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Surveys of diffuse γ rays in the interstellar medium (ISM) can be used to probe hydrogen-antihydrogen
oscillations, by detecting the γ-ray emission from antihydrogen annihilation. A bound on the oscillation
parameter δ was originally derived by Feinberg, Goldhaber, and Steigman (1978). In this paper, we revisit
the original derivation by performing a more detailed analysis that (1) incorporates suppression effects from
additional elastic and inelastic processes, (2) treats the ISM as a multiphase medium, and (3) utilizes more
recent γ-ray data from the Fermi Large Area Telescope. We find that suppression from elastic scattering
plays a more important role than previously thought, while the multiphase nature of the ISM affects how the
γ-ray data should be utilized. We derive a more accurate bound on the oscillation period that is about an
order of magnitude weaker than the older bound.
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I. INTRODUCTION

At the classical level, baryon (B) and lepton (L)
numbers are conserved quantities in the Standard Model
(SM). One of Sakharov’s conditions [1] for a dynamical
explanation of the baryon asymmetry in the universe
requires that B conservation be violated. Mechanisms like
electroweak baryogenesis [2] or leptogenesis [3] achieve
this through sphaleron processes that make use of Bþ L
violation in the SM at the quantum level, while mecha-
nisms like baryogenesis in the grand unified theories
(GUT) [4] introduce processes that directly violate B at
the classical level. However, proton decay imposes strong
constraints on models that directly allow ΔB ¼ ΔL ¼ 1
processes. One intriguing possibility is to consider models
[5,6] where proton decay is forbidden/suppressed, but yet
allow processes with ΔB ¼ 2 or ΔB ¼ ΔL ¼ 2 to occur.
In these cases, processes such as neutron-antineutron
oscillations [7], pp → eþeþ annihilations [8], or hydro-
gen-antihydrogen (H-H̄) oscillation may become more

important probes of B violation. In this paper we concen-
trate on H-H̄ oscillation.
One way to detect H-H̄ oscillations is through γ rays

from the annihilation of H̄ with other particles in its
vicinity (henceforth called “oscillation-induced γ rays”).
A good place to look for this is the interstellar medium
(ISM), first because of the immense amount of atomic
hydrogen present, and second because the low density
allows a larger oscillation amplitude and hence a larger
proportion of H̄ to exist than in terrestrial sources. These
γ rays then show up in diffuse γ-ray surveys on top of
other γ-ray emitting processes, such as cosmic ray (CR)
interaction with matter. This idea is not new and a bound
on the oscillation was first derived in [9]. The goal of the
present paper is to revisit the bounds for the following
reasons:
(1) In the original derivation, the amplitude of oscil-

lation was assumed to be limited by H-H̄ annihila-
tion. However, we do not know a priori how this
compares to the effects of other processes such as
elastic scattering.

(2) We now have a better understanding of the phases of
the ISM, γ-ray production within the ISM, as well as
updated γ-ray survey results from the Fermi Large
Area Telescope (LAT).

(3) Finally, many steps are involved in deriving the
experimental bounds on the oscillations. While we
are only interested in an order-of-magnitude estimate,
wewant to reduce the uncertainty in each step asmuch
as possible to avoid having the cumulative errors
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become too large. Therefore, besides improving on the
oscillation and ISM model, we also want to utilize
updated parameter values from literature rather than
just rely on crude estimates.

This paper is structured as follows. In Sec. II, we
present a model that describes H-H̄ oscillations in a
medium, and we use the model to derive a formula for the
oscillation-induced γ-ray emissivity. In Sec. III, we use
this formula, together with available data for various
elastic and inelastic processes, to calculate the emissiv-
ities of the relevant phases of the ISM. It then allows us in
Sec. IV to obtain a bound on the oscillation parameter δ
based on the Fermi LAT data presented in Ref. [10]. We
conclude in Sec. V with a comparison of our bound with
that from other ΔB ¼ ΔL ¼ �2 processes. To keep the
text focused, most technical details have been placed in
the appendices.

II. MODEL OF H-H̄ OSCILLATION

To infer the oscillation-induced γ-ray emissivity, we
need to know the probability of an H atom in the ISM
becoming a H̄. This in turn can be derived from a single-
atom model of H-H̄ oscillation. The vacuum formalism
is very straightforward; however, the main issue here is
to account for interactions with the environment. Some
of the effects are well understood: for example, forward
scattering gives rise to coherent matter effects known
from neutrino oscillations, while inelastic processes such
as H̄ annihilation cause the state to leave the Hilbert
space of interest and hence their effects are analogous to
decays in meson oscillations. Both of these effects can
be taken care of by modifications to the effective
Hamiltonian.
Less well-recognized are effects that require going

beyond the effective Hamiltonian, and require a density
matrix formalism. First, say H and H̄ have different elastic
scattering amplitudes off the same target, i.e., fðθÞ ≠ f̄ðθÞ,
where θ is the angle of scattering. Then nonforward
scattering causes the identity of the atom (H or H̄) to
become entangled with its momentum, and hence a two-
level pure state formalism does not work if we want to
incorporate elastic scattering beyond just forward scatter-
ing. Also, since the scattering environment is usually
random, even a pure state formalism incorporating both
identity and momentum degrees of freedom (d.o.f.) is
insufficient. Second, chemical reactions such as recombi-
nation generate new “unoscillated” H atoms to replenish
those lost to inelastic processes. Since these reactions
should be treated as classical source terms, again a density
matrix formalism is required. The model we adopt is
similar to the original Feinberg-Weinberg model [11] that
was also used in [9]. We then extend it to take into account
more general sources of suppression. We also highlight the
differences between our work and that of [9].

A. Model description

We regard H and H̄ as basis states of a two-level system
(Hilbert space HA). In principle, there are other d.o.f. such
as momentum, atomic level, and spin (Hilbert space HB),
but since we are only interested in finding the probability of
being H̄, we trace them out in the full density matrix ρfullðtÞ
to obtain a reduced 2 × 2 density matrix ρðtÞ. The quantum
kinetic equation of ρðtÞwill then depend on the moments of
the other d.o.f., e.g., TrB½p2ρfullðtÞ�, and is hence not closed.
To close this equation, we replace, say, the example above
by hp2ðtÞiρðtÞ, and we assume that hp2ðtÞi is just given by
the present-day value (since we are only interested in a
quasisteady solution). Also, since most of the atoms in the
ISM phases of interest are in the 1S state, any average
involving atomic level and spin is equivalent to a 1S
hyperfine average.

