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In this paper, we obtain a nonrelativistic Hamiltonian from the Lorentz-violating (LV) scalar Lagrangian
in the minimal standard model extension (SME). The Hamiltonian is obtained by two different methods.
One is through the usual ansatz Φðt; r⃗Þ ¼ e−imtΨðt; r⃗Þ applied to the LV-corrected Klein-Gordon equation,
and the other is the Foldy-Wouthuysen transformation. The consistency of our results is also partially
supported by the comparison with the spin-independent part of the fermion Hamiltonian. In this
comparison, we can also establish a relation between the set of scalar LV coefficients with their fermion
counterparts. Using a pedagogical definition of the weak equivalence principle (WEP), we further point out
that the LV Hamiltonian not only necessarily violates universal free fall, which is clearly demonstrated in
the geodesic deviation, but also violates WEP in a semiclassical setting. As a bosonic complement, this
method can be straightforwardly applicable to the spin-1 case, which shall be useful in the analysis of
atomic tests of WEP, such as the case of the 87Rb1 atom.
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I. INTRODUCTION

Symmetry has been a main theme of physics in the
previous century and may continue to be so in the 21st
century. Of the various kinds of symmetries we know, local
Lorentz symmetry (LLS) is the most fundamental. It is a
cornerstone of the Standard Model (SM) in particle physics
and General Relativity (GR). Though SM and GR have
achieved impressive successes with various experimental
verifications [1,2], there is still no concrete indication of a
consistent theory of quantum gravity (QG) that may help to
resolve longstanding puzzles in contemporary physics, such
as the intriguing information paradox inside black holes [3].
On the other hand, there is a growing interest in searching for
tiny violations of Lorentz symmetry both in theory [4] and in
experiment [5]. Indeed, many candidate QG theories predict
such a possibility [6]. If proven to be true, it will definitely be
a concrete clue to the physics at Planck scale, an ultrahigh
energy scale far beyond any direct experimental access. To
thoroughly explore this possibility, Kostelecký and collab-
orators established an effective field theory called Standard
Model Extension (SME) [7–9], which incorporates SM and
GR, with various possible LV operators. This framework
largely facilitates the study of Lorentz and charge, parity, and

time reversal (CPT) symmetry and has already become a
powerful toolbox in both theoretical and phenomenological
investigations in this field [10].
As another conceptual bridge from special relativity to

GR, the equivalence principle (EP), especially the Einstein
equivalence principle (EEP), entails a close relationship to
Lorentz symmetry and has also been broadly tested invarious
kinds of physical systems [11–14]. According to the famous
statement by C.M. Will [15], LLS, local position invariance,
and the weak equivalence principle (WEP) are the three key
ingredients of EEP. So violation of LLS necessarily implies
violation of EEP,whereas the contrary is not necessarily true.
A thorough investigation of the relation betweenEP and LLS
is still missing [16,17], though in view of Schiff’s conjecture
[18],WEPmay imply the validity of LLS.Moreover, even in
the Lorentz-invariant (LI) context, the debate as to whether
EP holds true in the quantum domain seems far from
complete [19,20]. In this paper, we do not focus too much
on this debate. Instead, we adopt a relatively conservative
point of view; i.e., there is no conflict of WEP with
nonrelativistic (NR) quantum mechanics [20,21]. In other
words, the NR Hamiltonian derived from GR for the
Schrödinger equation is compatible with WEP. For any
nonrelativistic system, the well-known Bargmann’s super-
selection rule prohibits mass from being a superposition
parameter [22], thus superposition of different mass eigen-
states, like neutrino oscillation in relativistic physics, is
beyond the scope of this constrained assertion. Taking into
account the fact [13,23,24] that most laboratory tests until
now are still nonrelativistic, we think an appropriate test
framework for WEP even in the quantum regime must go
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beyond GR (test of WEP in the classical domain necessarily
to go beyond GR).
Many generalized theories of gravity [11,15,25,26] fit

into this category, but in our viewpoint, the gravity sector of
SME [8] is more suitable for such a task. In SME, WEP
violation is associated with Lorentz and CPT violation
because various LV coefficients can also be species
dependent, which enables more exotic violation effects
[27] and makes this framework as broad as it can be.
Discussions of EP in this framework are also abundant
[27–30], and most of them concentrate on fermion-gravity
couplings because matter is composed of fermions.
However, for an effective point of view, as the test particles
can also be composite bosons made of fermions, such as
88Sr or 133Cs, we think it would be a valuable complement
to discuss EP directly using boson fields instead, especially
taking into account the recent trend in utilizing microscopic
objects such as cold atoms as test particles [11,24,31]. In
this sense, the boson LV coefficients can be totally
effective; i.e., microscopically, they must be certain combi-
nations of the LV coefficients of the component fermions
involved (e.g., electron and proton). In this paper, for
simplicity, we focus on the scalar.
The paper is organized as follows. In the next section, we

