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We propose an extension of the standard model with an extra Uð1Þ0 Abelian symmetry, three Higgs
doublets and two Higgs singlets, where the new Uð1Þ0 charges are flavor nonuniversal. As a result, the
model introduces an enlarger particle spectrum in the TeV scale with large new physics possibilities. The
model reproduces the mixing angles and mass structures of the quarks, charged and neutral leptons.
We found scenarios where the observed anomaly of the Bþ → Kþll decay can be explained due to the
existence of couplings with new extra fermions at the TeV scale. By modifying the parametrization of the
mixing matrices, we found solution in the decoupling limit.
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I. INTRODUCTION

Despite all its success, the standard model (SM) of
Glashow, Weinberg, and Salam [1] does not account for
all the theoretical and experimental observations; therefore it
is believed that there is a more fundamental theory where the
SM emerges as an effective lower limit at the electroweak
scale. For example, the fermion mass hierarchy and the
neutrino mass problem are two related subjects that may be
understood as manifestations of an underlying theory beyond
the SM [2,3]. Also, there are some observables that show
some tensions from the SM predictions, which may be
associated to new physics. Among the different observations
accessible to collider physics, the flavor observables imposes
stringent limits to many SM extensions. In particular, the
lepton universality exhibited by the SM is sensitive to new
physics that can be tested in rare semileptonic transitions of
mesons [4–6]. Recently, the ratio of the branching fractions of
Bmeson decays intomuon and electron pairswas reported by
the LHCb collaboration [7], where a deviation from the SM
prediction within 2.6σ suggest us a possible lepton univer-
sality violation not explained in the framework of the SM.
From the theoretical point of view, the mass hierarchy

problem can be addressed in a model independent approach
by assuming texture zero structures for the mass matrices
[8]. Relations betweenmixing angles andmasses can be also
derived for both quarks and lepton sectors in models with

broken flavor symmetries. These symmetries, that relates the
three fermion families in a nontrivial way, have been
extensively studied in the literature in different extensions
of the SM, either as a continuous Abelian or non-Abelian
extensions [9], or as a discrete flavor symmetry [10]. On the
other hand, many grand unified and superstring models
predicts one or multiple extra Abelian symmetries in their
effective low energy limit [11], which motivates extensions
of the SM with an extra U(1)’ gauge symmetry. If this
symmetry is family nonuniversal, it is possible to connect
the flavor problem with the group properties of these
models. Also, these type of extensions imply a new extra
neutral Z0 boson which, in the framework of a nonuniversal
model, produces new contributions to flavor-changing
neutral current (FCNC) processes. Although these type of
interactions are strongly suppressed in the SM, which is
consistent with most of the experimental observations, there
are some anomalies reported, as the aforementioned decay
Bþ → Kþlþl−, corresponding to a b → s FCNC process.
Motivated initially by the mass hierarchy of the quarks, in

the Uð1Þ0 model proposed in Ref. [12], the new Abelian
charge distinguishes one family of quarks from the other
two, and newly vectorlike quarks are introduced in order
to restore the cancellation of the chiral anomalies. This
model is universal in the lepton sector. Amodification of the
above model was presented in [13], where newly charged
leptons are also introduced in order to obtain nonuniversal
lepton families compatiblewith the cancellation of the chiral
anomalies. The above structure can reproduce the elements
of the mixing mass matrix and the squared-mass diferences
data from neutrinos oscillations experiments.
In this article, we combine the nonuniversalUð1Þ0 model

from [13] with a three Higgs doublet model in order
to explain the anomaly measured by the LHCb in the
ratio of the branching fractions of Bþ → Kþμþμ− to
Bþ → Kþeþe− decays. This model was already presented
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in [14], where the three doublets may induce naturally the
fermion hierarchy, while the smallness of the neutrinos can
be implemented through an inverse see saw mechanism,
where the vacuum expectation value that breaks the extra
Uð1Þ0 symmetry defines the large mass scale.

II. SURVEY OF THE MODEL

A. Particle content

The model is an extension of the SM group, with the
addition of a nonuniversal Abelian gauge symmetry [which
we denote as Uð1ÞX] whose gauge boson and coupling
constant are Z0

μ and gX, respectively, while the weak
hypercharge is defined as usual through the Gell-Mann-
Nishijima relation:

Q ¼ I3 þ
Y
2
; ð1Þ

with Q the electric charge operator and I3 the isospin.
The additional gauge symmetry introduces new chiral

anomaly equations which can be solved by assigning non-
trivialX-quantumnumbers to the fermions of the SM [12]. If
this new Uð1Þ charges are different from the SM Uð1ÞY
charges, then anomaly cancellation require new quarks and
leptons to be added into the spectrumwith masses at a larger
scale than the electroweak scale [15]. For simplicity, all the
new particles are assumed to be singlets under the gauge
SUð2ÞL group. In order to provide masses to the new sector,
we introduce a neutral Higgs singlet χ with nonvanishing
VEV, and Uð1ÞX charge X ¼ −1=3 in such a way that it
spontaneously breaks the new gauge symmetry. Another
scalar singlet σ identical to χ but without VEVis introduced,
which can play the role of a darkmatter candidate, such as in
the Uð1Þ0 extension in [16].
On the other hand, the phenomenological fermions define

three mass scales. First, the top quark (t) is the heaviest
observed femion at 102 GeV scale. Second, the tau lepton
and bottom quark ðτ; bÞ are in the 100 GeV scale. Finally,
the muon and strange quark ðμ; sÞ are in the 102 MeV scale.
This general structure can be directly induced with three
Higgs doubletswith vacuumexpectationvalues (VEV)v1 >
v2 > v3 associated to the three scales above. The chosen
particle spectrum is presented in the Table I where three new
quarks (T , J 1;2) and two charged leptons (E1;2) are
introduced. To obtain masses for the active neutrinos, we
introduce three right-handed neutrinos ν1;2;3R with nontrivial
Uð1ÞX charges, which allow the coupling with the ordinary
lepton doublets lL, but because of their X-charge, they
do not generate Majorana mass terms. The addition of
Majorana fermions,N 1;2;3

R , allow an inverse seesaw mecha-
nism in order to explain the smallness of the active neutrinos.
In order to obtain predictable and analytical relations for

the masses and mixing angles of the fermions according to
observations, we assign specific Z2 symmetry parities,
which are shown as superscripts in the X-charges. It is to

note that, despite the scalar doublets Φ2 and Φ3 have the
same X charge, they have opposite Z2 parity such that their
couplings to fermions are complementary.
Finally, since the new fermions are vectorlike under the

SM group, they do not introduce any extra SUð2ÞL ×
Uð1ÞY contribution to the anomaly equations. However, the
symmetry Uð1ÞX may generate the following pure and
mixed anomalies:

½Uð1ÞX�3 → A1 ¼
X
l;Q

½X3
lL

þ 3X3
QL
�

−
X
l;Q

½X3
lR

þ 3X3
QR
�

½SUð3Þc�2Uð1ÞX → A2 ¼
X
Q

XQL
−
X
Q

XQR

½SUð2ÞL�2Uð1ÞX → A3 ¼
X
l

XlL þ 3
X
Q

XQL
;

½Uð1ÞY �2Uð1ÞX → A4 ¼
X
l;Q

½Y2
lL
XlL þ 3Y2

QL
XQL

�

−
X
l;Q

½Y2
lR
XlR þ 3Y2

QR
XQR

�

Uð1ÞY ½Uð1ÞX�2 → A5 ¼
X
l;Q

½YlLX
2
lL

þ 3YQL
X2
QL
�

−
X
l;Q

½YlRX
2
lR

þ 3YQR
X2
QR
�

½Grav�2 ⊗ Uð1ÞX → A6 ¼
X
l;Q

½XlL þ 3XQL
�

−
X
l;Q

½XlR þ 3XQR
� ð2Þ

TABLE I. Nonuniversal X quantum number and Z2 parity for
SM and non-SM fermions.

Bosons X� Quarks X� Leptons X�

Scalar Doublets SM Fermionic Doublets

Φ1 ¼
�

ϕþ
1

h1þv1þiη1ffiffi
2

p

� þ2
3
þ

q1L ¼
�
u1

d1

�
L

þ1
3
þ

le
L ¼

�
νe

ee

�
L

0þ

Φ2 ¼
�

ϕþ
2

h2þv2þiη2ffiffi
2

p

� þ1
3
−

q2L ¼
�
u2

d2

�
L

0−
lμ
L ¼

�
νμ

eμ

�
L

0þ

Φ3 ¼
�

ϕþ
3

h3þv3þiη3ffiffi
2

p

� þ1
3
þ

q3L ¼
�
u3

d3

�
L

0þ
lτ
L ¼

�
ντ

eτ

�
L

−1þ

Scalar Singlets SM Fermionic Singlets

χ ¼ ξχþvχþiζχffiffi
2

p −1
3
þ u1;3R

þ2
3
þ eeR −4

3
þ

σ −1
3
− u2R

þ2
3
− eμR

−1
3
þ

d1;2;3R
−1
3
− eτR −4

3
−

Gauge bosons Non-SM Quarks Non-SM Leptons
W�

μ 0þ T L
þ1
3
− ν1;2;3R

þ1
3
þ

W3
μ 0þ T R

þ2
3
− N 1;2;3

R
0þ

Bμ 0þ J 1;2
L

0þ E1
L, E

2
R −1þ

Z0
μ 0þ J 1;2

R
−1
3
þ E1

R; E
2
L

−2
3
þ
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where the sums in Q runs over all the quarks, and l over all
leptons. However, by direct calculation, it is possible to verify
that the chosen Uð1ÞX charges satisfy the cancellation of the
anomalies in (2), so that themodel is free fromchiral anomalies.