1. Elastic scattering

First, we take into account elastic scattering of the atom
with other particles (targets). Let i denote the target species.
Then ρðtÞ satisfies the kinetic equation [11]

∂tρðtÞ ¼ −i½HρðtÞ − ρðtÞH†�

þ
X
i

�
nivi

Z
dΩFiðθÞρF†

i ðθÞ
�
; ð1Þ

where

H≡

0
BB@
E−

P
i

h
2πnivi
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δ
2
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2
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ð0Þ

i
1
CCA;

FiðθÞ≡
�fi;pi

ðθÞ 0

0 f̄i;pi
ðθÞ

�
; ð2Þ

and the symbols used here are defined as follows:
(i) E: the mean energy of an atom in vacuum (equal for

H and H̄ by CPT) in the ISM rest frame;
(ii) ni: the number density of species i;
(iii) vi: the rms speed of approach between atom and a

species i particle;
(iv) pi: the rms momentum in the center-of-mass frame

of the atom and a species i particle;
(v) fi;pi

ðθÞ [f̄i;pi
ðθÞ]: scattering amplitude of H (H̄) off a

species i particle with momentum pi in the center-
of-mass frame; and

(vi) δ
2
: off-diagonal matrix element generated by ΔB ¼
ΔL ¼ �2 operators.

The assumptions involved are presented in Appendix A 1.
We just explain a few features of Eq. (1) here. The first term
describes the usual time evolution with an effective non-
Hermitian Hamiltonian H, comprising the energy E of the
atom in vacuum, the oscillation term δ, and coherent forward
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scattering fi;pi
ð0Þ and f̄i;pi

ð0Þ, summed over all target
species i. Differences in fi;pi

ð0Þ and f̄i;pi
ð0Þ can suppress

the oscillations, just as coherent matter effects in neutrino
oscillations. The optical theorem ensures that even for elastic
scattering fi;pi

ð0Þ and f̄i;pi
ð0Þ are complex quantities, with

the imaginary parts related to the total scattering rate. As a
result, time evolution under the first term alone causes the
total probability represented by TrðρÞ to decrease. This
decrease is analogous to the effects of the “out” collision
term in Boltzmann transport equation. Probability conser-
vation is restored by the second term, analogous to the “in”
collision term.

2. Inelastic and production processes

To complete the picture, we want to include inelastic
processes as well. We argue in Appendix A 2 that among all
the inelastic processes, only those where the H=H̄ atom
“disappears” are potentially important. This includes ion-
ization, chemical reactions, as well as H̄ annihilation. Since
these processes take the state out of the Hilbert space HA,
they can be represented by imaginary contributions iωI=2
and iω̄I=2 to the diagonal elements of H, where ωI (ω̄I)
denotes the total rate of these processes per H (H̄) atom.

However, just as H=H̄ atoms can “disappear,” they can
also “reappear” through production processes such as
recombination and H2 dissociation. These processes cor-
respond to source terms for the ρ11 matrix element, which
we introduce as ωPρ11 in Eq. (4). ωP can be interpreted as
the rate of H production per unit volume, normalized by the
number density of H. Furthermore, if we assume that the
ISM is in a quasisteady state (approximate ionization
balance, chemical equilibrium, etc.), then this source term
can be approximated as ωP ≃ ωI up to a small difference of
order the quasisteady rate of change. In principle, we can
also include a source term for ρ22, e.g., from recombination
of CR positrons and antiprotons to form H̄. However, based
on measurements of the CR antiproton flux [12], this
contribution is expected to be negligible compared to H̄
production from oscillations at the upper bound of jδj.
The time-evolution equation is then given by

∂tρ ¼ −i½Hρ − ρH†� þ
X
i

�
nivi

Z
dΩFiðθÞρF†

i ðθÞ
�

þ
�
ωPρ11 0

0 0

�
ð3Þ

with a modified effective Hamiltonian
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3. Reformulating the model

It is instructive to rewrite ρðtÞ as a column vector
ρðtÞ≡ ðρ11; ρ12; ρ21; ρ22ÞT [9]. The time evolution equation
then becomes

∂tρðtÞ ¼ Mρ; ð5Þ

where

M≡

0
BBB@

ωP − ωI i δ
�
2

−i δ
2

0

i δ
2

ϵ0 0 −i δ
2

−i δ�
2

0 ϵ0� i δ
�
2

0 −i δ�
2

i δ
2

−ω̄I

1
CCCA; ð6Þ

ϵ0 ≡ i
X
i

nivi

�
Δi þ

Z
dΩImðf̄�i;pi

fi;pi
Þ
�

−
�
ωI þ ω̄I

2
þ
X
i

nivi
2

Z
dΩjfi;pi
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Δi ≡ 2π

pi
Re½fi;pi

ð0Þ − f̄i;pi
ð0Þ�: ð8Þ

Some observations:
(i) If fi;pi

¼ f̄i;pi
, then all instances of fi;pi

and f̄i;pi

vanish from M. In other words, elastic scattering
does not suppress oscillations unless it can differ-
entiate between H and H̄ amplitude-wise. This
means, e.g., that we can ignore elastic scattering
with photons.

(ii) If ωI ¼ ω̄I , then their combined contributions to M
is just proportional to the identity, so they only lead
to an overall decay factor. Therefore, inelastic
processes also do not suppress oscillations unless
they can differentiate between H and H̄ rate-wise.

(iii) Oscillations are also suppressed by the source term
ωPρ11, although the physical mechanism is some-
what indirect. Here new H atoms that have yet to
oscillate are being added to the system. This
suppression is why, despite our previous comment,
we still need to consider inelastic processes such as
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photoionization that have the same rate for H
and H̄, since ωI informs us about ωP in the
quasisteady state.

Note that our formalism here is similar to the one used in
[9] [see Eq. (2.4) there]. However, they did not include a
source term ωP, and they also assumed that the only
important process is H-H̄ annihilation. As a result, they
have ω̄I ≫ ωI (since it is much easier for a H̄ to find a H to
annihilate with than vice versa) and jϵ0j ≃ ω̄I=2. In contrast,
we do not make the same assumptions but instead consider
a wide range of elastic and inelastic processes.