briefly review the scalar LV Lagrangian and the corre-
sponding canonical formalism. In Sec. III, by using the
ansatz Φðt; r⃗Þ ¼ e−imtψðt; r⃗Þ, we derive the NR
Hamiltonian to first order in LV coefficients and metric
perturbations from the LV-corrected Klein-Gordon equa-
tion. In Sec. IV, following the method of Ref. [32], we
recast the Klein-Gordon equation into the Schrödinger
form, then to the desired order of approximation, we get
the NR Hamiltonian using the Foldy-Wouthuysen trans-
formation (FWT) [33,34]. In Sec. V, we briefly discuss the
test of EP and its possible relevance to the Hamiltonian we
derived. Then we summarize our results in Sec. VI. The
convention is the same as that in Ref. [8], where
diagðημνÞ ¼ ð−1; 1; 1; 1Þ and ϵ0123 ¼ þ1.

II. HAMILTONIAN OF THE
LORENTZ-VIOLATING SCALAR

In Ref. [8], by generalizing SME to Riemann-Cartan
spacetime, Kostelecký introduced various LV operators
both in the pure gravity sector and in the matter sector
through minimal matter–gravity couplings. In the matter
sector, the Higgs Lagrangian reads

LΦ ¼ −e
�
½gμν − ðk̃ϕϕÞμν�DμΦ†DνΦþ ðm2 þ ξRÞΦ†Φ

− ½iðkϕÞμΦ†DμΦþ H:c:� þ 1

2
kϕAμνFμνΦ†Φ

�
; ð1Þ

where DνΦ ¼ ð∇ν − iqAνÞΦ, and for completeness, we
also included the nonminmal coupling ξR term. Note

that for notational simplicity, we have introduced
ðk̃ϕϕÞμν ≡ 1

2
½ðkϕϕÞμν þ ðkϕϕÞνμ��, which can be considered

to have a symmetric real part and an antisymmetric
imaginary part. ðkϕÞμ can also have complex values, though
in flat spacetime, it must be real. For later convenience, we
can further define k̃μνϕϕ ≡ ðKμν þ iSμνÞ with Kμν ¼ Kνμ,
Sμν ¼ −Sνμ, and Kμν, Sμν ∈ R. Similarly, we can also
define ðkϕÞμ ≡ ðaμ þ ibμÞ with aμ, bμ ∈ R. As mentioned
before, here, ðkϕÞμ, k̃μνϕϕ can be regarded as effective LV
coefficients of composite spin-0 bosons, not necessarily
referring to the LV coefficients of the Higgs particle.
From the Lagrangian (1), we can define G̃μν≡

½gμν − ðk̃ϕϕÞμν�. Then the Euler-Lagrangian equation is
given by

�
Dμ þ

∂μe

e

�
½G̃μνDνΦþ ikϕμ�Φ� þ ikϕμDμΦ

−
1

2
kϕAμνFμνΦ − ðm2 þ ξRÞΦ ¼ 0: ð2Þ

This equation is intrinsically second order in time deriv-
atives, so we cannot obtain a Schrödinger-like equation
directly from (2). Instead, we turn to the canonical
formalism. From

πΦ ≡ ∂LΦ

∂ _Φ
¼ −e½G̃ρ0ðDρΦÞ† − ikϕ0Φ†�; ð3Þ

πΦ† ≡ ∂LΦ

∂ _Φ† ¼ −e½G̃0ρDρΦþ ikϕ0�Φ�; ð4Þ

we can solve _Φ, _Φ† in terms of πΦ, πΦ† , i.e.,

_Φ† ¼ −1
G̃00

�
πΦ
e

− ikϕ0Φ† þ G̃i0ðDiΦÞ†
�
− iqA0Φ†; ð5Þ

_Φ ¼ −1
G̃00

�
πΦ†

e
þ ikϕ0�Φþ G̃0iDiΦ

�
þ iqA0Φ: ð6Þ

Performing the canonical transformation on (1), we get the
Hamiltonian density,

H¼−
πΦπΦ†

eG̃00
−

1

G̃00
½G̃0jπΦDjΦþ G̃j0ðDjΦÞ†πΦ† �

þ i

�
k0ϕ
G̃00

−qA0

�
Φ†πΦ† − i

�
k0ϕ

�

G̃00
−qA0

�
πΦΦ

þe½ḠijðDiΦÞ†DjΦþ M̄2Φ†Φ�

þ ie

�
½kjϕ�ðDjΦÞ†Φ−kjϕΦ†DjΦ�þ 1

G̃00
½k0ϕΦ†G̃0jDjΦ

−k0ϕ
�G̃j0ðDjΦÞ†Φ�

�
; ð7Þ
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where we have defined Ḡij ≡ ½G̃ij − G̃i0G̃0j