B. Lagrangians

1. Yukawa interactions

The most general Yukawa Lagrangian must obey the
gauge symmetry GSM × Uð1ÞX in order to obtain a

renomarlizable model, where GSM is the SM gauge group.
However, we impose additionaly that the interactions
respect the discrete Z2 symmetry, where each particle
has the intrisic Z2-parity shown in Table I. Since
there are particles with different Z2-parities, not all
couplings between fermions and scalars are allowed.
Specifically, the Yukawa Lagrangian allowed by the
symmetries of the model for the up- and down-like
quarks are

−LU ¼ h113uq
1
LΦ̃3u1R þ h122uq

1
LΦ̃2u2R þ h133uq

1
LΦ̃3u3R þ h221uq

2
LΦ̃1u2R þ h311uq

3
LΦ̃1u1R þ h331uq

3
LΦ̃1u3R

þ h12T q
1
LΦ̃2T R þ h21T q

2
LΦ̃1T R þ g1σuT Lσu1R þ g2χuT Lχu2R þ g3σuT Lσu3R þ gχT T LχT R þ H:c:; ð3Þ

−LD ¼ h111J q
1
LΦ1J 1

R þ h212J q
2
LΦ2J 1

R þ h313J q
3
LΦ3J 1

R þ h121J q
1
LΦ1J 2

R þ h222J q
2
LΦ2J 2

R þ h323J q
3
LΦ3J 2

R

þ h213dq
2
LΦ3d1R þ h223dq

2
LΦ3d2R þ h233dq

2
LΦ3d3R þ h312dq

3
LΦ2d1R þ h322dq

3
LΦ2d2R þ h332dq

3
LΦ2d3R

þ g11σdJ
1
Lσ

�d1R þ g11σdJ
1
Lσ

�d2R þ g13σdJ
1
Lσ

�d3R þ g21σdJ
2
Lσ

�d1R þ g22σdJ
2
Lσ

�d2R þ g23σdJ
2
Lσ

�d3R þ g1χJ J
1
Lχ

�J 1
R

þ g2χJ J
2
Lχ

�J 2
R þ H:c:; ð4Þ

while for the neutral and charged leptons we obtain:

−LN ¼ hee3νl
e
LΦ̃3ν

1
R þ heμ3νl

e
LΦ̃3ν

2
R þ heτ3νl

e
LΦ̃3ν

3
R þ hμe3νl

μ
LΦ̃3ν

1
R þ hμμ3νl

μ
LΦ̃3ν

2
R þ hμτ3νl

μ
LΦ̃3ν

3
R þ gijχN νiCR χ�N j

R

þ 1

2
N iC

R Mij
NN j

R þ H:c:; ð5Þ

−LE ¼ heμ3el
e
LΦ3e

μ
R þ hμμ3el

μ
LΦ3e

μ
R þ hτe2el

τ
LΦ3eeR þ hττ2el

τ
LΦ2eτR þ he11El

e
LΦ1E1

R þ hμ11El
μ
LΦ1E1

R þ g1eχeE1
Lχ

�eeR þ g2μχeE2
Lχe

μ
R

þ g1χEE
1
LχE

1
R þ g2χEE

2
Lχ

�E2
R þ H:c:; ð6Þ

where Φ̃ ¼ iσ2Φ� are the scalar doublet conjugates and the
Majorana mass components are denoted as Mij

N .

2. Gauge and scalar boson interactions

The Higgs kinetic Lagrangian contains the couplings
among vector gauge and scalar bosons, which takes the
general form

Lkin ¼ ðDμSÞ†ðDμSÞ; ð7Þ

where the covariant derivative is defined as:

Dμ ¼ ∂μ − igWμ
αTα

S − ig0
YS

2
Bμ − igXXSZ0μ: ð8Þ

The parameters 2Tα
S corresponds to the Pauli matrices when

S ¼ Φ1;2;3 and Tα
S ¼ 0 when S ¼ χ, σ, while YS and XS

correspond to the hypercharge andUð1ÞX charge according
to the values in table I. The gauge coupling constants g and

g0 obey the same relation as in the SM, g0 ¼ g tan θW , with
θW the Weinberg angle.

3. Dirac Lagrangian

Finally, the interactions of fermions through vector
gauge fields are described by the following Lagrangian:

LD ¼ ifLiγμDμfLi þ ifRiγμDμfRi; ð9Þ

where fi runs over all flavor of fermions, and, as usual, a
sum over repeated indices is implied. The covariant
derivative Dμ is similar to (8) but changing the scalar
parameters by the corresponding fermion parameters.

C. Mass eigenstates and interactions

1. Fermion masses

The Yukawa Lagrangians from (3) to (6) provide masses
to all the fermions after the symmetries of the model breaks
spontaneously, through the vacuum structure of the Higgs
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fields shown in Table I. In general, the mass terms have the
following form:

−Lf ¼ fLMffR þ H:c:; ð10Þ

where f are fermion multiplets with components of the
same electric charge, namely

f∶ U ¼ ðu1; u2; u3; T Þ
D ¼ ðd1; d2; d3;J 1;J 2Þ
E ¼ ðee; eμ; eτ; E1; E2Þ

NL ¼ ðνe;μ;τL ; ν1;2;3CR ;N 1;2;3C
R Þ; ð11Þ

and Mf are complex nondiagonal mass matrices. In
general, the above mass matrices can be diagonalized by
biunitary transformations of the form:

mf ¼ ðVf
LÞ†MfV

f
R; ð12Þ

which, after replacing in (10), lead us to the left- and right-
handed mass basis:

f̃L ¼ ðVf
LÞ†fL; f̃R ¼ ðVf

RÞ†fR; ð13Þ

where:

f̃∶ Ũ ¼ ðu; c; t; TÞ
D̃ ¼ ðd; s; b; J1; J2Þ
Ẽ ¼ ðe; μ; τ; E1; E2Þ

ÑL ¼ ðν1;2;3L ; ν̃1;2;3CR ; N1;2;3C
R Þ; ð14Þ

The specific form of the matrices Vf
L;R depends on the

Yukawa structure of the original Lagrangians in (3)–(6). In
particular, with the choosen Z2-parities, these Yukawa
terms lead us to predictible mass structures for quarks,
charged leptons and neutrinos, as shown in [14], which we
summarize in the Appendix B.

2. The unitary constraint

Each rotation matrix in (13) must obey the unitary
condition

ðVf
L;RÞ†Vf

L;R ¼ I; ð15Þ

where I is the identity. In the above relation, we must take
into account that the sum from the matrix products contain
two contributions due to the components with ordinary SM
particles and the newly vectorlike fermions. Labeling
a; b; c;… the components with ordinary femions, and
α; β; γ;… the exotic ones, the unitary condition in (15)
can be written in tensor form as

δij ¼ ðV�
L;RÞijðVL;RÞjk

¼ ðV�
L;RÞiaðVL;RÞak þ ðV�

L;RÞiαðVL;RÞαk: ð16Þ

In particular, for the SM components:

δcb ¼ ðV�
L;RÞcaðVL;RÞab þ ðV�

L;RÞcαðVL;RÞαb: ð17Þ

Thus, the pure SM submatrix ðVL;RÞab does not satisfy an
exact unitary relation, but it is deviated by a small
contribution due to new physics from the extra particle
content. The relation (17) is conveniently written as:

ðV�
L;RÞcaðVL;RÞab ¼ δcb − ðV�

L;RÞcαðVL;RÞαb: ð18Þ

3. Gauge bosons

After the symmetry breaking, we obtain from the kinetic
Lagrangian in (7) the charged mass eigenstates

W�
μ ¼ 1ffiffiffi

2
p ðW1

μ ∓ W2
μÞ; ð19Þ

with squared mass M2
� ¼ g2υ2=4, where the electroweak

vacuum expectation value υ ¼ 246 GeV is defined with the
VEV of each scalar doublet as

υ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
υ21 þ υ22 þ υ23

q
: ð20Þ

As for the neutral gauge sector, we obtain in the basis
ðW3

μ; Bμ; Z0
μÞ the following symmetric squared mass

matrix:

M2
0 ¼

g2

4

0
BBBBB@

υ2 −TWυ
2 j − 2gX

3g ðυ2 þ υ21Þ
� T2

Wυ
2 j 2gX

3g TWðυ2 þ υ21Þ
− − − − −

� � j 4g2X
9g2 ðυ2χ þ υ2 þ 3υ21Þ

1
CCCCCA

¼

0
B@

A j C

− − −
CT j D

1
CA; ð21Þ

where TW ¼ tan θW is the tangent of the Weinberg angle.
Taking into account the hierarchy υχ ≫ υ, the above mass
matrix can be diagonalized analytically by the recursive
expansion method [17]. First, according to the block
diagonalization shown in Appendix A, we can reduce
the above 3 × 3 mass matrix into one 2 × 2 mass matrix
and a heavy mass associated to the Z0 boson:
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a ≈ A − CD−1CT ¼ N

�
1 −TW

−TW T2
W

�
;

b ≈D ¼ g2X
9
ðυ2χ þ υ2 þ 3υ21Þ; ð22Þ

where N ¼ 1
4
ðυ2 − ðυ2þυ2

1
Þ2

υ2χ
Þ, while the transformation

matrix that induces the above block diagonalization is:

V¼
�

I F

−FT I

�
¼

0
B@

1 0 −SθCW

0 1 SθSW
SθCW −SθSW 1

1
CA; ð23Þ

where the sine of the mixing angle θ has been defined as

Sθ ¼
3

2

�
υ2 þ υ21

υ2χ

�
g
gX

: ð24Þ

We clarify that in general an additional Z − Z0 mixing angle
results from the gauge kinetic terms, which can be
neglected at a higher scale. This mixing may also arise
due to radiative corrections. However, any Z − Z0 mixing
arisen in the model is very restricted by the LEP data,
limiting Sθ to small values. In Ref. [16] the deviations on
the Z pole observables due to the mixing angle were
evaluated in a Uð1ÞX model with the same gauge couplings
as here, showing allowed mixing angle of the order up
to 10−4

Second, the submatrix a in (22) has the following mass
eigenvalues:

m2
A ¼ 0; m2

Z ¼ g2

C2
W
N; ð25Þ

while the associated rotation matrix is

p ¼
�
SW CW

CW −SW

�
: ð26Þ

The total rotation into mass eigenstates is the combination
of the rotations (23) and (26),

R0 ¼PV¼
�
p 0

0 1

�
V¼

0
B@

SW CW 0

CW −SW Sθ
−SθCW SθSW 1

1
CA; ð27Þ

obtaining the mass eigenstates:

Ṽμ ¼ R0Vμ ⇒

0
B@

Aμ

Z1μ

Z2μ

1
CA ¼ R0

0
B@

W3
μ

Bμ

Z0
μ

1
CA; ð28Þ

where Aμ is identified with the photon. We see that in the
limit Sθ ¼ 0, we obtain Z1 ¼ Z ¼ CWW3 − SWB and
Z2 ¼ Z0, with Z the SM neutral gauge boson.

