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One of the main purposes of long-baseline neutrino experiments is to unambiguously measure the CP
violating phase in the neutrino sector within the three neutrino oscillation picture. In the presence of physics
beyond the Standard Model, the determination of the CP phase will be more difficult, due to the already
known degeneracy problem. Working in the framework of nonstandard interactions (NSI), we compute the
appearance probabilities in an exact analytical formulation and analyze the region of parameters where this
degeneracy problem is present. We also discuss some cases where the degeneracy of the NSI parameters
can be probed in long-baseline experiments.
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I. INTRODUCTION

Most of the Standard Model parameters in the leptonic
sector have been measured with high precision, including
most of the mixing angles of the Pontecorvo-Maki-
Nakagawa-Sakata matrix [1–4] and the charged lepton
masses [5]. It is expected that DUNE [6–9] and Hyper-
Kamiokande [10,11] will accurately measure the CP
violating phase, δ, if we restrict to the standard three
neutrino oscillation picture. The measurement of absolute
neutrino masses is another challenge, pursued by the Katrin
experiment [12].
On the other hand, the nonzero neutrino masses have

motivated their theoretical explanation beyond the Standard
Model physics. One of the best motivated schemes is that of
the seesaw [13–16], although there are plenty of beyond the
Standard Model theories searching to explain the neutrino
mass pattern [17]. The presence of new physics leads
naturally to a degeneracy on the neutrino CP phases; for
instance, nonunitarity of the leptonic mixing matrix
[18–21] will lead to an ambiguity in the measurement of
the standard CP violating phase, δ, as has been already
pointed out in [22]. Models beyond the Standard Model
(SM) also include the sterile neutrino hypothesis, which has
also been studied in the context of long-baseline neutrino
experiments [23–27].

A model independent framework aiming to incorporate a
wide set of models is the so-called nonstandard interaction
(NSI) picture [28–30], where the information on new physics
is encoded in parameters proportional to the Fermi constant.
Besides the search for new physics signals in neutrino
experiments, the robustness of the standard solution has also
been jeopardized by NSI [31], showing the importance of
short-baseline neutrino experiments that could help constrain
these parameters. Particularly, coherent elastic neutrino
nucleus scattering [32] has been helpful in obtaining these
restrictions [33–36], as had been foreseen in [37].
In this context, the sensitivity to NSI in the future DUNE

experiment [6] has been extensively studied [38–42] in
order to know the expectative constraints in the future. It
has been found that, as in the nonunitary case, a degeneracy
appears that could weaken the resolution in the phase, δ
[43]. Due to this degeneracy, the sensitivity of DUNE to the
standard CP phase in the presence of NSI has been under
inquiry [44–52].
In this work we focus on the NSI framework in the

context of long-baseline neutrino experiments. We intro-
duce an analysis of the exact analytical formulas and will
obtain useful information to search for the regions leading
to a degeneracy of the standard CP violating phase, δ,
with the NSI parameters. We find the values of the
flavor-changing parameters that can mimic the standard
appearance probabilities, making the new phase, ϕeτ,
indistinguishable from δ. We also discuss the implications
of these values in the biprobability plots, a very useful tool
to exhibit the degeneracy problem. On the other hand, it is
also interesting to find the regions where a restriction to the
NSI parameters can be done by long-baseline neutrino
experiments (LBNE). It will be evinced that biprobability
plots can be used to search for these regions, although in
this case expectations are more limited.
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II. NONSTANDARD INTERACTIONS IN MATTER

New physics can affect the form of the different theories
that consider an extended gauge symmetry, an additional
number of fermion singlets or extra scalars can be para-
metrized by the NSI parameters [28–30]. Therefore, to
study the effect of new physics in the neutrino matter
potential on Earth we will consider the NSI four-point
effective Lagrangian, whose coupling will be proportional
to the Fermi constant. In this way the nonstandard
interaction Lagrangian will be given as

LNSI ¼ −2
ffiffiffi

2
p

GF

X

f

εf;Pαβ ½ν̄αγρLνβ�½f̄γρPf�; ð1Þ

where f is a fermion of the first family (e, u, d) and P is the
projector operator P ¼ L, R. In this work we will compute
the effect of charged leptons and neutrinos propagating in
matter, and, therefore, we have taken f ¼ e and
εuαβ ¼ εdαβ ¼ 0. To have an estimate of our results for the

case of εuαβ (or εdαβ), one can consider that the density of
quarks on Earth is approximately three times that for
electrons [53,54].
This new interaction has a non-SM contribution to the

neutrino-charged lepton scattering process. As a conse-
quence, neutrinos propagating in matter will feel a new
potential, additional to the usual charged-current
Mikheyev-Smirnov-Wolfenstein [55] potential. This can
be introduced in the propagation Hamiltonian and the total
result will be

