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B meson decay anomaly with a nonuniversal U(1)’ extension
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We propose an extension of the standard model with an extra U(1)" Abelian symmetry, three Higgs
doublets and two Higgs singlets, where the new U(1)’ charges are flavor nonuniversal. As a result, the
model introduces an enlarger particle spectrum in the TeV scale with large new physics possibilities. The
model reproduces the mixing angles and mass structures of the quarks, charged and neutral leptons.
We found scenarios where the observed anomaly of the Bt — K+£# decay can be explained due to the
existence of couplings with new extra fermions at the TeV scale. By modifying the parametrization of the
mixing matrices, we found solution in the decoupling limit.
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I. INTRODUCTION

Despite all its success, the standard model (SM) of
Glashow, Weinberg, and Salam [1] does not account for
all the theoretical and experimental observations; therefore it
is believed that there is a more fundamental theory where the
SM emerges as an effective lower limit at the electroweak
scale. For example, the fermion mass hierarchy and the
neutrino mass problem are two related subjects that may be
understood as manifestations of an underlying theory beyond
the SM [2,3]. Also, there are some observables that show
some tensions from the SM predictions, which may be
associated to new physics. Among the different observations
accessible to collider physics, the flavor observables imposes
stringent limits to many SM extensions. In particular, the
lepton universality exhibited by the SM is sensitive to new
physics that can be tested in rare semileptonic transitions of
mesons [4-6]. Recently, the ratio of the branching fractions of
B meson decays into muon and electron pairs was reported by
the LHCDb collaboration [7], where a deviation from the SM
prediction within 2.60 suggest us a possible lepton univer-
sality violation not explained in the framework of the SM.

From the theoretical point of view, the mass hierarchy
problem can be addressed in a model independent approach
by assuming texture zero structures for the mass matrices
[8]. Relations between mixing angles and masses can be also
derived for both quarks and lepton sectors in models with
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broken flavor symmetries. These symmetries, that relates the
three fermion families in a nontrivial way, have been
extensively studied in the literature in different extensions
of the SM, either as a continuous Abelian or non-Abelian
extensions [9], or as a discrete flavor symmetry [10]. On the
other hand, many grand unified and superstring models
predicts one or multiple extra Abelian symmetries in their
effective low energy limit [11], which motivates extensions
of the SM with an extra U(1)” gauge symmetry. If this
symmetry is family nonuniversal, it is possible to connect
the flavor problem with the group properties of these
models. Also, these type of extensions imply a new extra
neutral Z’ boson which, in the framework of a nonuniversal
model, produces new contributions to flavor-changing
neutral current (FCNC) processes. Although these type of
interactions are strongly suppressed in the SM, which is
consistent with most of the experimental observations, there
are some anomalies reported, as the aforementioned decay
Bt — KT¢t¢~, corresponding to a b — s FCNC process.

Motivated initially by the mass hierarchy of the quarks, in
the U(1)" model proposed in Ref. [12], the new Abelian
charge distinguishes one family of quarks from the other
two, and newly vectorlike quarks are introduced in order
to restore the cancellation of the chiral anomalies. This
model is universal in the lepton sector. A modification of the
above model was presented in [13], where newly charged
leptons are also introduced in order to obtain nonuniversal
lepton families compatible with the cancellation of the chiral
anomalies. The above structure can reproduce the elements
of the mixing mass matrix and the squared-mass diferences
data from neutrinos oscillations experiments.

In this article, we combine the nonuniversal U(1)" model
from [13] with a three Higgs doublet model in order
to explain the anomaly measured by the LHCb in the
ratio of the branching fractions of BT — Ktutu~ to
BT — KTe'e™ decays. This model was already presented
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in [14], where the three doublets may induce naturally the
fermion hierarchy, while the smallness of the neutrinos can
be implemented through an inverse see saw mechanism,
where the vacuum expectation value that breaks the extra
U(1) symmetry defines the large mass scale.

II. SURVEY OF THE MODEL

A. Particle content

The model is an extension of the SM group, with the
addition of a nonuniversal Abelian gauge symmetry [which
we denote as U(1)y] whose gauge boson and coupling
constant are Z, and gy, respectively, while the weak
hypercharge is defined as usual through the Gell-Mann-
Nishijima relation:

0=1I+3, (1)
with Q the electric charge operator and /5 the isospin.

The additional gauge symmetry introduces new chiral
anomaly equations which can be solved by assigning non-
trivial X-quantum numbers to the fermions of the SM [12]. If
this new U(1) charges are different from the SM U(1),
charges, then anomaly cancellation require new quarks and
leptons to be added into the spectrum with masses at a larger
scale than the electroweak scale [15]. For simplicity, all the
new particles are assumed to be singlets under the gauge
SU(2), group. In order to provide masses to the new sector,
we introduce a neutral Higgs singlet y with nonvanishing
VEV, and U(1)y charge X = —1/3 in such a way that it
spontaneously breaks the new gauge symmetry. Another
scalar singlet ¢ identical to y but without VEV is introduced,
which can play the role of a dark matter candidate, such as in
the U(1)’ extension in [16].

On the other hand, the phenomenological fermions define
three mass scales. First, the top quark (7) is the heaviest
observed femion at 10? GeV scale. Second, the tau lepton
and bottom quark (z, b) are in the 10° GeV scale. Finally,
the muon and strange quark (, s) are in the 10> MeV scale.
This general structure can be directly induced with three
Higgs doublets with vacuum expectation values (VEV) v; >
v, > vy associated to the three scales above. The chosen
particle spectrum is presented in the Table I where three new
quarks (7, J'?) and two charged leptons (E£'?) are
introduced. To obtain masses for the active neutrinos, we
introduce three right-handed neutrinos v*> with nontrivial
U(1)y charges, which allow the coupling with the ordinary
lepton doublets £, but because of their X-charge, they
do not generate Majorana mass terms. The addition of
Majorana fermions, N/ ,152’3 , allow an inverse seesaw mecha-
nism in order to explain the smallness of the active neutrinos.

In order to obtain predictable and analytical relations for
the masses and mixing angles of the fermions according to
observations, we assign specific Z, symmetry parities,
which are shown as superscripts in the X-charges. It is to

TABLE I. Nonuniversal X quantum number and Z, parity for
SM and non-SM fermions.

Bosons X+

Scalar Doublets

¢+
d)] - (h|+v|1+im
V2

Quarks X+

SM Fermionic Doublets

1 +1+ e (0
1 u 3 e 1%
q - f B ( e)
. (dl)L t ¢ /L

Leptons X+

i
+

Wt
|

¢+ u 0 oM 0+
D, = (h2+U22+i772 qIZ‘ = 42 f;li = eH
2 L L
¢+ +14+ u3 0t . i —1t
(133 = (h3+1/‘33+i113 3 qz = d3 fL = et
5 L L
Scalar Singlets SM Fermionic Singlets
y= §l+1\;;§+i§1 S+ ul? 22+ €5 —4+
- ERR I SR B
S A T o
Gauge bosons Non-SM Quarks Non-SM Leptons
+ 1- 123 1
W 0" Ty 5 VR 5
3 + 2- 123 +
Wi 0 Tk +T N 0
BM 0t 1L,2 ot 51L’ 5% -1t
! - —
7, o g 3 a8 P

note that, despite the scalar doublets @, and ®; have the
same X charge, they have opposite Z, parity such that their
couplings to fermions are complementary.

Finally, since the new fermions are vectorlike under the
SM group, they do not introduce any extra SU(2), x
U(1)y contribution to the anomaly equations. However, the
symmetry U(1)y may generate the following pure and
mixed anomalies:

U = Ay =) X3, +3X3,]
20

- Z[X?;R +3X3,]
2.0
[SUB) Uy = A= Xg, =Y Xg,
0 0
[SUQ2)JPU(1)x = A5 = ZXKL + 3ZXQL,
7 0

[U()yPU1)x = Ay = Z[Y%Xﬁ + 3Y%2LXQJ
z.0

- Z{Y%;RXKR + 3Y2QRXQR]
2.0
Uy[U()x]2 — As =) [Yr, X2, +3Y,Xp ]
z.0

=) Ve X2 +3Y0, X3 ]
70
[Grav? ® U(1)x = As =) _[X,, +3Xo,]
70

= Xz, +3Xg,] (2)
‘.0
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where the sums in Q runs over all the quarks, and £ over all
leptons. However, by direct calculation, it is possible to verify
that the chosen U(1)y charges satisfy the cancellation of the
anomalies in (2), so that the model is free from chiral anomalies.