B. Formula for γ-ray emissivity

We want to use our model to derive a formula for the
γ-ray emissivity. To do so, we need to find the solution to
Eq. (5) that best describes a H=H̄ atom in the ISM, from
which we can then obtain the H̄ number density and hence
the emissivity.
Most of the parameters in M depend on the number

densities of atomic hydrogen and other species in the
ISM, so Eq. (5) is actually much harder to solve than it
seems. However, since we are only interested in the
quasisteady solution, it is actually self-consistent to assume
these parameters as constants, at least for timescales short
compared to the quasisteady rate of change. Even though
the quasisteady solution based on this assumption may
become inaccurate at longer times, it does not matter since
we are using present-day parameter values. In other words,
the reference starting time is actually the present, so we
read off the present-day H̄ probability ρ22 from the solution
at t ¼ 0.
With this assumption, among the four eigenvectors ofM,

three have eigenvalues with negative real parts of order jϵ0j
or ω̄I, while the fourth is given by

λ ¼ ωP − ωI þOðϵ2jϵ0j; ϵ2jω̄IjÞ; ð9Þ

where ϵ≡Maxfj δϵ0 j; j δ
ω̄I
jg is a small parameter. The first

three solutions correspond to transients that decay
rapidly (although the actual decay rate may be somewhat
different since these solutions are not consistent with the
assumption about the parameters being constant), while the
fourth solution does indeed change at the quasisteady rate
jωP − ωIj and is thus the one we want. The corresponding
eigenvector is given by

v ¼

0
BBBBBB@

1þOðϵ2Þ
− iδ

2ðϵ0þωI−ωPÞ þOðϵ3Þh
− iδ

2ðϵ0þωI−ωPÞ þOðϵ3Þ
i�

−
��� δ
ϵ0þωI−ωP

���2 Reðϵ0þωI−ωPÞ
2ðω̄I−ωIþωPÞ þOðϵ4Þ

1
CCCCCCA
: ð10Þ

We observe that of the four components, v1 ≃ 1,
v2 ¼ v�3 ∼OðϵÞ, and v4 ∼Oðϵ2Þ.
Since v1

v1þv4
and v4

v1þv4
correspond to the probability of

being H and H̄, we can estimate the rate of H̄ annihilation
per unit volume as

v4
v1

nHnihσivii ≃ −
���� δϵ0

����
2 Reðϵ0Þ

2ω̄I
ω̄ann; ð11Þ

where ω̄ann is the annihilation rate per H̄ (we allow it to
differ from ω̄I in case there are other more important H̄
“disappearance” processes), and we have dropped the much
smaller quasisteady rate jωP − ωIj relative to ω̄I and ϵ0.
This is a positive quantity since Reðϵ0Þ < 0. Note that ωP
has disappeared completely (it is not present in ϵ0) since its
main role is to cancel ωI at certain places to give a much
smaller quasisteady rate that can then be neglected.
For comparison with γ-ray data later, it is useful to

convert the previous rate per unit volume into an oscil-
lation-induced emissivity per H atom, which gives

ϵγ ¼ −
gγ
4π

���� δϵ0
����
2 Reðϵ0Þ

2ω̄I
ω̄ann photons sr−1; ð12Þ

where gγ is the average number of γ-ray photons emitted in
the annihilation. We discuss its value below for specific
situations.

III. CALCULATING THE EMISSIVITIES

In the previous section, we derived a formula for the
oscillation-induced γ-ray emissivity per H atom, Eq. (12).
To make further progress, we need numerical values of the
parameters in this formula, except for the unknown jδj that
we want to constrain. We begin this section by identifying
phases of the ISM that are expected to be the dominant
sources of these γ rays. Using available data for a wide
variety of elastic and inelastic processes, we then calculate
the parameter values and hence the emissivity for each
phase. We adopt the standard astronomical notation of HI

and HII for atomic and ionized hydrogen.

A. Phases of the ISM

The Fermi LAT data presented in Abdo et al. [10] focus
on γ-ray emission from HI and are hence of particular
relevance to our work. We want to consider the same sector
of the ISM, bounded by Galactic longitude 200° < l < 260°,
and latitude 22° < jbj < 60°. Even within this sector, the
ISM is not homogeneous and has a number of phases,
each with a different HI density and presenting a different
environment for H-H̄ oscillations.
In Appendix B, we describe these phases and explain

why we expect most of the oscillation-induced γ rays to
come from three of them, namely the cold neutral medium
(CNM), warm neutral medium (WNM), and warm ionized
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medium (WIM). Here we present a short description of
these three phases, as well as the nominal values we assume
for their physical properties [13–16]. T here represents the
phase temperature, and x the ionization fraction.

(i) CNM: Comprises clumps of cold HI clouds.
nH ≃ 50 cm−3, T ≃ 80 K, x ¼ 0.001.

(ii) WNM: Intercloud region containing warm diffuse HI.
nH ≃ 0.5 cm−3, T ≃ 8000 K, x ¼ 0.05.

(iii) WIM: Intercloud region containing warm diffuse HII.
nHþ ≃ 0.3 cm−3, T ≃ 8000 K, x ¼ 0.9.

The uncertainties in these nominal values, in particular the
ionization fraction, is a significant source of error in our
analysis. Henceforth, most values that we present should
only be interpreted as order-of-magnitude estimates.

