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In a truly model-independent approach, we reexamine a minimal extension of the Standard Model (SM)
through the introduction of an additional Uð1Þ symmetry leading to a new neutral gauge boson (Z0),
allowing its kinetic mixing with the hypercharge gauge boson. An SM neutral scalar is used to
spontaneously break this extra symmetry, leading to the mass of the Z0. Except for three right-handed
neutrinos, no other fermions are added. We use the current LHC Drell-Yan data to put model-independent
constraints in the parameter space of three quantities, namely,MZ0 , the Z-Z0 mixing angle (αz), and the extra
Uð1Þ effective gauge coupling (g0x), which absorb all model dependence. We impose additional constraints
from unitarity and low-energy neutrino-electron scattering. However, limits extracted from direct searches
turn out to be most stringent. We obtainMZ0 > 4.4 TeV and jαzj < 0.001 at 95% C.L., when the strength of
the additional Uð1Þ gauge coupling is the same as that of the SM SUð2ÞL.
DOI: 10.1103/PhysRevD.98.035027

I. INTRODUCTION

Of all the beyond–Standard Model (BSM) scenarios,
none is more ubiquitous than models with an extra Uð1Þ
symmetry in addition to the Standard Model (SM) sym-
metry, giving a neutral spin-1 massive gauge boson, Z0. Its
theoretical motivation comes from various directions. Left-
right symmetric models, grand unified theories (GUTs)
larger than SUð5Þ, e.g., SOð10Þ or E6, as well as string
models, all entail an extra gauged Uð1Þ in addition to the
SM group [1–14]. Nonsupersymmetric BSM scenarios,
advocated to address the hierarchy problem, such as little
Higgs models [15,16] with extended gauge sectors, contain
Uð1Þ as an extra gauge group. Even dynamical supersym-
metry breaking triggered by an anomalous Uð1Þ has been
extensively discussed (for a review, see Ref. [17]). Leaking
of the standard Z boson into an extra dimension yields,
from a four-dimensional perspective, an infinite tower of
increasingly more massive Kaluza-Klein modes, each such
mode resembling a Z0 boson of a gauged Uð1Þ carrying

specific symmetries [18–20]. Besides, a Z0 model with a
gauged (B − L) symmetry has been used to address the
hierarchy problem by facilitating electroweak symmetry
breaking radiatively à la Coleman-Weinberg keeping
classical conformal invariance and stability up to the
Planck scale [21]. Cosmological inflation scenarios with
nonminimal gravitational coupling have been studied in a
similar context in which the inflaton coupling is correlated
to the Z0 coupling [22]. Uð1Þ gauge bosons also constitute
important ingredients in cosmic string models [23].
On the other hand, Z0 has been fruitfully employed in

many theoretically well-motivated models as a portal to
dark matter (DM), mediating between the dark sector and
the visible sector [24–30]. The DM itself could be a Uð1Þ
gauge boson of the dark sector. A heavy Z0 in such models
could be realized in a gauge-invariant way by the
Stückelberg mechanism [31]. In the astrophysical context,
too, a Z0 gauge boson has been advocated to account for the
γ-ray excess in the Galactic center [32,33].
Thus, there is enough motivation for the Z0 mass and

coupling to be an important part of phenomenological
studies in the context of colliders [10,34–39], the collider–
dark matter interface [40–44], flavor physics [45,46], and
electroweak precision tests [47–49]. In this work, we use
the latest ATLAS (LHC) Drell-Yan (DY) data (36 fb−1

luminosity) to set model-independent bounds on the
fermionic couplings of Z0. For this, we use the data for
both (eþe−, μþμ−) as well as the τþτ− final states. In
addition, we use s-wave unitarity to set upper bounds on
MZ0 as a function of the Z-Z0 mixing angle (αz).
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Additionally, we use the low-energy νμ-e scattering data to
constrain the Z0 parameter space. The LHC DY data turn
out to be most constraining compared to the other two
considerations. This does not undermine the relevance of
the other two constraints, which have situational merits.
The unitarity bound holds, irrespective of the Z0 coupling to
fermions, whereas the νμ-e scattering limits become
important for hadrophobic Z0s. Taking into account all
the bounds, we obtain strong constraints in the complete
parameter space spanned by only three independent param-
eters: MZ0 , αz, and g0x, the effective gauge coupling of the
additional Uð1Þ taking into account the scope for kinetic
mixing. We make an important observation that all model
dependence can be absorbed within the above three
parameters as long as the additionalUð1Þ is nonanomalous.
Very recently, constraints directly on MZ0 for various

Uð1Þ extensions were derived in Ref. [50] using the 36 fb−1

ATLAS data, and wherever we overlap, we roughly agree
with their limits. Constraints directly on MZ0 were also
obtained in Ref. [51] assuming that the Z-Z0 mixing angle
is small, but those limits are obviously a bit weaker as they
were extracted using the then-available ATLAS data with
much lower luminosity.
Our paper is organized as follows. In Sec. II, we set up our

notations recapitulating theZ0 extension of the SM, touching
upon the scalar and the fermion sectors. Then, in Sec. III, we
use the latest 36 fb−1 ATLAS DY data [52,53] to set
constraints on its fermionic couplings for different Z0 masses
in a model-independent manner. Next, in Sec. IV, we discuss
the bounds on the Z0 mass and the Z-Z0 mixing angle arising
from s-wave unitarity. Note that this bound depends only on
MZ0 and the Z-Z0 mixing angle and is independent of the Z0
couplings to the fermions. Once those fermionic couplings
are chosen, a bound on the same plane arises from the low-
energy νμ-e scattering data, which we discuss in Sec. V. In
Sec. VI, we combine the limits arising from these aspects to
identify the region currently allowed for different Uð1Þ
extensions. We end with our conclusions, in which we
highlight the new features arising out of our analysis.

II. MINIMAL Z0 MODEL—A SMALL
RECAPITULATION

As noted in the Introduction, BSM scenarios with an
electrically neutral, massive vector boson, Z0, are quite
common in the literature. The simplest realizations of Z0
models are the ones in which the SM gauge symmetry,
GSM ≡ SUð3ÞC ⊗ SUð2ÞL ⊗ Uð1ÞY , isminimally extended
to GSM ⊗ Uð1ÞX. The Uð1ÞX is broken by a GSM singlet
scalar, S, charged underUð1ÞX. Without any loss of general-
ity, we choose this charge to be 1=2, which fixes the
convention for gx—the gauge coupling corresponding to
Uð1ÞX. Thus, in the minimalistic scenario, we have the
scalar multiplets, transforming under SUð3ÞC × SUð2ÞL ×
Uð1ÞY ×Uð1ÞX as

Φ≡ ð1; 2; 1=2; xΦ=2Þ; S≡ ð1; 1; 0; 1=2Þ; ð1Þ

where Φ denotes the usual SUð2ÞL doublet responsible for
the SMgauge symmetry breaking aswell as theDiracmasses
of fermions. The quantities inside the parentheses character-
ize the transformation properties under the gauge group
SUð3ÞC ⊗ SUð2ÞL ⊗ Uð1ÞY ⊗ Uð1ÞX. The electric charge
is given by

Q ¼ T3L þ Y; ð2Þ

whereT3L andY are the third component ofweak isospin and
the hypercharge, respectively.AsΦ transforms in a nontrivial
fashion under SUð2ÞL, Uð1ÞY , and Uð1ÞX, there will be
mixing among the neutral gauge boson states when Φ
develops a vacuum expectation value (vev). The mass
eigenstates that emerge will be identified as the massless
photon (A), the SM Z, and an exotic Z0. Note that, even if we
start with xΦ ¼ 0, Φ can develop a Uð1ÞX charge due to
gauge-kinetic mixing among the two Abelian field strength
tensors [54]. Also, in general, therewill bemixing among the
neutral scalars coming from Φ and S, and a certain compo-
sition of the two should correspond to the SM-like scalar
observed at the LHC.
Abelian extensions of the SM are typically motivated by

some high-scale physics related to an elaborate scalar sector,
and it might seem that the two-scalar scenario we are
considering here is a bit too simplistic. However, we are
interested in models in which the new physics beyond the
extra Uð1ÞX is at too high a scale to have any meaningful
contribution to OðTeVÞ physics, or too weakly coupled.
With that in mind, such a minimal framework is capable of
describing the gauge-scalar sector of a wide array of Uð1Þ
extensions of the SM, which are differentiated by the
fermionic charges under the Uð1ÞX. In the following sub-
sections, we describe our framework in detail. In passing, it
should be noted that in the literature one is often faced with
models in which the extended gauge symmetry is given by
SUð3ÞC ⊗ SUð2ÞL ⊗ Uð1Þ1 ⊗ Uð1Þ2, where the SM
Uð1ÞY is a linear combination of Uð1Þ1 and Uð1Þ2. An
example isUð1ÞR ⊗ Uð1ÞB−L, of left-right symmetric mod-
els. In such cases, we can readily perform a rotation among
theUð1Þ generators to obtain theUð1ÞY ⊗ Uð1ÞX basis that
we are using.