B. Lagrangians

1. Yukawa interactions

The most general Yukawa Lagrangian must obey the
gauge symmetry Ggy X U(1)y in order to obtain a
|

renomarlizable model, where Gg), is the SM gauge group.
However, we impose additionaly that the interactions
respect the discrete Z, symmetry, where each particle
has the intrisic Z,-parity shown in Table I. Since
there are particles with different Z,-parities, not all
couplings between fermions and scalars are allowed.
Specifically, the Yukawa Lagrangian allowed by the
symmetries of the model for the up- and down-like
quarks are

—Ly = h%LlquIJ(I):;uR hZuq}‘(I)ZMR h%iQicDS”R hluq%(DluR hm‘li(bl"‘fe h?i‘h%q)l“?e
+ Mgt @ T g + gt ® T g + b T pouk + g T Lxug + gouT Lour + 9,77 xT g + He., 3)

-Lp = h1j‘1L 1Tk + hZJQLCDZJR + h3jQLq)3‘-7R + thIL 1Tx + hgzjﬁq’zjz + h%?ﬂ%q%j%e
+ h%b‘]%q%dl + h%fi‘l%q%dz + h%iq%fbads + hm‘]i‘bzdl + hzdﬁq)zdz + hzd‘ﬁq’zd3
g Tt dy + gl T Lo d + s jLO-*d?Q + L Tie dy + g2 T30t dy + go'djLG*d?? + g;l(jj—lL)(*jll?

+ gﬂjl)(*Jﬁ + Hec.,
while for the neutral and charged leptons we obtain:
—Ly = hZ{ Psvg + hyf  Oavg + W50 v +

l— .
+ S NEMING + He,

—L = h$L 7] yel + WL Dk + h5T] Daefy + W5l ey + hiLl; @1 Ek + Wipl @\ E + gle€ly" ek +

+ g;(é,‘gl)(gR + g;(é‘gl)(*g%? +Hec.,

where ® = i, ®* are the scalar doublet conjugates and the

Majorana mass components are denoted as MX[.

2. Gauge and scalar boson interactions

The Higgs kinetic Lagrangian contains the couplings
among vector gauge and scalar bosons, which takes the
general form

‘Ckin = (DﬂS)T(D”S)’ (7)

where the covariant derivative is defined as:

Y
D+ = % — igWhT% — ig’ESB” —igxXsZ".  (8)

The parameters 27°§ corresponds to the Pauli matrices when
S=®;,;3 and T§ = 0 when S =y, o, while Yy and X
correspond to the hypercharge and U(1)y charge according
to the values in table I. The gauge coupling constants g and

He QI F o1
h3, 0 @3k

+ hg‘ff_’ch)gl/R h’;;f”CI)y/R + g NI/R )(*./\/'{e

(5)

GhEyel
(6)

g obey the same relation as in the SM, ¢ = gtan 8y, with
Oy the Weinberg angle.

3. Dirac Lagrangian
Finally, the interactions of fermions through vector
gauge fields are described by the following Lagrangian:
Lp=ifLir"D,fri +ifri?" DS ki )
where f; runs over all flavor of fermions, and, as usual, a
sum over repeated indices is implied. The covariant

derivative D* is similar to (8) but changing the scalar
parameters by the corresponding fermion parameters.

C. Mass eigenstates and interactions

1. Fermion masses

The Yukawa Lagrangians from (3) to (6) provide masses
to all the fermions after the symmetries of the model breaks
spontaneously, through the vacuum structure of the Higgs
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fields shown in Table I. In general, the mass terms have the
following form:

where f are fermion multiplets with components of the
same electric charge, namely

f: U= (u',u? 4’ 7)
D=(d, &2 d T, 77
E = (e¢, eV, e", £, E%)
N, = (Uoh, yL23C prL23Cy, (11)

and M, are complex nondiagonal mass matrices. In
general, the above mass matrices can be diagonalized by
biunitary transformations of the form:

my = (V1) M;Vi. (12)

which, after replacing in (10), lead us to the left- and right-
handed mass basis:

fo=)'t. = (Vh (13)
where:
f: U= (u.c,t,7)
D= (d, s.b,J".J?
E = (e,u,7,E' E?)
N, = (vl 123 ~123c N123C) (14)

The specific form of the matrices V{’ r depends on the
Yukawa structure of the original Lagrangians in (3)—(6). In
particular, with the choosen Z,-parities, these Yukawa
terms lead us to predictible mass structures for quarks,
charged leptons and neutrinos, as shown in [14], which we
summarize in the Appendix B.

2. The unitary constraint

Each rotation matrix in (13) must obey the unitary
condition

(V{,R)*Vir,R =1, (15)

where [ is the identity. In the above relation, we must take
into account that the sum from the matrix products contain
two contributions due to the components with ordinary SM
particles and the newly vectorlike fermions. Labeling
a,b,c, ... the components with ordinary femions, and
a,p,y, ... the exotic ones, the unitary condition in (15)
can be written in tensor form as

+ (Vir)iVeR)w-  (16)

In particular, for the SM components:

Scb = (Vi) eaVir)a + (Vir) (Vi) w- (17)

Thus, the pure SM submatrix (V; z),, does not satisfy an
exact unitary relation, but it is deviated by a small
contribution due to new physics from the extra particle
content. The relation (17) is conveniently written as:

(Vz,R)ca(VL,R)gb = 5Cb - (VZ,R)CQ(VL,R)ab' (18)
3. Gauge bosons

After the symmetry breaking, we obtain from the kinetic
Lagrangian in (7) the charged mass eigenstates

1
Wy = E(Wﬁ + W) (19)

with squared mass M2 = ¢?v?/4, where the electroweak
vacuum expectation value v = 246 GeV is defined with the
VEV of each scalar doublet as

v=1/07+0}+0} (20)

As for the neutral gauge sector, we obtain in the basis
(W3.B,.Z,) the following symmetric squared mass

ur L
matrix:
v =Tyv? | —23%" (v* +0v?})
M2:9—2 Tt | BTy’ +0})
0O g | _ _ _ _
495 (02 4 02 4 32
* * | ?(ul—i—u + 307)
A | C
- - -] @)
ct | D

where Ty, = tan Oy, is the tangent of the Weinberg angle.
Taking into account the hierarchy v, > v, the above mass
matrix can be diagonalized analytically by the recursive
expansion method [17]. First, according to the block
diagonalization shown in Appendix A, we can reduce
the above 3 x 3 mass matrix into one 2 X 2 mass matrix
and a heavy mass associated to the Z’' boson:
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1 -7
azA—CD‘lCT:N( 2W>,
Ty Ty

2
_ %
9

=)

b~D (v2 + v* + 30}), (22)

2 22
(v? —("::72"‘)) while the transformation
X

where N =1(v

matrix that induces the above block diagonalization is:

0 —S,Cw

1
v ( ! F) 0 1 S, (23)
- —FT I - a4 )
SeCw —SoSyw 1

where the sine of the mixing angle @ has been defined as

3 /024 0?
59:5< . l)i. (24)
U;{ 9x

We clarify that in general an additional Z — Z’ mixing angle
results from the gauge kinetic terms, which can be
neglected at a higher scale. This mixing may also arise
due to radiative corrections. However, any Z — Z' mixing
arisen in the model is very restricted by the LEP data,
limiting S, to small values. In Ref. [16] the deviations on
the Z pole observables due to the mixing angle were
evaluated in a U(1), model with the same gauge couplings
as here, showing allowed mixing angle of the order up
to 107*

Second, the submatrix a in (22) has the following mass
eigenvalues:

2
mi=2_N, (25)

2 _
my =0, o
4

while the associated rotation matrix is

= )

The total rotation into mass eigenstates is the combination
of the rotations (23) and (26),

Sw Cy O
p 0
=SoCy SpSw 1
obtaining the mass eigenstates:
A, W,
V” — R()V” = Zl;l = R() Bﬂ N (28)
Zy, z,

where A, is identified with the photon. We see that in the
limit S, =0, we obtain Z, =Z = CyW> - SyB and
Z, =7, with Z the SM neutral gauge boson.