B. Emissivities of the CNM, WNM, and WIM

We now want to determine the oscillation-induced
emissivities of the three phases. To do so, we first need
the values of ϵ0, ω̄I, and ω̄ann used in the emissivity formula
Eq. (12). The values we present below incorporate a wide
range of elastic targets as well as inelastic processes, using
available data on scattering phase shifts, cross sections, and
reaction rate constants [17–29] (more details can be found
in Appendix C):

(i) CNM:
ϵ0 ≃ ð−1� iÞ × 10−7 s−1, mostly from elastic

scattering with H.
ω̄I ≃ ω̄ann ≃ 6 × 10−8 s−1, mostly from H-H̄

annihilation.
(ii) WNM:

ϵ0 ≃ ð−5� 5iÞ × 10−9 s−1, mostly from elastic
scattering with H.
ω̄I ≃ ω̄ann ≃ 8 × 10−10 s−1, mostly from H-H̄

annihilation.
(iii) WIM:

ϵ0 ≃ ð−2 − iÞ × 10−8 s−1, mostly from elastic
scattering with e−.
ω̄I ≃ ω̄ann ≃ 7 × 10−10 s−1, mostly from Hþ-H̄

annihilation.
Our estimate for ϵ0 are a few orders of magnitude larger than
in [9], where it was assumed that 2jϵ0j ≃ ω̄I ≃ 10−10 s−1.
This discrepancy is mainly due to contributions from elastic
scattering that they have neglected. Hence, their assumption
that H-H̄ oscillations are mainly suppressed by H̄ annihi-
lation is not justified.
With these values, we can finally obtain the following

oscillation-induced γ-ray emissivities per H atom:
(i) CNM: ϵγ ≃ 2gγjδj2 × 105 s srad−1.
(ii) WNM: ϵγ ≃ 4gγjδj2 × 106 s srad−1.
(iii) WIM: ϵγ ≃ gγjδj2 × 106 s srad−1.
Since the γ-ray data in [10] start at 100 MeV, using the

experimental and simulation results in [30], we estimate the
average number of photons from H̄ annihilation above this
threshold to be gγ ≃ 2.7.

IV. DERIVING BOUND ON jδj USING
FERMI LAT DATA

In this section, we explain how we derive a bound on the
oscillation parameter jδj using Fermi LAT data. The main
idea is to compare the results of γ ray measurements with
predictions from astrophysical models. The difference
between them can then be used to constrain additional
oscillation-induced emissivity and hence jδj.
More specifically, one can perform a linear regression of

the observed γ-ray intensity against the HI column density.
The slope corresponds to the emissivity per H atom, and the
offset (intercept) a spatially homogeneous source of emis-
sivity. The observed slope can be compared with indepen-
dent astrophysical predictions to constrain jδj, and this was
indeed what was done in [9]. However, we argue that the
oscillation-induced emissivity should really show up in the
offset rather than the slope, which lacks an independent
prediction. Therefore, the whole measured offset is used to
constrain jδj. We explain these points in more details below.

A. Review of relevant γ-ray data

In this section we review the analysis and results in [10].
One of their goals was to determine the HI γ-ray emissivity
and compare it with predictions based on CR interaction
with matter. The authors used Fermi LAT γ-ray data from
the sector we previously described, in the energy range
100 MeV–9.05 GeV. This sector is known to be free of
large molecular clouds. In this region, HII column density is
relatively smooth and is in the range ð1 − 2Þ × 1020 cm−2,
while HI distribution is more clumpy with a column density
in the range ð1 − 18Þ × 1020 cm−2.
Known background such as point sources and inverse

Compton scattering of soft photons with CR electrons were
subtracted, leaving only data that are expected to come from
CR interaction with matter as well as an isotropic extra-
galactic diffuse background. By comparing the postsubtrac-
tion γ-ray intensity map (Fig. 1 of [10]) with a HI column
density map derived from 21 cm radio surveys (Fig. 3 of
[10]), the authors found a linear relationship between the
γ-ray intensity Iγ and the HI column density NðHIÞ for each
energy bin, which we index by i (Fig. 4 of [10])

Iγ;i ≈ Si · NðHIÞ þOi; ð13Þ

where the slope Si represents the HI emissivity per atom, and
the offset Oi the contributions from residual particles and
the extragalactic background. The authors found good agree-
ment between the slope-derived HI emissivity and the
predictions based on CR interaction with matter. Summing
the results in Table 1 of [10] over the bins in the energy range
100–1130MeV (relevant for H̄ annihilation), we find that the
HI emissivity given by the combined slopes is

S ¼ 1.5 × 10−26 photons s−1 sr−1 per H atom; ð14Þ
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and the combined offset is

O ¼ 1.4 × 10−5 photons cm−2 s−1 sr−1: ð15Þ

B. Bounds on jδj
Let us now consider what happens if there are extra

oscillation-induced γ rays on top of the known sources.
Distribution-wise, both the WIM and the WNM have
relatively low volume densities and large volume filling
factors, so their contributions to the HI column density
should be relatively uniform over the column density map.
In contrast, the CNM is clumpy with much higher density
and smaller filling factor, so the small regions in the map
with high column densities probably correspond to lines of
sight which pass through the CNM. In other words, lines of
sight with more H from the CNM provide the high leverage
points that determine the slope in the linear regression of
emissivity against column density. On the other hand, as we
have seen, the extra emissivity per H atom varies among the
three phases of ISM, with the WNM andWIM values being
1 order of magnitude higher than the CNM. Together, this
suggests that the extra γ-ray intensity is more likely to show
up in Fig. 4 of [10] as a contribution to the offset rather than
the slope.
We perform a simple calculation to show that this is

indeed the case. The WNM and WIM are assumed to be
layers parallel to the galactic disk. Therefore, their con-
tributions to the HI column density are constant, except for
a 1

sin jbj latitudinal variation since a more “glancing” line of

sight travels a longer distance through the layer. Using
Eqs. (B1) and (B2) and the nominal ionization fraction, this
corresponds to a contribution of 1.7

sin jbj × 1020 cm−2 from the

WNM and 0.08
sin jbj × 1020 cm−2 from theWIM. On top of that,

the CNM is assumed to add a random contribution that
ranges from 0 to 10

sin jbj × 1020 cm−2. For each line of sight

within the latitudinal range of interest, we calculate the total
HI column density and oscillation-induced γ-ray intensity,
repeated many times over different random CNM contri-
butions. Figure 1 shows a plot of intensity against column
density, with the horizontal error bars indicating the bin
intervals, and the vertical error bars the intensity range of
the corresponding bins. The plot is mostly horizontal,
indicating that the extra intensity is indeed more likely
to show up in the offset, with a contribution of roughly

Oosc ≃ 4jδj2 × 1027 photons cm−2 s−1 sr−1: ð16Þ

To obtain a bound on jδj, we identify this extra offset
with the entire experimental offset value, which we found
earlier to be around 1.4 × 10−5photons cm−2 s−1 sr−1. In
principle, we could have performed further background
subtraction from this experimental value before making the

identification. Possible background includes CR interaction
with smoothly distributed residual particles such as HII,
incomplete earlier subtraction of inverse Compton scatter-
ing due to model uncertainties, as well as extragalactic
sources. However, these contributions either are not well
quantified or turn out to be small compared to the
experimental value, so the subtraction is unlikely to have
made a big difference. Comparing O and Oosc. from
Eqs. (15) and (16), we find that

jδj≲ 6 × 10−17 s−1: ð17Þ

This is about 1 order of magnitude weaker than the bound
derived in [9]. In other words, the earlier bound may have
been too stringent. We also note that [9] used the slope
(from older γ-ray data [31]) instead of the offset to derive
the bound, so it did not account for the most likely scenario
in which the CNM is mainly responsible for the variation in
HI column density from which the slope is derived, whereas
theWNM dominates the extra oscillation-induced intensity.

