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We study perturbative unitarity in the scalar sector of the Myers-Pospelov model. The model introduces
a preferred four-vector n which breaks Lorentz symmetry and couples to a five-dimension operator. When
the preferred four-vector is chosen in the pure timelike or lightlike direction, the model becomes a higher
time derivative theory, leading to a cubic dispersion relation. Two of the poles are shown to be
perturbatively connected to the standard ones, while a third pole, which we call the Lee-Wick-like pole, is
associated to a negative metric in Hilbert space, threatening the preservation of unitarity. The pure spacelike
case is a normal theory in the sense that it has only two solutions, both being small perturbations over the
standard ones. We analyze perturbative unitarity for purely spacelike and timelike cases using the optical
theorem and considering a quartic self-interaction term. By computing discontinuities in the loop diagram,
we arrive at a pinching condition which determines the propagation of particles and Lee-Wick-like particles
through the cut. We find that the contribution for Lee-Wick-like particles vanishes for any external
momenta, leaving only the contribution of particles, thus preserving one-loop unitarity in both cases.
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I. INTRODUCTION

The breakdown of Lorentz symmetry at the Planck mass
scale mP ¼ 1019 GeV has been intensively studied in the
last two decades. Many efforts have been put forward in
order to provide experimental input for these quantum
gravity effects. The detection of such possible new physics,
however, has been very challenging, principally because
the high scale imposes a strong suppression. In particular,
at present-time colliders with attainable energies of
m ∼ 13 TeV, these effects may be suppressed by some
power of m=mP ∼ 10−15, which is very small. Moreover,
for experiments using the highest-energy cosmic rays
observed, they are about eight orders of magnitude below
the Planck mass. CPT and Lorentz symmetry departures

have received motivation from various sources, specially
from attempts to construct a quantum gravity theory [1].
The effective approach, encoding the high scale Λ, has

shown to be a powerful method to explore such departures.
One advantage is that it allows us to include themost general
form of Lorentz invariance violation, without resorting to a
particular theory or method of calculation to get down to a
low-energy model. Many of these studies have been given
within the effective framework of the standard model
extension (SME) [2]. The SMEencompasses all the possible
effective terms describing Lorentz symmetry violation in
matter and gravity sectors. It is implemented through
constant coefficients which couple to operators of renorma-
lizable mass dimension in the minimal sector and to higher-
order mass dimension operators in the nonminimal sector
[3]. The coefficients are believed to arise as expectation
values of tensor fields, possibly from spontaneous Lorentz
violation in a more fundamental theory. The strong bounds
on these parameters in the minimal sector has prompted the
exploration at higher energies using higher-order operators
[4]. Limits on the Lorentz violating coefficients of non-
renormalizable operators have been obtained from astro-
physical observations [5] and synchrotron radiation [6]; see
also [7]. Recently, extensions with higher-order couplings
have also been proposed [8].
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One theoretical advantage of introducing higher-order
operators is that ultraviolet divergencies of conventional
quantum field theories can be softened [9,10]. However, as
is well known, in many cases this comes with the
appearance of an indefinite-metric Hilbert space, leading
to a possible loss of conservation of probability or non-
unitarity of the S matrix [11]. Many of the problems have
been analyzed and resolved in the framework developed
by Lee and Wick [12], in which the asymptotic space is
restricted to contain only stable particles with positive
metric. Further studies to deal with amplitudes in a
covariant fashion and their nonanalytic pinching within
an ad hoc prescription were developed in [13]. The
indefinite metric approach has also been used to improve
the hierarchy problem in the scalar sector of the standard
model [14]. Recently, it has been shown that Lee-Wick
theories can be interpreted as nonanalytic Wick rotated
Euclidean theories [15]. Here, we study unitarity in a
Lorentz violating model with higher-order operators in
light of the Lee-Wick studies [16]. The class of higher time
derivative field theories that we consider extends the notion
of Lee-Wick theory due to the explicit noncovariance,
which may be reflected by the absence of complex
conjugate ghost poles. Previous studies for tree level
unitarity have been given in [17].
Another focus, recently discussed in [18,19], concerns