4. Neutral currents
The weak interaction of fermions is contained into the
Dirac Lagrangian in (9). First, taking into account the mass
eigenstates in (19) and (28), the covariant derivative
become

DF = 0" —ig(WH T + WH-T)

cu Y .
-V lg(Rg)lmT;+lg,7f(Rg)2m+ngXf(Rg)3m )

(29)

where ZT}E is the combination (o; £ ,) between the first
two Pauli matrices and 2T} the third Pauli matrix for
fermion fields f doublets of SU(2), while 27 = 2T} = 0
when f are singlets. The terms (R}),,, correspond to the
components of the transpose rotation matrix between the
neutral weak and mass eigenstates, as defined in (27), and
V', the corresponding neutral gauge bosons in mass
eigenstate, where (V/{,V5,V4) = (A*,Z},Z5). Applying
the above covariant derivative into the Dirac Lagrangian
(9), we obtain the following neutral gauge interactions:

97 v i YR, Ji
Lyc = 2 [fLitul;lg(L}:n)fLi + Srity V%gg:n)fm]’ (30)

where g(Lf ;§,n are the electroweak neutral current couplings,

defined in general as:

29x
g = £(RG) 1 + TwY £(RG)y, + 7Xf(Rg)3m’ (31)

for fermions in doublet representations, where the + sign is
associated to the upper or lower component of the doublet,
and

29
gl(1{> = TWYf(Rg)Zm + fx.f(Rg)3m’ (32)

for singlets. In particular, for the ordinary SM fermions,
labeled with the index a, the left-handed couplings are

gl =20, 8w,

géfa) fd —(13 - ZQfaS%V) + 2XfLa ;XSQ,

Cw
1 g
95 = o (<1 +20;,53)80 + 2%, 2. (33)
W g

and for right-handed fermions

035036-5
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(fa)

9Ri :2anSW,
S2
ol = 20, —+2Xfmg;s
9x
9R3 2Qf Sg+2XfR g s (34)

where Q and X are the corresponding electric and U(1)y
charges of the fermion f, while /5 is the isospin which is 1
for the upper components and —1 for the lower ones. For
future reference, we list explicitly in Tables II and III the
neutral currents for each flavor fermion We emphasize that
particles such as ej*, v{*, u;” and d;” are devoid of
couplings with gy, which is a consequence of their zero
U(1)y charge.

For the newly fermions, labeled with the index a, both
the left-handed and right-handed are singlets of SU(2),.
Thus, the neutral current couplings are:

(fo) 29x

9 km = Tw¥r, (Rg)Zm +— XfLR (RT)'im’ (35)

which are listed in Tables IV and V for each flavor of this
sector.

On the other hand, according to (13), the fermion fields
must be also rotated into a mass eigenstate basis. By
labeling f; each component of the mass basis f and f; the

TABLE II. Neutral current couplings for the ordinary SM left-
handed fermions.

fra g o) o)

up 38w (1-4Sh)E+3ESy  (-1+4sh) 2+

M%3 %SW (1 %S%V) 1 ( 1 + S2 )C“

d-BSy (CIHIS)E s, (- 15%) o
2,3 2 1

d;i° 38w (=1 +38%) & (1-283 )CW

r 28y (=1 +25%) ¢ (1- 25%,,) o

ep 2w (-14285) & -5, (1-28) -
eu

vt 0 é 3_3/

TABLE III. Neutral current couplings for the ordinary SM

right-handed fermions.

Sra 9qy’ 9’ 9%
1 23 4 2
Ug 35w —g(%—%sg) g(ws + i)

d;e,zj _%SW 2( —xg,) %( Sa+qx)
e,r _ Sz

“r Bro SGa-gs) S3Gas Y
M — s2

°R 2w pfons)  -2(3iks, 4+

TABLE IV. Neutral current couplings for the newly left-handed
fermions.

(fa) (fa) (fa
fia 9r1 912 9L3>
T EXY 200 5% g 2~ Si
L 30w -3(2 c‘,t %S0) 28 +%)
1,2 2 2
jL 3 SW %(S,‘_v:, - Zg_‘:; Sa
1 _ s2 N
€l 28w 225, (2 Sy + %)
&2 -28 435% 435
L v ;G- qu 0) 3G S +4)

TABLE V. Neutral current couplings for the newly right-
handed fermions.

fre o () (/)

9r2 9r3
4 2
Tx R ) 4(Se s, + )
1.2 _2 S2
R 3Sw I —xSy) ~2 (5, + )
1 _ 2
r A L1 ) é(ww )
£k —2Sw 2P — s, ~2(8 5, + )
v 0 35S a
NL23 0 0 0

corresponding in weak basis, the transformation (13) are
written in components as:

fL.Ri = (V]LCTRL'jfL,Rj- (36)

Thus, the neutral current Lagrangian (30) in full mass
eigenstates is

9717 v '
[:NC = 5 [fLiVﬂV%(V]I:T)l/g(Lm)(VI )/kak

T Vi (VE g VR T (37)

In mass eigenstates, the neutral current couplings transform
through the fermionic biunitary matrices:

(f) ~(ik (f)
G om = Bon = (VIR0 hn (Vi) e (38)

so, the neutral Lagrangian (37) become:
g ~ ~ 0 (ik)~ = ~ 0 ~(ik)~
Lyc = 5 |:fLi}/,u Vﬁngm>ka + frivu Vﬁlg]('?jm)ka:| . (39)

In general, as shown in Tables II-V, there are couplings that
are family dependent. For these cases, the neutral couplings
g(L’ﬁg are nondiagonal, producing FCNC processes, such as
in the dilepton B decay. For the family universal couplings,

due to the unitary constraint in (15), the neutral couplings

035036-6
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become diagonal, gﬁ””‘,@ = g(Lf }?5%, which only produce

flavor conservative neutral currents.

III. B DECAY

The process BY — K*#*¢~ for charged leptons £+ is
due to b — s£T£~ transitions. In the model, this process
can be induced at tree level through the neutral weak
bosons Z; and Z, as shown in Fig. 1.

A. Fundamental couplings

1. The b—s—-Z;(;) coupling

First, according to the neutral current Lagrangian in (39),
the FCNC transition b — s in the first vertex of Fig. 1, is
described by the Lagrangian:

g
B [SL}’”(Z’;g(Lz) + Zz (LS))bL

+5xr,(Z35) + 253k )bg] + Hee.,  (40)

‘Csb

where:

_(23 (D))
g<L,R)m = (V?})zng,Rm(VLD,R)J‘y (41)

with D; = (dy,d,.d3. J,.J>). Separating the ordinary
fermions D, = (d,,d,,d3) from the new ones D, =
(J1,T>), we can write the above coupling as:

~(23 T D, ; D,
Q(L,R)m = (VQ,IR)zag(L.RZn(VE,R)M + (Vg;e)z,,g(L,Rgn(VZR)ay
(42)

Taking into account that according to Tables II-V for the
down-type sector, only the left-handed ordinary down
quarks exhibits family dependence, then the left-handed
couplings in (42) expands as:

~(23 d,
32 = g (v, (VP )
d
+ g2 VPN (VP )y + (VER) (VP R) 1)

+ 90 (V2 )2a(VE &) (43)
B+@ e
Z1,2
ot
-
FIG. 1. Decay B" - K™¢"#~ through neutral gauge bosons
Zi,.

while the right-handed couplings (family universal) cancel
out,

e = 0. (44)

From the unitary constraint (18), we find the following
relation:

(V20 (VD)os + (VD) (V)53
= _(VgT)Zl(VE)B - (VQT)Za(Vf)aS’ (45)

which, after replacing in (43), we obtain:

~(23 + d, dys
Go) = (VP (VD) 5lgk) — gi2)
dys
F (VE)0(VP) aloto) = g2 (46)

We see that in a family universal scenario, where the

coupling g(L‘in“) would be the same as for g(L‘i}l) and gﬁ’j), the
above coupling cancel out, suppressing the FCNC tran-
sition b — s. However, the model distinguish these cou-
plings, according to the family index. Specifically, using
the values from Table II, we obtain the left-handed neutral
couplings for the b — s interaction shown in the first row

from Table VI.