V. DISCUSSION AND CONCLUSIONS

The bounds we have derived on jδj can be translated to a
bound on four-fermion contact operators involving protons
and electrons. For instance, the authors of [9] considered
the operator

O1 ¼
1

Λ2
½p̄cγμð1þ γ5Þe�½p̄cγμð1þ γ5Þe� þ H:c: ð18Þ

and found that δ is related to Λ via

δ ¼ 16

Λ2πa3
; ð19Þ

where a is the Bohr radius.
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FIG. 1. Results of a simple calculation showing how the
oscillation-induced γ-ray intensity varies with the HI column
density.
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On the other hand, ppee operators can also be con-
strained by other processes such as pp → ee. For instance,
results from Super-Kamiokande can be used to set an
upper bound on the proton annihilation rate in oxygen
nuclei. For a benchmark operator

O2 ¼
1

Λ2
ðip̄cγ5pÞðiēcγ5eÞ þ H:c:; ð20Þ

and this translates to a bound of Λ > 7 × 1014 GeV [8]. If
we now assume that the same cutoff scale can be used in
Eq. (19) to estimate a bound on jδj, we find that

jδj≲ 10−21 s−1; ð21Þ

which is actually 4 orders of magnitude more stringent than
the bound that we have obtained from γ-ray observations.
It is unlikely that choosing a different region for γ-ray

observations can give an improved bound on jδj that is
just as competitive, so it is worth speculating whether a
terrestrial laboratory-based oscillation experiment might do
better. For instance, if a falling H atom oscillates partially
into an H̄, the experiment can attempt to detect γ rays
from annihilation when this atom comes into contact with a
solid surface. Compared to measurements based on the
ISM, the advantages are that annihilation no longer relies
on chance encounters with other atoms, and that the γ-rays
background can potentially be controlled. If there are N H
atoms each with a characteristic flight time t before
reaching a solid surface, then the absence of γ rays indicates
a crude bound of ðjδjtÞ2 ≲ 1

N. Unfortunately, even obtaining
a bound close to that from the ISM is unlikely to be
feasible. For instance, a bound of jδj≲ 10−16 s−1, assuming
a flight time of t ¼ 1 s, will require about 108 mol of
atomic hydrogen, a very large number. In addition, there are
practical concerns about how rarefied the H atoms should
be so that they do not start to interact, and the cryogenics
required so that thermal motion does not substantially
reduce the flight time.
To conclude, we have updated the bounds on H-H̄

oscillations based on oscillation-induced γ-ray emission
in the ISM. Suppression from elastic collisions turn out to
be more significant than assumed in previous work, and
using a multiphase ISM model as well as updated param-
eter values and γ-ray data, we show that the upper bound
on jδj is about 6 × 10−17s−1, 1 order of magnitude weaker
than previously thought.
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APPENDIX A: MORE DETAILS ABOUT THE
H-H̄ OSCILLATION MODEL

1. Elastic scattering

The model we used in this work was originally derived
in [11] somewhat heuristically based on the notion of a
classical sum over different “histories,” where in each
infinitesimal time interval δt, the atom may undergo either
elastic scattering or quantum time evolution. We have been
able to rederive the model on a more rigorous basis as
follows.
The atom is originally described by a density matrix in

the product space HA ⊗ HB, where HA is associated with
the atom’s identity and HB with momentum d.o.f. (for
simplicity we neglect atomic level and spin; including them
simply increases the number of Wigner functions). We then
extend the impurity-scattering formalism described in [32]
to derive quantum kinetic equations for the 2 × 2 Wigner
functions. By making a number of assumptions before and
after integrating over momentum space (equivalent to
tracing outHB), we finally obtain the same kinetic equation
for the reduced 2 × 2 density matrix ρðtÞ as [11].
We now examine the various assumptions made in this

derivation:
(i) The derivation of the Wigner function kinetic

equations assumed that the mean free path would
be much larger than the de Broglie wavelength, and
that quantum degeneracy as well as the two-body
correlation between atom and target can be ignored.
These are probably reasonable assumptions for an
atom in the ISM.

(ii) In further reducing these kinetic equations to the one
for ρðtÞ, two further assumptions are made. First, we
take the classical limit of the scattering terms, which
requires that memory effects be neglected, again a
reasonable assumption given that the momentum
relaxation time of an atom is much shorter than our
timescale of interest (the quasisteady rate of change).
Second, as mentioned in Sec. II A, in order to close
the kinetic equation for ρðtÞ, we assume that mo-
ments in momentum and other d.o.f. can be replaced
by products of ρðtÞ with the relevant expectation
values. While some errors are introduced in doing
so, they are not expected to be very significant.

(iii) The impurity-scattering formalism assumes that the
targets are immobile, certainly not true for real
targets in the ISM. Nonetheless, this can be ad-
dressed by replacing v and p, not by the rms values
in the lab frame, but rather the rms values evaluated
in the two-particle center-of-mass frame comprising
the atom and a target particle (hence this also
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involves averaging over the target velocity distribu-
tion). Only E should still be the lab frame value.

(iv) Finally, the impurity-scattering formalism assumes
that the atom and target are distinguishable particles.
This is clearly violated if we consider scattering with
other H atoms. Both fðθÞ and fðπ − θÞ will then
contribute to the same H-H scattering process, and
one must also be careful not to double-count the
phase space. This is probably the biggest source of
error (possibly up to a factor of 2) in the model, at
least for the CNM and WNM. However, there is not
much point in trying to derive a more accurate
treatment due to the lack of accurate scattering data.