A. Gauge-scalar sector

The gauge-scalar part of the Lagrangian for minimal
GSM ⊗ Uð1ÞX models is given by

L ¼ LGK þ LSK − VðΦ; SÞ; ð3Þ

where LGK and LSK are the kinetic Lagrangians in the
gauge and the scalar sectors, respectively, and VðΦ; SÞ
denotes the scalar potential, expressions for which appear
below:
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LGK ¼ −
1

4
Wa

μνW
μν
a −

1

4
BμνBμν −

1

4
XμνXμν

−
sin χ
2

BμνXμν; ð4aÞ

LSK ¼ ðDμΦÞ†ðDμΦÞ þ ðDμSÞ†ðDμSÞ; ð4bÞ

VðΦ; SÞ ¼ −μ2ðΦ†ΦÞ − μ2SðS†SÞ þ λΦðΦ†ΦÞ2
þ λSðS†SÞ2 þ λΦSðΦ†ΦÞðS†SÞ: ð4cÞ

Above, Wa
μν, Bμν, and Xμν denote the field tensors corre-

sponding to SUð2ÞL, Uð1ÞY , and Uð1ÞX respectively, and
the covariant derivatives for Φ and S are given by

DμΦ ¼
�
∂μ − ig

τa
2
Wa

μ − i
gY
2
Bμ − i

gx
2
xΦXμ

�
Φ; ð5aÞ

DμS ¼
�
∂μ − i

gx
2
Xμ

�
S; ð5bÞ

where τa represents the Pauli matrices and the naming
convention of the gauge fields mirrors that of the field
strength tensors.
Note that, in the (Bμν, Xμν) basis, LGK contains the gauge

kinetic mixing term ðsin χ=2ÞBμνXμν [54]. Such a term
should, in general, be present in the Lagrangian as it is both
Lorentz and gauge invariant. In a UV-complete theory, the
parameter χ should be calculable by integrating out heavy
states at the appropriate scale. However, we stay blind to
such UV completion and treat χ as a general parameter. We
can perform a general linear transformation to go to a basis
in which LGK is canonically diagonal [55,56]:

�
Bμ

Xμ

�
→

�
B0

μ

X0
μ

�
¼

�
1 sin χ

0 cos χ

��
Bμ

Xμ

�
: ð6Þ

In this basis, the gauge-kinetic Lagrangian becomes

LGK ¼ −
1

4
Wa

μνW
μν
a −

1

4
B0
μνB0μν −

1

4
X0
μνX0μν; ð7Þ

and the covariant derivatives take the forms

DμΦ ¼ ∂μΦ − i
g
2
ðτaWa

μ þ tan θwB0
μ þ tan θxx0ΦX

0
μÞΦ;

ð8aÞ

DμS ¼
�
∂μ − i

g0x
2
X0
μ

�
S; ð8bÞ

where we have defined

tan θw ¼ gY
g
; ð9aÞ

tan θx ¼
g0x
g
; ð9bÞ

with g0x ¼ gx sec χ; ð9cÞ

and x0Φ ¼ xΦ −
gY
gx

sin χ: ð9dÞ

Equations (9c) and (9d) reflect how the definitions of the
gauge coupling and the gauge charge ofΦ corresponding to
the extra Uð1Þ will be modified in the presence of kinetic
mixing. In the limit of zero kinetic mixing, tan θx character-
izes the strength of theUð1ÞX gauge coupling relative to the
weak gauge coupling.
After spontaneous symmetry breaking, we expand the

scalar fields, in the unitary gauge, as

Φ ¼ 1ffiffiffi
2

p
�

0

vþ ϕ0

�
; S ¼ 1ffiffiffi

2
p ðvs þ sÞ; ð10Þ

where v and vs are the vevs for Φ and S, respectively. This
will lead to the neutral gauge boson mass matrix, in the
basis in which the gauge kinetic terms are diagonal, which
can be written as

Lmass
N ¼ 1

2

�
W3

μ B0
μ X0

μ

�
·M2

N ·

0
B@

W3
μ

B0
μ

X0
μ

1
CA; ð11Þ

where

M2
N¼

g2v2

4

0
B@

1 −tanθw −x0Φ tanθx
−tanθw tan2θw x0Φ tanθx tanθw
−x0Φ tanθx x0Φ tanθx tanθw tan2θxðr2þx02ΦÞ

1
CA;

ð12Þ

with r ¼ vs=v. The mass matrix in Eq. (12) can be block
diagonalized as

OT
w ·M2

N ·Ow¼
g2v2

4

0
B@
0 0 0

0 sec2θw −x0Φ tanθxsecθw
0 −x0Φ tanθxsecθw tan2θxðr2þx02ΦÞ

1
CA;

ð13Þ

where

Ow ¼

0
B@

sin θw cos θw 0

cos θw − sin θw 0

0 0 1

1
CA: ð14Þ

The massless photon, Aμ, is then readily extracted as

0
B@

Aμ

Z1μ

X0
μ

1
CA ¼ OT

w

0
B@

W3
μ

B0
μ

X0
μ

1
CA: ð15Þ
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Diagonalization of the remaining 2 × 2 block of the matrix
in Eq. (13) gives rise to the remaining mass eigenstates,
namely, Z and Z0. The rotation between the gauge and the
mass bases is given by

0
B@

B0
μ

W3
μ

X0
μ

1
CA¼

0
B@
cosθw −sinθwcosαz sinθw sinαz
sinθw cosθwcosαz −cosθw sinαz
0 sinαz cosαz

1
CA
0
B@
Aμ

Zμ

Z0
μ

1
CA:

ð16Þ
This second step of diagonalization then entails the
relations

M2
11 ≡M2

Z cos
2 αz þM2

Z0 sin2 αz ¼
M2

W

cos2 θw
; ð17aÞ

M2
Z0 cos2 αz þM2

Z sin
2 αz ¼ M2

W tan2 θxðr2 þ x02ΦÞ;
ð17bÞ

ðM2
Z0 −M2

ZÞ sin 2αz ¼
2x0Φ tan θxM2

W

cos θw
; ð17cÞ

where MW ¼ gv=2 denotes the W-boson mass. We use
Eq. (17) to replace θw, r, and x0Φ in terms of MZ0 , αz, and
tan θx. As we will see later, the latter three quantities can be
extracted directly from data in a model-independent way. It
is important to note that we have not treated θw as the
conventional weak (Weinberg) angle under the implicit
a priori assumption that αz is small; rather, we traded it in
favor ofMZ0 and αz using Eq. (17a). While the gauge-scalar
sector described here holds generally for minimal Z0
models, the fermion charge assignments vary across them.
However, a general formalism can be developed for the
fermionic sector as well, which we discuss in the next
subsection.

B. Anomaly cancellation and fermionic
charge assignments

In this work, we look at the models in which the
fermion sector of the SM is extended by a right-handed
(RH) neutrino, NR, per generation. We are interested in
the situation in which the RH neutrinos get Majorana
masses from their Yukawa interactions with S. Under the
assumption of generation universality, the possible Uð1ÞX
charge options for the fermions are quite restricted, as we
now discuss.
We assign a Uð1ÞX charge xq for the left-handed quark

doublets and xl for the left-handed lepton doublets. For the
right-handed u-type (d-type) quarks, we assign the charges
xu (xd), while for the right-handed electron, we take it to be
xe. The Uð1ÞX charge of the right-handed neutrinos, N, is
taken as xN . The Uð1ÞX quantum numbers of the scalars
have already been introduced: the SM Higgs doublet, Φ,
has a charge xΦ=2, while S has a charge 1=2.

Since the scalar Φ is responsible for the fermion Dirac
masses, we must have

xq − xu ¼ xe − xl ¼ xd − xq ¼ −
xΦ
2
: ð18Þ

In addition, since S is assumed to be responsible for the
Majorana masses of the right-handed neutrinos, xN can be
determined as

xN ¼ −1=4: ð19Þ

Further, demanding cancellation of gauge and gravitational
anomalies, we get

½SUð2ÞL�2Uð1ÞX ⇒ 3xq þ xl ¼ 0; ð20aÞ

½SUð3ÞC�2Uð1ÞX ⇒ 2xq ¼ xd þ xu; ð20bÞ

½Uð1ÞY �2Uð1ÞX ⇒ 2xq þ 6xl ¼ 16xu þ 4xd þ 12xe;

ð20cÞ

Gauge Gravity ⇒ 6xq þ 2xl ¼ 3ðxu þ xdÞ þ ðxe þ xNÞ:
ð20dÞ

It can be checked that the other two constraints that follow
from the Uð1ÞY ½Uð1ÞX�2 and ½Uð1ÞX�3 triangle anomalies
are automatically satisfied. Equation (20) contains four
relations among the six unknowns xq, xl, xu, xd, xe, and xN .
Taken together with Eq. (18) and bearing in mind that xN is
fixed from Eq. (19), all the Uð1ÞX charges of the fermions
can be determined in terms of one free parameter,1 κx, as
depicted in Table I.
Different Uð1ÞX models are obtained by choosing κx

appropriately. In Table II, we have shown several alter-
natives. For example, the (B − L) extension of the SM
corresponds to κx ¼ 1=4. For this choice, the x charges are
precisely ðB − LÞ=4—the overall factor of 1=4 being a
reflection of our chosen normalization of the Uð1ÞX
coupling constant, gx. It is worth noting that for this choice
of κx the SUð2ÞL doublet scalar Φ has Uð1ÞX charge
xΦ=2 ¼ 0. Hence, the Z-Z0 mixing in B − L models is
strictly due to gauge kinetic mixing, which imparts aUð1ÞX
charge onto Φ. The choice κx ¼ 0 corresponds to the case
in which Uð1ÞX ≡Uð1ÞR under which the left-handed
fermions are singlets while right-handed fermions have
charges�1=4. The choice κx¼3=20 givesUð1ÞX ≡Uð1Þχ ,
which emerges when an SOð10Þ GUT is broken to SUð5Þ×
Uð1Þχ . Finally, with κx ¼ 1=5, we get theUð1ÞR×Uð1ÞB−L
model, which can be rotated to the Uð1ÞY × Uð1ÞX form

1Reference [51] also introduces a parametrization for the Z0
fermionic charges, but our formulation is slightly different.
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with the Uð1ÞX charge satisfying 5x ¼ ðB − LÞ − T3R=2.
In Table II, we have also summarized how the usually
normalized Uð1Þ charges in these models are related to the
Uð1ÞX charges given in the last column of Table I.