2. Thee*(p*)—e (u™)
On the other hand, the neutral coupling for the decays

Z,, — ¢;¢, in the second vertex from Fig. 1 for £, = e
and u, is described by:

—Z;() coupling

L, = > [fLaVﬂ(ZIfg(Lz) + Zzgm )?’ﬂLa

+ fRaVﬂ(Z’fgsez) + 229%3 )fRa:|’ (47)

with
3w = (VER) 91 mn(VE &) o (48)
for E; = (e¢, e, €%, £, &,). By using the unitary con-

straint, we obtain for the left-handed couplings of the
charged leptons:

G = g+ 1(VE)sPlat = g
E, e¢et
1V aalPlo = i, (49)
and for the right-handed ones, we obtain:

el — glene) L |(VEY,, [Plake) — g
+ 1(VE) o Plos) = g, (50)
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In this case, we see that the first term of the above equations
do not depend on the flavor number a (it is the same for e* as
for u™). However, the subsequent terms depends explicitly
from the ia components of the fermionic biunitary matrices,
due to the nonuniversality of the neutral couplings. Since, in
general, each component of the matrices are different, we
will obtain a distinction between the couplings to electrons
and to muons. As a consequence, the ratio of the branching
of the Bt - KTete™ and BT — KTutu~ deviates from
one, as suggests the LHCb data. Again, using the values
from Tables II-V for the charged leptons, we obtain the
neutral couplings for Z, , — e*(u*) in Tables VI and VII,
for left- and right-handed leptons, respectively.

B. Effective operators

From the neutral Lagrangians in (40) and (47), we obtain
the matrix element for the b — s£ £, process:
i) iy (00 4 e
T{usyy (ng L)ub]D {u(lyb (ng L +9Rm R) Ua]’

(51)

iMfi:—

where u; ;, , are the wave functions of the fermions s, b, and

At low energies, the momentum transfer through the
intermediary particles is negligible in relation to their
masses. Thus, the above matrix element become:

()
. g _ .23 oy -
iMgi ~ Tamz T G L) uptigr" (5L + 542 R) v,

(53)

The above matrix element can be derived from the
following effective Hamiltonian:

2
g —/~(23 - ~(aa ~(aa
M = qagr SO LB Zar G L+ 3 RO

+ H.c., (54)
where NP is the label for new non-SM physics, which affect
the ordinary SM contribution, described by the Wilson
operators through the effective Hamiltonian [18-20]:

4Gy

Heff = \/5

Vo Vi Z[C,SMQ- + MO +He., (55)

- SM _
¢, respectively, and v, of antileptons ¢, while D is the where the dominant Wilson coefficients are C7* = Cgly,
propagator of the intermediary gauge bosons, defined in the with
Feynman gauge as: » o

0y = 4em (57, Lb][£ar"Z o]
—ig"
DWW = ————. 52
q2 — M%m ( ) 010 - 4 [SYpr] [l’ﬂa}/MySl’ﬂa]' (56)
TABLE VI. Neutral current couplings for the left-handed fermions b — s, e*, and u™*.
— ~(ab ~(ab
Salv 922 ) 953 )
sb sa(vrt )ZI(VD)13S€+ (V2 )2a(VD)as %?X(VQT)ZI(VD)I A (V2 )2a(VD)asSo
ete” (=1 42583 ) ng |(VL)%1‘ZSH (1-253) ﬁ ng [(VE)ail?
e = 2% 8)|(VE)a e+ (CW FES)I(VE)si P —(& 4 2m)|(VE),, P (CW 499|(VE)s,
prp (- 1+252> 2g*|(VE>u\ So (1 —zsw>%—2"*\(v5>u\2
+er = 2%8)|(VE) )l + + (e — 32 80)I(VD)s —(& + 29| (VE) 2 — (2 +420)|(VE)s,
TABLE VII. Neutral current couplings for the right-handed fermions b — s, e*t, and u*.
fufs ks B
5b 0 0
ete” 835w _ g 2 —§(§—WS +g—x)+2”—x|(VE) |2
S —2Sy) + 28 ((VE)xl*Se 3cy 20 R21
32| (VR)alSo +321(VE)s1 *Se %%\ VRul> +3%1(VR)s I
tu s _8(35 9x W |(VE
a %5, + 25(VEIPS, {5 50+ VP

3(/ 39

+3E|(VE) |*So + qu [(VR)521*So

VRl +3%1(VR)sl
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Putting together both Hamiltonians, Egs. (54) and (55), and
taking the approximated value of

GFaem 1
ey Vi 57
\/571' thVt ( )

(36 TeV)?
we obtain the total effective Hamiltonian:

Heff:Hett +Heft
B 1 [ s 9 (36 TeV)

)+ )|

(36 TeV)? | 8M%
X (57,Lb)(Z,r"C,)
1 g (36T6V)2 (23) aa
—W[Cw 8T9Lm (G — glae)y
X (57,Lb)(Z,r"v5C 4) (58)

from where we identify the total Wilson coefficients:
ol =Mt o = (59)
with:

CNVP@ _ G*(36 TeV)? (23

(G + gy (60)

== Im
9 8M%m L
2
NP(a g (36 TCV) aa
Ol =i O @ =) (61)

where a sum over repeated indices m = {1, 2} is implied in
the right terms. For the SM contributions, we use the values
CM ~ —C3M ~ 4.1 [20].

C. e —pu relative branching ratio

The LHCD collaboration recorded a measurement of the
ratio of the branching fractions of Bt — K™utu~ and
BT — Kteve™ decay, which is given by:

Ghmax dF[B*éK*u*u‘] dgq 2
2

9min dq
RK - Py dT[BT K ete ]d 5’ (62)
fmax A8 2K e e ]
qmin dq
within the dilepton invariant mass squared range

1 < ¢*> <6 GeV?/c*. In terms of the Wilson coefficients,
Ry is [21]:

(n) 2 (u)2
Gy C
|C P+ |C10 >
By expanding the coefficients in SM and NP contributions
according to (59), and taking into accout the lepton
universality of the SM, we obtain:

2 NP 2
P+ 1B+ Clo ™|
2 NP(e)2 "
ey + o

cM CNPM
| g 9 v
C :NPe
| SM 9 :

(64)

By assuming that the above expression corresponds to
the experimentally measured, we can fit the free parameters
of the model according to the reported value [7]

Ry = 07457099 + 0.036. (65)

The free parameters are classified into two categories.
First, the gauge parameters, corresponding to the Z’' gauge
boson mass, the gauge coupling constant of the U(1)y
symmetry, and the Z —Z' mixing angle: (Mz, gy, Sy).
Second, the fermion parameters which arise from the
biunitary transformations that rotate the fermion flavors
into mass states, according to (13), and that depend from
the Yukawa couplings and the VEVs of the Higgs fields. By
using the scheme shown in Ref. [14], these matrices can be
parametrized as functions of mixing angles. After some
simplifications, as shown in Appendix B, we are left with
six free parameters: two ratios of Yukawa couplings, r; =
hz/h, and re = hg/h,, where h 7 ¢ are the couplings of the
extra charged fermions shown in the matrices in Eqs. (B22)
and (B26), while &, is the coupling of the ordinary up-type
quarks according to (B20), the two masses m; and mg,
corresponding to the new down-type quarks and charged
leptons, and two mixing angles from the left- and right-

handed charged leptons 913 and 025, which we express

through their tangents t13 and t25R . All other mixing angles
can be written as function of these two angles, as shown in
Eq. (B28). In particular, as shown in Tables VI and VII, the
neutral current couplings depends on the ij = 2a, 3a, 4a,
and Sa bi-unitary components with a = 1 for electrons and
2 for muons. Explicitly these components can be fully

written as functions of 9% and 92E§ , as shown in Egs. (B30)
and (B31).

Thus, the space of parameters is reduced to 9 variables:
My, my, mg, gx, ¥z, re, S, t%, tgg*). However, some of
these parameters are constrained from theoretical condi-
tions and other experimental observables. For example, the
mass M, has lower limits from direct detection in colliders.
Experiments at LHC collected data at /s = 13 TeV for
new resonances in dielectron and dimuon final states,
where lower limits on M, between 3.5 TeV and
4.5 TeV at 36.1 fb~! by the ATLAS collaboration, and
3.5 TeVand 4 TeV at 12.4 fb~' by CMS are reported [22].
We take the lowest experimental limit of 3.5 TeV. Also, in
models with extra gauge neutral bosons, the Z — Z' mixing
angle is suppressed as the inverse of the squared Z’'-mass
and by electroweak observables, to values up to ~1073,
which has a negligible effect on the total branching decays.
Thus, for simplicity, we ignore this mixing and take Sy = 0.
The coupling gy is constrained by Z’ production limits. For
example, in some models with the same gauge couplings as
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the model proposed here, limits on dilepton events pp —
7' — ¢¢ at LHC allow values as large as gy ~ 0.4 [12,16].
Search for extra fermions can change according to specific
model-dependent assumptions [23]. We use a safe scenery
with mass values around the TeV scale. Finally, we assume
one common Yukawa ratio r, = ry = re¢.