2. Inelastic processes

In Sec. II A 2, we only considered inelastic processes
where the H=H̄ atom disappears, e.g., H2 formation or H̄
annihilation. These processes cause the state to leave the
Hilbert spaceHA and can hence be represented by imaginary
diagonal contributions to the effective Hamiltonian.
However, there are other processes where the atom does
not disappear but are nonetheless inelastic. We now explain
why they can be neglected.
First, we consider processes such as H=H̄ð1SÞ þ X →

H=H̄ð1SÞ þ Y, where the H=H̄ atom remains in the 1S state
but the target is collisionally excited/ionized/dissociated.
As far as the H=H̄ atom is concerned, these processes are
not very different from elastic scattering, and so enters the
model in a similar manner (except without a forward
scattering contribution). However, we expect them to be
less important than elastic scattering off the same target X
since the rates are usually Boltzmann suppressed in
comparison, even in the warm phases.
Next, we consider collisional and photoexcitations ofH=H̄

to n ≥ 2 atomic states. These processes (together with colli-
sional and radiative decays) are responsible for maintaining
the quasisteady distribution of atomic levels. However, if the
transition amplitudes for H and H̄ are different, then one also
needs to examine how they might directly affect the oscil-
lations. Collisional excitations can again be neglected since
they are Boltzmann-suppressed compared to elastic scatter-
ing. For photoexcitations, the electric dipole transition ampli-
tudes for H and H̄ do indeed differ by a sign; however, there is
hardly any time for theHA part of the state to evolve (except
by an overall phase) before the atom undergoes radiative
decay that undoes the sign change. Therefore, the net direct
effects are also unimportant.
The arguments above do not apply to 1S hyperfine

transitions. In particular, collisional excitations to the
higher-energy hyperfine state are not Boltzmann sup-
pressed. However, since these processes involve electron
spin flips, either they are magnetic in nature and hence have
smaller cross sections or they rely on electron exchange
(e.g., when the target is e− or other H atoms) and hence are
already included in conventional elastic scattering data.

Photoexcitations can also occur via dipole transition to nP
states followed by decays to the higher 1S hyperfine state,
but as explained above the net direct effects are unimportant
due to sign cancellation.

APPENDIX B: PHASES OF THE ISM

The ISM comprises a number of phases that accounts for
most of its mass and volume. Parameter values are taken
from [13–16]:

(i) Neutral atomic gases: There are two phases that
contain predominantly HI. The CNM comprises HI

clouds typically of size Oð10Þ pc, number density
20–50 cm−3, temperature 50–100 K, and volume
filling factor Oð0.01Þ. The WNM comprises diffuse
intercloud HI, typically with a lower number density
0.2 − 0.6 cm−3, and higher temperature 5000–10
000 K and filling factor 0.3–0.4. Locally, a simple
model for the vertical HI distribution (filling factor
incorporated) is given by

nHðzÞ=cm−3 ¼ 0.40e−ð
z

127 pcÞ2 þ 0.10e−ð
z

318 pcÞ2

þ 0.063e−
jzj

403 pc; ðB1Þ

where the first term corresponds to the CNM, and
the second and third terms the WNM.

(ii) Warm ionized gases: Radiation from O and B stars
cause almost-complete ionization of nearby clouds,
so most of the hydrogen are in the ionized form HII.
These HII regions, typically of size Oð1Þ pc, are
generally very dense and hot, with number densities
up to Oð105Þcm−3, temperatures 8000–10000 K,
and negligibly small filling factors. Besides these
dense regions, there also exists a diffuse warm
ionized phase called the WIM. This phase has
comparable temperature, but much lower number
density ∼0.1–0.5 cm−3, and much higher filling
factor 0.05–0.25. A simple “two-disk” model for
the vertical HII distribution is given by

neðzÞ=cm−3 ¼ 0.015e−
jzj

70 pc þ 0.025e−
jzj

900 pc; ðB2Þ

where the first term represents the collection of
localized HII regions as a “thin disk,” and the second
term the WIM as a “thick disk.”

(iii) Coronal gases: Besides the WIM, there is another
diffuse ionized phase referred to as coronal gases,
because the temperature and ionization state are
believed to be similar to that of the solar corona. This
phase is much hotter and rarefied, with temperature
Oð105–106ÞK, number density 0.003−0.007 cm−3,
and filling factor 0.2–0.5. The vertical profile
depends on the measurements used (e.g., choice
of spectral lines) but usually fits a large scale
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height of 3 kpc (assuming exponential distribution)
or above.

(iv) Molecular clouds: These comprise gravitationally
bound clouds, typically of size Oð10Þ pc with H2

as the dominant species. They are typically very
cold and dense, with temperature 10–20 K, number
density up to Oð106Þ cm−3, and negligible filling
factor. Vertically, they tend to be concentrated near
the galactic disk, with a Gaussian scale height
around 70–80 pc.

While the main constituents in these phases are H, H2,
Hþ, and e−, also present are other gaseous elements
and dust:

(i) Other gaseous elements: From photospheric and
meteoritic measurements, the cosmic composition
in terms of number density are as follows: He 10%,
C 0.03%, O 0.05%, and all other species individu-
ally each below 0.01% (combined∼0.03%). There is
also evidence that a significant fraction of these
elements might have been locked up in dust and
hence depleted in the gaseous form.

(ii) Dust: Dust grains are generally well mixed with the
gases in the ISM, with a dust-to-gas mass ratio
believed to be around Oð0.01Þ. The dust grains
are primarily composed of heavier elements such as
C, N, O, Mg, Si, and Fe, with a typical specific
density of 3 g cm−3. A popular model for the grain-
size distribution (based on the extinction curve) is
the Mathis-Rumpl-Nordsieck model. In the model,
the dust grains are assumed to graphite and silicates,
and the distribution given by

niðaÞda ¼ AinHa−3.5da; ðB3Þ

where a is the grain size, and Ai is 7.8 × 10−26 and
6.9 × 10−26 cm2.5 for silicates and graphite, respec-
tively. This relation holds over the range 50 Å <
a < 2500 Å. Besides large dust grains, it is also
believed that there exists a population of large
polycyclic aromatic hydrocarbon molecules, with
a relative abundance of Oð10−5Þ%.

