 56 and 56.

Multiplets (n62.712) (dp)* I (ur)* (er)” qr  (ve)"
[ff] (0, 1) (er) aqr (vg)°
Eg] (1, ) drp  (IL)° ug
B3] (0%, 1) (er) qr  (vr)®
B (00 () (@)

[ff] (@ 1) (dg)* 1 (ug)*

[fﬁ] (1,w) er  (qL)° g

[_S’LS] (@ 1) (dg)* 1 (ug)*

B3] (0, @*) (Ip)° (qL)°
from w[ﬁf] + w[i&]?] + l/j[jzf] + 1//55‘13], with intrinsic  Z;

elements assigned in Table VIII, after the survival
hypothesis works.

Finally, we point out that the classification of our models
has not yet been completed in our setup. Concretely, we
consider the breaking pattern (2.9), with the identification
of SU(p;) =SU(3)c and SU(p,) = SU(2),, and take
the diagonal representation matrices (3.22), (3.24), (3.26),
and (3.28). Based on the representation matrices given
above, there is a choice to take p; =3 and p; =2 with
(i,j) #(1,2) as SU(3)c xSU(2),. Or provided that
p1 =3 and p, =2, we can choose different diagonal
representation matrices, that are obtained by the exchange
of components in the above ones. The same results are
obtained from most of them, but there are independent
choices to generate models different from those mentioned
in this section. Complete analysis and classification will
be reported, including results from a fermion in [N, k] +
[N,N — k] (k > 4), in a forthcoming paper [47].

V. CONCLUSIONS

We have studied the possibility of family unification on
the basis of SU(N) gauge theory in the six-dimensional

space-time M* x T2/Z,, (m = 2,3, 4, 6). We have obtained
enormous numbers of models with three families of the SM
matter multiplets derived from a massless six-dimensional
Dirac fermion in a vectorlike representation [N, 3]+
[N,N—=3] of SUN) (N =38, 9), through the orbifold
breaking mechanism, and found models with three or more
than three neutrino singlets and without any non-Abelian
continuous flavor gauge symmetries. We have shown a

feature that each flavor number from a fermion in [N, k]

with intrinsic Z,, elements 7751];) is equal to that from a

fermion in [N, k](=[N, N — k]) with appropriate ”Ez]i_k)’

because there is a one-to-one correspondence between zero

modes from a Weyl fermion in [N, k] with 11(;2 and those

from a Weyl fermion in [N, N — k| with appropriate ngi_k),

using the equivalence under the charge conjugation.

Now, we have several problems as a future work.

It is meaningful to study phenomenological implications
relating to the breakdown of extra U(1) gauge symmetries;
D-term contributions to scalar (squark, slepton, and Higgs)
masses; and the generation of realistic fermion masses and
family mixing, based on SU(8) models illustrated in
Sec. IV. The SU(8) models are attractive, because there
is no non-Abelian continuous gauge group, and extra U(1)
gauge bosons can be massive by the vacuum expectation
values of the SM singlets scalar fields. Moreover, super-
partners of neutrino singlets can be candidates of such
scalar fields. In SUSY models, there appear D-term
contributions to scalar masses after the breakdown of extra
gauge symmetries, if soft SUSY breaking terms have a
nonuniversal structure, and its contributions lift the mass
degeneracy [48-52]. Under assumptions that SUSY is
broken down by the dynamics on a brane and nonuniversal
soft SUSY breaking terms are induced, the D-term con-
tributions have been studied in the framework of SU(N)
orbifold GUTs [53-55], and they can become useful
probes to specify a realistic model in GUTs. Then we
need to reconsider the anomaly cancellations on a con-
struction of SUSY models, because various fermions exist
there. Fermion mass hierarchy and family mixing can occur
through the Froggatt-Nielsen mechanism [56] on the
breakdown of extra U(1) gauge symmetries and/or the
suppression of brane-localized Yukawa coupling constants
among brane weak Higgs doublets and bulk fermions with
the volume suppression factor [57].