In summary, if we fix the parameters as described above,
we are left with three free parameters, two mixing angles
and one Yukawa ratio ( t1E3", tfs’* ry), which we fit according
to the experimental bound in (65). The first aspect to note is
that the couplings to electrons have contributions from the
biunitary components (V¥) , fora = 3,4, 5 and (V%) for
a =2, 4,5, while the muons couple through (V¥) _, and
(VE) o, as can be verified in tables VI and VIL. So, the
flavor nonuniversality in the model arise from the differ-
ence between the al and a2 components of the biunitary
matrices, which occur according to Egs. (B30) and (B31).
The plots in Fig. 2 highlight the difference between
electrons and muons components as function of the mixing
tangent t%, where we have fixed the other parameters in an
arbitrary form, which only will shift the curves but does not
change their fundamental form. We see that for the left-
handed leptons in the first plot, the 31 (red continuous
curve) and 32 (blue continuous curve) components exhibit
a small difference, which favored a universal lepton
coupling. The largest lepton universality violation occur
due to the 41 and 42 components near to t% = 0.13. The
right-handed leptons, on the other hand, exhibit larger
violation terms than the left-handed ones, due mainly to the
21 and 22 components, as shown in the second plot. The
largest differences occur for t% far from 1, which may

generate two scenarios: for small and for large t% mixing.
However, as we will discuss below, this angle is suppressed
as the muon to top quark mass ratio m,/m,, thus the

scenery with small t% will be favored.

Numerically, we found that the reported anomaly can be
fitted only for large Yukawa ratios, above r;, = 45, i.e., the
Yukawa couplings that mix the new fermions J and £ with
the ordinary SM fermions must be larger than the couplings

1.0F
- -~
08F >N I(VDail
\
= 0.6f I(VE)sl .
ES ~ IVDal _ =
Z 04} \—_-——’//
- \ P _
0.2 \ 2 VD)l
\ 7
/
0.0k . N . . A
0.00 0.05 0.10 0.15 0.20 0.25 0.30
Ey,
t13

among the ordinary up-type quarks in a factor of the order
of 4.5 x 10!, which corresponds to the order of the absolute
values if we assume couplings of the ordinary particles at
the order of 1. An important implication to have large
Yukawa couplings is the possibility to find a Landau pole in
the Yukawa coupling below the Planck scale, which would
reduce the perturbative regimen of the model. A deep
analysis in this aspect require a careful study of the
renormalization group equations of the theory, which falls
outside the scope of this work.

Regarding the mixing angles, the left plot in Fig. 3
displays allowed points in the (t1E3L, tgsk) plane for r;, = 50,

where a small but non-null mixing angle 9% is require,

while 65% can be as large as 42°, which occur for 07} ~ 4.6°.

According to (B18), a HzEsR mixing angle near 45° (i.e.,
thR ~ 1) represents an scenery where all the couplings with
the new leptons £ have the same strength. However, most
of the allowed points spread around a small 25 mixing,
where the couplings of the new leptons is larger than their
mixing coupling with the ordinary leptons. On the other
hand, small 6% mixing is expected according to (B14),
where the tangent of this angle is proportional to the VEV
ratio v3/v;. Since v, is proportional to the top quark mass,
while v3 is proportional to the muon mass as seen in
Egs. (B21) and (B27), then this mixing angle is suppressed
by the ratio m,/m,. If we increase the Yukawa ratio r,
larger mixing angles can be obtained. The plot in the right
of Fig. 3 shows contour plots for different ratios r;, from 50
to 90. Regarding the other mixing angles, they can be
obtained from Egs. (B28) and (B29) once H% and 9§§ are
fixed in accordance with the above allowed regions.

On the other hand, the branching ratio is also very
sensitive to the masses of the extra fermions, my and m;. To
explore this, in Fig. 4 we display the allowed contours
for the heavy quarks and charged leptons compatible with
the limits in Fig. 3 for r, = 50. We choose the two limits
for the 955’* angle, at 0 and 0.8, for the central value

91E3" = 0.08. We see that large mass values of one fermion,

osl S o VRl — = = -]
. ~ Rz
~ < -
— 06 -7 T~ 1l
- Ve ~
[N 7 =
> 04 E ~
B S A 1177 I 07,22 R =
0.2 Pt
/" 1Vl (V)i
0.0L= ‘ ; ; —
0.0 0.5 1.0 1.5 2.0

Ep,
tl3

FIG.2. Left-handed (V£) and right-handed (V) biunitary components as function of the mixing tangent t% obtained from Eqs. (B30)
and (B31). Each component ij couple to electrons when j = 1 (red lines) and to muons when j = 2 (blue lines).
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Ep,
t13
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£13

FIG. 3. Allowed points for the tangent of the mixing angles 0% and 05;’ for Yukawa ratio r, = 50 (left plot), and for Yukawa ratios
spanned from r;, = 50 to 90 (right plot) compatible with the experimental limit on Rg.

require smaller masses of the other one, which is confined
in an energy range attainable by the LHC. Thus, the
anomaly in the meson decay is compatible with new
physics at the TeV scale.

In the above discussion, we assume real mixing rotations
for the mass eigenstate transformations of the fermions. As
a results, all the neutral current couplings in Tables VI and
VII take real values. Now we want to explore the role of
possible complex phases in the biunitary transformations.
For the lepton couplings, we see in Tables VI and VII that
the mixing matrices contributes as the squared of their
magnitudes |(V}),;], so any complex phase associated to

this sector does not have any effect in the branching ratios.
For the quark couplings Qf,fl), we see that they can be
complex in general. In particular, if we neglect the Z — Z’

mixing angle, the only contribution to the b — s transition

is the first term of Q(Lz;), which may provide a relative

2500 % :
A
\Y
2000 {3
n

15006 W\ N 1

mg (GeV)
td

1000F N SN s ]

500, \
500 1000

1500
my (GeV)

2000 2500

FIG. 4. Closed contours in the (my,mg) plane for the extra
fermion masses with central value t% = 0.08 and the two limits
t2E§ = 0 and 0.8, compatible with the allowed region from Fig. 3.

complex phase between (V?),, and (V) 5, which we call
¢. Thus, in this more general scenario, the new physics of
the Wilson coefficients in (60) and (61) will have a global
complex term ¥ coming from the coupling 92233>. If¢p =0,
we reproduce the same physics as shown above. If ¢ = 7,
we obtain again real coefficients, but with opposite relative
signs. For 0 < ¢ < =, the Wilson coefficients will have new
complex contributions. In particular, if we take the same
parameters as in Fig. 3, we can evaluate the ratio Rg for
different values of the complex phase. For example, Fig. 5
shows the branching ratio as a function of the phase for
rp = 50, 1% = 0, and 71} between the limits 0.04 and 0.12.
The shaded band is the allowed region according to the
reported anomaly. We first see that there are allowed
solutions for small complex phases, obtaining the largest
value at ¢p = z/4 when t1E3L = 0.08. Second, we note that
for ¢p = x, the curves lies outside the allowed region. Thus,
the sign (or more general, the phase) of the new physics

121 B,
—_ 004
LIF — 0.06
| = 0.08
LT — 12
X
& oot
058 7
0.7p
0,6 1 1 1 1 Il 1 1 1 Il 1
0 - © 1 & 57z & 2n 37 57 n
12 6 4 3 12 2 3 4 6
FIG. 5. Muon to electron branching ratio as function of the

complex phase of i3 for 225 =0 and 1 = 0.04, 0.06, 0.08,
and 0.12. The shaded area is the reported bound.
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contribution is essential to determine the best scenario to
explain the observed anomaly.