4. Neutral currents

The weak interaction of fermions is contained into the
Dirac Lagrangian in (9). First, taking into account the mass
eigenstates in (19) and (28), the covariant derivative
become

Dμ ¼ ∂μ− igðWμþT−
f þWμ−Tþ

f Þ

− Ṽμ
m

�
igðRT

0 Þ1mT3
f þ ig0

Yf

2
ðRT

0 Þ2mþ igXXfðRT
0 Þ3m

�
;

ð29Þ

where 2T�
f is the combination (σ1 � σ2) between the first

two Pauli matrices and 2T3
f the third Pauli matrix for

fermion fields f doublets of SUð2Þ, while 2T�
f ¼ 2T3

f ¼ 0

when f are singlets. The terms ðRT
0 Þnm correspond to the

components of the transpose rotation matrix between the
neutral weak and mass eigenstates, as defined in (27), and
Ṽμ
m the corresponding neutral gauge bosons in mass

eigenstate, where ðṼμ
1; Ṽ

μ
2; Ṽ

μ
3Þ ¼ ðAμ; Zμ

1; Z
μ
2Þ. Applying

the above covariant derivative into the Dirac Lagrangian
(9), we obtain the following neutral gauge interactions:

LNC ¼ g
2
½fLiγμṼμ

mg
ðfiÞ
Lm fLi þ fRiγμṼ

μ
mg

ðfiÞ
Rm fRi�; ð30Þ

where gðfiÞL;Rm are the electroweak neutral current couplings,
defined in general as:

gðfÞm ¼ �ðRT
0 Þ1m þ TWYfðRT

0 Þ2m þ 2gX
g

XfðRT
0 Þ3m; ð31Þ

for fermions in doublet representations, where the� sign is
associated to the upper or lower component of the doublet,
and

gðfÞm ¼ TWYfðRT
0 Þ2m þ 2gX

g
XfðRT

0 Þ3m; ð32Þ

for singlets. In particular, for the ordinary SM fermions,
labeled with the index a, the left-handed couplings are

gðfaÞL1 ¼ 2QfaSW;

gðfaÞL2 ¼ 1

CW
ðI3 − 2QfaS

2
WÞ þ 2XfLa

gX
g
Sθ;

gðfaÞL3 ¼ 1

CW
ð−I3 þ 2QfaS

2
WÞSθ þ 2XfLa

gX
g
; ð33Þ

and for right-handed fermions
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gðfaÞR1 ¼ 2QfaSW;

gðfaÞR2 ¼ −2Qfa

S2W
CW

þ 2XfRa

gX
g
Sθ;

gðfaÞR3 ¼ 2Qfa

S2W
CW

Sθ þ 2XfRa

gX
g
; ð34Þ

where Qf and Xf are the corresponding electric and Uð1ÞX
charges of the fermion f, while I3 is the isospin which is 1
for the upper components and −1 for the lower ones. For
future reference, we list explicitly in Tables II and III the
neutral currents for each flavor fermion. We emphasize that
particles such as ee;μL , νe;μL , u2;3L and d2;3L are devoid of
couplings with gX, which is a consequence of their zero
Uð1ÞX charge.
For the newly fermions, labeled with the index α, both

the left-handed and right-handed are singlets of SUð2ÞL.
Thus, the neutral current couplings are:

gðfαÞL;Rm ¼ TWYfL;RαðRT
0 Þ2m þ 2gX

g
XfL;RαðRT

0 Þ3m; ð35Þ

which are listed in Tables IV and V for each flavor of this
sector.
On the other hand, according to (13), the fermion fields

must be also rotated into a mass eigenstate basis. By
labeling f̃i each component of the mass basis f̃ and fi the corresponding in weak basis, the transformation (13) are

written in components as:

f̃L;Ri ¼ ðVf†
L;RÞijfL;Rj: ð36Þ

Thus, the neutral current Lagrangian (30) in full mass
eigenstates is

LNC ¼ g
2

h
f̃LiγμṼ

μ
mðVf†

L ÞijgðfjÞLm ðVf
LÞjkf̃Lk

þf̃RiγμṼ
μ
mðVf†

R ÞijgðfjÞRm ðVf
RÞjkf̃Rk

i
: ð37Þ

In mass eigenstates, the neutral current couplings transform
through the fermionic biunitary matrices:

g
ðfjÞ
L;Rm → g̃ðikÞL;Rm ¼ ðVf†

L;RÞijg
ðfjÞ
L;RmðVf

L;RÞjk; ð38Þ

so, the neutral Lagrangian (37) become:

LNC ¼ g
2

h
f̃LiγμṼ

μ
mg̃

ðjkÞ
Lm f̃Lk þ f̃RiγμṼ

μ
mg̃

ðjkÞ
Rm f̃Rk

i
: ð39Þ

In general, as shown in Tables II–V, there are couplings that
are family dependent. For these cases, the neutral couplings

g̃ðikÞL;R are nondiagonal, producing FCNC processes, such as
in the dilepton B decay. For the family universal couplings,
due to the unitary constraint in (15), the neutral couplings

TABLE II. Neutral current couplings for the ordinary SM left-
handed fermions.

fLa gðfaÞL1 gðfaÞL2 gðfaÞL3

u1L
4
3
SW ð1 − 4

3
S2WÞ 1

CW
þ 2gX

3g Sθ ð−1þ 4
3
S2WÞ Sθ

CW
þ 2gX

3g

u2;3L
4
3
SW ð1 − 4

3
S2WÞ 1

CW
ð−1þ 4

3
S2WÞ Sθ

CW

d1L − 2
3
SW ð−1þ 2

3
S2WÞ 1

CW
þ 2gX

3g Sθ ð1 − 2
3
S2WÞ Sθ

CW
þ 2gX

3g

d2;3L − 2
3
SW ð−1þ 2

3
S2WÞ 1

CW
ð1 − 2

3
S2WÞ Sθ

CW

ee;μL −2SW ð−1þ 2S2WÞ 1
CW

ð1 − 2S2WÞ Sθ
CW

eτL −2SW ð−1þ 2S2WÞ 1
CW

− 2gX
g Sθ ð1 − 2S2WÞ Sθ

CW
− 2gX

g

νe;μL 0 1
CW

Sθ
CW

ντL 0 1
CW

− 2gX
g Sθ − Sθ

CW
− 2gX

g

TABLE III. Neutral current couplings for the ordinary SM
right-handed fermions.

fRa gðfaÞR1 gðfaÞR2 gðfaÞR3

u1;2;3R
4
3
SW − 4

3
ðS2WCW

− gX
g SθÞ 4

3
ðS2WCW

Sθ þ gX
g Þ

d1;2;3R − 2
3
SW 2

3
ðS2WCW

− gX
g SθÞ − 2

3
ðS2WCW

Sθ þ gX
g Þ

ee;τR −2SW 8
3
ð3
4

S2W
CW

− gX
g SθÞ − 8

3
ð3
4

S2W
CW

Sθ þ gX
g Þ

eμR −2SW 2
3
ð3 S2W

CW
− gX

g SθÞ − 2
3
ð3 S2W

CW
Sθ þ gX

g Þ

TABLE IV. Neutral current couplings for the newly left-handed
fermions.

fLα gðfαÞL1 gðfαÞL2 gðfαÞL3

T L
4
3
SW − 2

3
ð2 S2W

CW
− gX

g SθÞ 2
3
ð2 S2W

CW
Sθ þ gX

g Þ
J 1;2

L − 2
3
SW 2

3

S2W
CW

− 2
3

S2W
CW

Sθ
E1
L −2SW 2ðS2WCW

− gX
g SθÞ −2ðS2WCW

Sθ þ gX
g Þ

E2
L −2SW 4

3
ð3
2

S2W
CW

− gX
g SθÞ − 4

3
ð3
2

S2W
CW

Sθ þ gX
g Þ

TABLE V. Neutral current couplings for the newly right-
handed fermions.

fRα gðfαÞR1 gðfαÞR2 gðfαÞR3

T R
4
3
SW − 4

3
ðS2WCW

− gX
g SθÞ 4

3
ðS2WCW

Sθ þ gX
g Þ

J 1;2
R − 2

3
SW 2

3
ðS2WCW

− gX
g SθÞ − 2

3
ðS2WCW

Sθ þ gX
g Þ

E1
R −2SW 4

3
ð3
2

S2W
CW

− gX
g SθÞ − 4

3
ð3
2

S2W
CW

Sθ þ gX
g Þ

E2
R −2SW 2ðS2WCW

− gX
g SθÞ −2ðS2WCW

Sθ þ gX
g Þ

ν1;2;3R
0 2

3
gX
g Sθ

2
3
gX
g

N 1;2;3
R

0 0 0
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become diagonal, g̃ðikÞL;R ¼ g
ðfjÞ
L;Rδik, which only produce

flavor conservative neutral currents.

III. B DECAY

The process Bþ → Kþlþl− for charged leptons l� is
due to b → slþl− transitions. In the model, this process
can be induced at tree level through the neutral weak
bosons Z1 and Z2 as shown in Fig. 1.

A. Fundamental couplings

1. The b− s−Z1ð2Þ coupling

First, according to the neutral current Lagrangian in (39),
the FCNC transition b → s in the first vertex of Fig. 1, is
described by the Lagrangian:

Lsb ¼
g
2
½sLγμðZμ

1g̃
ð23Þ
L2 þ Zμ

2g̃
ð23Þ
L3 ÞbL

þ sRγμðZμ
1g̃

ð23Þ
R2 þ Zμ

2g̃
ð23Þ
R3 ÞbR� þ H:c:; ð40Þ

where:

g̃ð23ÞL;Rm ¼ ðVD†
L;RÞ2jg

ðDjÞ
L;RmðVD

L;RÞj3; ð41Þ

with Dj ¼ ðd1; d2; d3;J 1;J 2Þ. Separating the ordinary
fermions Da ¼ ðd1; d2; d3Þ from the new ones Dα ¼
ðJ 1;J 2Þ, we can write the above coupling as:

g̃ð23ÞL;Rm ¼ ðVD†
L;RÞ2ag

ðDaÞ
L;RmðVD

L;RÞa3 þ ðVD†
L;RÞ2αg

ðDαÞ
L;RmðVD

L;RÞα3:
ð42Þ

Taking into account that according to Tables II–V for the
down-type sector, only the left-handed ordinary down
quarks exhibits family dependence, then the left-handed
couplings in (42) expands as:

g̃ð23ÞLm ¼ gðd1ÞLm ðVD†
L Þ21ðVD

L;RÞ13
þ gðd2;3ÞLm ½ðVD†

L Þ22ðVD
L;RÞ23 þ ðVD†

L;RÞ23ðVD
L;RÞ33�

þ gðDαÞ
Lm ðVD†

L Þ2αðVD
L;RÞα3; ð43Þ

while the right-handed couplings (family universal) cancel
out,

g̃ð23ÞRm ¼ 0: ð44Þ

From the unitary constraint (18), we find the following
relation:

ðVD†
L Þ22ðVD

L Þ23 þ ðVD†
L Þ23ðVD

L Þ33
¼ −ðVD†

L Þ21ðVD
L Þ13 − ðVD†

L Þ2αðVD
L Þα3; ð45Þ

which, after replacing in (43), we obtain:

g̃ð23ÞLm ¼ ðVD†
L Þ21ðVD

L Þ13½gðd1ÞLm − gðd2;3ÞLm �
þ ðVD†

L Þ2αðVD
L Þα3½gðDαÞ

Lm − gðd2;3ÞLm �: ð46Þ

We see that in a family universal scenario, where the

coupling gðd2;3ÞLm would be the same as for gðd1ÞLm and gðDαÞ
Lm , the

above coupling cancel out, suppressing the FCNC tran-
sition b → s. However, the model distinguish these cou-
plings, according to the family index. Specifically, using
the values from Table II, we obtain the left-handed neutral
couplings for the b − s interaction shown in the first row
from Table VI.