It would be interesting to reconstruct our models in the
framework of Eg gauge theory or superstring theory.
Various four-dimensional string models including three
families have been constructed from several methods; see,
e.g., [58] and references therein for useful articles.® It has
been pointed out that SO(1, D — 1) space-time symmetry
can lead to family structure [61,62], and hence it would
offer a hint to explore the family structure in our models.

®See also Refs. [59,60] and references therein for recent works.
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Furthermore, it would be intriguing to study cosmologi-
cal implications of the class of models presented in this
paper; see, e.g., [63] and references therein for useful
articles toward this direction.
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APPENDIX A: T?/Z,, ORBIFOLD
1.7%/Z,

The orbifold 7%/Z, is obtained by identifying z + e,
z+e,, and —z with z. Here e¢; =1 and e, =i. The
resultant space is depicted in Fig. 1. Fixed points zg
satisfy zg, = —zg, + ae; + be,, where a and b are integers.
There are four kinds of fixed points: 0, e;/2, e,/2, and

(e; + e5)/2. Around these points, we define six kinds of
transformations:

So. T —Z, S1. 2> —2+tey,

Syl 2> =7+ ey, $3: 2> =72+ e + ey,
tiz—z7+e, b z— 7+ ey, (A1)
and they satisfy the relations

s%:s%:s%:sgzl, S| = 1150, Sy = 1580,

§3 = 11180 = 515052 = $2505, Lty = by, (A2)

where [ is the identity operation.

The boundary conditions of six-dimensional bulk fields
are specified by representation matrices (Uy, U, U,, Us,
V1,V,) and intrinsic Z, elements (79, 71,72,73,&1,&2)

€2
ir """"""""""""" o
ej+eo
e | A
2 ;
- » €1
o 3
FIG. 1. Orbifold 72/Z,.

corresponding to the above transformations. These matrices
and Z, elements satisfy the relations

U%:U%:U%:U%:I, U]:VIU(), U2:V2U0,
Us =V iVoUy = U UgUy, = UhUgUy, ViV, = VoV,
(A3)

m=m=mn=n=1  mn=_Zamn.

12 = &g, 13 = &i1&ano = mnonas (A4)

as the consistency conditions. Here, we omit the subscripts
specifying fields and/or chiralities such as ®, £, L, and/or
R. Note that MiNoN2 = Mo and 5152 = 5251 hold auto-
matically because intrinsic Z,, elements are numbers. From
(A2) and (A3), we find that any three transformations are
independent and others are constructed as combinations
of them. We choose the transformations sy: z — —z,
s1: 2= 1—2z, and s,: z = i —z and the corresponding
matrices Uy, Uy, and U,.

2.T%/Z,4
The orbifold 7%/Z; is obtained by identifying z + e,
Z+ e,, and wz with z. Here ¢; = 1 and e, = 0 = */3.
The resultant space is depicted in Fig. 2. Fixed points
satisfying zg, = @z, + ae; + be, (where a, b are integers)
are =0, (2¢; + e,)/3, and (e; + 2e,)/3. Around these
points, we define five kinds of transformations:

So. Z > Wz, S;. 2> wz+ep,

Sy. 2> wZ+ e+ ey,

i z—=27+ey, 1y 2= 27+ e, (A5)
and they satisfy the relations
sa = s*? = s% = 505152 = $1828¢ = 825081 = 1,
S = t1SO, Sy = t2t150, tltz == t2t1’ (A6)

The boundary conditions of bulk fields are specified by
matrices (Uy, U, U,,V,,V,) and intrinsic Z; elements
(10,11, 12, &1, &) satisfying the relations

(]

| AN

FIG. 2. Orbifold T2/Z;.
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€2

€1

e

FIG. 3.

Orbifold T2/Z.

U(3): U?: U%Z UOU|U2: U1U2U0: U2UOU1 :I,

U, =V,U,, U, =V,V Uy, ViV, =V,Vy,
(A7)

Mo = M1 = My = Moz .om=&mo,  m = EEm.
(A8)

where we omit the subscripts specifying fields and/or
chiralities such as ®, 4, L, and/or R. Because two of
these matrices are independent, we choose representation
matrices U, and U, corresponding to the transformations
S0tz — ez and 5,1z — ¥z 4 1.