G̃00 � and

M̄2 ≡ ½m2 þ ξRþ 1
2
kAϕ · F −

jk0ϕj2
G̃00 �. Also note Ḡij� ¼ G̃ji −

G̃0iG̃j0

G̃00 ¼ Ḡji as ðk̃ϕϕÞμν� ¼ ðk̃ϕϕÞνμ. The Hamiltonian den-
sity (7) will be useful in Sec. IV for the derivation of a
Schrödinger-like equation. In the following sections, we
will set Aμ ¼ 0 to avoid an electromagnetic interaction, as
even a very tiny electromagnetic interaction spoils the test
of WEP, and we included it here only for completeness.
Strictly speaking, only a neutral particle is immune to
electromagnetic interaction, and in that case, the scalar field
must be real. In flat spacetime, we can discard the ðkϕÞμ
term as it only contributes a total derivative for a real scalar.
Similarly, ðk̃ϕϕÞμν can only take the real symmetric and
traceless part and can be shifted to the fermion sector with
cμν → cμν − 1

2
ðk̃ϕϕÞμν through a coordinate transformation

[27]. However, all of the above issues are not very relevant
here when coupled with gravity. For a gravity-coupled
neutral scalar, we only need to ignore the Sμν and kμνϕA terms.
For completeness, we will still use the complex scalar to
demonstrate all of the results.

III. STATIC METRIC AND TRADITIONAL
ROUTE TO THE NONRELATIVISTIC

EQUATION

In curved spacetime, LV coefficients can also contribute
to the energy momentum tensor [8] and, through
the Einstein equation, affect the corresponding metric
solutions. Here, because the statement of WEP involves
a “free-moving” test particle and we are only interested in
matter–gravity couplings, for simplicity, we can adopt a test
particle assumption [29], where the spacetime metric is
untouched by the LV coefficients associated with the matter
sector. So we can still make use of the conventional
metric from GR, and “free motion” implies we have to
take Aμ ¼ 0 in (2), which gives

fgμν∇μ∇ν − k̃μνϕϕ½∂μ∂ν þ Γλ
μλ∂ν� þ ikμϕ

�½∂μ þ Γλ
μλ�

þikϕμ∂μ − ðm2 þ ξRÞgΦ ¼ 0; ð8Þ

where, for simplicity, we also assumed Riemann space-
time instead of Riemann-Cartan spacetime; otherwise,
1
e ∂μ½egμν∂ν�Φ ¼ gμν½∇μ∇ν − TðμνÞλ∇λ�Φ, where Tλ

μν is
the torsion tensor. For simplicity, we can take the isotropic
static metric [35],

ds2 ¼ −gμνdxμdxν ¼ V2dt2 − δî ĵW
2dxidxj; ð9Þ

as an example. Then the only nonzero Christoffel symbols
are given by

Γi
jk ¼ ½δij∂kW þ δik∂jW − δjk∂iW�=W; Γ0

0j ¼
∂jV

V
;

Γj
00 ¼

1

2

∂jV2

W2
; Γλ

iλ ¼ ∂iV=V þ 3∂iW=W: ð10Þ

Defining F ≡ V
W and substituting (10), g00 ¼ −1=V2 and

gij ¼ δij=W2 into (8), we get

f−∂2
0 þ F 2½Δþ ∇⃗ lnðVWÞ · ∇⃗� − V2ðm2 þ ξRÞgΦ
¼ V2fk̃μνϕϕ½∂μ∂ν þ δiμ∂i lnðVW3Þ∂ν�
− ½2iaμ∂μ þ ikjϕ

�∂j lnðVW3Þ�gΦ: ð11Þ

The Ricci scalar for the metric (9) is given by

R¼ 2

VW4
½W2∇2Vþ2WV∇2WþW∇⃗V · ∇⃗W−Vð∇⃗WÞ2�:

ð12Þ

Note that R differs by a minus sign if using conven-
tion diagðημνÞ ¼ ð1;−1;−1;−1Þ.
Now substituting the ansatz Φðt; r⃗Þ ¼ e−imtψðt; r⃗Þ into