H̃ ¼ H þ A
2E

0

B

@

1þ εee εeμ εeτ

ε�eμ εμμ εμτ

ε�eτ ε�μτ ϵττ

1

C

A

; ð2Þ

where H is the Hamiltonian in vacuum, and the matter
potential A ¼ 2

ffiffiffi

2
p

GFNeE, with Ne is the electron number
density, and E is the neutrino energy.
Due to the NSI contribution, there are nondiagonal terms

in the Hamiltonian. To study the impact of NSI interactions
on long-baseline experiments, we compute here the exact
expression for the oscillation probability in matter. We
briefly mention the already known standard case and
introduce the corresponding NSI formulas. To make the
expressions more accessible to the reader, we show the
flavor changing case for εeτ and set to zero all other NSI
parameters.
We will compute first the effective neutrino mass in

matter. We will follow the method used originally in [56]
using an approach that is independent of the parametriza-
tion [57]. To find the exact expressions for the effective
squared masses M̄2

i ≡ λ̃i in the presence of NSI, we start
with the characteristic equation for the Hamiltonian in
Eq. (2):

λ̃3 − αλ̃2 þ βλ̃ − γ ¼ 0; ð3Þ

whose real solutions are given by

λ̃n ¼
α

3
þ 2

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

α2 − 3β
q

cos

�

1

3
arccos

�

2α3 − 9αβ þ 27γ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðα2 − 3βÞ3
p

�

þ 2ðn − 1Þπ
3

�

; n ¼ 1; 2; 3; ð4Þ

which in our case take the form

α ¼ Δm2
21 þ Δm2

31 þ A;

β ¼ Δm2
31Δm2

21 þ AΔm2
21½1 − jUe2j2 − 2ReðεeτU�

e2Uτ2Þ�
þ AΔm2

31½1 − jUe3j2 − 2ReðεeτU�
e3Uτ3Þ� − A2jεeτj2;

γ ¼ AΔm2
21Δm2

31½jUe1j2 þ 2ReðεeτU�
e1Uτ1Þ�

− A2jεeτj2ðΔm2
21jUμ2j2 þ Δm2

31jUμ3j2Þ: ð5Þ

In this equation, the NSI parameters introduce a new
dependence on the phases δ and φeτ. This can be noticed,
for instance, by looking at the terms that go as
2ReðεeτU�

eiUτiÞ, which depend on the new phase, φeτ.
The last quadratic term, jεeτj2, also introduces a new
dependence on cos δ through jUμ2j2.
The previous relations in Eq. (4) lead to three eigenvalue

equations corresponding to the effective squared masses

λ̃1 ¼
α

3
−
1

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

α2 − 3β
q

η −
ffiffiffi

3
p

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

α2 − 3β
q ffiffiffiffiffiffiffiffiffiffiffiffi

1 − η2
q

;

λ̃2 ¼
α

3
−
1

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

α2 − 3β
q

ηþ
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3
p

3
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α2 − 3β
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1 − η2
q

;

λ̃3 ¼
α

3
þ 2

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

α2 − 3β
q

η; ð6Þ

where we have defined

η ¼ cos

�

1

3
arccos

�

2α3 − 9αβ þ 27γ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðα2 − 3βÞ3
p

��

:

Once we have computed the effective masses in the NSI
picture, we proceed to compute the neutrino probabilities in
terms of the mixing matrix in this new basis, Ũ. To make
this computation, we rearrange first the form of our
Hamiltonian in Eq. (2). This will make the appearance
probability expressions more readable. Our main motiva-
tion is that, as it has been shown, the biprobability plots
have an elliptic shape when the dependence of the
oscillation probability on the CP violating phase δ is
considered [58]. We will follow the same procedure
including now the dependence on the NSI parameters.
For simplicity, in what follows we will show the analysis

for only one additional NSI parameter, the flavor changing
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εeτ and its phase φeτ. Writing down the Hamiltonian from
Eq. (2) as

H̃ ¼ H þ A
2E

diagð1; 0; 0Þ þ A
2E

ε; ð7Þ

we can define two relations that will be useful later

H̃μe ¼
p
2E

;