IV. MODEL IN THE DECOUPLING LIMIT

The mixing couplings with the extra particles matter £1-2,
J'"?, and T occurs through the fermionic biunitary
matrices (V r),,» With i the flavor index for the ordinary
matter and a for the new matter. In the above section, we
highlighted the importance of the new fermions in the
simple scenary with “natural” parametrization. As a result,
relatively large mixing couplings (strong coupling limit) is
required in order to fit the observed anomaly of the B,
decay. If we reduce the mixing couplings to zero, i.e., if the
ia components of the mass matrices are ignored, then we
obtain the decoupling limit, where only ordinary fermions
participate in the decay process. In particular, according to
(B12) and (B14), the leptonic 13 left-handed mixing
tangent would diverge (t% — 00) in this limit, while from
(B18) its 25 right-handed tangent would cancel out
(t§§ = 0). Figure 6 displays the branching ratio for different
t% values and tgs’* = 0 as function of the Yukawa ratio ry,.

We observe that for small t% values (below 1), there are
solutions in the shaded region of the reported interval for
Ry. However, for tﬂL > 1, the theoretical values of Ry
increases above the allowed region. In the decoupling limit,
with large 6,3 angles, the branching ratio goes to the SM
limit RM = 1. Thus, the model in this scenario does not
account for the reported anomaly. However, we can relax
the natural parametrization to more general cases in order to
obtain a feasible scenario in the decoupling limit. For that,
we first reparametrize the neutral current couplings from
Tables VI and VII in the decoupling limit as:

~(23 2g
9( ) = X(V?T)21<V€)l350v

L2 3—9

§<Lz33) = S%Q(LZS)’

35 = s = VE)so PS5
(aq) 29x ’

’

Gr3 = u9Sy T (V)34
~(aa 29 4
ggu> = Ujg — Uy +7X <—§+ |(Vg)2a|2> Sos

(aa 29x (4
) = (o =Sy + 22 (<S4 (VERP). (60

with

Upy=—-. (67)

. \
0.8F \ \
E
0.6 T13,L
b - 0.1
m 1
04 T 0.5
- 0.8
0.2 !
10
00, 20 40 60 80

FIG. 6. Muon to electron branching ratio as function of
the Yukawa coupling ratio r;, for tfg =0 and t1E3L =0.1, 0.5,
0.8, 1 and 10. The shaded area is the ratio experimentally
reported in [7].

By ignoring the Z — Z' mixing angle, the Wilson coef-
ficients for new physics defined by (61) become:

2 2
NP 9% (36 TeV)* (o
C9 - 8M2 K9 ’
Z/
2 2
NP(a g (36 TCV) a
ClO( =X SM2, K(lo)’ (68)

where the dependency on the flavor is separated in the
coefficients

0_4 o L
R =502 (VE)s 5= IVE )P+ VE)P |
4 4

(a)
Ky =

SV V) [ (VR - VDP | (@)

Thus, the theoretical muon to electron branching ratio in
(64) become:

9%(36 TeV)? 2
8M§,
2 2
9x(36 TeV) (e)
SM?Z, K 9

72(36 TeV)?
SMZZ,

g% (36 TeV)?
8M2,
z

2
K+ e+ Kl

e+
R

K — .
s+ S

2
+ )C?34+

(70)

In order to compare with the experimental data, we
define the new physics deviation as:

AC, = \/ e+ ¢

—ICMP + |CTP, (71)

2 o2
+ |ety+ el
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so, the ratio (70) become:

2
VICM? + [CR'* + AC,
VICMP +[CRHP +Ac,

Taking into account that C3¥ ~ —C3M ~ 4.1, and the range
for Ry in (65), we find in Fig. 7 the allowed region for the
new physics deviations for muons and electrons, where the
SM limit outside the region is shown. We must to compare
the above region with the theoretical deviation, determined
by the definition (71) and the parameters from (68). For
convenience, we redefine some parameters. First, we define
the effective flavor U(1)y coupling constants as:

a)\2 a
() = K. (73)

Second, we define the two ratios:

C%P(a) Cgvp(ﬂ)
Pq NP’ Ko = NP(e) (74)
9 9

Thus, the new physics contribution for the ninth electron
Wilson coefficient is:

(9¥))%(36 TeV)?
smz,

NP(e) _

Cy (75)

while all the remaining coefficients can be parametrized
entirely as functions of this as:

NP NP(e NP (e
C9 (w) — K21C9 ( )’ ClO (e) — PeCQ ,

W = Pk, Cy. (76)

FIG. 7. Allowed region for the muon and electron new physics
deviation defined as equation (71) compatible with the exper-
imental data. The central blue point is the SM limit.

reducing the space of parameters to (P,, P, K5, ngvp(e))
which we must to fit in order to obtain the allowed
deviations according to Fig. 7. Before doing this, we will
show that the model predicts a relation between the
parameters P, and P,. We see from (68) and the definition
in (69) that:

=P [VE)f
=P, (VE),P

(77)

where (V¥),, are the 31 and 32 components of the lepton
left-handed matrix, that in the decoupling limit takes the

form:
VE 0
VE= [ M ) 78
(" " (78)
with:
VEL = R(03)R(0T1)R(01). (79)

where each rotation matrix R(6) takes the same form as
Egs. (BS) for the quarks, and each angle is defined in (B14).
In particular, we find for the 31 and 32 components that:

(Vg)m = _szL’ (Vf)32 = ClEsz (80)
so that (77) become:
1-P, :
—p Koy |15, (81)

u

This condition is equivalent to:
NP(e NP(e NP NP .
(Co - Cio : ))/(C9 - Cio (ﬂ)) =37 (82)

According to (B28), the limit t% = 1 is assumed in the
natural parametrization. If in addition P, = —1, we obtain
for the new physics the same SM relation between the
Wilson coefficients: C19VP(e) = —CIIVOP@). However, we did
not find any allowed solution on this situation, as shown in
graph (a) of Fig. 8, where the curves are the theoretical
predictions for K,; ranging from 0 to very large values
(K5 — o0). However, if we deviate from this scenario by
choosing other values for P,, we may fit the parameters into
the anomaly region in the decoupling limit. For example,
the graph (b) in the same figure displays the theoretical
solutions for P, = —5 where solutions into the allowed
region are found in the interval K,, = [1.2,5]. From the
plot, we can estimate the bound AC, > —2.6 for the
electron, while for the muon we obtain the allowed interval
—3.2 < AC, £ —2.9 when the former obtains its minimum
value. Graph (c) shows the solutions for P, =1 for the

interval 0 < K,; < 0.9. Since K,; and tsz are not zero,
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4p 4f
() (c)
21 21 Pe =1
ACe 0 ACe O
_al -2l
Pe =-5
-4 -4
-4 -2 0 2 4 -4 -2 0 2 4
AC,, AC,,

FIG. 8. New physics deviations of the Wilson coefficients for thL = 1 and different values of P,. In (a), there are not solutions through
the allowed region for any value of K»;. In (b) and (c) solutions are found for 1.2 < K,; <5 and 0 < K,; < 0.9, respectively. All the

theoretical curves cross the SM limit (blue central point).

according to (82), this case also implies that P, = 1. Thus,

we found scenarios where Cy 7 = € for both a = e

and . In the limit K»; — 0, corrections for the muon AC,
does not exists, while for electron the allowed range
according to graph (c) is 0.5 < AC, < 1.3.

We also may explore scenarios with tff # 1. In particu-
lar, the case with P, = —1 can reproduce the reported data
by properly fitting the other parameters, as shown in Fig. 9.
In graph (a), we obtain solutions for the small ratio
K>; = 0.1, and in the range 0 < tsz < 0.72. Above this
limit, the curves falls outside the allowed region, and
AC, = 0 in the limit tfﬁ = 0. We also see that the curves
exhibits the bound AC,, > —1.8. In the case with K, =1,
graph (b) shows a larger range for the deviations, while
allowed values extends to the bound tsz < 1. For the large
value K,; = 10, the curves are shrunk again, as shown in
graph (c), where 0 < tsz <0.51.