2. The e+ ðμ+ Þ− e− ðμ− Þ−Z1ð2Þ coupling

On the other hand, the neutral coupling for the decays
Z1;2 → lþ

a l−
a in the second vertex from Fig. 1 for la ¼ e

and μ, is described by:

Ll ¼ g
2

h
lLaγμðZμ

1g̃
ðaaÞ
L2 þ Zμ

2g̃
ðaaÞ
L3 ÞlLa

þ lRaγμðZμ
1g̃

ðaaÞ
R2 þ Zμ

2g̃
ðaaÞ
R3 ÞlRa

i
; ð47Þ

with

g̃ðaaÞL;Rm ¼ ðVE†
L;RÞajg

ðEjÞ
L;RmðVE

L;RÞja; ð48Þ

for Ej ¼ ðee; eμ; eτ; E1; E2Þ. By using the unitary con-
straint, we obtain for the left-handed couplings of the
charged leptons:

g̃ðaaÞLm ¼ gðe
e;eμÞ

Lm þ jðVE
LÞ3aj2½gðe

τÞ
Lm − gðe

e;eμÞ
Lm �

þ jðVE
LÞαaj2½gðEαÞ

Lm − gðe
e;eμÞ

Lm �; ð49Þ

and for the right-handed ones, we obtain:

g̃ðaaÞRm ¼ gðe
e;eτÞ

Rm þ jðVE
RÞ2aj2½gðe

μÞ
Rm − gðe

e;eτÞ
Rm �

þ jðVE
RÞαaj2½gðEαÞ

Rm − gðe
e;eτÞ

Rm �: ð50ÞFIG. 1. Decay Bþ→Kþlþl− through neutral gauge bosons
Z1;2.
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In this case, we see that the first term of the above equations
do not depend on the flavor numbera (it is the same for e� as
for μ�). However, the subsequent terms depends explicitly
from the ia components of the fermionic biunitary matrices,
due to the nonuniversality of the neutral couplings. Since, in
general, each component of the matrices are different, we
will obtain a distinction between the couplings to electrons
and to muons. As a consequence, the ratio of the branching
of the Bþ → Kþeþe− and Bþ → Kþμþμ− deviates from
one, as suggests the LHCb data. Again, using the values
from Tables II–V for the charged leptons, we obtain the
neutral couplings for Z1;2 → e�ðμ�Þ in Tables VI and VII,
for left- and right-handed leptons, respectively.

B. Effective operators

From the neutral Lagrangians in (40) and (47), we obtain
the matrix element for the b → slþ

a l−
a process:

iMfi ¼−
ig2

4
½usγμðg̃ð23ÞLm LÞub�Dμν½uaγνðg̃ðaaÞLm Lþ g̃ðaaÞRm RÞva�;

ð51Þ

where us;b;a are the wave functions of the fermions s, b, and
la, respectively, and va of antileptons l̄a, while Dμν is the
propagator of the intermediary gauge bosons, defined in the
Feynman gauge as:

Dμν ¼ −igμν

q2 −M2
Zm

: ð52Þ

At low energies, the momentum transfer through the
intermediary particles is negligible in relation to their
masses. Thus, the above matrix element become:

iMfi ≈ −
ig2

4M2
Zm

usγμðg̃ð23ÞLm LÞubuaγμðg̃ðaaÞLm Lþ g̃ðaaÞRm RÞva:

ð53Þ

The above matrix element can be derived from the
following effective Hamiltonian:

HNP
eff ¼

g2

4M2
Zm

½s̄ðg̃ð23ÞLm γμLÞb�
h
laγ

μðg̃ðaaÞLm Lþ g̃ðaaÞRm RÞla

i
þ H:c:; ð54Þ

where NP is the label for new non-SM physics, which affect
the ordinary SM contribution, described by the Wilson
operators through the effective Hamiltonian [18–20]:

HSM
eff ¼ −

4GFffiffiffi
2

p VtbV�
ts

X
i

½CSM
i Oi þ C0SM

i O0
i� þ H:c:; ð55Þ

where the dominant Wilson coefficients are CSM
i ¼ CSM

9;10,
with

O9 ¼
αem
4π

½s̄γμLb�½laγ
μla�;

O10 ¼
αem
4π

½s̄γμLb�½laγ
μγ5la�: ð56Þ

TABLE VI. Neutral current couplings for the left-handed fermions b − s, e�, and μ�.

f̄afb g̃ðabÞL2 g̃ðabÞL3

s̄b 2
3
gX
g ðVD†

L Þ21ðVD
L Þ13Sθ þ 1

CW
ðVD†

L Þ2αðVD
L Þα3 2

3
gX
g ðVD†

L Þ21ðVD
L Þ13 − 1

CW
ðVD†

L Þ2αðVD
L Þα3Sθ

eþe− ð−1þ 2S2WÞ 1
CW

− 2 gX
g jðVE

LÞ31j2Sθ ð1 − 2S2WÞ Sθ
CW

− 2 gX
g jðVE

LÞ31j2
þð 1

CW
− 2 gX

g SθÞjðVE
LÞ41j2 þ ð 1

CW
− 4

3
gX
g SθÞjðVE

LÞ51j2 −ð SθCW
þ 2 gX

g ÞjðVE
LÞ41j2 − ð SθCW

þ 4
3
gX
g ÞjðVE

LÞ51j2
μþμ− ð−1þ 2S2WÞ 1

CW
− 2 gX

g jðVE
LÞ32j2Sθ ð1 − 2S2WÞ Sθ

CW
− 2 gX

g jðVE
LÞ32j2

þð 1
CW

− 2 gX
g SθÞjðVE

LÞ42j2 þ ð 1
CW

− 4
3
gX
g SθÞjðVE

LÞ52j2 −ð SθCW
þ 2 gX

g ÞjðVE
LÞ42j2 − ð SθCW

þ 4
3
gX
g ÞjðVE

LÞ52j2

TABLE VII. Neutral current couplings for the right-handed fermions b − s, e�, and μ�.

f̄afb g̃ðabÞR2 g̃ðabÞR3

s̄b 0 0
eþe− 8

3
ð3
4

S2W
CW

− gX
g SθÞ þ 2 gX

g jðVE
RÞ21j2Sθ − 8

3
ð3
4

S2W
CW

Sθ þ gX
g Þ þ 2 gX

g jðVE
RÞ21j2

þ 4
3
gX
g jðVE

RÞ41j2Sθ þ 2
3
gX
g jðVE

RÞ51j2Sθ 4
3
gX
g jðVE

RÞ41j2 þ 2
3
gX
g jðVE

RÞ51j2
μþμ− 8

3
ð3
4

S2W
CW

− gX
g SθÞ þ 2 gX

g jðVE
RÞ22j2Sθ − 8

3
ð3
4

S2W
CW

Sθ þ gX
g Þ þ 2 gX

g jðVE
RÞ22j2

þ 4
3
gX
g jðVE

RÞ42j2Sθ þ 2
3
gX
g jðVE

RÞ52j2Sθ 4
3
gX
g jðVE

RÞ42j2 þ 2
3
gX
g jðVE

RÞ52j2
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Putting together both Hamiltonians, Eqs. (54) and (55), and
taking the approximated value of

GFαemffiffiffi
2

p
π

VtbV�
ts ≈

1

ð36 TeVÞ2 ; ð57Þ

we obtain the total effective Hamiltonian:

Heff ¼HSM
eff þHNP

eff

¼−
1

ð36TeVÞ2
�
CSM
9 −

g2ð36TeVÞ2
8M2

Zm

g̃ð23ÞLm ðg̃ðaaÞLm þ g̃ðaaÞRm Þ
�

×ðs̄γμLbÞðlaγ
μlaÞ

−
1

ð36TeVÞ2
�
CSM
10 þg2ð36TeVÞ2

8M2
Zm

g̃ð23ÞLm ðg̃ðaaÞLm − g̃ðaaÞRm Þ
�

×ðs̄γμLbÞðlaγ
μγ5laÞ; ð58Þ

from where we identify the total Wilson coefficients:

CðaÞ
9 ¼ CSM

9 þ CNPðaÞ
9 ; CðaÞ

10 ¼ CSM
10 þ CNPðaÞ

10 ; ð59Þ

with:

CNPðaÞ
9 ¼ −

g2ð36 TeVÞ2
8M2

Zm

g̃ð23ÞLm ðg̃ðaaÞLm þ g̃ðaaÞRm Þ ð60Þ

CNPðaÞ
10 ¼ g2ð36 TeVÞ2

8M2
Zm

g̃ð23ÞLm ðg̃ðaaÞLm − g̃ðaaÞRm Þ; ð61Þ

where a sum over repeated indicesm ¼ f1; 2g is implied in
the right terms. For the SM contributions, we use the values
CSM
9 ≈ −CSM

10 ≈ 4.1 [20].

C. e− μ relative branching ratio

The LHCb collaboration recorded a measurement of the
ratio of the branching fractions of Bþ → Kþμþμ− and
Bþ → Kþeþe− decay, which is given by:

RK ¼
R q2max

q2min

dΓ½Bþ→Kþμþμ−�
dq2 dq2R q2max

q2min

dΓ½Bþ→Kþeþe−�
dq2 dq2

; ð62Þ

within the dilepton invariant mass squared range
1 < q2 < 6 GeV2=c4. In terms of the Wilson coefficients,
RK is [21]:

RK ¼ jCðμÞ
9 j2 þ jCðμÞ

10 j2

jCðeÞ
9 j2 þ jCðeÞ

10 j2
: ð63Þ

By expanding the coefficients in SM and NP contributions
according to (59), and taking into accout the lepton
universality of the SM, we obtain:

RK ¼ jCSM
9 þ CNPðμÞ

9 j2 þ jCSM
10 þ CNPðμÞ

10 j2

jCSM
9 þ CNPðeÞ

9 j2 þ jCSM
10 þ CNPðeÞ

10 j2
: ð64Þ

By assuming that the above expression corresponds to
the experimentally measured, we can fit the free parameters
of the model according to the reported value [7]