Having described the phases of the ISM, we now argue
that we only need to consider oscillation-induced γ-ray
contributions from the CNM, WNM, and WIM. For
instance, consider the dense molecular clouds. Looking
at Eq. (12), since most contributions to ϵ0, ω̄I, and ω̄ann
scale roughly with the gas density, this means that the
emissivity per H atom is much smaller than in the more
rarefied phases. While the gas column density may be very
high along lines of sight passing through the clouds, only a
tiny fraction of the gas is HI, so this is unlikely to
compensate for the lower emissivity per H atom. In
addition, Ref. [10] specifically mentions that large molecu-
lar clouds are known to be absent in the sector of interest.
Similar types of arguments can also be made for the dense

HII regions and the coronal gases to explain why they can
be neglected.

APPENDIX C: PARAMETER VALUES

We present here a summary of the contributions from
both elastic and inelastic processes to the parameters ϵ0, ω̄I ,
and ω̄ann. Properties of the three phases are assumed to
follow the nominal values given in Sec. III A.

1. Elastic scattering

From Eq. (7), recall that the contribution of elastic
scattering to ϵ0 from target species i is given by

Δϵ0 ¼ nivi

�
−
Z

dΩ
jfi;pi

− f̄i;pi
j2

2

þ i

�
2πRe½fi;pi

ð0Þ − f̄i;pi
ð0Þ�

pi

þ
Z

dΩImðf̄�i;pi
fi;pi

Þ
��

: ðC1Þ

We now calculate this contribution for different target
species.

a. e − as targets

It is useful to begin with elastic (H=H̄)-e− scattering for
the WNM and WIM (we neglect the CNM due to its
extremely low ionization fraction). First, amplitude data are
available for both H and H̄. Second, e− may potentially be
the dominant target species, since the much lower reduced
mass (aroundme) implies a higher speed of approach v and
smaller center-of-mass momentum p, hence boosting Δϵ0.
For H-e− partial wave phase shifts, we use [17,18,24],

while for H̄-e− phase shifts, we use [19,21,23,26]. At the
warm phase temperature (about 1 eV), we find that

1

4

Z
dΩ

jfs − f̄j2
2

þ 3

4

Z
dΩ

jft − f̄j2
2

≃ 13 Å2;

1

4

2πRe½fsð0Þ− f̄ð0Þ�
p

þ 3

4

2πRe½ftð0Þ− f̄ð0Þ�
p

≃−11 Å2;

1

4

Z
dΩImðfsf̄Þ þ

3

4

Z
dΩImðftf̄Þ≃ 3.8 Å2;

ðC2Þ

where fs and ft and are the electronic singlet and triplet
H-e− amplitudes. To check that the first value makes sense,
we note that the elastic H-e− singlet and triplet cross
sections (39 Å2 and 15 Å2) are much larger than the H̄-e−

cross section (1.6 Å2). This suggests that fs, ft ≫ f̄, in
which case the first value should be approximately half the
spin-averaged H-e− cross section. This gives a reasonably
close value of 11 Å2.
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For an rms speed of approach v¼
ffiffiffiffiffiffi
3kT
me

q
≃6×107 cms−1,

we obtain
(i) WNM: Δϵ0 ≃ ð−2 − iÞ × 10−9 s−1.
(ii) WIM: Δϵ0 ≃ ð−2 − iÞ × 10−8 s−1.

b. H+ as targets

Next, we consider elastic (H=H̄)-Hþ scattering, again
for the WNM and WIM. Here, a number of issues arise.
First, a much larger number of partial waves is required to
accurately reconstruct the scattering amplitudes, since the
center-of-mass momentum p is now much higher. For
H-Hþ scattering, while phase shifts for nearly 200 partial
waves are available [33], we found that they are nonetheless
insufficient for the forward scattering amplitude.1 Second,
we have not been able to find scattering data for Hþ-H̄
scattering. Therefore, unlike the previous case, here an
accurate calculation is not possible. The approach we adopt
is as follows.
The authors of [25] claim that the elastic H-p̄ (charge-

conjugate of H̄-Hþ) cross section is comparable to the
rearrangement cross section (11 Å2 from [20]). Should this
indeed be the case, this implies that the elastic H̄-Hþ cross
section is much smaller than that of H-Hþ (160 Å2 from
[27] after nuclear-spin averaging). If we then assume that
f̄ ≪ f, we can drop f̄ in the expression for Δϵ0, giving

Δϵ0 ≃ nv

�
−
Z

dΩ
jfj2
2

þ i
2πRe½fð0Þ�

p

�
; ðC3Þ

so only H-Hþ data are required. The first term requires the
nuclear-spin averaged cross section, and the second term
the averaged forward scattering amplitude.
Instead of the phase shifts from [33], we mostly rely on

the averaged differential and total cross sections from [27],
since the latter is more recent and includes a larger number
of partial waves (more than 500). To extract the averaged
Re½fð0Þ�, we first note that the nuclear singlet and triplet
amplitudes are given by fs;tðθÞ ¼ fdðθÞ � feðπ − θÞ,
where fd and fe are the “direct” and “charge exchange”
amplitudes had the nuclei been distinguishable [27]. At
energies ≳1 eV, both fdðθÞ and feðθÞ become so forward
distributed that fsð0Þ ≃ ftð0Þ ≃ fdð0Þ, while the overlap
between fdðθÞ and feðπ − θÞ becomes so small that the
singlet and triplet total cross sections become identical. We
then use the optical theorem to estimate Im½fdð0Þ� from the
spin-averaged cross section, which in turn can be used to
estimate jRe½fdð0Þ�j from the spin-averaged differential
cross section at θ ≃ 0. We only use the phase shifts from
[33] to fix the sign of Re½fdð0Þ� and to check the validity of
the assumptions above. We find that

Z
dΩ

jfj2
2

≃ 81 Å2;
2πRe½fð0Þ�

p
≃ 74 Å2;

from which we obtain
(i) WNM: Δϵ0 ≃ ð−4þ 4iÞ × 10−10 s−1.
(ii) WIM: Δϵ0 ≃ ð−5þ 4iÞ × 10−9 s−1.