C. Fermion couplings to gauge bosons

The parametrization for fermion charges being
set, we can now write down the fermion couplings to Z
and Z0, which will be necessary for the subsequent
discussions. The relevant interaction Lagrangian can be
written as

Lint¼−
g

2cosθw
½f̄γμðgfV −gfAγ

5ÞfZμþ f̄γμðg0fV −g0fA γ
5ÞfZ0

μ�;

ð21Þ

where f stands for a generic fermion. Using the results of
Sec. II A and II B, we get

gfV ¼ cos αzG
f
V þ sin αzH

f
V;

g0fV ¼ − sin αzG
f
V þ cos αzH

f
V; ð22aÞ

gfA ¼ cos αzG
f
A þ sin αzH

f
A;

g0fA ¼ − sin αzG
f
A þ cos αzH

f
A; ð22bÞ

where

Gf
V ¼ −pf þ 2Qf M

2
W

M2
11

;

Hf
V ¼ pfF þ rf

MW

M11

tan θx; ð23Þ

and

Gf
A ¼ Tf

3L; Hf
A ¼ −Tf

3LF þ sf
MW

M11

tan θx: ð24Þ

The quantities Qf (electric charge), Tf
3L (third component

of weak isospin of fL), pf, rf, and sf for the different
fermions are listed in Table III. In Eqs. (23) and (24), F is
given by

F ≡ ðM2
Z0 −M2

ZÞ
M2

11

sin αz cos αz: ð25Þ

Through Eqs. (22) to (25), the fermion couplings are
expressed in terms of measurable quantities, and the
characteristic model-independent constants are given in
Table III.
For the left-handed neutrinos, for later use, we define

κZ;Z0 through

gνV ¼ gνA ¼ κZ
2
; g0νV ¼ g0νA ¼ κZ0

2
: ð26Þ

It is to be noted that the vector and axial-vector couplings of
Z and Z0 to the fermions depend on three quantities:MZ0 , αz
and θx. What is interesting is that κx, which is a parameter
characterizing different models in an anomaly-free gauged
Uð1ÞX setup, cancels out for all the couplings. Curiously,
the prefactor of κx for each field is exactly twice its
hypercharge (see Table I). The other contributions to the
Uð1ÞX charges, which depend on xN , survive. Our choice
that the right-handed neutrino, NR, receives Majorana
masses through coupling with S allowed us to set
xN ¼ −1=4. Since all the observables can be determined
in terms of the three unknowns MZ0 , αz and θx, our
formalism is completely model independent, as all model

TABLE I. TheUð1ÞX-charge assignments of the multiplets, as a
function of κx, satisfying the anomaly constraints, as well as the
transformation properties of the multiplets under the SM part of
the gauge symmetry.

Multiplet SUð3ÞC SUð2ÞL Uð1ÞY Uð1ÞX
QL 3 2 1=6 κx=3
uR 3 1 2=3 4κx=3 − 1=4
dR 3 1 −1=3 −2κx=3þ 1=4
LL 1 2 −1=2 −κx
eR 1 1 −1 −2κx þ 1=4
NR 1 1 0 −1=4
Φ 1 2 1=2 κx − 1=4
S 1 1 0 1=2

TABLE II. κx for different Uð1ÞX models. Note that for the
B − L model our Uð1ÞB−L charge differs from the conventional
choice by a factor of 1=4 due to our convention for the gauge
coupling of the additional Uð1ÞX .

Model Uð1ÞB−L Uð1ÞR Uð1Þχ Uð1ÞR × Uð1ÞB−L
Charge
definitions

ðB−LÞ
4

− T3R
2

−Qχ=
ffiffiffiffiffi
10

p
1
5
½ðB − LÞ − 1

2
T3R�

κx 1
4

0 3
20

1
5

TABLE III. Coefficients entering in the fermionic couplings of
Z and Z0.

Fermion (f) Qf Tf
3L pf rf sf

u þ2=3 1=2 5=6 1=6 0
d −1=3 −1=2 −1=6 1=6 0
e −1 −1=2 −3=2 −1=2 0
νL 0 1=2 −1=2 −1=4 −1=4
NR 0 0 0 −1=4 1=4
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dependence can be soaked within the above three quantities
as long as we stick to an anomaly-free setup.2

III. BOUNDS FROM DIRECT SEARCHES
AT THE LHC

The LHC experiments CMS and ATLAS routinely
search for exotic neutral vector resonances going to
lþl−ðl≡ e; μ; τÞ final states (DY modes). The nondis-
covery of any such new particle to date translates to
exclusion limits on the mass and couplings of the Z0. In
this section, we extract such bounds using the latest 36 fb−1

ATLAS data [52] and cast them in a model-independent
manner.
To analyze the constraints arising from direct resonant Z0

production at the LHC, decaying to a pair of charged
leptons, we first define the chiral couplings gfL and gfR
through

gfR ¼ g
2 cos θw

ðg0fV − g0fA Þ;

gfL ¼ g
2 cos θw

ðg0fV þ g0fA Þ: ð27Þ

From Eq. (26), we note that the right-handed couplings of
the light neutrinos to Z0, gνR are zero. In writing Eq. (27), we
have implicitly assumed flavor diagonal couplings for Z0
but kept open the possibility of flavor nonuniversality. With
this, the cross section for resonant production of a Z0 boson
at the LHC and its subsequent decay into a pair of charged
leptons can be conveniently expressed as (in the narrow-
width approximation, for illustration)[34]3

σðpp → Z0X → lþl−XÞ ¼ π

6s

X
q

Cl
qwqðs;M2

Z0 Þ; ð28Þ

where the sum is over all the partons. The coefficients

Cl
q ¼ ½ðgqLÞ2 þ ðgqRÞ2�BRðZ0 → lþl−Þ ð29Þ

involve the fermionic couplings of Z0 and hence depend on
the details of the fermionic sector of the model under
consideration. The functions wq, on the other hand, contain

all the information about the parton distribution functions
(PDFs) and QCD corrections, detailed expressions for
which appear in the Appendix. Considering the fact that
wu and wd are substantially larger than the wq functions for
the other quarks, we can approximate Eq. (28) as follows4:

σðpp → Z0X → lþl−XÞ
≈

π

6s
½Cl

uwuðs;M2
Z0 Þ þ Cl

dwdðs;M2
Z0 Þ�: ð30Þ

Direct searches at the LHC put upper limits on the left-
hand side of Eq. (28). The most recent ATLAS limits can be
found in Refs. [52,53], in which, as expected, the bound for
the l� ≡ τ� case is less stringent than for l� ≡ e�, μ�.
Using the CT14NLO PDF set [63], we evaluate wu and wd and
translate the limit on the cross section into a bound in the
Cl
u-Cl

d plane for different values of MZ0 . The results have
been displayed in Fig. 1, in which the left panel corresponds
to l≡ e, μ5 and the right panel corresponds to l≡ τ. For
any chosen MZ0 , only the interior of the corresponding
contour is allowed. Although the bound arising from the
τþτ− final state is substantially weaker compared to that
from the eþe−, μþμ− final state, it may have its own
advantage for scenarios in which, e.g., the Z0 dominantly
couples to the third generation of fermions [65–67].

IV. THEORETICAL CONSTRAINT
FROM UNITARITY

For Uð1Þ extended models, in the absence of a Z0, the
scattering amplitude for the process Wþ

LW
−
L → Wþ

LW
−
L, in

which W�
L denotes the longitudinal component of the W

boson, will grow as the fourth power of the center-of-
momentum (CoM) energy at the leading order. To put it
explicitly, if the Z0 is too heavy to contribute, then we can
write the Feynman amplitude for Wþ

LW
−
L → Wþ

LW
−
L as

MWþ
LW

−
L→Wþ

LW
−
L
¼ g2cos2θwE4

M4
W

sin2αzð−3þ 6 cos θ

þ cos2θÞ þO
�
E2

M2
W

�
; ð31Þ

where E denotes the CoM energy and θ is the scattering
angle. From Eq. (31), the l ¼ 0 partial wave amplitude that
usually gives the strongest bound can be extracted as

2We mention here the leptophobic Z0 scenarios (mainly, E6

models) advocated in Refs. [57–59]. Indeed, the leptonic cou-
plings of X0 can be made to vanish by appropriately tuning the
kinetic mixing parameter χ. However, the relatively heavier mass
eigenstate Z0 ceases to be truly leptophobic as it invariably
contains a part of the SM-like weak eigenstate through the
unavoidably nonvanishing mixing angle αZ in an anomaly-free
setup. If instead we force the heavier state Z0 to be purely
leptophobic, we cannot avoid an untenable corollary that
tan θx ¼ 0, i.e., the extra Uð1ÞX gauge coupling gx has to vanish.

3The reader may notice a difference of a 1=8 factor between our
expression and the one given in Ref. [34]. This issue has been
addressed in Refs. [60,61], the conventions of whichwe follow here.