H̃μτH̃τe − H̃μeH̃ττ ¼
q

ð2EÞ2 þ
A
2E

r; ð8Þ

where

p
2E

¼ Hμe; ð9Þ

q
ð2EÞ2 ¼ HμτHτe −HμeHττ; ð10Þ

r ¼ Hμτε
�
eτ: ð11Þ

Note that these expressions have a similar form to the
standard case [58], except for the additional dependence
on r.
Both the vacuum Hamiltonian, H, and the modified

matter one, H̃, have the simple form

H ¼ 1

2E
UMU†; H̃ ¼ 1

2E
Ũ M̃ Ũ†; ð12Þ

respectively, where Ũ is the modified matter mixing matrix,
M ¼ diagðm2

1; m
2
2; m

2
3Þ, and M̃ ¼ diagðλ̃1; λ̃2; λ̃3Þ. Taking

these two expressions and Eq. (8), one can find three
relations for the product of ŨμiŨ�

ei:

X

i

ŨμiŨ�
ei ¼

X

i

UμiU�
ei ¼ 0; ð13Þ

X

i

λ̃iŨμiŨ�
ei ¼

X

i

m2
i UμiU�

ei ¼ p; ð14Þ

X

cyclic

ðijkÞ
λ̃jλ̃kŨμiŨ�

ei ¼
X

cyclic

ðijkÞ
m2

jm
2
kUμiU�

ei þ 2EAr ¼ qþ 2EAr:

ð15Þ

From here we can see that p and q are functions of the
usual oscillation parameters. Solving this system of equa-
tions, we found the following relation

ŨμiŨ�
ei ¼

λ̃ipþ qþ 2EAr

Δ̃jiΔ̃ki
: ð16Þ

This product of entries of Ũ is important because it
appears in the oscillation amplitude for a muon neutrino to
an electron neutrino:

Aðνμ → νeÞ ¼
X

i

Ũ�
μi exp

�

−i
λ̃iL
2E

�

Ũei: ð17Þ

The oscillation probability for νμ → νe is defined as the
squared amplitude:

Pðνμ → νeÞ ¼ jAðνμ → νeÞj2: ð18Þ

In terms of the Jarlskog invariant J defined as J ¼
ImðJ12μeÞ, with Jijαβ ¼ UαiU�

βiU
�
αjUβj [59] and the effective

squared mass differences Δ̃ij ¼ λ̃i − λ̃j ¼ M̄2
i − M̄2

j , we
have

Pðνμ → νeÞ ¼ −4
X

cyclic

ðijÞ
ReðJ̃ijμeÞsin2

�

Δ̃ijL

4E

�

− 2J̃
X

cyclic

ðijÞ
sin

�

Δ̃ijL

2E

�

: ð19Þ

From Eq. (16) we have

ReðJ̃ijμeÞ ¼ λ̃iλ̃jjpj2 þ jqþ 2EArj2 þ ðλ̃i þ λ̃jÞRe½pðq� þ 2EAr�Þ�
Δ̃ijΔ̃12Δ̃23Δ̃31

; ð20Þ

J̃ ¼ Im½pðq� þ 2EAr�Þ�
Δ̃12Δ̃23Δ̃31

: ð21Þ

Let us notice that, if there were no NSI (meaning r ¼ 0),
matter effects would only appear in the effective masses
in Eq. (6). The same would happen if we only have
nonuniversal flavor-conserving NSI. On the other hand,

the nondiagonal NSI parameters have more complex effects
due to their presence in Eq. (15).
Replacing Eqs. (20) and (21) in Eq. (19), we can find the

appearance probability as a function of the CP phase δ:

Pðνμ→νeÞ¼a1þa2cosδþa3 sinδþa4cos2δþa5 sin2δ;

ð22Þ
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and, similarly, for antineutrinos oscillation ν̄μ → ν̄e,

Pðν̄μ → ν̄eÞ ¼ ā1 þ ā2 cos δþ ā3 sin δ

þ ā4 cos 2δþ ā5 sin 2δ; ð23Þ

with the coefficients ak defined as

ak¼
−2

Δ̃12Δ̃23Δ̃31

X

cyclic

ðijÞ

�

2wij
k

Δ̃ij
sin2

�

Δ̃ijL

4E

�

þyk sin

�

Δ̃ijL

2E

��

;

ð24Þ

where wij
k depends on all the standard oscillation param-

eters and also on εeτ and φeτ, while yk is independent from
δ. The coefficients for the antineutrino case, āk, have the
same functional form, but with the changes A → −A,
δ → −δ, and φeτ → −φeτ.
Equations (22) and (23) have a similar form to the

standard case. One difference is the appearance of the new
coefficients a4 and a5, although we have verified that they
are three orders of magnitude smaller than a1, a2, and a3.