RK ¼ 0.745þ0.090
−0.074 � 0.036: ð65Þ

The free parameters are classified into two categories.
First, the gauge parameters, corresponding to the Z0 gauge
boson mass, the gauge coupling constant of the Uð1ÞX
symmetry, and the Z − Z0 mixing angle: ðMZ0 ; gX; SθÞ.
Second, the fermion parameters which arise from the
biunitary transformations that rotate the fermion flavors
into mass states, according to (13), and that depend from
the Yukawa couplings and the VEVs of the Higgs fields. By
using the scheme shown in Ref. [14], these matrices can be
parametrized as functions of mixing angles. After some
simplifications, as shown in Appendix B, we are left with
six free parameters: two ratios of Yukawa couplings, rJ ¼
hJ =hu and rE ¼ hE=hu, where hJ ;E are the couplings of the
extra charged fermions shown in the matrices in Eqs. (B22)
and (B26), while hu is the coupling of the ordinary up-type
quarks according to (B20), the two masses mJ and mE,
corresponding to the new down-type quarks and charged
leptons, and two mixing angles from the left- and right-
handed charged leptons, θEL

13 and θER
25 , which we express

through their tangents tEL
13 and tER

25 . All other mixing angles
can be written as function of these two angles, as shown in
Eq. (B28). In particular, as shown in Tables VI and VII, the
neutral current couplings depends on the ij ¼ 2a, 3a, 4a,
and 5a bi-unitary components with a ¼ 1 for electrons and
2 for muons. Explicitly these components can be fully
written as functions of θEL

13 and θER
25 , as shown in Eqs. (B30)

and (B31).
Thus, the space of parameters is reduced to 9 variables:

(MZ0 , mJ, mE, gX, rJ , rE , Sθ, t
EL
13 , t

ER
25 ). However, some of

these parameters are constrained from theoretical condi-
tions and other experimental observables. For example, the
massMZ0 has lower limits from direct detection in colliders.
Experiments at LHC collected data at

ffiffiffi
s

p ¼ 13 TeV for
new resonances in dielectron and dimuon final states,
where lower limits on MZ0 between 3.5 TeV and
4.5 TeV at 36.1 fb−1 by the ATLAS collaboration, and
3.5 TeV and 4 TeV at 12.4 fb−1 by CMS are reported [22].
We take the lowest experimental limit of 3.5 TeV. Also, in
models with extra gauge neutral bosons, the Z − Z0 mixing
angle is suppressed as the inverse of the squared Z0-mass
and by electroweak observables, to values up to ∼10−3,
which has a negligible effect on the total branching decays.
Thus, for simplicity, we ignore this mixing and take Sθ ¼ 0.
The coupling gX is constrained by Z0 production limits. For
example, in some models with the same gauge couplings as
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the model proposed here, limits on dilepton events pp →
Z0 → ll at LHC allow values as large as gX ≈ 0.4 [12,16].
Search for extra fermions can change according to specific
model-dependent assumptions [23]. We use a safe scenery
with mass values around the TeV scale. Finally, we assume
one common Yukawa ratio rh ¼ rJ ¼ rE .
In summary, if we fix the parameters as described above,

we are left with three free parameters, two mixing angles
and one Yukawa ratio ðtEL

13 ; t
ER
25 ; rhÞ, which we fit according

to the experimental bound in (65). The first aspect to note is
that the couplings to electrons have contributions from the
biunitary components ðVE

LÞa1 for a ¼ 3, 4, 5 and ðVE
RÞa1 for

a ¼ 2, 4, 5, while the muons couple through ðVE
LÞa2 and

ðVE
RÞa2, as can be verified in tables VI and VII. So, the

flavor nonuniversality in the model arise from the differ-
ence between the a1 and a2 components of the biunitary
matrices, which occur according to Eqs. (B30) and (B31).
The plots in Fig. 2 highlight the difference between
electrons and muons components as function of the mixing
tangent tEL

13 , where we have fixed the other parameters in an
arbitrary form, which only will shift the curves but does not
change their fundamental form. We see that for the left-
handed leptons in the first plot, the 31 (red continuous
curve) and 32 (blue continuous curve) components exhibit
a small difference, which favored a universal lepton
coupling. The largest lepton universality violation occur
due to the 41 and 42 components near to tEL

13 ¼ 0.13. The
right-handed leptons, on the other hand, exhibit larger
violation terms than the left-handed ones, due mainly to the
21 and 22 components, as shown in the second plot. The
largest differences occur for tEL

13 far from 1, which may
generate two scenarios: for small and for large tEL

13 mixing.
However, as we will discuss below, this angle is suppressed
as the muon to top quark mass ratio mμ=mt, thus the

scenery with small tEL
13 will be favored.

Numerically, we found that the reported anomaly can be
fitted only for large Yukawa ratios, above rh ≳ 45, i.e., the
Yukawa couplings that mix the new fermions J and E with
the ordinary SM fermions must be larger than the couplings

among the ordinary up-type quarks in a factor of the order
of 4.5 × 101, which corresponds to the order of the absolute
values if we assume couplings of the ordinary particles at
the order of 1. An important implication to have large
Yukawa couplings is the possibility to find a Landau pole in
the Yukawa coupling below the Planck scale, which would
reduce the perturbative regimen of the model. A deep
analysis in this aspect require a careful study of the
renormalization group equations of the theory, which falls
outside the scope of this work.
Regarding the mixing angles, the left plot in Fig. 3

displays allowed points in the ðtEL
13 ; t

ER
25 Þ plane for rh ¼ 50,

where a small but non-null mixing angle θEL
13 is require,

while θER
25 can be as large as 42°, which occur for θEL

13 ≈ 4.6°.
According to (B18), a θER

25 mixing angle near 45° (i.e.,
tER
25 ∼ 1) represents an scenery where all the couplings with
the new leptons E have the same strength. However, most
of the allowed points spread around a small 25 mixing,
where the couplings of the new leptons is larger than their
mixing coupling with the ordinary leptons. On the other
hand, small θEL

13 mixing is expected according to (B14),
where the tangent of this angle is proportional to the VEV
ratio v3=v1. Since v1 is proportional to the top quark mass,
while v3 is proportional to the muon mass as seen in
Eqs. (B21) and (B27), then this mixing angle is suppressed
by the ratio mμ=mt. If we increase the Yukawa ratio rh,
larger mixing angles can be obtained. The plot in the right
of Fig. 3 shows contour plots for different ratios rh from 50
to 90. Regarding the other mixing angles, they can be
obtained from Eqs. (B28) and (B29) once θEL

13 and θER
25 are

fixed in accordance with the above allowed regions.
On the other hand, the branching ratio is also very

sensitive to the masses of the extra fermions,mE andmJ. To
explore this, in Fig. 4 we display the allowed contours
for the heavy quarks and charged leptons compatible with
the limits in Fig. 3 for rh ¼ 50. We choose the two limits
for the θER

25 angle, at 0 and 0.8, for the central value
θEL
13 ¼ 0.08. We see that large mass values of one fermion,
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E
R) biunitary components as function of the mixing tangent tEL

13 obtained from Eqs. (B30)
and (B31). Each component ij couple to electrons when j ¼ 1 (red lines) and to muons when j ¼ 2 (blue lines).
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require smaller masses of the other one, which is confined
in an energy range attainable by the LHC. Thus, the
anomaly in the meson decay is compatible with new
physics at the TeV scale.
In the above discussion, we assume real mixing rotations

for the mass eigenstate transformations of the fermions. As
a results, all the neutral current couplings in Tables VI and
VII take real values. Now we want to explore the role of
possible complex phases in the biunitary transformations.
For the lepton couplings, we see in Tables VI and VII that
the mixing matrices contributes as the squared of their
magnitudes jðVE

LÞijj, so any complex phase associated to
this sector does not have any effect in the branching ratios.

For the quark couplings g̃ð23ÞLm , we see that they can be
complex in general. In particular, if we neglect the Z − Z0
mixing angle, the only contribution to the b → s transition

is the first term of g̃ð23ÞL3 , which may provide a relative

complex phase between ðVD
L Þ21 and ðVD

L Þ13, which we call
ϕ. Thus, in this more general scenario, the new physics of
the Wilson coefficients in (60) and (61) will have a global

complex term eiϕ coming from the coupling g̃ð23ÞL3 . If ϕ ¼ 0,
we reproduce the same physics as shown above. If ϕ ¼ π,
we obtain again real coefficients, but with opposite relative
signs. For 0 < ϕ < π, theWilson coefficients will have new
complex contributions. In particular, if we take the same
parameters as in Fig. 3, we can evaluate the ratio RK for
different values of the complex phase. For example, Fig. 5
shows the branching ratio as a function of the phase for
rh ¼ 50, tER

25 ¼ 0, and tEL
13 between the limits 0.04 and 0.12.

The shaded band is the allowed region according to the
reported anomaly. We first see that there are allowed
solutions for small complex phases, obtaining the largest
value at ϕ ¼ π=4 when tEL

13 ¼ 0.08. Second, we note that
for ϕ ¼ π, the curves lies outside the allowed region. Thus,
the sign (or more general, the phase) of the new physics
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FIG. 3. Allowed points for the tangent of the mixing angles θEL
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25 for Yukawa ratio rh ¼ 50 (left plot), and for Yukawa ratios
spanned from rh ¼ 50 to 90 (right plot) compatible with the experimental limit on RK .
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0
12 6 4 3

5
12 2

2
3

3
4

5
6

0.6

0.7

0.8

0.9

1.

1.1

1.2

0.04

0.06

0.08
0.12

t13
EL

FIG. 5. Muon to electron branching ratio as function of the
complex phase of g̃ð23ÞL3 for tER

25 ¼ 0 and tEL
13 ¼ 0.04, 0.06, 0.08,

and 0.12. The shaded area is the reported bound.

B MESON DECAY ANOMALY WITH A NONUNIVERSAL … PHYS. REV. D 98, 035036 (2018)

035036-11



contribution is essential to determine the best scenario to
explain the observed anomaly.