the effect of Lorentz violating radiative corrections in tree
level physics. It has been shown that external leg physics
gets modified due to the appearance of observer Lorentz
scalars in the spectral density function [18]. A particular
model of the SME has been analyzed and the correspond-
ing modification for asymptotic fields has been found [19].
Extensions to include higher-order Lorentz violation have
been given in [20].
The organization of this paper is as follows. In Sec. II,

we introduce the scalar Myers-Pospelov model with
dimension-five operators. We found the dispersion relations
for the purely spacelike, purely timelike, and lightlike
cases. We analyze the solutions in the three cases and found
that for certain values of space momenta, some solutions
become complex, making the poles of the propagators
move to the complex energy plane. In all of the cases, we
identify perturbative solutions and those belonging to the
Lee-Wick-like class with an associated negative metric.
In Sec. III, we prove the conservation of unitarity for the
purely spacelike and timelike cases at one-loop order using
the optical theorem and focusing on a quartic interaction
term. Finally, in Sec. IV, we give our final remarks and
conclusions.

II. EFFECTIVE MODEL

Our model is based on the Lorentz violating exten-
sion Myers-Pospelov Lagrangian density in the scalar
sector [4]:

L ¼ ∂μΦ�∂μΦ −m2Φ�Φþ igΦ�ðn · ∂Þ3Φþ Lint; ð1Þ

where

Lint ¼
λ

4!
ðΦ�ΦÞ2: ð2Þ

Here g is a Planck mass suppressed constant and n a
preferred four-vector which characterizes the type of
Lorentz violation. When n has a temporal component,
the theory belongs to a class of theory better known as
higher time derivative theory. As we will show further in
this case, the theory displays an additional degree of
freedom.
To begin with, let us consider a general preferred four-

vector n with a free equation of motion (λ ¼ 0):

ð□þm2 − igðn · ∂Þ3ÞΦ ¼ 0: ð3Þ

Using the plane wave ansatz ΦðxÞ ∼ R
dpΦðpÞe−ipx yields

the dispersion relation

p2 −m2 − gðn · pÞ3 ¼ 0: ð4Þ

Now we can specialize to the different cases. Let us begin
with a pure spacelike four-vector n ¼ ð0; n⃗Þ, where the
dispersion relation takes the form

p2
0 − E2

p þ gðn⃗ · p⃗Þ3 ¼ 0; ð5Þ

where Ep ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p⃗2 þm2

p
. The solutions are p0 ¼ �ωs with

ωs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
p − gðn⃗ · p⃗Þ3

q
: ð6Þ

Without loss of generality we take g > 0 and define the
function

fðjp⃗jÞ ¼ jp⃗j2 þm2 − ajp⃗j3; ð7Þ

with

aðθÞ ¼ gjn⃗j3 cos3 θ; ð8Þ

where θ is the angle between n⃗ and p⃗.
When 0 ≤ θ < π=2, and so a > 0, some solutions

become complex at higher momenta than jp⃗j > P, where
we define

P¼ 1

3a

�
1þ

�
1þ i

ffiffiffi
3

p

2

�
Q−1=3þ

�
1− i

ffiffiffi
3

p

2

�
Q1=3

�
; ð9Þ

with
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Q ¼ 1

2

�
bþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 − 4

p �
;

b ¼ −2 − 27a2m2: ð10Þ

One can show that for gm ≪ jn⃗j−3 cos−3 θ, the approxima-
tion gives

P ≈
1

gjn⃗j3 cos3 θ þ gm2jn⃗j3 cos3 θ; ð11Þ

which indeed is very high for any angle θ in the interval. In
contrast, at directions π=2 < θ ≤ π, the solutions ωs are
always real. For the particular value at θ ¼ π=2, we have a
blind direction at which we recover the usual dispersion
relation.
In our concordant frame which follows from the con-

dition imposed on g, there may be instabilities due to
complex solutions that arise for higher values than P, but
also instabilities related to spacelike states [21]. This is true
even imposing the cutoff P, since then highly boosted
frames with real momenta can produce negative energies.
As an example, consider n ¼ ðn0; 0; 0; n3Þ and the corre-
sponding spacelike state p ¼ ð0; 0; 0; p�

3 Þ,

p�
3 ¼ gn3

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
gn3
2

�
2

−m2

s
; ð12Þ

which is a solution of the dispersion relation (5).
A more general analysis follows by considering the

velocity group vg,

vg ¼
2jp⃗j þ 3ajp⃗j2

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jp⃗j2 þm2 þ ajp⃗j3

p ; ð13Þ

where we expect instabilities (provided interactions are
turned on) and small deviations from microcausality as
seen in the limit vg → ∞ for jp⃗j → ∞; see [21]. Recently,
it has been shown that an extended Hamiltonian formal-
ism allows us to implement a consistent canonical
quantization for Lorentz violating theories containing
spacelike states [22].
It is not difficult to find the propagator

iΔðp0; p⃗; ϵÞ ¼
i

ðp0 − ωþ iϵÞðp0 þ ω − iϵÞ ; ð14Þ

where the location of poles is the standard one.
Now we continue with a purely timelike four-vector

n ¼ ð1; 0; 0; 0Þ. It yields the dispersion relations

p2
0 − E2

p − gp3
0 ¼ 0: ð15Þ

Solving (15) we find the exact three solutions

ω1 ¼
1

3g
ð1þ ξ−1=3z0 þ ξ1=3z�0Þ;

ω2 ¼
1

3g
ð1 − ξ−1=3 − ξ1=3Þ;

W ¼ 1

3g
ð1þ ξ−1=3z�0 þ ξ1=3z0Þ; ð16Þ

where we have introduced z0 ¼ e−
iπ
3 and defined the

expressions

ξ ¼ 1

2

�
β þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
β2 − 4

q �
;

β ¼ −2þ 27g2E2
p: ð17Þ

In a complex energy-plane in terms of momenta jp⃗j,
the solutions move according to Fig. 1. In an analogous
way, the solutions for the field Φ� are obtained by the
replacement g → −g.
The solutions (16) can be classified according to the sign

of the discriminant Δ ¼ E2
pð2 − βÞ, which leads to the

following three cases:
(i) When Δ > 0, all solutions are real (β < 2) and ξ is a

complex number that moves in the clockwise direc-
tion on a semicircle of unit norm, starting at the
angle θ00 ¼ gm

ffiffiffiffiffi
27

p
; see Fig. 2.

(ii) When Δ ¼ 0, which we call the critical value
(β ¼ 2), the two solutions ω1 and W collapse at
2
3g, and ω2 ¼ − 1

3g, which may be seen using ξ ¼ 1

in Eq. (16).
(iii) When Δ < 0, the two solutions ω1 and W become

complex conjugate pairs, i.e., ω1 ¼ W� ðβ > 2Þ,
while the solution ω2 remains real. We have that
ξ is a real number larger than 1; see Fig. 2.

In order to characterize the poles, let us consider the
asymptotic expansion for the limit g → 0

FIG. 1. The path of integration CF when all the poles are real
and the deformed path C0

F when ω1 and W become complex.
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ω1 ¼ Ep þ
gE2

p

2
þ 5g2E3

p

8
þOðg3Þ;

ω2 ¼ −Ep þ
gE2

p

2
−
5g2E3

p

8
þOðg3Þ;

W ¼ 1

g
− gE2

p − 2g3E4
p þOðg5Þ; ð18Þ

valid for Ep ≪ 1. As usual, one can associate ω1 and ω2 to
a particle and antiparticle, respectively, while W to an
additional particle which we call the Lee-Wick-like par-
ticle. In this sense, one may regard the higher time
derivative theory with an indefinite metric as a Lee-
Wick-like extension, given that the poles W and ω1 only
become complex conjugate pairs in a certain range of
energies, as we will see below.
The Feynman propagator can be defined as

iΔðp0; p⃗; ϵÞ ¼
i

ðp0 − ω1 þ iϵÞðp0 − ω2 − iϵÞ
×

1

−gðp0 −W þ iϵÞ ; ð19Þ

with the negative pole ω2 located in the second quadrant
and positive poles ω1 and W in the fourth; see Fig. 1. That
is, ω1 and W (Δ > 0) lie below the path of integration CF
and ω2 above. The poles ω1 and W move in the opposite
direction in the real axis collapsing at 2