Another difference is that all coefficients now depend on
both phases. Again, we have verified that their variation is
small, of the order of a few percent.
With this exact formulation we will proceed, in the next

chapter, to compute the relevant appearance probabilities to
study the NSI picture and to obtain the corresponding
biprobability plots. As a cross-check, we have also com-
puted our results using the approximate expressions for
long-baseline NSI probabilities that have been considered
in [60,61].

III. NSI EFFECTS IN LONG-BASELINE
EXPERIMENTS

After the previous description of the exact appearance
probabilities in the NSI framework, we can study the role of
the NSI parameters in long-baseline neutrino experiments,
in particular for the determination of the CP violating
phase. Different works have studied the impact of NSI by
comparing with the appearance data [41,62] and have also
discussed the potential degeneracy with a new CP phase,
φeτ, by analyzing either the expected survival probability in
the presence of NSI or the expected number of events [43].

FIG. 1. Scatter plot of the standard CP violating phase, δ, and the nonstandard parameter, εeτ, for a free nonstandard CP phase, φeτ.
We show the dots that satisfy the biprobability region predicted by the standard oscillation picture. The first three panels show the case of
T2K, NOνA, and DUNE, while the bottom-right panel shows the values that satisfy simultaneously the three experiments. The
uncertainties that define the appearance biprobability region, the baseline, and the average energy used for these plots are shown in
Table I.

FLORES, GARCÉS, and MIRANDA PHYS. REV. D 98, 035030 (2018)

035030-4



We start our discussion by computing the NSI regions
that would be allowed by different long-baseline experi-
ments. We consider the case of the T2K collaboration [63],
the NOνA experiment [64], and the future DUNE proposal
that is expected to measure the CP phase with high
accuracy. This is shown in Fig. 1, where we also show
the combined case for the three experiments. We have made
a scatter plot showing the points that would be allowed for
the three experiments. We have considered as a test that the
central value for the probabilities will be the one corre-
sponding to the standard case with a value of δ ¼ 3π=2, and
we have assigned errors to the experiment’s measurements
according to Table I. In the same table we have mentioned
the corresponding baseline and average energies consid-
ered for each experiment. In this scatter plot we have
considered the central values for the standard oscillation
parameters [1], a matter density of ρ ¼ 2.84 g=cm3, and a
constant electron number densityNe. We show the different
values of δ, εeτ, and φeτ that predict an allowed probability
for the corresponding case. We can see that for any
particular experiment there are different allowed points,
leading to a relatively small region when we consider the
combination of the three futuristic experimental results.
Despite this, the degeneracy region is still considerably
large. It is important to mention that a more detailed
analysis, considering the neutrino spectrum for each experi-
ment can reduce this degeneracy region, especially for the
futuristic case of DUNE, where a wide-band beam neutrino
flux will be used.
The utility of this scatter plot, as a tool for the under-

standing of the degeneracy regions, can be seen in Fig. 2
where we have considered the interesting case of the DUNE
proposal as an example. As it is well known, biprobability
plots can be studied to have a general idea of the NSI
parameter restrictions, or its degeneracy. In this figure we
show the biprobabilities for fixed values of δ and for the
magnitude of the NSI parameter εeτ. These values were
easily read from Fig. 1, and, as expected, the corresponding
ellipses always show a crossing point with the allowed
region. The result is in agreement with already reported
cases [43], and it can be seen that many other values of εeτ
were easily found by using the information from Fig. 1.
Another interesting analysis could be the search for

restricted NSI regions, instead of a degeneracy problem,

in order to look for future constraints from the DUNE
experiment. We separate this discussion into two natural
cases, one involving the presence of flavor changing
parameters, and the case of nonuniversal terms. For the
later case, we take εee as the only parameter different from

TABLE I. Expected uncertainties for the neutrino and antineu-
trino appearance probability for long-baseline neutrino experi-
ment. In the last two columns the characteristic baselines and
average beam energy are shown.

Uncertainties Baseline (km) Energy (GeV)

Pðνμ → νeÞ Pðν̄μ → ν̄eÞ
T2K 10% 30% 295 0.6
NOνA 10% 25% 810 2.0
DUNE 5% 10% 1300 3.0

FIG. 2. Biprobability plots for the DUNE proposal, varying φeτ
from 0 to 2π, for a fixed value of the NSI magnitude of εeτ and the
CP phase, δ. The gray solid line represents the SM case, for
varying δ. Guided by the scatter plot from Fig. 1, we find ellipses
that pass through the appearance biprobability region (considering
a value of δ ¼ 3π=2) marked with a cross. For the DUNE proposal
we use L ¼ 1300 km and an average energy Eν ¼ 3 GeV.