On the other hand, the ratio K,; also represents the
relative coupling of ¢ and u to the Z’' boson. Taking into
account the Egs. (68) and the definition (73), we obtain
that:

while the Wilson coefficient C19VP(e) in Eq. (75) provides a
relation between the effective electron coupling constant
ggf) and the Z' mass. For example, the plot (a) in
Fig. 10 shows the allowed regions of the electron

Wilson coefficient for new physics as function of the ratio
K, = Cévp(” ) / CIQVP(E), with tsz = 1 and different values of
P,:0.2,0.5,1,2,5, and 10. The dashed horizontal line is the
SM limit C3M = 4.1, where we can see that corrections can
be smaller, at the same order or, eventually larger than the
SM prediction. We see that K,; < 1, which means that
solutions in this scenario are found if electrons couple

stronger to the Z’' boson than muons. Second, if ngvp(e)
increases, then P, decreases in accordance with the
definition P, = C%P(e) / Cgvp(e)' So, we see in the plot that
the lowest bounds are large for small values of P,. Taking
into account these bounds, the plot (b) displays the allowed
region for the effective electron coupling ggf) and the 7’

mass for a muon-phobic scenario with K,; =0 (ggf) =0).
The plot (c) shows the regions for K,; = 0.53, just at the
upper limit of P, =10 as observed in plot (a), and
described by the green dashed line in (c). The conversion

Ko — CQIP(” ) B (ggf))2 %3 to the muon coupling is obtained by doing ggf) x v/0.53,
21— VP - (g(e))Z’ (83) according to (83). In general, we see that large ratios P,
9 X
10F— ] F
@ 'y ©
03F g, =01 r— F Ky = 10 g 1
00 = ,A
I — — I
ACe —0.5 — ] == —
e — >3 —
N ]
-10 — § —
-15 s :‘: §
— ~
-20 ] 5 < ‘ ‘ d
Z20-15-10-05 00 05 10 i S R R L R e ] i
AC, AC, AC,

FIG.9. New physics deviations of the Wilson coefficients for P, = —1 and (a) K»; = 0.1, (b) 1 and (c) 10. The curves are for different

E
ranges of 7,3
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FIG. 10. Figure (a) shows allowed regions in the (ngp(e)’ K»;) plane for P, = 0.2, 0.5, 1, 2, 5 and 10. For reference, the dashed
horizontal line is the SM limit CSM = 4.1. The plot (b) is the effective coupling as function of the Z' boson mass according to regions in

(a) for K,; = 0. Figure (c) is for K,; = 0.53.

favor regions including small gauge couplings constants,
which increase as the Z’' boson become heavier.

V. CONCLUSIONS

Observational facts as the fermion mass hierarchies,
mixing schemes, oscillation of neutrinos and experimental
anomalies as the B meson decay may be manifestations of
new physics beyond the SM. Motivated initially by the
fermion mass hierarchy problem, we propose a nonuniver-
sal U(1) extension with three Higgs doublets that may
reproduce masses and mixing schemes for quarks, charged
and neutral leptons. In addition to new charged and neutral
Higgs particles, the model introduces other particles from
the following conditions:

(1) Due to the new abelian gauge symmetry, a second

neutral gauge boson Z’ is naturally introduced.

(2) In order to break the U(1)" symmetry and provide
mass to the Z’ boson, a new Higgs singlet with large
VEV is added.

(3) Also, the new Z' gauge boson induces chiral anoma-
lies, which may spoil the renormalization of the
model. In order to restore the cancellation of these
anomalies, we must assign suitable U(1)" charges to
the fermions. This assignation is done to obtain flavor
nonuniversal interactions for quarks and leptons,
which requires extra quarks and charged leptons.

The model exhibits lepton universality violation that may
explain the B meson decay anomaly into electron and muon

pairs reported by the LHCD collaboration. This observable
may test the new couplings of the model, in particular, the
anomaly is highly sensitive to the new quark and lepton
content of the model through their couplings with the Higgs
sector. They participate in the meson decay indirectly
through their mixing couplings with the ordinary quarks
b and s, and the charged leptons e and u. Since these
mixings occur in a nonuniversal form, then the anomaly can
be explained and fitted for new physics at the TeV scale,
attainable to be proved in the LHC.

Although we choose an specific scheme to parameterize
the mass matrices for fermions and the mixing angles, they
are suppressed or enhanced by ratios of VEVs which we
preserve in the natural scheme. Specifically, the VEV of the
first Higgs doublet determine the scale of the top quark, i.e.,
v,/ V2 ~ 173 GeV. The second VEV gives masses to the
quark b and the lepton 7 at v,/v/2 ~3 GeV. Finally, the
third VEV is of the order of the quark s and lepton y mass,
at v3/v/2 ~ 0.1 GeV. Thus, we expect mixing angles with
values of the order of the ratios of the phenomenological
fermions measured experimentally independent of the
chosen scheme to address the Yukawa free parameters.
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APPENDIX A: BLOCK DIAGONALIZATION

Let us take a generic matrix with arbitrary dimension of

the form:
]‘42 = < T >
C D ’

with A, D, and C submatrices whose elements obey the
hierarchy

(A1)

A< C<xD. (A2)

The matrix (Al), as shown in Ref. [17], can be block
diagonalized approximately by a unitary rotation of the

form:
( I )
F 1 ’

where / is an identity matrix, and F a small subrotation with
F <« 1. Keeping only up to linear terms on F, the rotation
gives:

(A3)

A—CFT—FCT C+AF—FD
VTMZV:( ) (A4)

CT+FTA—DF" D+CTF+FTC

which, by definition, must lead us to a diagonal block form

e < a 0),

0 d
with a and d nondiagonal matrices, and O the null matrix.
By matching the upper right nondiagonal block in (A4) and
(A5), we obtain that C+ AF — FD = 0. Taking into

account the hierarchy in (A2), we may neglect the term
with A, finding the following approximate solution:

(AS)

F~CD™. (A6)

On the other hand, if we match the diagonal blocks in
(A4) and (AS5), and using the solution (A6), we can obtain
the form of the submatrices a and b in terms of the original
blocks A, C, and D. We obtain at dominant order that:

arA—-CD7!CT

b= D. (A7)

The above matrices can be diagonalized independently.

APPENDIX B: PARAMETRIZATION OF THE
BIUNITARY MATRIX TRANSFORMATIONS

In this Appendix we obtain the parameters of the
biunitary transformations that rotate the flavor fermion
basis into mass basis.

1. Up sector

From the Yukawa Lagrangian (3), we obtain the follow-
ing mass matrix for the up-type quark sector:

Mivs Ko By R,
N 1 0 Py (R (B1)
V2 e 0 mBe, 0 [

0 g)%u/u;( 0 9yTUy

which diagonalizes through the biunitary matrices V¥ . . In
particular, as shown in Ref. [14], the left-handed matrix can
be expressed as the product of two mixing matrices of the

form:
N CARNA 7 0
vi=(op ) ) @
-0Y 1 0 VY,

where ©f is a seesaw matrix that block-diagonalize the
mass matrix into one mass matrix of the ordinary SM
quarks and a heavy matrix that mixes the new quarks, while
vy and VU, diagonalize each of these matrices. For
simplicity, we assume diagonal exotic matrices, so that

V{:ew = 1. The seesaw matrix is

1 12
hzTgﬂJrhz,«g)Zﬂ« vy
(9,7)>+(g74)* Vs

@f = | Mzgrthiguo, |, (B3)
(ng)Z_'_(g;“)Z U){
0
and the SM matrix has the form:
Vi = Ro3(0%)R13(0%5)R12(6%,), (B4)
with
ch st
R;p(6%) = | —=s% <Y, 0], (B5a)
0 0 1
L0 sY
-0 4
1 0 0
Ry(0%) =0 & s |, (BSc)

U U
0 —s33 x5
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and cfj =cos@; and s, =sin@j. The angles 6 are
specified by their tangents 7} = tan 6}, which are [14]