3g (Δ ¼ 0), while ω2

always moves to the left in the real axis. For energies
(Δ < 0), the equivalent path C0

F rounds the complex
solution ω1 from above. This prescription enjoys the
desirable property to recover the standard position of the
perturbative poles in the limit g → 0 and to be connected to
the Euclidean theory through a Wick rotation. In Fig. 1 the
circles denote the perturbative poles and the encircled
crosses the Lee-Wick-like pole.
The analysis for a lightlike four-vector n ¼ ð1; 0; 0; 1Þ

is very similar to the previous case. By considering the
dispersion relation

p2
0 − E2

p − gðp0 − p3Þ3 ¼ 0; ð20Þ

the solutions are

γ1 ¼
1

3g
ð1þ 3gp3 þ ð1þ 6gp3Þη−1=3z0 þ η1=3z�0Þ;

γ2 ¼
1

3g
ð1þ 3gp3 − ð1þ 6gp3Þη−1=3 − η1=3Þ;

γ3 ¼
1

3g
ð1þ 3gp3 þ ð1þ 6gp3Þη−1=3z�0 þ η1=3z0Þ; ð21Þ

where again z0 ¼ e−
iπ
3 and we have defined the expressions

η ¼ 1

2

�
δþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δ2 − 4ð1þ 6gp3Þ

q �
;

δ ¼ −2þ 27g2E2
p − 18gp3 − 27g2p2

3: ð22Þ

As before, considering the limit g → 0, we identify the
solution γ3 with the propagation of a Lee-Wick-like
state.

III. PERTURBATIVE UNITARITY

In this section we study perturbative unitarity at one-loop
order for the graph shown in Fig. 3 by considering a purely
timelike and spacelike preferred four-vector. We write the
loop amplitude

iMðpÞ ¼ ðiλÞ2
Z

d4q
ð2πÞ4Δðq0; q⃗; ϵÞΔðq0 − p0; q⃗ − p⃗; ϵÞ

ð23Þ

in terms of a generic external momenta p ¼ ðp0; p⃗Þ such
that p ¼ p1 þ p2. Here energy flows through the cut
towards the shaded region as shown in Fig. 3.

A. Purely spacelike n

Consider a spacelike four-vector n ¼ ð0; 0; 0; n⃗Þ in the
amplitude Eq. (23) and with the propagator (14):

FIG. 2. The energy function ξ in terms of Δ.

FIG. 3. The forward scattering of a particle and antiparticle with
momenta p1 and p2, respectively.
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iMðpÞ ¼ −λ2
Z

d4q
ð2πÞ4

i
ðq0 − ωs þ iϵÞðq0 þ ωs − iϵÞ

i
ðq0 − p0 −Ωs þ iϵÞðq0 − p0 þ Ωs − iϵÞ : ð24Þ

The notation is

Ωs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp⃗ − q⃗Þ2 þm2 − gðn⃗ · ðp⃗ − q⃗ÞÞ3

q
; ð25Þ

ωs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q⃗2 þm2 − gðn⃗ · p⃗Þ3

q
; ð26Þ

with the last term defined in Eq. (6).
The integration over q0 is performed with the method of residues and we close the contour from below, enclosing the

poles ωs − iϵ and p0 þ Ωs − iϵ. After summing the two contributions, we have

iMðpÞ ¼ iλ2
Z

d3q
ð2πÞ3

ðωs þ Ωs − 2iϵÞ
2ðωs − iϵÞðΩs − iϵÞðωs þ Ωs − p0 − 2iϵÞðωs þΩs þ p0 − 2iϵÞ : ð27Þ