FIG. 3. Biprobability plots for the DUNE proposal, considering
only εee different from zero and varying δ from 0 to 2π. We show
four ellipses, each for a different value of εee, along with the SM
case (solid gray line). The appearance probability region for
DUNE is marked with a cross, considering a value of δ ¼ 3π=2.
We consider again L ¼ 1300 km and an average energy
Eν ¼ 3 GeV. The presence of this diagonal NSI term only affects
the standard charged-current potential as a small correction
displacing the ellipse.
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zero.As a result, according to the discussion fromSec. II, the
NSI effects will be present only in the effective masses. This
implies an effective change in the potential: VCC →
VCCð1þ εeeÞ, resulting in a displaced ellipse of the same
size as in the standard oscillation picture when we vary δ.
Several ellipses for this scenario are shown in Fig. 3, along
with a curve for fixed δ ¼ 3π=2 and a varying εee. Therefore,
in this case a test of the diagonal NSI parameter seems to be
possible by long-baseline neutrino experiments.
On the other hand, for the case of nondiagonal NSI

parameters, we show in Fig. 4 the biprobability curves for
εeτ different from zero, varying the value of δ. Since εeτ is a
nondiagonal term, a new CP violating phase φeτ might
appear. For this reason, we present two cases: φeτ ¼ 0 in
the left panel and φeτ ¼ 3π=2 in the right one. As explained
in the previous section, flavor-changing NSI modifies in a
more complex way the oscillation probabilities, and,
consequently, the size and orientation of the biprobability
ellipses change notoriously, as seen in Fig. 4.
We can notice here that the situation is more complicated

than for the diagonal NSI, making the restriction of the NSI
parameters a more complicated task. For φeτ ¼ 0, despite
the particular value of δ ¼ 3π=2 is shifted to a region
different from the Standard Model prediction, a different
value in the same ellipses can reach this region, allowing
for a confusion for a given value of εeτ. As expected, the
quantitative values of εeτ and δ can be traced in the scatter
plot shown in Fig. 1. For the case of φeτ ¼ 3π=2, it is
possible to see that the perspectives for a NSI restriction in
this particular value are very promising as there are almost
no crossing points of the NSI ellipses with the biprobability
region, except for the particular case of a large NSI effect
around εeτ ¼ 0.4.

IV. CONCLUSIONS

In the standard three-neutrino oscillation picture, long-
baseline neutrino experiments will measure the mixing
parameters with precision and accuracy. In the presence of
new physics the robustness of such measurements is not
guaranteed and different degeneracies may appear, such as
the well-known LMA-D solution [31].
For the determination of the CP phase, a similar problem

has been pointed out [43] when considering the flavor-
changing NSI parameter ϵeτ. In this case, again, the non-
oscillatory experiments will be of great help. In this work,
we have focused in the interplay of different long-baseline
experiments. We have shown the parameter space that will
lead to an indetermination of the δ value, as well as the role
of a combined restriction from several experiments. In all
our computations, we have used an exact formulation,
discussing its main characteristics.
The combination of different baselines can indeed help

reduce the degeneracy problem, although a more detailed
study is needed. Besides, we have computed the biprob-
ability plots in the context of NSI and prove its usefulness
to understand the degeneracy problem in the determination
of the CP violating phase, when new physics is present. We
have illustrated this with the case of the future experiment,
DUNE. Although the combination of different baselines,
and the wide-band beam for the DUNE neutrino flux, could
help in the robust determination of the CP violating phase,
short distance nonoscillatory experiments seem necessary
to better constrain the NSI parameters.
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FIG. 4. Biprobability plots for the DUNE proposal, varying δ from 0 to 2π, for particular values of εeτ and for φeτ ¼ 0ð3π=2Þ for the
left (right) panel. The gray solid line stands for the SM case, and its prediction at δ ¼ 3π=2 is shown with a cross, including its
uncertainties, which are displayed in Table I. In both panels we can see that different values of εeτ change the orientation and size of the
ellipse. The black line corresponds to a fixed value of δ ¼ 3π=2 and φeτ ¼ 0ð3π=2Þ, while varying εeτ in the range ½−0.3; 0.3�,
(½−0.3; 0.4�). In this black curve the yellow stars show its intersection with the ellipses.