These Δϵ0 values are smaller than that of ðH=H̄Þ-e− scatter-
ing, mostly due to the much smaller speed of approach v.

c. H as targets

Finally, we consider elastic ðH=H̄Þ-H scattering for the
CNM and WNM (we neglect the WIM due to its high
ionization fraction). We have not been able to find ampli-
tude-level data, and even differential cross-section data are
only limited to the WNM. Therefore, we will only perform a
crude estimate of Δϵ0 using total cross-section data. We use
[27,29] for H-H and [28] for H-H̄ cross sections. Actually
[28] only covers up to 0.27 eV, a few times lower than the
WNM temperature. However, since the cross section appears
relatively constant near 0.27 eV, the cross section should not
differ significantly between 0.27 and 1 eV.
For H-H scattering, the CNM electronic singlet and

triplet cross sections are around 130 Å2 and 60 Å2, and
the WNM spin-averaged cross section 50 Å2. For H-H̄
scattering, the CNM cross section is 90 Å2, and the WNM
60 Å2. Based on these cross sections, we now assume that
−ReðΔϵ0Þ ≃ jImðΔϵ0Þj ≃ nvð100 Å2Þ for the CNM and
nvð50 Å2Þ for the WNM. We then obtain

(i) CNM: Δϵ0 ≃ ð−1� iÞ × 10−7s−1.
(ii) WNM: Δϵ0 ≃ ð−5� 5iÞ × 10−9s−1.

d. Other targets

While other neutral targets such as He and H2 may offer
slightly larger cross sections than H, nonetheless their
much lower abundances mean that their contributions to ϵ0
can be ignored. The same can be said for other charged
targets compared to Hþ or e− .

2. Inelastic processes

For inelastic processes, we consider H̄ annihilation,
ionization of H=H̄, as well as chemical reactions involving
H. Keep in mind that ωI only enters Eq. (12) as ωI þ ω̄I ,
so even the dominant contribution to ωI can be ignored if it
turns out to be much smaller than ω̄I .

a. H̄ annihilation with H

We use the semiclassical calculations of the rearrange-
ment cross section from [22]. Note that while there are fully
quantum calculations of the annihilation cross section
that include both rearrangement and annihilation in flight
[34–37], they only include the s-wave component and
hence give values that are much smaller. We now discuss
each phase in turn:

1Recall that for partial wave amplitudes al, fð0Þ involves a
summation of ð2lþ 1Þal as opposed to ð2lþ 1Þjalj2 for the total
cross section, hence implying a slower convergence.
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(i) CNM: The cross section is σ ≃ 60 Å2, correspond-
ing to a rate coefficient of hσvi ≃ 10−9 cm3 s−1. The
contribution to ω̄I is given by nHhσvi≃6×10−8 s−1.

(ii) WNM: The cross section is σ ≃ 8 Å2, correspond-
ing to a rate coefficient of hσvi ≃ 2 × 10−9 cm3 s−1.
The contribution to ω̄I is given by nHhσvi≃
8×10−10 s−1.

We ignore this for the WIM due to the high ionization
fraction.

b. H̄ annihilation with H+

We again use semiclassical calculations from [20], since
more updated cross sections either are again for s waves
[34] or do not fully cover our energy range of interest
[38,39]. (In any case, we note that discrepancies between
[20] and [38,39] where they do overlap are rather small.)
We ignore this for the CNM due to the extremely low

ionization fraction. For the WNM and WIM, we find a
cross section of σ ¼ 10 Å2, corresponding to a rate
coefficient of hσvi ≃ 2 × 10−9 cm3s−1. Hence we obtain
the following results:

(i) WNM: The contribution to ω̄I is nHþhσvi≃
6 × 10−11 s−1.

(ii) WIM: The contribution to ω̄I is nHþhσvi≃
7 × 10−10 s−1.

c. Other H̄ annihilation processes

One might expect e− − H̄ annihilation to be important
(especially in the WIM) since the relative speed v is much
higher. However, the annihilation cross section turns out to
be much smaller, due to the 6.8 eV energy threshold for
rearrangement, and that direct annihilation in flight in this
case involves the electromagnetic interaction as opposed to
the strong interaction [37].
Finally, annihilation of H̄ with any other neutral or

charged species is expected to be less important than with H
or Hþ, due to their much lower abundances.

d. Ionization

Ionization in the HI phases proceeds mainly via CR
ionization, at a rate per atom of order 10−16 s−1 [15,16]. For
the WIM, photoionization plays the more important role
[15]. A reasonable ionization rate per atom in the WIM is
Oð10−13–10−12Þ s−1, consistent with the degree of ioniza-
tion given typical recombination rates, as well as estimates
of the ionization parameter based on spectral measure-
ments. Nonetheless, we see that in all three phases, the
ionization rates are much smaller than the contributions to
ω̄I from H̄ annihilation.

e. Chemical reactions

Many chemical reactions involve H and may contribute
to ωI . However, all the rates are much smaller than ω̄I ,
either because they involve species with very low abun-
dances or because they have very small rate coefficients.
We discuss a number of examples here. The rate coef-
ficients are taken from [15]:

(i) Neutral reaction Hþ CH → Cþ H2 has a rate co-
efficient k ¼ 1.2 × 10−9ð T

300 KÞ0.5e−
2200K

T . Even in the
warm phases where the exponential suppression
(from the activation barrier) becomes insignificant,
the rate per H atom remains small due to the low
abundance of CH.

(ii) H2 formation through Hþ H− → H2 þ e− has a
high rate coefficient k ¼ 1.3 × 10−9 cm3 s−1, but
the H− abundance is very low.

(iii) Radiative association Hþ e− → H− þ γ has a very
low rate coefficient k ¼ 10−18 T

1 K cm3 s−1.
(iv) Radiative association Hþ H → H2 þ γ has a very

low rate coefficient k≲ 10−23 cm3 s−1.
(v) Accretion of H on a dust grain surface (an important

catalytic reaction for H2 formation) occurs at a very
low rate of roughly 10−17ð T

10 KÞ0.5nH s−1 per atom.
(The nH dependence comes from the assumption of a
constant dust-to-gas mass ratio.)
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