Next, we set ϵ ¼ 0, where it does not affect the computation of the discontinuity, which follows from the identity

1

x� iϵ
¼ P

�
1

x

�
∓ iπδðxÞ: ð28Þ

In this way we arrive at

DiscMðpÞ ¼ iλ2
Z

d3q
ð2πÞ3 ð2πÞ

�
δðp0 − ωs −ΩsÞ

4ωsΩs
þ δðp0 þ ωs þ ΩsÞ

4ωsΩs

�
: ð29Þ

We introduce the four-vectors q1 ¼ ðq01; q⃗Þ and q2 ¼ ðq02; p⃗ − q⃗Þ with q01 ¼ ωs and q02 ¼ Ωs. With this, we first rewrite

DiscMðpÞ ¼ iλ2
Z

d3q
ð2πÞ3 ð2πÞ

Z
dq01

Z
dq02δðp0 − q01 − q02Þ

�
δðq01 − ωsÞδðq02 −ΩsÞ

4ωsΩs
þ δðq01 − ωsÞδðq02 −ΩsÞ

4ωsΩs

�
;

ð30Þ
and then by using Z

d3q
ð2πÞ3 ¼

Z
d3q1
ð2πÞ3

Z
d3q2
ð2πÞ3 ð2πÞ

3δð3Þðp⃗ − q⃗1 − q⃗2Þ; ð31Þ

we transform the integral into

DiscMðpÞ ¼ iλ2
Z

d4q1
ð2πÞ4

Z
d4q2
ð2πÞ4 ð2πÞ

4δð4Þðp − q1 − q2Þ
�ð2πÞδðq01 − ωsÞð2πÞδðq02 −ΩsÞ

2ωs2Ωs

þ ð2πÞδðq01 þ ωsÞð2πÞδðq02 þ ΩsÞ
2ωs2Ωs

�
: ð32Þ

Finally, using the identity DiscM ¼ 2iImM, we have

2ImMðpÞ ¼ λ2
Z

d4q1
ð2πÞ4

Z
d4q2
ð2πÞ4 ð2πÞ

4δð4Þðp − q1 − q2Þδðq21 −m2 − gðn⃗ · q⃗1Þ3Þδðq22 −m2 − gðn⃗ · q⃗2Þ3Þ

× ½θðq01θðq02ÞÞ þ θð−q01Þθð−q02Þ�: ð33Þ

From the cut diagram of the right, we identify the sum over intermediate states, the conservation of momenta coded in the
first delta, and the two propagators put on shell through the deltas of the dispersion relation. We may further simplify the
result by considering the routing where energy flows with positive q01 and q02. Finally, we have that the optical theorem is
satisfied in our process at the one-loop level.
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B. Purely timelike n

From the previous sections, we have seen that a Lee-
Wick-like particle arises when n is chosen in the purely
timelike direction. In order to study unitarity, we follow the
Lee-Wick prescription in which only positive-norm states
are regarded as stable, so removing from the asymptotic
space the Lee-Wick-like particles [12]. The prescription is
far from being trivial since Lee-Wick-like states may arise
within the loops, spoiling any attempt to preserve unitarity.
Hence, as a general statement one can say that if unitarity is
to be conserved, no Lee-Wick-like states should propagate
through the cut.
The amplitude is written with the propagator of Eq. (19),

iMðpÞ ¼ λ2
Z

d4q
ð2πÞ4

Y2
i¼1

1

ðqðiÞ0 −ωðiÞ
1 þ iϵÞðqðiÞ0 −ωðiÞ

2 − iϵÞ
×

1

−gðqðiÞ0 −WðiÞ þ iϵÞ
; ð34Þ

and with the new notation where qð1Þ0 ¼q0 and qð2Þ0 ¼
q0−p0, together with

ωð1Þ
1 ¼ ω1ðq⃗Þ; ωð2Þ

1 ¼ ω1ðp⃗ − q⃗Þ;
ωð1Þ
2 ¼ ω2ðq⃗Þ; ωð2Þ

2 ¼ ω2ðp⃗ − q⃗Þ;
Wð1Þ ¼ Wðq⃗Þ; Wð2Þ ¼ Wðp⃗ − q⃗Þ: ð35Þ

The first propagator has poles at

α1 ¼ ω1ðq⃗Þ − iϵ;