3.7%/Z,

The orbifold 7%/Z, is obtained by identifying z + e,
7+ ey, iz, and —z with z. Here ¢; = 1 and e, = i. The
resultant space is depicted as the same figure as T2/Z,.
Fixed points are zg,=0 and (e; + e,)/2 for the Z, trans-
formation z — iz and zg, = 0, €1/2, e,/2, and (e, + e,)/2
for the Z, transformation z — —z. Around these points, we
define eight kinds of transformations:
|

S0 7= @z, S108 72— %z,

50122 @z, stz @izt

S11 - z—>(p2z+el+e2,

Sy 7= (p3z + e,

So. z— iz, s10z =izt ey, Sy 2= —Z,

Sy 2> —z+ ey, Syt > =7+ ey,

Sp3: 2> —z+ e+ e,

I z—z7+4e. hiz—=z7+e (A9)
and they satisfy the relations

So=s81 =55 =53 =53 =53 =1,

§1 = 1150, Sa1 = 11870,
S22 = 15820, 520 = 83, S21 = S180, S22 = 8051,
Sp3 = 115820 = $21520520 = 225205215 hiy = .

(A10)

The Z, transformations s, and s; are independent of each
other and those representation matrices are denoted as U,
and U, respectively. Other representation matrices are
determined uniquely, if U, and U, are given.

4. T*/Z

T? is constructed by the G, lattice whose basis vectors
are e; = 1 and e, = (=3 + i1/3)/2. The orbifold T?/Z is
obtained by further identifying ¢z with z where ¢ = /3.
The resultant space is depicted in Fig. 3. Basis vectors are
transformed as @e; = 2e; + e;, @pe, = —3e¢; — e, under
the Zg transformation z — ¢z. Fixed points are zg =0
for the Z transformation z — ¢z; zg, = 0, ,/3, and 2e,/3
for the Z5 transformation z — @*z; and zg, = 0, e1/2,e,/2,
and (e; +e,)/2 for the Z, transformation z — ¢’z
Around these points we define ten kinds of transformations:

S1pt 7 = @7+ 2e; + 2e,,

§23 - Z—’(ﬂ3z+€1+€2,

thiz—>z+tey, Iy: 2= 2+ ey, (A11)
and they satisfy the relations
6 _3 3 B3 2 2 2 2 _ _ _ 20
50 = S10 = 811 = S12 = 83 = 57 =Sy =53 =1, S = hihSio S12 = 11135810,
S21 = 11520, S22 = 12890, 8§23 = 1112820 = $21520522 = 522520821 = $1150»
_ 2 _ 3 _ _ 2 3
S10 = 85> $20 = 8p» Lty = Iy, Iy = spt1Sot15p,
4 _ 4 _ 4 _ 3 _ 3 _ 3 _ 3 _
(s0s10)* = (s0511)* = (sos12)* =1, (s0520)” = (50521)” = (50822)° = (50523)" = 1. (A12)

We denote the representation matrix for the Zg trans-

7i/3

formation sq: z = €/°z as U, and other representation

matrices are determined uniquely, if U, is given.

APPENDIX B: FERMIONS ON SIX DIMENSIONS

We explain gamma matrices, charge conjugation
of fermions, and Z, transformation properties in six
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dimensions [64]. We use the metric 17,y = diag(1, -1, -1,
-1,-1,-1) (M,N =0, 1, 2, 3, 5, 6), and the following
representation for six-dimensional gamma matrices:

¥ 0
W — yH 3 —
eree <0 —7")’

0 i14><4
[P =14 Qic' = < ,
4x4 iI4><4 0

[0 =l ® io® = ( 0 I“X“),
_I4><4 0

where y =0, 1, 2, 3, o' (i = 1, 2, 3) are Pauli matrices, and
1454 1s the 4 x 4 unit matrix. We take the chiral represen-
tation on four-dimensional space-time for y* such that

(B1)

(B2)

0 o . .
7ﬂ = (Eﬂ 0 )’ ot = (12x2701)7 o' = (12><2’_61)’

(B3)

where I,,, is the 2 x 2 unit matrix. The T'Y satisfy the
anticommutation relations of the Clifford algebra such that
{TM, TN} = 2¢pMN where ™V is the inverse of 77,;y. The
chirality operator I'; for the six-dimensional fermion ¥ is
defined by