IV. MODEL IN THE DECOUPLING LIMIT

The mixing couplings with the extra particles matter E1;2,
J 1;2, and T occurs through the fermionic biunitary
matrices ðVL;RÞiα, with i the flavor index for the ordinary
matter and α for the new matter. In the above section, we
highlighted the importance of the new fermions in the
simple scenary with “natural” parametrization. As a result,
relatively large mixing couplings (strong coupling limit) is
required in order to fit the observed anomaly of the Bs
decay. If we reduce the mixing couplings to zero, i.e., if the
iα components of the mass matrices are ignored, then we
obtain the decoupling limit, where only ordinary fermions
participate in the decay process. In particular, according to
(B12) and (B14), the leptonic 13 left-handed mixing
tangent would diverge (tEL

13 → ∞) in this limit, while from
(B18) its 25 right-handed tangent would cancel out
(tER
25 ¼ 0). Figure 6 displays the branching ratio for different

tEL
13 values and tER

25 ¼ 0 as function of the Yukawa ratio rh.
We observe that for small tEL

13 values (below 1), there are
solutions in the shaded region of the reported interval for
RK . However, for tEL

13 ≥ 1, the theoretical values of RK

increases above the allowed region. In the decoupling limit,
with large θ13 angles, the branching ratio goes to the SM
limit RSM

K ¼ 1. Thus, the model in this scenario does not
account for the reported anomaly. However, we can relax
the natural parametrization to more general cases in order to
obtain a feasible scenario in the decoupling limit. For that,
we first reparametrize the neutral current couplings from
Tables VI and VII in the decoupling limit as:

g̃ð23ÞL2 ¼ 2gX
3g

ðVD†
L Þ21ðVD

L Þ13Sθ;

g̃ð23ÞL3 ¼ 1

Sθ
g̃ð23ÞL2 ;

g̃ðaaÞL2 ¼ −u9 −
2gX
g

jðVE
LÞ3aj2Sθ;

g̃ðaaÞL3 ¼ u9Sθ −
2gX
g

jðVE
LÞ3aj2;

g̃ðaaÞR2 ¼ u10 − u9 þ
2gX
g

�
−
4

3
þ jðVE

RÞ2aj2
�
Sθ;

g̃ðaaÞR3 ¼ ðu9 − u10ÞSθ þ
2gX
g

�
−
4

3
þ jðVE

RÞ2aj2
�
; ð66Þ

with

u9 ¼
1 − 2S2W
CW

; u10 ¼
1

CW
: ð67Þ

By ignoring the Z − Z0 mixing angle, the Wilson coef-
ficients for new physics defined by (61) become:

CNPðaÞ
9 ¼ g2Xð36 TeVÞ2

8M2
Z0

KðaÞ
9 ;

CNPðaÞ
10 ¼ g2Xð36 TeVÞ2

8M2
Z0

KðaÞ
10 ; ð68Þ

where the dependency on the flavor is separated in the
coefficients

KðaÞ
9 ¼ 4

3
ðVD†

L Þ21ðVD
L Þ13

�
4

3
− jðVE

RÞ2aj2þjðVE
LÞ3aj2

�
;

KðaÞ
10 ¼ 4

3
ðVD†

L Þ21ðVD
L Þ13

�
4

3
− jðVE

RÞ2aj2− jðVE
LÞ3aj2

�
: ð69Þ

Thus, the theoretical muon to electron branching ratio in
(64) become:

RK ¼

���CSM
9 þ g2Xð36 TeVÞ2

8M2

Z0
KðμÞ

9

���2 þ ���CSM
10 þ g2Xð36 TeVÞ2

8M2

Z0
KðμÞ

10

���2���CSM
9 þ g2Xð36 TeVÞ2

8M2

Z0
KðeÞ

9

���2 þ ���CSM
10 þ g2Xð36 TeVÞ2

8M2

Z0
KðeÞ

10

���2 :
ð70Þ

In order to compare with the experimental data, we
define the new physics deviation as:

ΔCa ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi���CSM

9 þ CNPðaÞ
9

���2 þ ���CSM
10 þ CNPðaÞ

10

���2
r

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jCSM

9 j2 þ jCSM
10 j2

q
; ð71Þ
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FIG. 6. Muon to electron branching ratio as function of
the Yukawa coupling ratio rh for tER

25 ¼ 0 and tEL
13 ¼ 0.1, 0.5,

0.8, 1 and 10. The shaded area is the ratio experimentally
reported in [7].
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so, the ratio (70) become:

RK ¼

0
B@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jCSM

9 j2 þ jCSM
10 j2

q
þ ΔCμffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jCSM
9 j2 þ jCSM

10 j2
q

þ ΔCe

1
CA

2

: ð72Þ

Taking into account that CSM
9 ≈ −CSM

10 ≈ 4.1, and the range
for RK in (65), we find in Fig. 7 the allowed region for the
new physics deviations for muons and electrons, where the
SM limit outside the region is shown. We must to compare
the above region with the theoretical deviation, determined
by the definition (71) and the parameters from (68). For
convenience, we redefine some parameters. First, we define
the effective flavor Uð1ÞX coupling constants as:

ðgðaÞX Þ2 ¼ g2XK
ðaÞ
9 : ð73Þ

Second, we define the two ratios:

Pa ¼
CNPðaÞ
10

CNPðaÞ
9

; K21 ¼
CNPðμÞ
9

CNPðeÞ
9

: ð74Þ

Thus, the new physics contribution for the ninth electron
Wilson coefficient is:

CNPðeÞ
9 ¼ ðgðeÞX Þ2ð36 TeVÞ2

8M2
Z0

; ð75Þ

while all the remaining coefficients can be parametrized
entirely as functions of this as:

CNPðμÞ
9 ¼ K21C

NPðeÞ
9 ; CNPðeÞ

10 ¼ PeC
NPðeÞ
9 ;

CNPðμÞ
10 ¼ PμK21C

NPðeÞ
9 : ð76Þ

reducing the space of parameters to ðPe; Pμ; K21; C
NPðeÞ
9 Þ

which we must to fit in order to obtain the allowed
deviations according to Fig. 7. Before doing this, we will
show that the model predicts a relation between the
parameters Pe and Pμ. We see from (68) and the definition
in (69) that:

1 − Pe

1 − Pμ
¼ K21

jðVE
LÞ31j2

jðVE
LÞ32j2

; ð77Þ

where ðVE
LÞ3a are the 31 and 32 components of the lepton

left-handed matrix, that in the decoupling limit takes the
form:

VE
L ¼

�
VE
SM 0

0 VE
new

�
; ð78Þ

with:

VE
SM ¼ RðθEL

23 ÞRðθEL
13 ÞRðθEL

12 Þ; ð79Þ

where each rotation matrix RðθÞ takes the same form as
Eqs. (B5) for the quarks, and each angle is defined in (B14).
In particular, we find for the 31 and 32 components that:

ðVE
LÞ31 ¼ −sEL

12 ; ðVE
LÞ32 ¼ cEL

12 ; ð80Þ

so that (77) become:

1 − Pe

1 − Pμ
¼ K21jtEL

12 j2: ð81Þ

This condition is equivalent to:

ðCNPðeÞ
9 − CNPðeÞ

10 Þ=ðCNPðμÞ
9 − CNPðμÞ

10 Þ ¼ jtEL
12 j2: ð82Þ

According to (B28), the limit tEL
12 ¼ 1 is assumed in the

natural parametrization. If in addition Pe ¼ −1, we obtain
for the new physics the same SM relation between the

Wilson coefficients: CNPðeÞ
9 ¼ −CNPðeÞ

10 . However, we did
not find any allowed solution on this situation, as shown in
graph (a) of Fig. 8, where the curves are the theoretical
predictions for K21 ranging from 0 to very large values
(K21 → ∞). However, if we deviate from this scenario by
choosing other values for Pe, we may fit the parameters into
the anomaly region in the decoupling limit. For example,
the graph (b) in the same figure displays the theoretical
solutions for Pe ¼ −5 where solutions into the allowed
region are found in the interval K21 ¼ ½1.2; 5�. From the
plot, we can estimate the bound ΔCe ≥ −2.6 for the
electron, while for the muon we obtain the allowed interval
−3.2 ≤ ΔCμ ≤ −2.9 when the former obtains its minimum
value. Graph (c) shows the solutions for Pe ¼ 1 for the
interval 0 < K21 < 0.9. Since K21 and tEL

12 are not zero,

SM

2 1 0 1 2
2

1

0

1

2

FIG. 7. Allowed region for the muon and electron new physics
deviation defined as equation (71) compatible with the exper-
imental data. The central blue point is the SM limit.
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according to (82), this case also implies that Pμ ¼ 1. Thus,

we found scenarios where CNPðaÞ
9 ¼ CNPðaÞ

10 for both a ¼ e
and μ. In the limit K21 → 0, corrections for the muon ΔCμ

does not exists, while for electron the allowed range
according to graph (c) is 0.5 ≤ ΔCe ≤ 1.3.
We also may explore scenarios with tEL

12 ≠ 1. In particu-
lar, the case with Pe ¼ −1 can reproduce the reported data
by properly fitting the other parameters, as shown in Fig. 9.
In graph (a), we obtain solutions for the small ratio
K21 ¼ 0.1, and in the range 0 ≤ tEL

12 ≤ 0.72. Above this
limit, the curves falls outside the allowed region, and
ΔCe ¼ 0 in the limit tEL

12 ¼ 0. We also see that the curves
exhibits the bound ΔCμ ≥ −1.8. In the case with K21 ¼ 1,
graph (b) shows a larger range for the deviations, while
allowed values extends to the bound tEL

12 < 1. For the large
value K21 ¼ 10, the curves are shrunk again, as shown in
graph (c), where 0 ≤ tEL

12 ≤ 0.51.
On the other hand, the ratio K21 also represents the

relative coupling of e and μ to the Z0 boson. Taking into
account the Eqs. (68) and the definition (73), we obtain
that:

K21 ¼
CNPðμÞ
9

CNPðeÞ
9

¼ ðgðμÞX Þ2

ðgðeÞX Þ2
; ð83Þ

while the Wilson coefficient CNPðeÞ
9 in Eq. (75) provides a

relation between the effective electron coupling constant

gðeÞX and the Z0 mass. For example, the plot (a) in
Fig. 10 shows the allowed regions of the electron
Wilson coefficient for new physics as function of the ratio

K21 ¼ CNPðμÞ
9 =CNPðeÞ

9 , with tEL
12 ¼ 1 and different values of

Pe: 0.2,0.5,1,2,5, and 10. The dashed horizontal line is the
SM limit CSM

9 ¼ 4.1, where we can see that corrections can
be smaller, at the same order or, eventually larger than the
SM prediction. We see that K21 < 1, which means that
solutions in this scenario are found if electrons couple

stronger to the Z0 boson than muons. Second, if CNPðeÞ
9

increases, then Pe decreases in accordance with the

definition Pe ¼ CNPðeÞ
10 =CNPðeÞ

9 . So, we see in the plot that
the lowest bounds are large for small values of Pe. Taking
into account these bounds, the plot (b) displays the allowed

region for the effective electron coupling gðeÞX and the Z0

mass for a muon-phobic scenario with K21 ¼ 0 (gðμÞX ¼ 0).
The plot (c) shows the regions for K21 ¼ 0.53, just at the
upper limit of Pe ¼ 10 as observed in plot (a), and
described by the green dashed line in (c). The conversion

to the muon coupling is obtained by doing gðeÞX ×
ffiffiffiffiffiffiffiffiffi
0.53

p
,

according to (83). In general, we see that large ratios Pe

Pe 1
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FIG. 8. New physics deviations of the Wilson coefficients for tEL
12 ¼ 1 and different values of Pe. In (a), there are not solutions through

the allowed region for any value of K21. In (b) and (c) solutions are found for 1.2 ≤ K21 ≤ 5 and 0 < K21 ≤ 0.9, respectively. All the
theoretical curves cross the SM limit (blue central point).
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FIG. 9. New physics deviations of the Wilson coefficients for Pe ¼ −1 and (a) K21 ¼ 0.1, (b) 1 and (c) 10. The curves are for different
ranges of tEL

12 .