α2 ¼ ω2ðq⃗Þ þ iϵ;

α3 ¼ Wðq⃗Þ − iϵ; ð36Þ

and the second propagator, which depends on the external
momenta, has poles at

β1 ¼ p0 þ ω1ðq⃗ − p⃗Þ − iϵ;

β2 ¼ p0 þ ω2ðq⃗ − p⃗Þ þ iϵ;

β3 ¼ p0 þWðq⃗ − p⃗Þ − iϵ; ð37Þ

they are depicted in Fig. 4.
Let us perform the integral in q0 using the residue

theorem and closing the contour of q0 in the lower half
plane. In this way, we enclose the poles α1, α3, β1, and β3 to
obtain

iMðpÞ ¼ −iλ2
Z

d3q⃗
ð2πÞ3 ðResðα1Þ þ Resðα3Þ

þ Resðβ1Þ þ Resðβ3ÞÞ; ð38Þ

where the corresponding residues are

Resðα1Þ ¼
1

g2ðα1 − α2Þðα1 − α3Þðα1 − β1Þ
×

1

ðα1 − β2Þðα1 − β3Þ
;

Resðα3Þ ¼
1

g2ðα3 − α1Þðα3 − α2Þðα3 − β1Þ
×

1

ðα3 − β2Þðα3 − β3Þ
;

Resðβ1Þ ¼
1

g2ðβ1 − α1Þðβ1 − α2Þðβ1 − α3Þ
×

1

ðβ1 − β2Þðβ1 − β3Þ
;

Resðβ3Þ ¼
1

g2ðβ3 − α1Þðβ3 − α2Þðβ3 − α3Þ
×

1

ðβ3 − β1Þðβ3 − β2Þ
: ð39Þ

For the expressions above involving a β, where a p0

appears, we consider the ϵ dependence and we compute
the discontinuity using the expression

1

x� iϵ
¼ P

�
1

x

�
∓ iπδðxÞ; ð40Þ

where P denotes the principal value. For the other terms we
just evaluate ϵ to zero. Adding all the residues gives

FIG. 4. The relevant poles α1, β1, α3, β3 and the pinching point
P for the collapse of β2 and α3 on the contour of integration.
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Disc

�X
Res

�

¼ −
2πi
g2

�
δðp0 − ω2 þ ω̄1Þ

ðω1 − ω2Þðω̄1 − ω̄2Þðω2 −WÞðω̄1 − W̄Þ

þ δðp0 − ω1 þ ω̄2Þ
ðω1 − ω2Þðω̄1 − ω̄2Þðω1 −WÞðω̄2 − W̄Þ

þ δðp0 þ ω̄2 −WÞ
ðω̄1 − ω̄2Þðω1 −WÞðω2 −WÞðω̄2 − W̄Þ

þ δðp0 − ω2 þ W̄Þ
ðω1 − ω2Þðω2 −WÞðω̄1 − W̄Þðω̄2 − W̄Þ

�
; ð41Þ

where the notation is X̄ ¼ Xðp⃗ − q⃗Þ.
Organizing the terms and recalling that we are taking the

energy flow in one direction where p0 is positive, we drop
the first and fourth contribution to arrive at