FLORES, GARCÉS, and MIRANDA PHYS. REV. D 98, 035030 (2018)

035030-6



[1] P. F. de Salas, D. V. Forero, C. A. Ternes, M. Tortola, and
J. W. F. Valle, Phys. Lett. B 782, 633 (2018).

[2] Valencia-Globalfit, http://globalfit.astroparticles.es/.
[3] I. Esteban, M. C. Gonzalez-Garcia, M. Maltoni, I. Martinez-

Soler, and T. Schwetz, J. High Energy Phys. 01 (2017) 087.
[4] F. Capozzi, E. Lisi, A. Marrone, and A. Palazzo, Prog. Part.

Nucl. Phys. 102, 48 (2018).
[5] C. Patrignani et al. (Particle Data Group), Chin. Phys. C 40,

100001 (2016).
[6] R. Acciarri et al. (DUNE), arXiv:1512.06148.
[7] A. Habig (DUNE), Proc. Sci., EPS-HEP2015 (2015) 041.
[8] R. Acciarri et al. (DUNE), arXiv:1601.05471.
[9] R. Acciarri et al. (DUNE), arXiv:1601.02984.

[10] K. Abe et al., arXiv:1109.3262.
[11] K. Abe et al. (Hyper-Kamiokande Proto-Collaboration),

Prog. Theor. Exp. Phys. 2015, 053C02 (2015).
[12] A. Osipowicz et al. (KATRIN), .
[13] J. Schechter and J. W. F. Valle, Phys. Rev. D 22, 2227

(1980).
[14] R. N. Mohapatra and G. Senjanovic, Phys. Rev. D 23, 165

(1981).
[15] M. Gell-Mann, P. Ramond, and R. Slansky, Conf. Proc.

C790927, 315 (1979).
[16] P. Minkowski, Phys. Lett. 67B, 421 (1977).
[17] J. W. F. Valle and J. C. Romao, Neutrinos in High Energy

and Astroparticle Physics (Wiley-VCH, Weinheim, 2015).
[18] F. J. Escrihuela, D. V. Forero, O. G. Miranda, M. Tortola,

and J. W. F. Valle, Phys. Rev. D 92, 053009 (2015); 93,
119905E (2016).

[19] F. J. Escrihuela, D. V. Forero, O. G. Miranda, M. Tórtola,
and J. W. F. Valle, New J. Phys. 19, 093005 (2017).

[20] C. S. Fong, H. Minakata, and H. Nunokawa, arXiv:1712
.02798.

[21] J. Tang, Y. Zhang, and Y.-F. Li, Phys. Lett. B 774, 217
(2017).

[22] O. G. Miranda, M. Tortola, and J. W. F. Valle, Phys. Rev.
Lett. 117, 061804 (2016).

[23] S. S. Chatterjee, P. Pasquini, and J. W. F. Valle, Phys. Lett. B
771, 524 (2017).

[24] D. Dutta, R. Gandhi, B. Kayser, M. Masud, and S. Prakash,
J. High Energy Phys. 11 (2016) 122.

[25] S. Choubey, D. Dutta, and D. Pramanik, Eur. Phys. J. C 78,
339 (2018).

[26] S. Choubey, D. Dutta, and D. Pramanik, Phys. Rev. D 96,
056026 (2017).

[27] M. Blennow, P. Coloma, E. Fernandez-Martinez, J.
Hernandez-Garcia, and J. Lopez-Pavon, J. High Energy
Phys. 04 (2017) 153.

[28] Y. Farzan and M. Tortola, Front. Phys. 6, 10 (2018).
[29] O. G. Miranda and H. Nunokawa, New J. Phys. 17, 095002

(2015).
[30] T. Ohlsson, Rep. Prog. Phys. 76, 044201 (2013).
[31] O. G. Miranda, M. A. Tortola, and J. W. F. Valle, J. High

Energy Phys. 10 (2006) 008.
[32] D. Akimov et al. (COHERENT), Science 357, 1123 (2017).

[33] D. K. Papoulias and T. S. Kosmas, Phys. Rev. D 97, 033003
(2018).

[34] I. Esteban, M. C. Gonzalez-Garcia, M. Maltoni, I. Martinez-
Soler, and J. Salvado, arXiv:1805.04530.

[35] P. B. Denton, Y. Farzan, and I. M. Shoemaker, J. High
Energy Phys. 07 (2018) 037.