—ys 0
O =TT = —ys @ 6 = ( s ) (B4)

0 7s

where ys is the chirality operator in four dimensions

defined by
=1 2x2 0
= iy%ly?y3 = < > B5
ys=iry'ry 0 L. (BS)
Six-dimensional fermions with a definite chirality are
called Weyl fermions in six dimensions. The Weyl fermion
(W, ) with positive chirality and that (¥_) with negative
chirality are given by

g LDy (5 0N\, (v (86)
o2 “\o s \yr/’

145
1-0T 0 -
Y = 7‘I’_< 2 )‘P_<WR>, (B7)
2 0 1_% VoL

respectively. Here, the subscript + and L(R) stand for the
chiralities in six and four dimensions, respectively. Using
Weyl fermions £ and 777, in four dimensions, ¥ and y.; ()
are expressed as

¢t
n- &t 0 >
T — 5 == ) == )
£ v ( 0 > v (ni
'
E_ 0
VoL = < ) Y_R = . |- (B8)
0 ne
The charge conjugation of ¥ is defined as
Y = BY*, (B9)

where B is a 8 x 8 matrix which satisfies the relation

B~'TMB = —(TM)*, (B10)
The B is given by
0 0 0 o
0 0 o 0
B = il = B11
’ 0 2 0 of W
> 0 0 0

up to a phase factor and, using it, we derive the charge
conjugation of &, and 77,

$h 0 0 n
0 0 0 0
B = , B =
0 0 0 0
0 atad . 0
(B12)
and
0 0 0 0
0 2Ex : 0
B = o 5 s B ’7 =
& 0 o
0 0 0
(B13)

From (B12) and (B13), we find that the chirality in six
dimensions does not flip under the charge conjugation.

In terms of y 1 (), the kinetic terms for W, and ¥_ are
rewritten as

Y. ™Dy,¥Y, =¥, I*D¥Y, +i¥ . I*D.¥,
+ P, TD;¥,
=W V' Dy + W gV Dy R

— 20 Dy g+ 20 gDy,  (Bl4)
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Y_IMDyY_=¥Y_I"DY_+i¥Y_I*D¥Y_+i¥Y_I*D:¥_

=W gDy g+ y*Dyy_;

=2y gDy 1 +2¥_ Dy g, (B15)
where ¥, W_, I'%, and I are defined by
¥, = ‘PT = (W+L7 , WLRJ/O) = WL, —¥ir),
@— = lIl'I' FO (l// 7/ s _l// LY ) (W—R? _W—L)’
(B16)
0 2il,,
=05 +i[° =2il,, ® 0, = <0 ! 4), (B17)
_ 0 0
% =15 — i = 2il,, ®a_:< ) BIS
4xd 2l 0 (B18)

Here, z=x" +ix® and 7 =x° — ix%. The Kaluza-Klein
masses are generated from the terms 1nclud1ng D, and D>
upon compactification.

The Z,, elements are the eigenvalues of the representa-
tion matrices Ty, [U,. 7, ] for the Z,, transformation z —

P (x. fa(2). fa2) = Tw, [Ug 0] ¥s(x.2.2).  (B19)

where U, represent the representation matrices for the
fundamental representation, #,. are the intrinsic Z,, ele-
ments, and the subscripts L and R are omitted on #,... Let
the intrinsic Z,, elements of wiL ) be n4+1(r)- Then, the

intrinsic Z,, elements of 1// LL(R) A€ TatL(R ) [complex

conjugations of 77,17 (g)]. From the Z, invariance of the

kinetic term (B14) and (B15) and the Z,, transformation
property of the covariant derivative D, — pD, and D- —

pDz under z — pz and Z — pZ (p = 2%/™, p = e~27/m),
the following relations are derived:
NatR = PlatLs  Ma-R = Plla-r-  (B20)

APPENDIX C: FLAVOR NUMBERS AND
CHARGE CONJUGATION

We give formulas for flavor numbers from a fermion in
[N, k](= [N,N —k]) and study the relationship between
flavor numbers from a fermion in [N, k] and those from a
fermion in [N, k] from the viewpoint of charge conjugation.