4For most Z0 models, this is a reasonable approximation. In
particular, in models with flavor universal Z0 couplings, we have
checked that it hardly makes a visible difference if we use
Eq. (28) instead of the approximate formula of Eq. (30). But, of
course, this approximation breaks down in the extreme case when
the Z0 does not couple at all to the first generation of quarks [62].

5Such an analysis was carried out by CMS using their 8 TeV
(20 fb−1) dilepton data [64]. A comparison with our results shows
that there is almost an order of magnitude improvement in the
corresponding bounds, if we use the current 13 TeV (36 fb−1)
data.
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a0 ¼ −
8

3

g2 cos2 θwE4

M4
W

sin2 αz: ð32Þ

Unitarity restricts the magnitude of a0 as ja0j < 8π, which
translates into an upper bound for the CoM energy,

E < Emax ¼
�
8π ×

3ðM2
Zcos

2αz þM2
Z0sin2αzÞ

32
ffiffiffi
2

p
GFsin2αz

�1
4

; ð33Þ

where GF is the Fermi constant obtained via the relation

g2=M2
W ¼ 4

ffiffiffi
2

p
GF; ð34Þ

and we have used Eq. (17a) to substitute for M2
W= cos

2 θw.
Thus, to restore unitarity, effects of the Z0 must set in before
the CoM energy reaches Emax, i.e., MZ0 < Emax, which
implies

M4
Z0 sin2 αz

ðM2
Z cos

2 αz þM2
Z0 sin2 αzÞ

< 8π ×
3

32
ffiffiffi
2

p
GF

: ð35Þ

To find a physical interpretation for the above bound, we
write down the expression for the Z0 → WþW− decay
width as

ΓðZ0 → WþW−Þ ≈ 1

64π

g2 cos2 θw sin2 αz
3

MZ0

�
MZ0

MW

�
4

;

ð36Þ

which is valid in the limit MZ0 ≫ MW when the longi-
tudinal components of the W bosons dominate [68,69].
Substituting for cos θw using Eq. (17a), one can easily
verify that this partial decay width increases with sin αz as
well as MZ0 . However, the resonance should be narrow

enough so that it can be distinguished experimentally from
the flat background. In view of this, it may be reasonable to
impose a rather conservative limit,

ΓðZ0 → WþW−Þ < MZ0 : ð37Þ

Using Eqs. (17a) and (34), one can check that the above
bound can be translated into

M4
Z0 sin2 αz

ðM2
Z cos

2 αz þM2
Z0 sin2 αzÞ

< 48π ×
1ffiffiffi
2

p
GF

; ð38Þ

which is slightly weaker than the unitarity bound in
Eq. (35). Therefore, consideration of unitarity implicitly
keeps the corresponding partial decay width under
control.6

The tree unitarity constraint is of prime importance as it
translates to an upper bound on MZ0 , for a given sin αz,
complementing the lower bound that comes from direct
search experiments. This can be seen from Eq. (35).7 We
show this explicitly when we discuss the interplay of the
different bounds in Sec. VI. It should also be noted that,
although unitarity in the context of Z0 models has been
studied earlier [73,74], to our knowledge, the possibility of
using it to cast an upper bound on the Z0 mass as in Eq. (35)
has not been emphasized before and thus constitutes a new

FIG. 1. Exclusion contours at 95% C.L. in the Cl
u-Cl

d plane for different values of MZ0 , derived using ATLAS data for dilepton final
states [52,53]. In the left panel, the contours are for the l≡ e, μ final state, and the right panel corresponds to the τþτ− final state. For
any given MZ0 , the interior of the corresponding contour is allowed.

6It is worth remarking that such a lesser-known virtue of
the unitarity bound is also present in the case of the SM Higgs
boson. Formh ≫ MW, ΓðhSM→WþW−Þ grows asm3

h and would
equal mh for mh ≈ 1.4 TeV [70]. But the bound mh < 1 TeV
from the Wþ

LW
−
L scattering ensures that such a situation never

arises.
7Similarly for ff̄ → Wþ

LW
−
L, the scattering amplitude will

grow as OðE2Þ [71] and can give an upper bound on MZ0 for
nonzero αz. But this bound will depend on the fermionic
couplings of Z0 [72] and will not be as model independent.
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observation in our paper. Moreover, since this analysis does
not depend on the details of the fermionic couplings, such a
bound is quite general and can be applied to a wide class of
Z0 models.

V. CONSTRAINTS FROM νμ-e SCATTERING

The unitarity constraint, described in the previous
section, relies on sniffing the effects of Z0 through the
Z-Z0 mixing. Therefore, the bounds are lifted in the limit
sin αz ¼ 0 as has been clearly depicted in Fig. 2. However,
depending on how Z0 couples to the fermions, it is possible
to put lower bounds on MZ0 , even in the limit of vanishing
Z-Z0 mixing [75,76]. This can be done, e.g., by using the
data from low-energy neutrino-electron scattering such as
νμe → νμe, which proceeds at the tree level purely via
neutral current (see, e.g., Refs. [74,77,78]). In models with
an extra Uð1Þ, the Z0 boson will, in general, also contribute
to the scattering.
The dimension-6 operator governing νμ − e scattering at

low energies is written as

Lνe ¼ −
GFffiffiffi
2

p ½ν̄γμð1 − γ5Þν�½ēγμðgνeV − gνeA γ5Þe�: ð39Þ

We recall that in the SM the expressions for gνeV and gνeA are
very simple at the tree level and are given by

ðgνeV ÞSM ≡ ðgeVÞSM ¼ −
1

2
þ 2sin2θw;

ðgνeA ÞSM ≡ ðgeAÞSM ¼ −
1

2
: ð40Þ

Of course, in the Z0 models under consideration, the above
expressions will be modified [see Eq. (26)] as

ðgνeðV;AÞÞmodel ¼ M2
11

�κZgeðV;AÞ
M2

Z
þ
κZ0g0eðV;AÞ
M2

Z0

�
; ð41Þ

where the expression for M2
11 appears in Eq. (17) and the

rest of the couplings appear in Eq. (22).
We use this formula along with the global fit values from

PDG [79]

gνeV ¼ −0.040� 0.015; gνeA ¼ −0.507� 0.014 ð42Þ
to draw the 2σ allowed regions in the sinαz-MZ0 plane for
two different values of tan θx as shown by the blue curves
in Fig. 2.

VI. RESULTS AND DISCUSSIONS

Until now, we have developed a general formalism on
how to constrain a minimal Z0 model from theoretical
considerations as well as from different types of exper-
imental data. Now, we combine the different limits
together, described in the previous sections, to obtain
stronger bounds on the parameter space. To illustrate,

Ce;μ
u;d and gνeV

8 can be determined, using Eqs. (29), (27),
and (41) in conjunction with Eq. (22), in terms of the three
quantities MZ0 , αz, and tan θx. The bound from the left
panel of Fig. 1 and the constraint coming from νμ-e
scattering can then be translated to the limits on those
three parameters.
In Fig. 2, these bounds have been displayed in the

sin αz-MZ0 plane for any anomaly-free Uð1ÞX model for
two typical choices of tan θx. The region excluded from
unitarity has been shaded in gray and is independent of
tan θx. The lower bounds on MZ0 , arising from the ATLAS
(13 TeV, 36 fb−1) exclusion of the DY production of Z0, are
depicted as red curves, whereas the region above the light
blue curves denotes the region consistent with νμ-e scatter-
ing. Additionally, we also give contours that represent a
constraint on the Z0 decay width, as a guideline for the
validity of a particle interpretation. The green lines in the
figure arise from the consideration9 ΓZ0 ≤ MZ0=2.
For all the colored contours, the solid (dashed) curves

correspond to tan θx ¼ 1ð4Þ. Recall that tan θx is propor-
tional to the effective Uð1ÞX coupling, g0x. As it happens,
the lower bounds on MZ0 arising from low-energy νμ-e

FIG. 2. Consolidated bounds in the ðsin αz-MZ0 Þ plane for
anomaly-free Uð1ÞX models. The shaded region is excluded
from unitarity. The red and the blue colors indicate the limits set
by direct detection and νμ-e scattering data, respectively. The
green contours are obtained by setting ΓZ0 ¼ MZ0=2. The solid
and dashed line types correspond to tan θx ¼ 1 and 4, respec-
tively. The region above the red lines is allowed by the 36 fb−1

ATLAS data, whereas the region above the blue lines and the
interior of the green contours represent the allowed area from the
νμ-e scattering data and ΓZ0 ≤ MZ0=2, respectively.

8Using the expressions in Eq. (22), we have checked that
gνeA ¼ −0.5 is independent of the model parameters.