2. Down sector

The mass matrix of the down-type quarks is

o sSSP hle AR,
2w9yT ~ ot 2
ty = L T Blvs W Koy B, B,
1u9yT — 7 9u V1 1 31 » 33 31 32
RI3R3 4 B3 4 Mp = NG hygva  hogvy  hyyvs h3zvs hygvs |,
ty = %_’ 153 = 0. (B6) 0 0 0 gl v 0
(hl;t) + (h]u) Uy T X
2
0 0 0 0 9,7V
Finally, the squared mass eigenvalues are (BS)
, hilp33 — h§3 h31)2 2 where Z}/‘ are one-loop mass components. The see-saw
— u u u u . .
my = (K2 1 (h11)? Eh matrix is
2 _ (Miager = Wirgp)® v an Min
(91)* + (g.)> 2 .
7 oyt = | e (89)
my = [(I5)° + ()15 e Bt
s = [gr) + (G 2. (87) o
and the SM angles of \/?,B are given by
|
p TIPS LEIE L SR SEE S, R RS A
e s e N e G U R GO G G
while the mass eigenvalues are
= LG = 2 ha) Aoy o (5 g = Xy g g + (57 3 = X i) oy
[(R30)? + (h3)*)(h53)? + [(h30) + (W32} (h33)* + [(R32)° + (h3)*)(h34)°
o [13) + (W2)%)(h50)* + [(h30)? + (h3)*)(h50)* + [(h33)* + (h330)°) (h5a)” 3
A (h33)* + (h52)* + (hg)° 2
2
v
my = [(152)° + (h33)? + (52’ 5
2 v2
m%l = (gij)zf’mgz = (gjj)zj' (B11)
l
3. Charged lepton sector: Left-handed with left-handed matrix rotations:
The mass matrix of the charged leptons is
ep el neLgeviw he’;gz‘;v_gu
0 hi;vs 0 hlljﬂl 0 152;:122 4 32;21 b
1 0 h3e’l)3 0 hlgvl 0 @ET hlr;:gjlfgylyl h‘;sg?:”ﬂl (B13)
Mg =— | hyov 0 hi v, 0 0 , L= 2n2, 2m?, ’
g}fﬁ v, 0 0 g}( cUy 0 hiﬁzg},ﬁzvs v, 0
Mo
0 g;z/évl 0 0 gev, -
(B12)  ,nd
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e 1
E, h_& E, g;(sh?; V3
T ®rs 3™ e
h1g reie V1
E 2(gye) 3 (h55)* vus (B14)
P (gl sk v
The mass values are
1 2
o _ (h3ehie — Wighte)™ v}
e 1 L)
(he)* + (Hig)? 2
e 1,2
m2 — (hSehie + Wy hie) 1)_% (hSe)*v3
w = 1 )
(h§g)* + (Hig)* 2 2
2 2 U%
me = (h5) 2
2
v
min = [(g5e)* + (96)°] 5
2 2\2 2172 ”)2r
mgy = [(gpe)” + (gre)’] 5 (B15)

4. Charged lepton sector: Right-handed

In addition, we need the rotations for the right-handed
components of the charged leptons. To obtain these
parameters, we must construct the squared mass matrix
ME = MM, which is diagonalized by the right-handed
transformation V&. In this case, the rotation matrix is
expressed as:

E
VE_(@féu @%ﬁ)(vs& ") e
R = ,
Ok Ok 0 V&,
with:
chr 0 0
®£11: 0 c% 0
Ex E E
=351y 0 oy
E Ex E
OFf . — sig 0 sagepg
2=
8 0 sk 0
Eg E E
oL — —C34 814 0 —S34
R = 0 _ 0
25
Er Eg 0
®gzz = <CS4OCI4 c ) (B17)
25

where the tangent of the mixing angles are

Ep 9)2/; Ep g;lgg
s =—5 Iy =~
X g)(é'
le
i = Ire , (B18)
(gy6)” + (gze)?
while the SM mixing angles are
152
e 9EIUSLP + (] vy
12 — e 1 5
gye(highsy + Hichsy) vs
Te e l
Er g;l(shze(h&h?; + hight,) v3
P B p— 12 ’
g}eh2e[(hié)2 + (hﬁlﬁ) } v1v2
1 Zh‘re ht*
tf§ _ (9;(5) 2¢M2¢ VaV3 (B19)

(92 [(RS2) + (Mie)] o1

5. Natural parametrization

In order to simplify the analysis, we separate the Yukawa
interactions in three parts. First, the couplings among the
ordinary SM fermions. Second, the interactions among
the new particle content. Finally, the mixing couplings of
the ordinary and the new particles. We assume a “natural”
limit, where each part couple independently with the same
strength. As a consequence, the mass matrices shares
Yukawa couplings in some components. For example,
in the up-type sector, by calling h/ = h,, 9T = 97>
hl; = hr and 9;2(»: = g,, the mass matrix in (B1) become:

h,v3  h,v, hs hrv,
M 1 0 hu’lJl 0
v ﬁ huvl 0 huvl 0

0 9uly 0 9TV,

hrv
s (B20)

In particular, in this limit, the mass of the top quark is

m? = hiv?, (B21)

from where we obtain the VEV of the first Higgs triplet,
vy = m,/h,. In the same form, the down-type mass matrix
in (B8) is written as

sl sp
hdl)3 hd113 hdl)3 hjl)z hj’l)z

2313 hj’l)] hj’l)l

MD: hd”Z hdUZ hdUZ hj?}:; hj’l):; (B22)
0 0 0 ggv, O

0 0 0 0

Sl -

N
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In this case, the masses of the quarks are

my e~y mi = hjus,
3 1
mi = Eh?ﬂ’%’ m} = 59‘2711)2{, (B23)

from where we obtain the VEVs for the other two Higgs
triplets and the singlet as functions of the quarks masses:
Uy = \/Emb/\/ghda vy =mg/hy, and v, = \/zml/gj'
With this scheme, the mixing angles (B9) and (B10) can
be parametrized as:

1 m

1
V2 my Va2m

m

-t

J
. h
Dy _ g | Lmyh, 1 myhy
®L _hi V3myhy \3myhy | (B24)
N Lmn, 1mn,
V3myhy  \/3myhy
and
p My D \/§md D \/§ms
Ih=— I3=—F©2— In=—F7Z—. (B25)
ng V2 my, V2 my,

We see that the mixing matrix (B24) depends on the
ratio ry = hy/h,.

Regarding the lepton sector, the mass matrix (B12)
simplify to:

0  hovs 0  hev 0
0  hovs 0  hev 0
ME:LZ hos O hws O 0 |, (B26)
Gely 0 0 gev, O
0 gely 0 0 gevy,

from where the charged lepton masses are expressed as:

3
m2 =0, my, = Eh%v%,

1 v2
md=hEd mk=[() + (@) L. (B27)

Thus, the VEVs, in this case, can be written in terms of the
lepton couplings as v, = v2m,/h,, v3 = \/imﬂ/\/ghe

and v, = vV2mg/\/(9.)* + (g¢)*.

For the mixing angles, we choose two of them as free
parameters. For the left-handed angles in (B14), we choose

t% as a free parameter, while for the right-handed angles in

(B18) we take tfg Thus, with the natural parametrization,
the other mixing angles are

6m?

E, _ E, E;\3
ny Rl R ——5(13)
ny

tER ~ tER ~ mﬂ tEI_
2 ~-F Ia® 13>

13 \/§m,
Er o, 3m‘f E;\2 Er o Er Er  JEr
I3 ® (13)°, nBimbs, 6§ ~s54, (B28)

2mﬂ

while the mixing matrix (B13) takes the form:

Lom Eg  my he Ep

Vime 25 mg an, 525
ETihS A m Ep  my he Eg
O = vAms w5 |- (B29)
u
m, he  Eg
mg 3h, 525 0

We also see that the above matrix is function of the
ratio re = hg/hu.

Putting all the above matrices together, we will obtain
each component of the original biunitary transformations
VP VE and VE. In particular, the neutral current couplings
for electrons depends on (V¥)3, 4 5, and (V%) 415, while

for muons we need (V)35 4250 and (V)p.42.5,- They are
(VD)sis2) =0
—t%

V24/1 4 36x% (115)°

(VE)31,(32) = [C1E§ + 6x2(tf§)2]

oy FLE 6x2cii (1)
) 1+ 36x*(114)°

_1 E
(VD)a1a2) = 7y75025R

(B30)

where x = m./m, and y = m,/mg, and:
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E, En 3(/Er)
(V) = 55 (V) = 2| V3(o)
Lse (37| 2414+ 32(%)°
E, En 3((EL)2
(Vi) _tzs (VR)s2 = 213 %25 5 1+ V3(is) - ,
4
\/1+§(t13L) i 2\/1+%x2(t13L) |
E, E Ep(ELy2 F E
(VE), = 8513525 3313L( 1) 7S5 x o5
\/_x\/l 32t132 2\/1—|—9x2t13 \/1 32t13 \/1 s25
E, Eg E, E E
(VE),, = s13Ls2t 3313Lt1%Ls25Rx o5 (B31)
R)42 oy =y
Viny 145 (1) 2\/1+ (1) \/1 o \/1 (s55)?
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