Under the representation matrices U, with p; =3 and
p> =2, [N,N — k| is decomposed as

fa(2) [faofa-ofa(z) = z], operating ¥, (x, z,Z) such that
—_

m
|

Nek N—k—I, Nmk—l,~ly  N—k—l;——1, >

INNN =k =>" oo >

=0 L=0  15=0 1.1 =0

(3Cll’zclz C Cl )v (Cl)

PPyl P,

~

where ) " | [; = N — k. From [N,N — k] = [N, k|, hereafter we use the decomposition of [N, k] such that

(C2)

where > 7 | I; = k. Using the survival hypothesis and the equivalence on charge conjugation in four dimensions, we define
the flavor number of each chiral fermion as

ng = (1GC22Co)g = #GC1.2Co)r) = (C2.2Ca)r = B(C122Co)1)- (C3)
= (1G5 2C1)r = #Co.2C1)r) = (8C3.2C1) 1 — #(GCo.2C1) 1) (C4)
7 = ($GC2.2C0)r —BGC12Co)r) = (BGC2:2Co)r, — B(C1, 1)), (C5)
ng = (1(:C0.2C2)r = #:C3.,C0)r) = (#(GC0.2C2)1 = #(;C5.,C0)1)- (Co)
ng = (1GCr.2C1r = #GC2.2C1)r) = (HGC12Ch)r = #(Ca.,C1)1) (€7)

where {f represents the number of zero modes for each multiplet. The total number of neutrino singlets (vz)¢ and/or vy is
defined as

(C8)
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Note that we have relations

(E’ @)R(L) = (3 C3-1, ’ 2C2—12)R(L)‘ (C9)

Formulas for the SM species and neutrino singlets derived from a pair of six-dimensional Weyl fermions (¥, ¥_) in
[N, k] are given by

k=t~ k=ly ==l

nﬂm = Z L Z (_1)11+lz}~)mkip3C13 g Cln’ (CIO)
+ (1,.)=(2.2),(1,0) =0 =0

k=1~ k=lj ==l

I’l”m = Z Z (_1)ll+12ﬁmkipzcl3 ...pncln’ (Cll)
+ (I;,1,)=(3,1),(0,1) [3=0 l,_1=0
k=li=l,  k=li——l,
nalyg = Z . Z (_1)11+12Pmkip3ch Gy (C12)
+ (1.)=(2,0),(1.2) =0 l1=0
keli=ly  ke=ly—el, ,
nz|m :Z Z (_1)ll+lzpmki[)3cl3 -..P,,Cln’ (C13)
+ (11.)=(0.2).3,0) 5=0 lp-1=0
k=li=l,  k=ly—ml,
|[Nk Z Z (_])ll+lzpmkip3cl3"'pncln, (C14)
T (1.L)=(1.1).2.1) =0 1, ,=0
k—l,—1
Mg =2 2 2L Z PG (C15)
+ (1,,)=(0,0),(3,2) 15=0 I =0

where P, and P . are defined by

mk

Pope =Pjir — Popir, PE:I)& =Pjir + Popsr, (Cl16)

respectively. The f’mkiR@) are projection operators to pick out zero modes of y. ) in [N, k], and they are listed in
Table IX.
In Table IX, each operator is defined by

p(=1)"0,(=1)".(=1)" 1 n n, Pk n, Pk
Pc U = S {1 (1 PR+ (D) P+ (1) PR (C17)
~ ("0 " 1 . . . ~
s =g @ Pyl @ (PRl H1 @ P+ @t (P)’), (C18)
Z 1 o (K " o (B3
Pt = e {1 (=i PR+ (=i (PR + (=) (P)')
Sk oy 1 k)N2 RETRPER(ON
x {1+ (i) P+ (=i (P + =iy (P, (C19)
~ n 1 . ~ 4 . ~
P = (1 + @ P+ (Py) + 7 (Pe)) + o (P)’ + 9% (P)'), (C20)
where P .. are the Z,, elements. For instance, ng L ") s a projection operator to pick out modes with 7582 = " and

P —wm in W.. By the insertion of (—1)"*:, we obtain #(;Cy,.2Cp gy for 1 +1, = even integer and
~1(;C),»2C) gy for I + 1, = odd integer.
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TABLE IX. The projection operators f’,nkiR(L).