[36] D. A. Sierra, V. De Romeri, and N. Rojas, arXiv:1806.07424.
[37] J. Barranco, O. G. Miranda, and T. I. Rashba, J. High

Energy Phys. 12 (2005) 021.
[38] A. de Gouvêa and K. J. Kelly, Nucl. Phys.B908, 318 (2016).
[39] A. de Gouvêa and K. J. Kelly, arXiv:1605.09376.
[40] P. Coloma, J. High Energy Phys. 03 (2016) 016.
[41] J. A. B. Coelho, T. Kafka, W. A. Mann, J. Schneps, and O.

Altinok, Phys. Rev. D 86, 113015 (2012).
[42] K. N. Deepthi, S. Goswami, and N. Nath, Phys. Rev. D 96,

075023 (2017).
[43] D. V. Forero and P. Huber, Phys. Rev. Lett. 117, 031801

(2016).
[44] M. Masud and P. Mehta, Phys. Rev. D 94, 013014 (2016).
[45] M. Masud, A. Chatterjee, and P. Mehta, J. Phys. G 43,

095005 (2016).
[46] S.-F. Ge and A. Yu. Smirnov, J. High Energy Phys. 10

(2016) 138.
[47] J. Liao, D. Marfatia, and K. Whisnant, J. High Energy Phys.

01 (2017) 071.
[48] S. K. Agarwalla, S. S. Chatterjee, and A. Palazzo, Phys.

Lett. B 762, 64 (2016).
[49] C. R. Das, J. Pulido, J. Maalampi, and S. Vihonen, Phys.

Rev. D 97, 035023 (2018).
[50] M. Blennow, S. Choubey, T. Ohlsson, D. Pramanik, and

S. K. Raut, J. High Energy Phys. 08 (2016) 090.
[51] A. Falkowski, G. Grilli di Cortona, and Z. Tabrizi, J. High

Energy Phys. 04 (2018) 101.
[52] K. N. Deepthi, S. Goswami, and N. Nath, arXiv:1711

.04840.
[53] F. J. Escrihuela, O. G. Miranda, M. A. Tortola, and J. W. F.

Valle, Phys. Rev. D 80, 105009 (2009).
[54] F. J. Escrihuela, M. Tortola, J. W. F. Valle, and O. G.

Miranda, Phys. Rev. D 83, 093002 (2011).
[55] L. Wolfenstein, Phys. Rev. D 17, 2369 (1978).
[56] H.W. Zaglauer and K. H. Schwarzer, Z. Phys. C 40, 273

(1988).
[57] L. J. Flores and O. G. Miranda, Phys. Rev. D 93, 033009

(2016).
[58] K. Kimura, A. Takamura, and H. Yokomakura, Phys. Lett. B

537, 86 (2002).
[59] C. Jarlskog, Phys. Rev. Lett. 55, 1039 (1985).
[60] V. Barger, D. Marfatia, and K. Whisnant, Phys. Rev. D 65,

073023 (2002).
[61] J. Liao, D. Marfatia, and K. Whisnant, Phys. Rev. D 93,

093016 (2016).
[62] A. Friedland and I. M. Shoemaker, arXiv:1207.6642.
[63] K. Abe et al. (T2K), Phys. Rev. D 96, 092006 (2017).
[64] P. Adamson et al. (NOνA), Phys. Rev. Lett. 118, 231801

(2017).

EXPLORING NSI DEGENERACIES IN LONG-BASELINE … PHYS. REV. D 98, 035030 (2018)