9What constitutes an acceptable width of a heavy particle, or
how far the narrow-width approximation holds well, can be a
matter of discussion, and hence we choose to veer on the
conservative side, to illustrate what role the consideration of
width might play in restricting the parameter space.
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scattering are considerably weaker than those from direct
searches. However, νμ-e scattering can put important
constraints on hadrophobic Z0 models when the production
of the Z0 at the LHC is very suppressed. Combining the
lower bound on MZ0 from the direct searches with the
corresponding upper bound coming from, e.g., unitarity, we
are able to extract an upper limit on the magnitude of the
Z-Z0 mixing angle, αz. Such bounds on jαzj are on par with
the corresponding limits from electroweak precision
data [47,80].
In Table IV, we have summarized the bounds on αz and

MZ0 for tan θx ¼ 1 and 4 for anomaly-free Uð1ÞX models.
From Table II, we recall that the choice tan θx ¼ 4 corre-
sponds to g0x ¼ g for the “conventional” (B − L) model. This
is so because for (B − L) model in our normalization
κx ¼ 1=4, and g0xκx in our setup is equivalent to a generic
g0x in the conventional (B − L) model. It should be pointed
out that, although we have taken into account the decays
Z0 → WþW− and Z0 → Zh (h being the lighter SM-like
Higgs scalar) for our analysis, we have assumed the decays
Z0 → NN, where N denotes a heavy RH neutrino, and
Z0 → ZH, where H is the heavier nonstandard scalar, to be
kinematically forbidden. The lower bound onMZ0 is likely to
be diluted further if these decay channels open up.
It may be useful to note that every point in the sin αz-MZ0

plane in Fig. 2 corresponds, through Eq. (25), to a definite
value of F . If a specific model is chosen, then one can use
the relation

tan χ ¼
�
2κx −

1

2

�
tan θx cot θw −

F
sin θw

; ð43Þ

which follows from Eq. (17c), to determine the kinetic
mixing angle, χ, corresponding to this point. The value of
κx varies from model to model, tan θx is a measure of the
effective gauge coupling of the extra Uð1ÞX, and cos θw is
determined in terms of sin αz and MZ0 through Eq. (17).
Conversely, for a fixed value of the kinetic mixing
parameter, χ, any model would correspond to a curve,
determined by κx, in the sin αz-MZ0 plane. For a definite
example, if we consider the (B − L) model (κx ¼ 1=4), the
curve corresponding to χ ¼ 0 is a vertical straight line
through the origin. This is reminiscent of the fact that in this
model Z-Z0 mixing is entirely due to kinetic mixing.

In Fig. 3, we take a complementary approach by casting
the bounds in the MZ0 - tan θx plane, for two representative
values of sin αz, namely, 0 and ð−10−4Þ. For these values of
sin αz, the strongest limits come from direct searches,
which have been displayed by the red lines. For
sin αz ¼ 0, the region to the right of the solid red line is
allowed, whereas for sinαz ¼ ð−10−4Þ, the region con-
tained within the dashed red lines is allowed. The absence
of contours from considerations of unitarity and νμ − e
scattering in Fig. 3 implies that the corresponding curves
are too weak to enter inside the zoomed range of the
parameter space.
In Fig. 4, we display the bounds in the sinαz- tan θx

plane, for two representative values of MZ0 , namely, 4 and
5 TeV. For these values of MZ0 , the strongest limits come
from direct searches, displayed by the red lines. For
MZ0 ¼ 4 TeV, the region inside the solid red contour is
allowed, whereas for MZ0 ¼ 5 TeV, the region bounded
within the dashed red lines is allowed. The green lines
correspond to ΓZ0 ≤ MZ0=2.
Finally, with the ambitious expectation that a Z0 will be

discovered in future, in Fig. 5, we illustrate how model-
specific information can be extracted using the following
hypothetical measurements of the model-independent
parameters:

MZ0 ≈5.5 TeV; sinαz≈ ð−10−4Þ; tanθx≈1: ð44Þ

The solid black line in Fig. 5 has been obtained by combining
Eqs. (9b) and (9c) for tan θx ¼ 1. It does not depend on the
chosen model. The red lines, on the other hand, are drawn
usingEq. (9d) inconjunctionwithEqs. (17a)and(17c) to trade

TABLE IV. Summary of bounds on MZ0 and αz for anomaly-
free Uð1ÞX models using two representative values of tan θx
[which is proportional to the effective Uð1ÞX coupling].

Maximum j sin αzj 10−3

tan θx ¼ 4 MZ0 exclusion at αz ¼ 0 (TeV) 5.1
Lowest possible value of MZ0 (TeV) 4.4
Maximum j sin αzj 10−3

tan θx ¼ 1 MZ0 exclusion at αz ¼ 0 (TeV) 3.8
Lowest possible value of MZ0 (TeV) 3.0

FIG. 3. Bounds in the ðMZ0 - tan θxÞ plane for anomaly-free
Uð1ÞX models using two representative values of sin αz, namely,
0 and ð−10−4Þ. For these choices of sin αz the strongest limits
arise from the direct searches, which have been displayed as the
red lines. For sin αz ¼ 0, the region to the right of the solid red
curve is allowed, whereas for sin αz ¼ ð−10−4Þ, the allowed
region lies within the dashed red curves.
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θw and x0Φ in favor ofMZ0 , αz, and tan θx. Since the red lines
require the input of xΦ, which, in turn, depends on κx, the lines
are different for differentmodels. The intersectionof theblack
line with a particular red line gives the solutions for
the kinetic mixing parameter, χ, and the Uð1ÞX coupling,
gx, for that particular model. Such a solution might provide
intuition as towhether a specificUð1ÞX model fits into amore

elaborate scheme, such as grand unification, at higher
energies.

VII. CONCLUSIONS

Our intention in this paper has been to put constraints on the
parameter space of the minimal extension of the SM with an
additional gauged Uð1Þ giving a massive neutral Z0 gauge
boson. We did revisit the formalism first to set up the
notations. We have advocated a parametrization in which,
in the presence of kinetic mixing, the constraints on different
anomaly-free Uð1ÞX models can be expressed in a model-
independent unified framework. Importantly, we have not
a priori assumed, unlike most of the previous works, that the
Z-Z0 mixing angle is small or the Z0 mass is way above the Z
mass. For the sake of illustration, we explicitly examine a few
popular scenarios ofUð1Þ extension, e.g., the (B − L) model,
anUð1Þ arising from left-right symmetry, etc. It turns out that
there are three important quantities to be determined that
cover the extended parameter space and absorb all model
dependence for a nonanomalous Uð1Þ extension. These
quantities are the mass of the Z0, the effective gauge coupling
strength (g0x) of the extra Uð1Þ, and the Z-Z0 mixing angle
(αz). To constrain this space, we have primarily employed
three types of information, namely, the LHC (ATLAS)
13 TeV Drell-Yan data with 36 fb−1 luminosity, the results
from low-energy νμ − e scattering, and consistency with s-
wave unitarity in the Wþ

LW
−
L → Wþ

LW
−
L channel. The LHC

data turn out to be most constraining. We also observe that
constraints on the Z0 decay width, ΓZ0 , translate to constraints
in the parameter space which are similar in nature to those
obtained from s-wave unitarity. We want to underscore that,
although we employ the anomaly-free (per generation)
models to exemplify our formalism, the analysis can in
general be used to constrain other extensions of the SM with
an additional Z0. The interplay between the different bounds
can be used to constrain models with or without couplings to
fermions, andwithorwithoutZ-Z0mixing.Also,modelswith
a Z0 that couples only to leptons, or even preferentially to the
third generation, can be constrained using our study. The new
things that emerge from our analysis are the following:

(i) Our parametrization shows that increasingly precise
experimental data would squeeze the allowed region
in the three-dimensional space of MZ0 , αz, and θx.
The description is completely model independent as
long as the fermion content ensures an anomaly-free
setup. Model dependence is encoded in κx, which is
different for different models, as listed in Table II. Of
the other parameters, the strength of kinetic mixing,
χ, should in principle be a derived quantity in a
fundamental theory given the charges of a possible
set of heavy particles (couplings both to Bμ and Xμ),
integrated out to generate the mixing. Nevertheless,
in our approach, which is agnostic toward models of
UV completion, χ is treated as an effective param-
eter. Given a model (i.e., a value of κx), one can

FIG. 4. Consolidated bounds in the ðsin αz- tan θxÞ plane for
anomaly-freeUð1ÞX models using two representativevalues ofMZ0 ,
namely, 4 and 5 TeV. For these values of MZ0 , the strongest limits
come from direct searches, displayed by the red lines. For
MZ0 ¼ 4 TeV, the region inside the solid red contour is allowed,
whereas for MZ0 ¼ 5 TeV, the region bounded within the dashed
red lines is allowed. The green lines refer to ΓZ0 ≤ MZ0=2 for which
the limits are rather weak for the chosen values ofMZ0 (the region
inside the dashed lines is allowed for MZ0 ¼ 5 TeV, while for
MZ0 ¼ 4 TeV, onlyone sideof the contour, the solid line, is visible).

FIG. 5. Example plot illustrating the inter-relationship between
kinetic mixing (sin χ) and the original Uð1ÞX coupling (gx)
assuming hypothetical measurements: MZ0 ≈ 5.5 TeV,
sin αz ≈ ð−10−4Þ, and tan θx ≈ 1. The solid black curve is the
contour corresponding to Eq. (9c). Each red line corresponds to a
particular model, drawn in conformity with Eqs. (9d) and (17c).
The intersection of the black curve with a particular red line gives
the solutions for the kinetic mixing and gx for a given model.
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calculate a range in χ using Eq. (43), which would fit
values (or limits) of MZ0 , αz, and θx extracted
directly from experimental data.