2ImM ¼ λ2
Z

d3q⃗
ð2πÞ3

2π

g2

�
δðp0 − ω1 þ ω̄2Þ

ðω1 − ω2Þðω̄1 − ω̄2Þðω1 −WÞ

×
1

ðω̄2 − W̄Þ þ
δðp0 þ ω̄2 −WÞ

ðω̄1 − ω̄2Þðω1 −WÞðω2 −WÞ

×
1

ðω̄2 − W̄Þ
�
; ð42Þ

where we have used the identity DiscM ¼ 2iImM.
The second delta is nonvanishing when the pole α3 of the

first propagator collapses with the pole β2 of the second
propagator, as can be seen in Fig. 4. In this case, both poles
pinch the path of integration. It is not difficult to show that
no other pinching occurs, since the pole α2 has the opposite
sign compared to all other poles and eventually never hits
any of them.
In order to analyze the pinching condition β2 ¼ α3, we

consider ξ ¼ eiθ with the angle θ ¼ tan−1ð
ffiffiffiffiffiffiffiffi
4−β2

p
β Þ defined

in the interval 0 < θ < π.
Using these expressions in Eqs. (16) yields

ω1 ¼
1

3g

�
1þ cos

θ

3
−

ffiffiffi
3

p
sin

θ

3

�
;

ω2 ¼
1

3g

�
1 − 2 cos

θ

3

�
;

W ¼ 1

3g

�
1þ cos

θ

3
þ

ffiffiffi
3

p
sin

θ

3

�
: ð43Þ

We begin with the case where the external space momenta
vanish, i.e., p⃗ ¼ 0. In this reference frame (center of mass
frame), we arrive at

3gp0 ¼ 3 cos
θ

3
þ

ffiffiffi
3

p
sin

θ

3
; ð44Þ

which has the solution

θ0 ¼
π

2
� 3cos−1

� ffiffiffi
3

p
gp0

2

�
; ð45Þ

for 1=g < p0 < 2=
ffiffiffi
3

p
g. Taking the threshold to be

p0 ¼ 1=g, we have that the pinching occurs at θ ¼ 0
(Δ ¼ 0), which lies outside the interval of θ. In this way
it is enough to take p0 < 1=g to avoid the propagation of
nonphysical degrees of freedom.
Let us consider the case p⃗ ≠ 0. It can be shown that a

variation in the energy is equivalent to an increment of
the angle θ, which we denote by δθ. According to Eqs. (16)
and (17), an increment in the momenta is equivalent to an
increment of second order δθ ∼ g2. The new equation at
which we arrive is

3gp0 ¼ 3a cos
θ

3
þ

ffiffiffi
3

p
b sin

θ

3
; ð46Þ

where

a ¼ 1

3

�
1þ 2 cos

�
δθ

3

��
ð47Þ

and

b ¼ 1 −
2ffiffiffi
3

p sin

�
δθ

3

�
: ð48Þ

It can be seen that, at lowest order in g, we arrive at the
same result we have obtained for Eq. (44). In addition, in
the region in which Δ < 0, we have complex solutions and
so there is no contribution to the discontinuity.
Finally, the relevant contribution is

2ImM¼ λ2
Z

d3q⃗
ð2πÞ3

2π

g2

×
δðp0−ω1þ ω̄2Þ

ðω1−ω2Þðω1−WÞðω̄1− ω̄2Þðω̄2−W̄Þ : ð49Þ

Let us define k1 ¼ q and k2 ¼ q − p, together with ω0
1 ¼

ω1ðk⃗1Þ, ω0
2 ¼ ω2ðk⃗1Þ, ω1

00 ¼ ω1ðk⃗2Þ, and ω2
00 ¼ ω2ðk⃗2Þ,

and write

2ImM¼ λ2
Z

d4k1
ð2πÞ4

Z
d4k2
ð2πÞ4 ð2πÞ

4δð4Þðp− k1 þ k2Þ

×

� ð2πÞ2δðk01 −ω0
1Þδðk02 −ω200Þ

gðk01 −ω0
2ÞðW0 − k01Þgðω1

00 − k02ÞðW00 − k02Þ
�
:

ð50Þ

At this point, it is convenient to define a physical delta,
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δðphysÞðp2 −m2 − gp3
0Þ ¼

X
phys;a

δðp0 − paÞ
jF0ðpaÞj

; ð51Þ

where pa are the zeros of the function Fðp0Þ ¼ p2
0 − E2

p⃗ −
gp3

0 and where we have to exclude the contribution from the
Lee-Wick-like pole. Considering