Tz/Zm Pmk+R Pmk+L Pmk—R Pmk—L
2 5(1.1.1 5(=1.-1,-1 S(1.1.1 =(=1,-1,-1
Tz R R gt gt
AT O T
iz WD R MDY
2 =1 . 5(1 =(7
R
The 752]2 of 3C;.,Cy, ..., C, ) are given by
= (k i~ (k
Péi) _ (_1)11+12+13+z4 knéﬁ’
= (k _k~(k
p(ljz _ (_1)11+12+l5+16 k’7(1i7
75&]2 — (_1)l|+l3+l5+l7—kﬁ;§z (CZl)
for (3.22);
75(()12 = 511+12+13+2(Z4+15+10)—k;]é]2,
75512 _ Ell+l4+17+2(lz+15+18)—k,7l(1]2 (C22)
for (3.24);
75(()’2 _ (_i)ll+12+2(Z3+l4)+3(l5+l(,)—k’7](()12’
75(112 _ (_i)ll+16+2(l4+l7)+3(12+15)—k;](112 (C23)
for (3.26); and
75(()12 _ ¢ZI+212+313+414+515—1<,~](<)12 (C24)

for (3.28). The subscripts L and R on the intrinsic Z,,
elements are omitted in (C21)—(C24). Notice that complex
values w, i, and ¢ in (3.25), (3.27), and (3.29) are replaced
into their complex conjugated ones, respectively, in (C22)—
(C24), because U; operate fields multiple times in place
of U,.

From (2.6), ;”1((1]2 ; are determined from r”]((lli g as

~(k —~ ~ ~
i) = P ge il = pip. (C25)

In the case that ﬁﬁR = ”lﬁgu we have the relations

P =P (C26)
and derive the relations
p(z(k;l)”oﬁ(—w"l,(—l)”) _ Pé(k—il)”O,(—U"l,(—l)”z)’
P = BT = P (m =3.4)
P = PG = PED. (c27)

In the last equality in the above second relation, we use the
fact that the projection operators take a real number 1 or 0.
From (C27), we find that the flavor numbers derived from
the projection by (—1)"*2P,,,, are equal to those from that
by (=1)i*ep, o = (=1)*kpP, .. In this way, we have a
feature that each flavor number from a fermion in [N, k|

with intrinsic Z,, elements ng is equal to that from a

fermion in [N, k|(=[N,N —k]) with those satisfying
ﬁg’iR = nEQL [suitablenﬁ_k)]. In other words, there is a
one-to-one correspondence between zero modes from a

Weyl fermion in [N, k| with 1732 and those from a Weyl

fermion in [N, N — k] with suitable 7"} .

Finally, let us obtain suitable nﬁ_k) to hold the above-

stated correspondence, in the case with (3.24) of T?/Z;. In
. (N—k) .
this case, P,, ' are given by

P(()li_k) _ wll+lz+l3+2(l4+ls+16)—(N—k)néli—k)

El

P(li—k) — @hHat 2L+ Is+g)~(N—k) , (N=K)

1 M+ - (C28)

By replacing /; into p; — [; in P(()ll_k) and P(lll_k), we obtain
75(()12 and 75512 such that

f)gi — it b2t ls+s) =k gy p1+p2+p3+2(patps +P6)—N;7(()Ii_k)

’

(C29)

75(112 — gl Hlath 2L+ Is+s) =k gy pi+pa+pr+2(P2tps +P8)—N;7(lli_k) .

(C30)

Using (C22), (C29), (C30), and 77", = ¥}, , we derive the
relations

Q- P! +P2+P3+2(1’4+P5+P6)—an_k) (k)

No+r o+r = NMosr, (C31)

’~7<1k)R — a)P]+P4+P7+2(P2+P5+P8)—N;7<lli;f) = ’7<112L' (C32)

The equivalence based on the relations (C31) and (C32) is
illustrated with the particle contents listed in Tables VII
and VIIL
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