(ii) We have updated the model-independent constraints
in theCl

u-Cl
d (l≡ e, μ) plane, using the latest 13 TeV

(36 fb−1) ATLAS data.We obtain an improvement of
1 order of magnitude over the previous constraints in
the same plane obtained from the publicly available
7–8 TeV CMS results [64] (see also Ref. [37]) and
several orders of magnitude over those fromTevatron
results [34].While constraintswere speculated before
actual LHC data arrived [10,35,36], our analysis
provides the most updated ones in the Cl

u-Cl
d plane

using the latest publicly available LHC (ATLAS)
data. Translating experimental data to constraints in
the above plane as a function of ðMZ0 ; Cl

u; Cl
dÞ, rather

than directly to limits onMZ0=g02x , is quite useful as it
provides a model-independent platform from where
limits on any type of specific customized models can
be easily extracted. ATLAShas also provided bounds
for Drell-Yan τþτ− production through a Z0. We use
this data set to set similar constraints in the Cτ

u-Cτ
d

plane. Though less restrictive, these latter bounds are
useful for nonuniversal Z0 models that have a differ-
ent coupling to the third-generation fermions.

(iii) The s-wave unitarity constraints in the (MZ0 - sin αz)
plane, placed for the first time in this paper, turn out
to provide complementary limits when the LHC
direct search and the low-energy νμ-e scattering
constraints are superposed in the same plane. It is
important to observe that the unitarity constraints are
insensitive to the extra Uð1Þ coupling strength, g0x,
and in conjunction with the LHC direct search
limits, they restrict the Z-Z0 mixing to be small
(which we have not a priori assumed). However,
when we require ΓZ0 ≤ 0.5MZ0 , the constraints turn
out to be much stronger than the ones obtained from
νμ-e scattering data or from satisfying s-wave
unitarity. The constraints on the mixing angle (αz)
we obtain are, in fact, of the same order as obtained
from electroweak precision tests [47,80].

(iv) When the Z0 couples to fermions with the same
strength as that of the SM SUð2ÞL gauge boson [for
the (B − L) model, this corresponds to tan θx ¼ 4), we
obtainMZ0 > 4.4 TeV and jαzj < 0.001 at 95% C.L.

We urge our experimental colleagues to take notice of our
assertion that a model-independent analysis, as depicted
especially by the direct detection contour in Fig. 2, can be
carried out with just three independent parameters, as dis-
cussed in detail.
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Note added—Recently, the 13 TeV Drell-Yan data from the
CMS Collaboration became available [81]. Our result in the
Ce;μ
u -Ce;μ

d plane,whichusesthe13TeVATLASDrell-Yandata,
is very similar to that obtained by the CMS Collaboration.
Analysis using the 13 TeVATLAS Drell-Yan data has also
been performed very recently in Refs. [82,83].

APPENDIX: DETAILED EXPRESSIONS FOR wq

The next-to-leading-order expressions for the functions,
wq, which appear in Eq. (28), are given by

wqðs;M2
Z0 Þ ¼

Z
1

0

dx
Z

1

0

dy
Z

1

0

dzδ

�
M2

Z0

s
− xyz

�

× fFqqðx; y;M2
Z0 ÞΔqqðz;M2

Z0 Þ
þ Fgqðx; y;M2

Z0 ÞΔgqðz;M2
Z0 Þg; ðA1Þ

For pp colliders such as the LHC, we have[34]

Fqqðx;y;M2
Z0 Þ ¼ fq←Pðx;M2

Z0 Þfq̄←Pðy;M2
Z0 Þþðx↔ yÞ;

ðA2aÞ
Fgqðx; y;M2

Z0 Þ ¼ fg←Pðx;M2
Z0 Þ½fq←Pðy;M2

Z0 Þ
þ fq̄←Pðy;M2

Z0 Þ� þ ðx ↔ yÞ; ðA2bÞ
where fq←Pðx;M2

Z0 Þ represents the PDF for the parton q at
a factorization scale, MZ0 . The scaling functions, Δqq and
Δgq, are given by [84]

Δqqðz;M2
Z0 Þ ¼ δð1 − zÞ þ αsðM2

Z0 Þ
π

CF

��
π2

3
− 4

�
δð1 − zÞ

−
1þ z2

1 − z
lnðzÞ − 2ð1þ zÞ lnð1 − zÞ

þ 4ð1þ z2Þ
�
lnð1 − zÞ
1 − z

�
þ

�
; ðA3aÞ

Δgqðz;M2
Z0 Þ ¼ αsðM2

Z0 Þ
2π

TF

�
ð1 − 2zþ 2z2Þ ln ð1 − zÞ2

z
þ 1

2

þ 3z −
7

2
z2
�
; ðA3bÞ

where CF ¼ 4=3 and TF ¼ 1=2 are the quark and gluon
color factors, respectively. The plus prescription is defined
as follows:

Z
1

0

dxfðxÞgðxÞþ ¼
Z

1

0

dx½fðxÞ − fð1Þ�gðxÞ: ðA4Þ

We obtained our numerical results using these equations.

REAPPRAISAL OF CONSTRAINTS ON Z0 MODELS … PHYS. REV. D 98, 035027 (2018)

035027-11



[1] J. C. Pati and A. Salam, Is Baryon Number Conserved?,
Phys. Rev. Lett. 31, 661 (1973).

[2] J. C. Pati and A. Salam, Lepton number as the fourth color,
Phys. Rev. D 10, 275 (1974); Erratum 11, 703(E) (1975).

[3] R. N. Mohapatra and J. C. Pati, Natural left-right symmetry,
Phys. Rev. D 11, 2558 (1975).

[4] G. Senjanovic and R. N. Mohapatra, Exact left-right sym-
metry and spontaneous violation of parity, Phys. Rev. D 12,
1502 (1975).

[5] H. Georgi, The state of the art gauge theories, AIP Conf.
Proc. 23, 575 (1975).

[6] H. Fritzsch and P. Minkowski, Unified interactions of
leptons and hadrons, Ann. Phys. (N.Y.) 93, 193 (1975).

[7] F. Gursey, P. Ramond, and P. Sikivie, A universal
gauge theory model based on E6, Phys. Lett. 60B, 177
(1976).

[8] D. London and J. L. Rosner, Extra gauge bosons in E(6),
Phys. Rev. D 34, 1530 (1986).

[9] P. Langacker, Grand unified theories and proton decay,
Phys. Rep. 72, 185 (1981).

[10] T. G. Rizzo, Z0 phenomenology and the LHC, in Proceed-
ings of Theoretical Advanced Study Institute in Elementary
Particle Physics: Exploring New Frontiers Using Colliders
and Neutrinos (TASI 2006) (World Scientific, Singapore,
2008), p. 537.

[11] J. L. Hewett and T. G. Rizzo, Low-energy phenomenology
of superstring inspired E(6) models, Phys. Rep. 183, 193
(1989).

[12] M. Cvetic and P. Langacker, Implications of Abelian
extended gauge structures from string models, Phys. Rev.
D 54, 3570 (1996).

[13] A. Leike, The phenomenology of extra neutral gauge
bosons, Phys. Rep. 317, 143 (1999).

[14] P. Langacker, The physics of heavy Z0 gauge bosons, Rev.
Mod. Phys. 81, 1199 (2009).

[15] N. Arkani-Hamed, A. G. Cohen, and H. Georgi, Electro-
weak symmetry breaking from dimensional deconstruction,
Phys. Lett. B 513, 232 (2001).

[16] M. Perelstein, Little Higgs models and their phenomenol-
ogy, Prog. Part. Nucl. Phys. 58, 247 (2007).

[17] Y. Shadmi and Y. Shirman, Dynamical supersymmetry
breaking, Rev. Mod. Phys. 72, 25 (2000).

[18] I. Antoniadis, A possible new dimension at a few TeV, Phys.
Lett. B 246, 377 (1990).

[19] T. Appelquist, H.-C. Cheng, and B. A. Dobrescu, Bounds on
universal extra dimensions, Phys. Rev. D 64, 035002
(2001).

[20] K. Agashe, A. Delgado, M. J. May, and R. Sundrum, RS1,
custodial isospin and precision tests, J. High Energy Phys.
08 (2003) 050.

[21] S. Iso, N. Okada, and Y. Orikasa, The minimal B-L model
naturally realized at TeV scale, Phys. Rev. D 80, 115007
(2009).

[22] S. Oda, N. Okada, D. Raut, and D.-s. Takahashi,
Non-minimal quartic inflation in classically conformal
Uð1ÞX extended standard model, Phys. Rev. D 97,
055001 (2018).

[23] A. Achucarro and T. Vachaspati, Semilocal and electroweak
strings, Phys. Rep. 327, 347 (2000).

[24] E. Dudas, Y. Mambrini, S. Pokorski, and A. Romagnoni,
(In)visible Z-prime and dark matter, J. High Energy Phys.
08 (2009) 014.

[25] E. Dudas, Y. Mambrini, S. Pokorski, and A. Romagnoni,
Extra U(1) as natural source of a monochromatic gamma ray
line, J. High Energy Phys. 10 (2012) 123.

[26] R. Foot and S. Vagnozzi, Dissipative hidden sector dark
matter, Phys. Rev. D 91, 023512 (2015).

[27] R. Foot and S. Vagnozzi, Diurnal modulation signal from
dissipative hidden sector dark matter, Phys. Lett. B 748, 61
(2015).

[28] N. Okada and S. Okada, Z0-portal right-handed neutrino
dark matter in the minimal Uð1ÞX extended standard model,
Phys. Rev. D 95, 035025 (2017).

[29] N. Okada, S. Okada, and D. Raut, SUð5Þ × Uð1ÞX grand
unification with minimal seesaw and Z0-portal dark matter,
Phys. Lett. B 780, 422 (2018).

[30] S. Okada, Z0 portal dark matter in the minimal B − Lmodel,
Adv. Ser. Dir. High Energy Phys., 2018, 5340935 (2018).