R. MARTINEZ, F. OCHOA, and J. M. QUIMBAYO PHYS. REV. D 98, 035036 (2018)

035036-14



favor regions including small gauge couplings constants,
which increase as the Z0 boson become heavier.

V. CONCLUSIONS

Observational facts as the fermion mass hierarchies,
mixing schemes, oscillation of neutrinos and experimental
anomalies as the B meson decay may be manifestations of
new physics beyond the SM. Motivated initially by the
fermion mass hierarchy problem, we propose a nonuniver-
sal Uð1Þ0 extension with three Higgs doublets that may
reproduce masses and mixing schemes for quarks, charged
and neutral leptons. In addition to new charged and neutral
Higgs particles, the model introduces other particles from
the following conditions:
(1) Due to the new abelian gauge symmetry, a second

neutral gauge boson Z0 is naturally introduced.
(2) In order to break the Uð1Þ0 symmetry and provide

mass to the Z0 boson, a new Higgs singlet with large
VEV is added.

(3) Also, the new Z0 gauge boson induces chiral anoma-
lies, which may spoil the renormalization of the
model. In order to restore the cancellation of these
anomalies, we must assign suitable Uð1Þ0 charges to
the fermions. This assignation is done to obtain flavor
nonuniversal interactions for quarks and leptons,
which requires extra quarks and charged leptons.

The model exhibits lepton universality violation that may
explain the B meson decay anomaly into electron and muon

pairs reported by the LHCb collaboration. This observable
may test the new couplings of the model, in particular, the
anomaly is highly sensitive to the new quark and lepton
content of the model through their couplings with the Higgs
sector. They participate in the meson decay indirectly
through their mixing couplings with the ordinary quarks
b and s, and the charged leptons e and μ. Since these
mixings occur in a nonuniversal form, then the anomaly can
be explained and fitted for new physics at the TeV scale,
attainable to be proved in the LHC.
Although we choose an specific scheme to parameterize

the mass matrices for fermions and the mixing angles, they
are suppressed or enhanced by ratios of VEVs which we
preserve in the natural scheme. Specifically, the VEVof the
first Higgs doublet determine the scale of the top quark, i.e.,
v1=

ffiffiffi
2

p
∼ 173 GeV. The second VEV gives masses to the

quark b and the lepton τ at v2=
ffiffiffi
2

p
∼ 3 GeV. Finally, the

third VEV is of the order of the quark s and lepton μ mass,
at v3=

ffiffiffi
2

p
∼ 0.1 GeV. Thus, we expect mixing angles with

values of the order of the ratios of the phenomenological
fermions measured experimentally independent of the
chosen scheme to address the Yukawa free parameters.
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APPENDIX A: BLOCK DIAGONALIZATION

Let us take a generic matrix with arbitrary dimension of
the form:

M2 ¼
�

A C

CT D

�
; ðA1Þ

with A, D, and C submatrices whose elements obey the
hierarchy

A ≪ C ≪ D: ðA2Þ

The matrix (A1), as shown in Ref. [17], can be block
diagonalized approximately by a unitary rotation of the
form:

V ¼
�

I F

−FT I

�
; ðA3Þ

where I is an identity matrix, and F a small subrotation with
F ≪ 1. Keeping only up to linear terms on F, the rotation
gives:

VTM2V¼
�

A−CFT −FCT CþAF−FD

CT þFTA−DFT DþCTFþFTC

�
; ðA4Þ

which, by definition, must lead us to a diagonal block form

m2 ¼
�
a 0

0 d

�
; ðA5Þ

with a and d nondiagonal matrices, and 0 the null matrix.
By matching the upper right nondiagonal block in (A4) and
(A5), we obtain that Cþ AF − FD ¼ 0. Taking into
account the hierarchy in (A2), we may neglect the term
with A, finding the following approximate solution:

F ≈ CD−1: ðA6Þ

On the other hand, if we match the diagonal blocks in
(A4) and (A5), and using the solution (A6), we can obtain
the form of the submatrices a and b in terms of the original
blocks A, C, and D. We obtain at dominant order that:

a ≈ A − CD−1CT

b ≈D: ðA7Þ

The above matrices can be diagonalized independently.

APPENDIX B: PARAMETRIZATION OF THE
BIUNITARY MATRIX TRANSFORMATIONS

In this Appendix we obtain the parameters of the
biunitary transformations that rotate the flavor fermion
basis into mass basis.

1. Up sector

From the Yukawa Lagrangian (3), we obtain the follow-
ing mass matrix for the up-type quark sector:

MU ¼ 1ffiffiffi
2

p

0
BBB@

h113uv3 h122uv2 h133uv3 h12T v2

0 h221uv1 0 h21T v1

h311uv1 0 h331uv1 0

0 g2χuvχ 0 gχT vχ

1
CCCA; ðB1Þ

which diagonalizes through the biunitary matrices VU
LðRÞ. In

particular, as shown in Ref. [14], the left-handed matrix can
be expressed as the product of two mixing matrices of the
form:

VU
L ¼

�
1 ΘU†

L

−ΘU
L 1

��
VU
SM 0

0 VU
new

�
; ðB2Þ

where ΘU
L is a seesaw matrix that block-diagonalize the

mass matrix into one mass matrix of the ordinary SM
quarks and a heavy matrix that mixes the new quarks, while
VU
SM and VU

new diagonalize each of these matrices. For
simplicity, we assume diagonal exotic matrices, so that
Vf
new ¼ 1. The seesaw matrix is

ΘU†
L ¼

0
BBB@

h1
2T gχT þh12

2ug
2
χu

ðgχT Þ2þðg2χuÞ2
v2
vχ

h2
1T gχT þh22

1ug
2
χu

ðgχT Þ2þðg2χuÞ2
v1
vχ

0

1
CCCA; ðB3Þ

and the SM matrix has the form:

VU
SM ¼ R23ðθU23ÞR13ðθU13ÞR12ðθU12Þ; ðB4Þ

with

R12ðθU12Þ ¼

0
B@

cU12 sU12 0

−sU12 cU12 0

0 0 1

1
CA; ðB5aÞ

R13ðθU13Þ ¼

0
B@

cU13 0 sU13
0 1 0

−sU13 0 cU13

1
CA; ðB5bÞ

R23ðθU23Þ ¼

0
B@

1 0 0

0 cU23 sU23
0 −sU23 cU23

1
CA; ðB5cÞ
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and cUij ¼ cos θUij and sUij ¼ sin θUij. The angles θUij are
specified by their tangents tUij ¼ tan θUij, which are [14]

tU12 ¼
h122ugχT − h12T g

2
χu

h221ugχT − h21T g
2
χu

v2
v1

;

tU13 ¼
h133uh

33
1u þ h113uh

31
1u

ðh331uÞ2 þ ðh311uÞ2
v3
v1

; tU23 ¼ 0: ðB6Þ

Finally, the squared mass eigenvalues are

m2
u ¼

ðh113uh331u − h133uh
31
1uÞ2

ðh331uÞ2 þ ðh311uÞ2
v23
2
;

m2
c ¼

ðh221ugχT − h21T g
2
χuÞ2

ðgχT Þ2 þ ðg2χuÞ2
v21
2
;

m2
t ¼ ½ðh331uÞ2 þ ðh311uÞ2�

v21
2
;

m2
T ¼ ½ðgχT Þ2 þ ðg2χuÞ2�

v2χ
2
: ðB7Þ

2. Down sector

The mass matrix of the down-type quarks is

MD ¼ 1ffiffiffi
2

p

0
BBBBBBBB@

Σ11
d Σ12

d Σ13
d h111J v1 h121J v1

h213dv3 h223dv3 h233dv3 h212J v2 h222J v2

h312dv2 h322dv2 h332dv2 h313J v3 h323J v3

0 0 0 g1χJ vχ 0

0 0 0 0 g2χJ vχ

1
CCCCCCCCA
;

ðB8Þ
where Σ1k

d are one-loop mass components. The see-saw
matrix is

ΘD†
L ¼

0
BBBBBB@

h11
1J

g1χJ

v1
vχ

h12
1J

g2χJ

v1
vχ

h21
2J

g1χJ

v2
vχ

h22
2J

g2χJ

v2
vχ

h31
3J

g1χJ

v3
vχ

h32
3J

g2χJ

v3
vχ

1
CCCCCCA
; ðB9Þ

and the SM angles of VD
L;B are given by

tD12¼
Σ11
d h213dþΣ12

d h223dþΣ13
d h233d

ðh213dÞ2þðh223dÞ2þðh233dÞ2
1

v3
; tD13¼

Σ11
d h312dþΣ12

d h322dþΣ13
d h332d

ðh312dÞ2þðh322dÞ2þðh332dÞ2
1

v2
; tD23¼

h213dh
31
2dþh223dh

32
2dþh233dh

33
2d

ðh312dÞ2þðh322dÞ2þðh332dÞ2
v3
v2

; ðB10Þ

while the mass eigenvalues are

m2
d ¼

½ðΣ11
d h223d − Σ12

d h213dÞh332d þ ðΣ13
d h213d − Σ11

d h233dÞh322d þ ðΣ12
d h233d − Σ13

d h223dÞh312d�2
½ðh213dÞ2 þ ðh223dÞ2�ðh332dÞ2 þ ½ðh233dÞ2 þ ðh213dÞ2�ðh322dÞ2 þ ½ðh223dÞ2 þ ðh233dÞ2�ðh312dÞ2

;

m2
s ¼

½ðh213dÞ2 þ ðh223dÞ2�ðh332dÞ2 þ ½ðh233dÞ2 þ ðh213dÞ2�ðh322dÞ2 þ ½ðh223dÞ2 þ ðh233dÞ2�ðh312dÞ2
ðh332dÞ2 þ ðh322dÞ2 þ ðh312dÞ2

v23
2
;

m2
b ¼ ½ðh332dÞ2 þ ðh322dÞ2 þ ðh312dÞ2�

v22
2
;

m2
J1 ¼ ðg1χJ Þ2

v2χ
2
; m2

J2 ¼ ðg2χJ Þ2
v2χ
2
: ðB11Þ

3. Charged lepton sector: Left-handed

The mass matrix of the charged leptons is

ME ¼ 1ffiffiffi
2

p

0
BBBBBB@

0 heμ3ev3 0 he11Ev1 0

0 hμμ3ev3 0 hμ11Ev1 0

hτe2ev2 0 hττ2ev2 0 0

g1eχevχ 0 0 g1χEvχ 0

0 g2μχevχ 0 0 g2χEvχ

1
CCCCCCA
;

ðB12Þ

with left-handed matrix rotations:

ΘE†
L ¼

0
BBBBBB@

he1
1Eg

1
χEv1vχ

2m2

E2

heμ
3eg

2μ
χev3vχ

2m2

E1

hμ1
1Eg

1
χEv1vχ

2m2

E2

hμμ
3eg

2μ
χev3vχ

2m2

E2

heμ
3eg

1e
χev3vχ

2m2

E2
0

1
CCCCCCA
; ðB13Þ

and
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tEL
12 ≈

he11E
hμ11E

; tEL
13 ≈

g1χEh
eμ
3e

g1eχehe11E

v3
v1

;

tEL
23 ≈ −

2ðg1χEÞ3heμ3eðhττ2eÞ2
ðg1eχeÞ3hμ11Eðhe11EÞ2

v22v3
v31

: ðB14Þ

The mass values are

m2
e ¼

ðheμ3ehμ11E − hμμ3eh
e1
1EÞ2

ðhe11EÞ2 þ ðhμ11EÞ2
v23
2
;

m2
μ ¼

ðheμ3ehe11E þ hμμ3eh
μ1
1EÞ2

ðhe11EÞ2 þ ðhμ11EÞ2
v23
2
þ ðheμ3eÞ2v23

2
;

m2
τ ¼ ðhττ2eÞ2

v22
2
;

m2
E1 ¼ ½ðg1χEÞ2 þ ðg1eχeÞ2�

v2χ
2
;

m2
E2 ¼ ½ðg2χEÞ2 þ ðg2μχeÞ2� v

2
χ

2
: ðB15Þ

4. Charged lepton sector: Right-handed

In addition, we need the rotations for the right-handed
components of the charged leptons. To obtain these
parameters, we must construct the squared mass matrix
ME

R ¼ M†
EME, which is diagonalized by the right-handed

transformation VE
R. In this case, the rotation matrix is

expressed as:

VE
R ¼

�ΘE
R11 ΘET

R12

ΘE
R21 ΘE

R22

��
VER
SM 0

0 VER
new

�
; ðB16Þ

with:

ΘE
R11 ¼

0
B@

cER
14 0 0

0 cER
25 0

−sER
34 s

ER
14 0 cER

34

1
CA

ΘE
R12 ¼

 
sER
14 0 sER

34 c
ER
14

0 sER
25 0

!

ΘE
R21 ¼

 
−cER

34 s
ER
14 0 −sER

34

0 −sER
25 0

!

ΘE
R22 ¼

�
cER
34 c

ER
14 0

0 c25

�
; ðB17Þ

where the tangent of the mixing angles are

tER
25 ¼ g2μχe

g2χE
; tER

34 ¼ g1eχe
g1χE

;

tER
14 ¼ g1eχeffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðg1χEÞ2 þ ðg1eχeÞ2
q ; ðB18Þ

while the SM mixing angles are

tER
12 ¼ −

g1eχe½ðhe11EÞ2 þ ðhμ11EÞ2�
g1χEðhe11Eheμ3e þ hμ11Eh

μμ
3eÞ

v1
v3

;

tER
23 ¼ g1χEh

τe
2eðhe11Eheμ3e þ hμ11Eh

μμ
3eÞ

g1eχehττ2e½ðhe11EÞ2 þ ðhμ11EÞ2�
v23
v1v2

;

tER
13 ¼ ðg1χEÞ2hτe2ehττ2e

ðg1eχeÞ2½ðhe11EÞ2 þ ðhμ11EÞ2�
v2v3
v21

: ðB19Þ

5. Natural parametrization

In order to simplify the analysis, we separate the Yukawa
interactions in three parts. First, the couplings among the
ordinary SM fermions. Second, the interactions among
the new particle content. Finally, the mixing couplings of
the ordinary and the new particles. We assume a “natural”
limit, where each part couple independently with the same
strength. As a consequence, the mass matrices shares
Yukawa couplings in some components. For example,
in the up-type sector, by calling hijku ¼ hu, gχT ¼ gT ,
hjiT ¼ hT and g2χu ¼ gu, the mass matrix in (B1) become:

MU ¼ 1ffiffiffi
2

p

0
BBB@

huv3 huv2 huv3 hT v2
0 huv1 0 hT v1

huv1 0 huv1 0

0 guvχ 0 gT vχ

1
CCCA: ðB20Þ

In particular, in this limit, the mass of the top quark is

m2
t ¼ h2uv21; ðB21Þ

from where we obtain the VEV of the first Higgs triplet,
v1 ¼ mt=hu. In the same form, the down-type mass matrix
in (B8) is written as

MD¼ 1ffiffiffi
2

p

0
BBBBBB@

Σ11
d Σ12

d Σ13
d hJ v1 hJ v1

hdv3 hdv3 hdv3 hJ v2 hJ v2
hdv2 hdv2 hdv2 hJ v3 hJ v3
0 0 0 gJ vχ 0

0 0 0 0 gJ vχ

1
CCCCCCA
: ðB22Þ
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In this case, the masses of the quarks are

m2
d ∼ Σd; m2

s ¼ h2dv
2
3;

m2
b ¼

3

2
h2dv

2
2; m2

J ¼
1

2
g2J v

2
χ ; ðB23Þ

from where we obtain the VEVs for the other two Higgs
triplets and the singlet as functions of the quarks masses:
v2 ¼

ffiffiffi
2

p
mb=

ffiffiffi
3

p
hd, v3 ¼ ms=hd, and vχ ¼

ffiffiffi
2

p
mJ=gJ .

With this scheme, the mixing angles (B9) and (B10) can
be parametrized as:

ΘD†
L ¼ hJ

hu

0
BBB@

1ffiffi
2

p mt
mJ

1ffiffi
2

p mt
mJ

1ffiffi
3

p mb
mJ

hu
hd

1ffiffi
3

p mb
mJ

hu
hd

1ffiffi
3

p ms
mJ

hu
hd

1ffiffi
3

p ms
mJ

hu
hd

1
CCCA; ðB24Þ

and

tD12 ¼
md

ms
tD13 ¼

ffiffiffi
3

pffiffiffi
2

p md

mb
tD23 ¼

ffiffiffi
3

pffiffiffi
2

p ms

mb
: ðB25Þ

We see that the mixing matrix (B24) depends on the
ratio rJ ¼ hJ =hu.
Regarding the lepton sector, the mass matrix (B12)

simplify to:

ME ¼ 1ffiffiffi
2

p

0
BBBBBB@

0 hev3 0 hEv1 0

0 hev3 0 hEv1 0

hev2 0 hev2 0 0

gevχ 0 0 gEvχ 0

0 gevχ 0 0 gEvχ

1
CCCCCCA
; ðB26Þ

from where the charged lepton masses are expressed as:

m2
e ≈ 0; m2

μ ¼
3

2
h2ev23;

m2
τ ¼

1

2
h2ev22 m2

E ¼ ½ðgeÞ2 þ ðgEÞ2�
v2χ
2
: ðB27Þ

Thus, the VEVs, in this case, can be written in terms of the
lepton couplings as v2 ¼

ffiffiffi
2

p
mτ=he, v3 ¼

ffiffiffi
2

p
mμ=

ffiffiffi
3

p
he

and vχ ¼
ffiffiffi
2

p
mE=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðgeÞ2 þ ðgEÞ2

p
.

For the mixing angles, we choose two of them as free
parameters. For the left-handed angles in (B14), we choose
tEL
13 as a free parameter, while for the right-handed angles in
(B18) we take tER

25 . Thus, with the natural parametrization,
the other mixing angles are

tEL
12 ≈ 1; tEL

23 ≈ −
6m2

τ

m2
μ
ðtEL

13 Þ3;

tER
12 ≈ −

1

tEL
13

; tER
23 ≈

mμffiffiffi
3

p
mτ

tEL
13 ;

tER
13 ≈

3mτ

2mμ
ðtEL

13 Þ2; tER
34 ≈ tER

25 ; tER
14 ≈ sER

25 ; ðB28Þ

while the mixing matrix (B13) takes the form:

ΘE†
L ¼ hE

hu

0
BBB@

1ffiffi
2

p mt
mE

cER
25

mμ

mE

hEffiffi
3

p
hu
sER
25

1ffiffi
2

p mt
mE

cER
25

mμ

mE

hEffiffi
3

p
hu
sER
25

mμ

mE

hEffiffi
3

p
hu
sER
25 0

1
CCCA; ðB29Þ

We also see that the above matrix is function of the
ratio rE ¼ hE=hu.
Putting all the above matrices together, we will obtain

each component of the original biunitary transformations
VD
L , V

E
L, and V

E
R. In particular, the neutral current couplings

for electrons depends on ðVE
LÞ31;41;51 and ðVE

RÞ21;41;51, while
for muons we need ðVE

LÞ32;42;52 and ðVE
RÞ22;42;52. They are

ðVE
LÞ51;ð52Þ ¼ 0

ðVE
LÞ31;ð32Þ ¼

−tEL
13ffiffiffi

2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 36x4ðtEL
13 Þ6

q ½cEL
13 � 6x2ðtEL

13 Þ2�

ðVE
LÞ41;ð42Þ ¼

−1
2

yrEc
ER
25

2
64sEL

13 þ∓1þ 6x2cEL
13 ðtEL

13 Þ4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 36x4ðtEL

13 Þ6
q

3
75;
ðB30Þ

where x ¼ mτ=mμ and y ¼ mt=mE, and:
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ðVE
RÞ21 ¼ −tER

25 ðVE
RÞ51 ¼

cEL
13 c

ER
25ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 1
3x2 ðt

EL
13 Þ2

q
2
641 −

ffiffiffi
3

p ðtEL
13 Þ4

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 9

4
x2ðtEL

13 Þ4
q

3
75

ðVE
RÞ22 ¼ −tER

25 ðVE
RÞ52 ¼

sEL
13 c

ER
25ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 1
3x2 ðt

EL
13 Þ2

q
2
641þ

ffiffiffi
3

p ðtEL
13 Þ2

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 9

4
x2ðtEL

13 Þ4
q

3
75;

ðVE
RÞ41 ¼

sEL
13 s

ER
25ffiffiffi

3
p

x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

3x2 ðt
EL
13 Þ2

q þ 3sEL
13 ðtEL

13 Þ2sER
25 x

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 9

4
x2ðtEL

13 Þ4
q

2
64 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 1
3x2 ðt

EL
13 Þ2

q −
cER
25ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ðsER
25 Þ2

q
3
75

ðVE
RÞ42 ¼

sEL
13 s

ER
25 t

EL
13ffiffiffi

3
p

x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

3x2 ðt
EL
13 Þ2

q þ 3sEL
13 t

EL
13 s

ER
25 x

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 9

4
x2ðtEL

13 Þ4
q

2
64 −1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 1
3x2 ðt

EL
13 Þ2

q þ cER
25ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ðsER
25 Þ2

q
3
75 ðB31Þ
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