035030-7

https://doi.org/10.1016/j.physletb.2018.06.019
http://globalfit.astroparticles.es/
http://globalfit.astroparticles.es/
http://globalfit.astroparticles.es/
https://doi.org/10.1007/JHEP01(2017)087
https://doi.org/10.1016/j.ppnp.2018.05.005
https://doi.org/10.1016/j.ppnp.2018.05.005
https://doi.org/10.1088/1674-1137/40/10/100001
https://doi.org/10.1088/1674-1137/40/10/100001
http://arXiv.org/abs/1512.06148
http://arXiv.org/abs/1601.05471
http://arXiv.org/abs/1601.02984
http://arXiv.org/abs/1109.3262
https://doi.org/10.1093/ptep/ptv061
https://doi.org/10.1103/PhysRevD.22.2227
https://doi.org/10.1103/PhysRevD.22.2227
https://doi.org/10.1103/PhysRevD.23.165
https://doi.org/10.1103/PhysRevD.23.165
https://doi.org/10.1016/0370-2693(77)90435-X
https://doi.org/10.1103/PhysRevD.92.053009
https://doi.org/10.1103/PhysRevD.93.119905
https://doi.org/10.1103/PhysRevD.93.119905
https://doi.org/10.1088/1367-2630/aa79ec
http://arXiv.org/abs/1712.02798
http://arXiv.org/abs/1712.02798
https://doi.org/10.1016/j.physletb.2017.09.055
https://doi.org/10.1016/j.physletb.2017.09.055
https://doi.org/10.1103/PhysRevLett.117.061804
https://doi.org/10.1103/PhysRevLett.117.061804
https://doi.org/10.1016/j.physletb.2017.05.080
https://doi.org/10.1016/j.physletb.2017.05.080
https://doi.org/10.1007/JHEP11(2016)122
https://doi.org/10.1140/epjc/s10052-018-5816-y
https://doi.org/10.1140/epjc/s10052-018-5816-y
https://doi.org/10.1103/PhysRevD.96.056026
https://doi.org/10.1103/PhysRevD.96.056026
https://doi.org/10.1007/JHEP04(2017)153
https://doi.org/10.1007/JHEP04(2017)153
https://doi.org/10.3389/fphy.2018.00010
https://doi.org/10.1088/1367-2630/17/9/095002
https://doi.org/10.1088/1367-2630/17/9/095002
https://doi.org/10.1088/0034-4885/76/4/044201
https://doi.org/10.1088/1126-6708/2006/10/008
https://doi.org/10.1088/1126-6708/2006/10/008
https://doi.org/10.1126/science.aao0990
https://doi.org/10.1103/PhysRevD.97.033003
https://doi.org/10.1103/PhysRevD.97.033003
http://arXiv.org/abs/1805.04530
https://doi.org/10.1007/JHEP07(2018)037
https://doi.org/10.1007/JHEP07(2018)037
http://arXiv.org/abs/1806.07424
https://doi.org/10.1088/1126-6708/2005/12/021
https://doi.org/10.1088/1126-6708/2005/12/021
https://doi.org/10.1016/j.nuclphysb.2016.03.013
http://arXiv.org/abs/1605.09376
https://doi.org/10.1007/JHEP03(2016)016
https://doi.org/10.1103/PhysRevD.86.113015
https://doi.org/10.1103/PhysRevD.96.075023
https://doi.org/10.1103/PhysRevD.96.075023
https://doi.org/10.1103/PhysRevLett.117.031801
https://doi.org/10.1103/PhysRevLett.117.031801
https://doi.org/10.1103/PhysRevD.94.013014
https://doi.org/10.1088/0954-3899/43/9/095005
https://doi.org/10.1088/0954-3899/43/9/095005
https://doi.org/10.1007/JHEP10(2016)138
https://doi.org/10.1007/JHEP10(2016)138
https://doi.org/10.1007/JHEP01(2017)071
https://doi.org/10.1007/JHEP01(2017)071
https://doi.org/10.1016/j.physletb.2016.09.020
https://doi.org/10.1016/j.physletb.2016.09.020
https://doi.org/10.1103/PhysRevD.97.035023
https://doi.org/10.1103/PhysRevD.97.035023
https://doi.org/10.1007/JHEP08(2016)090
https://doi.org/10.1007/JHEP04(2018)101
https://doi.org/10.1007/JHEP04(2018)101
http://arXiv.org/abs/1711.04840
http://arXiv.org/abs/1711.04840
https://doi.org/10.1103/PhysRevD.80.105009
https://doi.org/10.1103/PhysRevD.83.093002
https://doi.org/10.1103/PhysRevD.17.2369
https://doi.org/10.1007/BF01555889
https://doi.org/10.1007/BF01555889
https://doi.org/10.1103/PhysRevD.93.033009
https://doi.org/10.1103/PhysRevD.93.033009
https://doi.org/10.1016/S0370-2693(02)01907-X
https://doi.org/10.1016/S0370-2693(02)01907-X
https://doi.org/10.1103/PhysRevLett.55.1039
https://doi.org/10.1103/PhysRevD.65.073023
https://doi.org/10.1103/PhysRevD.65.073023
https://doi.org/10.1103/PhysRevD.93.093016
https://doi.org/10.1103/PhysRevD.93.093016
http://arXiv.org/abs/1207.6642
https://doi.org/10.1103/PhysRevD.96.092006
https://doi.org/10.1103/PhysRevLett.118.231801
https://doi.org/10.1103/PhysRevLett.118.231801