[31] B. Kors and P. Nath, A Stueckelberg extension of the
standard model, Phys. Lett. B 586, 366 (2004).

[32] A. Berlin, D. Hooper, and S. D. McDermott, Simplified dark
matter models for the Galactic Center gamma-ray excess,
Phys. Rev. D 89, 115022 (2014).

[33] J. M. Cline, G. Dupuis, Z. Liu, and W. Xue, The windows
for kinetically mixed Z’-mediated dark matter and the
galactic center gamma ray excess, J. High Energy Phys.
08 (2014) 131.

[34] M. Carena, A. Daleo, B. A. Dobrescu, and T.M. P. Tait, Z0

gauge bosons at theTevatron, Phys.Rev.D70, 093009 (2004).
[35] F. Petriello and S. Quackenbush, Measuring Z0 couplings at

the CERN LHC, Phys. Rev. D 77, 115004 (2008).
[36] E. Salvioni, G. Villadoro, and F. Zwirner, Minimal Z-prime

models: Present bounds and early LHC reach, J. High
Energy Phys. 11 (2009) 068.

[37] E. Accomando, A. Belyaev, L. Fedeli, S. F. King, and C.
Shepherd-Themistocleous, Z’ physics with early LHC data,
Phys. Rev. D 83, 075012 (2011).

[38] M. R. Buckley, D. Hooper, J. Kopp, and E. Neil, Light Z’
bosons at the Tevatron, Phys. Rev. D 83, 115013 (2011).

[39] E. Accomando, C. Coriano, L. Delle Rose, J. Fiaschi, C.
Marzo, and S. Moretti, Z0, Higgses and heavy neutrinos in
Uð1Þ0 models: From the LHC to the GUT scale, J. High
Energy Phys. 07 (2016) 086.

[40] N. Okada and S. Okada, Z0
BL portal dark matter and LHC

Run-2 results, Phys. Rev. D 93, 075003 (2016).
[41] A. De Simone, G. F. Giudice, and A. Strumia, Benchmarks

for dark matter searches at the LHC, J. High Energy Phys.
06 (2014) 081.

[42] O. Buchmueller, M. J. Dolan, S. A. Malik, and C. McCabe,
Characterising dark matter searches at colliders and direct
detection experiments: Vector mediators, J. High Energy
Phys. 01 (2015) 037.

[43] O. Ducu, L. Heurtier, and J. Maurer, LHC signatures of a Z’
mediator between dark matter and the SU(3) sector, J. High
Energy Phys. 03 (2016) 006.

[44] M. Klasen, F. Lyonnet, and F. S. Queiroz, NLOþ NLL
collider bounds, Dirac fermion and scalar dark matter in the
BL model, Eur. Phys. J. C 77, 348 (2017).

TRIPARNO BANDYOPADHYAY et al. PHYS. REV. D 98, 035027 (2018)

035027-12

https://doi.org/10.1103/PhysRevLett.31.661
https://doi.org/10.1103/PhysRevD.10.275
https://doi.org/10.1103/PhysRevD.11.703.2
https://doi.org/10.1103/PhysRevD.11.2558
https://doi.org/10.1103/PhysRevD.12.1502
https://doi.org/10.1103/PhysRevD.12.1502
https://doi.org/10.1063/1.2947450
https://doi.org/10.1063/1.2947450
https://doi.org/10.1016/0003-4916(75)90211-0
https://doi.org/10.1016/0370-2693(76)90417-2
https://doi.org/10.1016/0370-2693(76)90417-2
https://doi.org/10.1103/PhysRevD.34.1530
https://doi.org/10.1016/0370-1573(81)90059-4
https://doi.org/10.1016/0370-1573(89)90071-9
https://doi.org/10.1016/0370-1573(89)90071-9
https://doi.org/10.1103/PhysRevD.54.3570
https://doi.org/10.1103/PhysRevD.54.3570
https://doi.org/10.1016/S0370-1573(98)00133-1
https://doi.org/10.1103/RevModPhys.81.1199
https://doi.org/10.1103/RevModPhys.81.1199
https://doi.org/10.1016/S0370-2693(01)00741-9
https://doi.org/10.1016/j.ppnp.2006.04.001
https://doi.org/10.1103/RevModPhys.72.25
https://doi.org/10.1016/0370-2693(90)90617-F
https://doi.org/10.1016/0370-2693(90)90617-F
https://doi.org/10.1103/PhysRevD.64.035002
https://doi.org/10.1103/PhysRevD.64.035002
https://doi.org/10.1088/1126-6708/2003/08/050
https://doi.org/10.1088/1126-6708/2003/08/050
https://doi.org/10.1103/PhysRevD.80.115007
https://doi.org/10.1103/PhysRevD.80.115007
https://doi.org/10.1103/PhysRevD.97.055001
https://doi.org/10.1103/PhysRevD.97.055001
https://doi.org/10.1016/S0370-1573(99)00103-9
https://doi.org/10.1088/1126-6708/2009/08/014
https://doi.org/10.1088/1126-6708/2009/08/014
https://doi.org/10.1007/JHEP10(2012)123
https://doi.org/10.1103/PhysRevD.91.023512
https://doi.org/10.1016/j.physletb.2015.06.063
https://doi.org/10.1016/j.physletb.2015.06.063
https://doi.org/10.1103/PhysRevD.95.035025
https://doi.org/10.1016/j.physletb.2018.03.031
https://doi.org/10.1155/2018/5340935
https://doi.org/10.1016/j.physletb.2004.02.051
https://doi.org/10.1103/PhysRevD.89.115022
https://doi.org/10.1007/JHEP08(2014)131
https://doi.org/10.1007/JHEP08(2014)131
https://doi.org/10.1103/PhysRevD.70.093009
https://doi.org/10.1103/PhysRevD.77.115004
https://doi.org/10.1088/1126-6708/2009/11/068
https://doi.org/10.1088/1126-6708/2009/11/068
https://doi.org/10.1103/PhysRevD.83.075012
https://doi.org/10.1103/PhysRevD.83.115013
https://doi.org/10.1007/JHEP07(2016)086
https://doi.org/10.1007/JHEP07(2016)086
https://doi.org/10.1103/PhysRevD.93.075003
https://doi.org/10.1007/JHEP06(2014)081
https://doi.org/10.1007/JHEP06(2014)081
https://doi.org/10.1007/JHEP01(2015)037
https://doi.org/10.1007/JHEP01(2015)037
https://doi.org/10.1007/JHEP03(2016)006
https://doi.org/10.1007/JHEP03(2016)006
https://doi.org/10.1140/epjc/s10052-017-4904-8


[45] R. Gauld, F. Goertz, and U. Haisch, On minimal Z0

explanations of the B → K�μþμ− anomaly, Phys. Rev. D
89, 015005 (2014).

[46] A. J. Buras and J. Girrbach, Left-handed Z0 and Z FCNC
quark couplings facing new b → sμþμ− data, J. High
Energy Phys. 12 (2013) 009.

[47] J. Erler, P. Langacker, S. Munir, and E. Rojas, Improved
constraints on Z-prime bosons from electroweak precision
data, J. High Energy Phys. 08 (2009) 017.

[48] G. Bhattacharyya, A. Datta, S. N. Ganguli, and A.
Raychaudhuri, Z—Z-prime mixing in extended gauge
models from LEP 1990 data, Mod. Phys. Lett. A 06,
2557 (1991).

[49] G. Bhattacharyya, A. Raychaudhuri, A. Datta, and S. N.
Ganguli, Z Decay Confronts Nonstandard Scenarios, Phys.
Rev. Lett. 64, 2870 (1990).

[50] R. H. Benavides, L. Muoz, W. A. Ponce, O. Rodrguez, and
E. Rojas, Electroweak couplings and LHC constraints on
alternative Z0 models in E6, arXiv:1801.10595.

[51] A. Ekstedt, R. Enberg, G. Ingelman, J. Lfgren, and
T. Mandal, Constraining minimal anomaly free U(1)
extensions of the Standard Model, J. High Energy Phys.
11 (2016) 071.

[52] M. Aaboud et al. (ATLAS Collaboration), Search for new
high-mass phenomena in the dilepton final state using
36 fb−1 of proton-proton collision data at

ffiffiffi
s

p ¼ 13 TeV
with the ATLAS detector, J. High Energy Phys. 10 (2017)
182.

[53] M. Aaboud et al. (ATLAS Collaboration), Search for
additional heavy neutral Higgs and gauge bosons in the
ditau final state produced in 36 fb−1 of pp collisions atffiffiffi
s

p ¼ 13 TeV with the ATLAS detector, J. High Energy
Phys. 01 (2018) 055.

[54] B. Holdom, Two U(1)’s and epsilon charge shifts, Phys.
Lett. 166B, 196 (1986).

[55] K. S. Babu, C. F. Kolda, and J. March-Russell, Implications
of generalized Z—Z-prime mixing, Phys. Rev. D 57, 6788
(1998).

[56] B. Brahmachari and A. Raychaudhuri, Perturbative gener-
ation of theta13 from tribimaximal neutrino mixing, Phys.
Rev. D 86, 051302 (2012).

[57] K. S. Babu, C. F. Kolda, and J. March-Russell, Leptophobic
U(1) s and the RðbÞ-RðcÞ crisis, Phys. Rev. D 54, 4635
(1996).

[58] C.-W. Chiang, T. Nomura, and K. Yagyu, Phenomenology
of E6-inspired leptophobic Z0 boson at the LHC, J. High
Energy Phys. 05 (2014) 106.