δðphysÞðk21 −m2 − gk301Þθðk01Þ ¼
δðk01 − ω1Þθðk01Þ

gðk01 − ω2ÞðW − k01Þ
;

δðphysÞðk22 −m2 − gk302Þθð−k02Þ ¼
δðk02 − ω2Þθð−k02Þ
gðω1 − k02ÞðW − k02Þ

;

ð52Þ

where we have used the absolute value in the definition of
Eq. (51), we rewrite

2ImM ¼ λ2
Z

d4k1
ð2πÞ4

Z
d4k2
ð2πÞ4 ð2πÞ

4

× δð4Þðp − k1 þ k2Þð2πÞ2δðphysÞðk21 −m2 − gk301Þ
× δðphysÞðk22 −m2 − gk302Þθðk01Þθð−k02Þ: ð53Þ

In this way we arrive at the phase space sum of the cut
diagram, hence proving the unitarity constraint in our
diagram and one-loop unitarity in our theory.
We note that, as in the usual case, one could have

replaced the propagators with the physical deltas in the cut
diagrams,

i
−gðp0 − ω1 þ iεÞðp0 − ω2 − iεÞðp0 −W þ iεÞ

→ 2πδðphysÞðk21 −m2 − gk301Þθðk01Þ ð54Þ

and

i
−gðq0−p0−ω1þ iεÞðq0−p0−ω2− iεÞðq0−p0−Wþ iεÞ
→δðphysÞðk22−m2−gk302Þθð−k02Þ; ð55Þ

simplifying the analysis from the beginning and being of
potential utility in other models.

IV. CONCLUSIONS

In this work we have focused on the Myers-Pospelov
effective field theory with dimension-five Lorentz violating
operators in order to study one-loop unitarity. In the first
part, we have studied the solutions of the dispersion relation
for purely spacelike, timelike, and lightlike backgrounds.
We have found that when n is purely spacelike, one has two
perturbative solutions which become complex when
momenta are higher than P. In addition, we have found
that possible issues regarding the canonical quantization

may arise in highly boosted frames due to spacelike
solutions of the dispersion relation. In the spacelike case,
without Lee-Wick particles, we have directly verified the
optical theorem at the one-loop level. For the timelike case,
we have found two perturbative poles which in the limit
g → 0 tend to the standard ones, and in accordance with the
higher time derivative character of the theory, an additional
pole corresponding to a particle with a negative norm.
The poles have been characterized according to the sign of
the discriminant and we have found that, above the critical
energy 2

g
ffiffiffiffi
27

p , the two poles ω1 and W become complex and

move as complex conjugate pairs, while ω2 always remains
in the real axis. In this way, we have determined the
evolution of the three poles in the complex energy plane.
The lightlike case is very similar to the timelike case and
presents no new ingredients.
The main part of this investigation has been to study

whether it is possible to preserve unitarity by applying the
Lee-Wick prescription, which requires us to excise the
Lee-Wick-like particles from the physical Hilbert space. In
particular, we have analyzed the forward scattering of
antiparticle-particle annihilation with a quartic interaction
term. We have studied the bubble diagram with the optical
theorem and computed the possible contributions to the
discontinuity. It has been found that the Lee-Wick-like pole
contributes to the discontinuity provided a pinching sin-
gularity takes place or equivalently when the path of
integration passes between two infinitely close poles.
Performing a detailed analysis, one can show that for real
external momenta the pinching condition cannot be ful-
filled and so its contribution vanishes.
Finally, by comparing with the cut diagram where we

identify the sum over intermediate states, conservation of
momenta, and on-shell contributions of the propagators, we
have verified unitarity at the one-loop level. In addition, we
have shown that an alternative and more direct route may be
supplied with a physical delta defined to select only poles
associated to stable particles. In other words, we have
shown the equivalence of replacing the propagators on shell
with physical deltas in the cut diagrams. It may be part of
future work to study whether this feature is maintained in
other Lorentz violating models.
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