[59] J. Y. Araz, G. Corcella, M. Frank, and B. Fuks, Loopholes in
Z0 searches at the LHC: Exploring supersymmetric
and leptophobic scenarios, J. High Energy Phys. 02
(2018) 092.

[60] D. Feldman, Z. Liu, and P. Nath, The Stueckelberg Z prime
at the LHC: Discovery potential, signature spaces and model
discrimination, J. High Energy Phys. 11 (2006) 007.

[61] G. Paz and J. Roy, A comment on the Z’ Drell-Yan cross
section, Phys. Rev. D 97, 075025 (2018).

[62] A. A. Andrianov, P. Osland, A. A. Pankov, N. V.
Romanenko, and J. Sirkka, On the phenomenology of a
Z0 coupling only to third family fermions, Phys. Rev. D 58,
075001 (1998).

[63] S. Dulat, T.-J. Hou, J. Gao, M. Guzzi, J. Huston, P.
Nadolsky, J. Pumplin, C. Schmidt, D. Stump, and C. P.
Yuan, New parton distribution functions from a global
analysis of quantum chromodynamics, Phys. Rev. D 93,
033006 (2016).

[64] V. Khachatryan et al. (CMS Collaboration), Search for
physics beyond the standard model in dilepton mass spectra
in proton-proton collisions at

ffiffiffi
s

p ¼ 8 TeV, J. High Energy
Phys. 04 (2015) 025.

[65] D. J. Muller and S. Nandi, Top flavor: A separate SU(2) for
the third family, Phys. Lett. B 383, 345 (1996).

[66] K. R. Lynch, E. H. Simmons, M. Narain, and S.
Mrenna, Finding Z0 bosons coupled preferentially to the
third family at LEP and the Tevatron, Phys. Rev. D 63,
035006 (2001).

[67] R. Benavides, L. A. Muoz, W. A. Ponce, O. Rodrguez, and
E. Rojas, Minimal nonuniversal electroweak extensions of
the standard model: A chiral multiparameter solution, Phys.
Rev. D 95, 115018 (2017).

[68] F. del Aguila, M. Quiros, and F. Zwirner, On the mass
and the signature of a new Z, Nucl. Phys. B284, 530
(1987).

[69] N. G. Deshpande and J. Trampetic, Decay of Z0 in WþW−

and Higgs modes, Phys. Lett. B 206, 665 (1988).
[70] J. F. Gunion, H. E. Haber, G. L. Kane, and S. Dawson, The

Higgs Hunter’s Guide, Frontiers of Physics series
(Westview Press, 2000).

[71] G. Bhattacharyya, D. Das, and P. B. Pal, Modified Higgs
couplings and unitarity violation, Phys. Rev. D 87, 011702
(2013).

[72] K. S. Babu, J. Julio, and Y. Zhang, Perturbative unitarity
constraints on general W’ models and collider implications,
Nucl. Phys. B858, 468 (2012).

[73] K. Cheung, C.-W. Chiang, Y.-K. Hsiao, and T.-C. Yuan,
Longitudinal weak gauge bosons scattering in hidden
Z-prime models, Phys. Rev. D 81, 053001 (2010).

[74] G. Radel and R. Beyer, Neutrino electron scattering, Mod.
Phys. Lett. A 08, 1067 (1993).

[75] M. Lindner, F. S. Queiroz, W. Rodejohann, and X.-J.
Xu, Neutrino-electron scattering: General constraints on
Z’ and dark photon models, J. High Energy Phys. 05 (2018)
098.

[76] M. Abdullah, J. B. Dent, B. Dutta, G. L. Kane, S. Liao, and
L. E. Strigari, Coherent elastic neutrino nucleus scattering
(CEνNS) as a probe of Z0 through kinetic and mass mixing
effects, Phys. Rev. D 98, 015005 (2018).

[77] F. J. Hasert et al., Search for elastic νμ electron scattering,
Phys. Lett. 46B, 121 (1973).

[78] M. Williams, C. P. Burgess, A. Maharana, and F. Quevedo,
New constraints (and motivations) for Abelian gauge bosons
in the MeV-TeV mass range, J. High Energy Phys. 08
(2011) 106.

[79] C. Patrignani et al. (Particle Data Group Collaboration),
Review of particle physics, Chin. Phys. C 40, 100001
(2016).

[80] M. Czakon, J. Gluza, F. Jegerlehner, and M. Zralek,
Confronting electroweak precision measurements with
new physics models, Eur. Phys. J. C 13, 275 (2000).

[81] A. M. Sirunyan et al. (CMS Collaboration), Search for high-
mass resonances in dilepton final states in proton-proton

REAPPRAISAL OF CONSTRAINTS ON Z0 MODELS … PHYS. REV. D 98, 035027 (2018)

035027-13

https://doi.org/10.1103/PhysRevD.89.015005
https://doi.org/10.1103/PhysRevD.89.015005
https://doi.org/10.1007/JHEP12(2013)009
https://doi.org/10.1007/JHEP12(2013)009
https://doi.org/10.1088/1126-6708/2009/08/017
https://doi.org/10.1142/S0217732391003006
https://doi.org/10.1142/S0217732391003006
https://doi.org/10.1103/PhysRevLett.64.2870
https://doi.org/10.1103/PhysRevLett.64.2870
http://arXiv.org/abs/1801.10595
https://doi.org/10.1007/JHEP11(2016)071
https://doi.org/10.1007/JHEP11(2016)071
https://doi.org/10.1007/JHEP10(2017)182
https://doi.org/10.1007/JHEP10(2017)182
https://doi.org/10.1007/JHEP01(2018)055
https://doi.org/10.1007/JHEP01(2018)055
https://doi.org/10.1016/0370-2693(86)91377-8
https://doi.org/10.1016/0370-2693(86)91377-8
https://doi.org/10.1103/PhysRevD.57.6788
https://doi.org/10.1103/PhysRevD.57.6788
https://doi.org/10.1103/PhysRevD.86.051302
https://doi.org/10.1103/PhysRevD.86.051302
https://doi.org/10.1103/PhysRevD.54.4635
https://doi.org/10.1103/PhysRevD.54.4635
https://doi.org/10.1007/JHEP05(2014)106
https://doi.org/10.1007/JHEP05(2014)106
https://doi.org/10.1007/JHEP02(2018)092
https://doi.org/10.1007/JHEP02(2018)092
https://doi.org/10.1088/1126-6708/2006/11/007
https://doi.org/10.1103/PhysRevD.97.075025
https://doi.org/10.1103/PhysRevD.58.075001
https://doi.org/10.1103/PhysRevD.58.075001
https://doi.org/10.1103/PhysRevD.93.033006
https://doi.org/10.1103/PhysRevD.93.033006
https://doi.org/10.1007/JHEP04(2015)025
https://doi.org/10.1007/JHEP04(2015)025
https://doi.org/10.1016/0370-2693(96)00745-9
https://doi.org/10.1103/PhysRevD.63.035006
https://doi.org/10.1103/PhysRevD.63.035006
https://doi.org/10.1103/PhysRevD.95.115018
https://doi.org/10.1103/PhysRevD.95.115018
https://doi.org/10.1016/0550-3213(87)90049-6
https://doi.org/10.1016/0550-3213(87)90049-6
https://doi.org/10.1016/0370-2693(88)90715-0
https://doi.org/10.1103/PhysRevD.87.011702
https://doi.org/10.1103/PhysRevD.87.011702
https://doi.org/10.1016/j.nuclphysb.2012.01.018
https://doi.org/10.1103/PhysRevD.81.053001
https://doi.org/10.1142/S0217732393002567
https://doi.org/10.1142/S0217732393002567
https://doi.org/10.1007/JHEP05(2018)098
https://doi.org/10.1007/JHEP05(2018)098
https://doi.org/10.1103/PhysRevD.98.015005
https://doi.org/10.1016/0370-2693(73)90494-2
https://doi.org/10.1007/JHEP08(2011)106
https://doi.org/10.1007/JHEP08(2011)106
https://doi.org/10.1088/1674-1137/40/10/100001
https://doi.org/10.1088/1674-1137/40/10/100001
https://doi.org/10.1007/s100520000278


collisions at
ffiffiffi
s

p ¼ 13 TeV, J. High Energy Phys. 06 (2018)
120.

[82] A. Gulov, A. Pankov, A. Pevzner, and V. Skalozub, Model-
independent constraints on the Abelian Z0 couplings within
the ATLAS data on the dilepton production processes atffiffiffi
s

p ¼ 13 TeV, Nonlinear Phenom. Complex Syst. 21, 21
(2018).

[83] A. Pevzner, Influence of the Z-Z0 mixing on the
Z0 production cross section in the model-independent
approach, Nonlinear Phenom. Complex Syst. 21, 30 (2018).

[84] R.Hamberg,W. L. vanNeerven, andT.Matsuura,A complete
calculation of the order α − s2 correction to the Drell-Yan K
factor, Nucl. Phys. B359, 343 (1991); Erratum B644, 403(E)
(2002).

TRIPARNO BANDYOPADHYAY et al. PHYS. REV. D 98, 035027 (2018)

035027-14

https://doi.org/10.1007/JHEP06(2018)120
https://doi.org/10.1007/JHEP06(2018)120
https://doi.org/10.1016/0550-3213(91)90064-5
https://doi.org/10.1016/S0550-3213(02)00814-3
https://doi.org/10.1016/S0550-3213(02)00814-3