(11), we can get

½m2ψ þ 2im _ψ − ψ̈ �

þ F 2

1þ k̃00ϕϕV
2
½Δþ ∇⃗ lnðVWÞ · ∇⃗ −W2ðm2 þ ξRÞ�ψ

¼ V2

1þ k̃00ϕϕV
2
f½k̃i0ϕϕ∂i lnðVW3Þ þ k̃ð0iÞϕϕ ∂i�ð∂0 − imÞ

þ k̃ijϕϕ½∂i þ ∂i lnðVW3Þ�∂j − i½2a0ð∂0 − imÞ
þ 2a⃗ · ∇⃗þ ða⃗ − ib⃗Þ · ∇⃗ lnðVW3Þ�gψ ; ð13Þ

where k̃ð0iÞϕϕ ≡ ðk̃0iϕϕ þ k̃i0ϕϕÞ. Because most of the tests of EP
and LLS until now have been done near the Earth’s surface,
where the metric functions are asymptotically flat, i.e.,
gμν ≃ ημν, we can resort to the approximation scheme
in [27], where terms proportional to the product of LV
coefficients and metric perturbation of powers of l
and n, respectively, are denoted by Oðl; nÞ. Next, we
proceed our calculations with the Schwarzschild
metric V ¼ ð1þ 1

2
χÞð1 − 1

2
χÞ−1, W ¼ ð1 − 1

2
χÞ2, where

χ ≡ − GM
c2r . Now R ¼ 0, when r ≠ 0, even Rκ

λμν ≠ 0 in
general. Below, we will expand gμν in powers of χ and keep
only terms up to Oð0; 2Þ and Oð1; 1Þ. In doing so, we also
take advantage of the Virial theorem in which χ ∼ v̄2

c2. In
essence, that means we can also take v̄ (assuming in natural
units that c ¼ 1) as an expansion parameter. Also note that
in laboratory experiments, j∂iχj ≪ jχ=Lj [27], where L is
the typical experimental scale, so we can treat∇iχ as higher
order compared to χ and ignore its product with LV
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coefficients. Under these assumptions, we can rearrange
(13) as below:

i _ψ ¼
�
F 2

�
1 −

�
k̃00ϕϕ þ

a0

m

�
V2

� ˆp⃗2

2m
−
F 2

2m
∇⃗ lnðVWÞ · ∇⃗

þm
2
½ðV2 − 1Þ − k̃00ϕϕV

4�

þ V2

�
k̃ð0iÞϕϕ

2
p̂i −

k̃ijϕϕ
2m

p̂ip̂j þ
a⃗ · ˆp⃗
m

−
a0

2
ðV2 þ 1Þ

��
ψ

þ V2
k̃ð0iÞϕϕ

2m
∇i _ψ þ

�
1 −

a0

m
V2

�
ψ̈

2m
: ð14Þ

At order Oð0; 1Þ, we have i _ψ ¼ ½− ∇⃗2

2m þmχ�ψ , which is
roughly the order of mv̄2. So we know ψ̈

2m ∼mðv̄2Þ2 ∼mχ2,
and then we can temporarily ignore the last two terms
proportional to ∇i _ψ and ψ̈

2m in (14) and get

i _ψ ¼
��

ð1þ4χÞ−
�
k̃00ϕϕþ

a0

m

�
ð1þ6χÞ

� ˆ⃗p2

2m
þ χ

4m
∇⃗χ · ∇⃗

þ
�
mχð1þχÞ−mk̃00ϕϕ

�
1

2
þ2χ

��
− ð1þ3χÞa0

þð1þ2χÞ
�
k̃ð0iÞϕϕ

2
p̂i−

k̃ijϕϕ
2m

p̂ip̂jþ
a⃗ · ˆ⃗p
m

��
ψ ; ð15Þ

up toOðχ2Þ, except for the LI term χ
4m ∇⃗χ · ∇⃗. Now defining

the terms in the large braces in (15) as Ĥ0, and adding the
correction ψ̈

2m ¼ − 1
2m ðĤ0Þ2ψ and ∇i _ψ ¼ −i∇iðĤ0ψÞ back

into (15) to replace the last two terms in (14), we can obtain
the desired order:

i _ψ ¼
���

1þ3χ−
k̃00ϕϕ
2

� ˆ⃗p2

2m
þmχ

�
1þχ

2

�
−
ð ˆ⃗p2Þ2
8m3

�

þð1þχÞ
�
a⃗ · ˆ⃗p
m

−
k̃ijϕϕ
2m

p̂ip̂j

�
þð1þ2χÞ

�
k̃ð0iÞϕϕ

2
p̂i−a0

�

−
m
2
k̃00ϕϕð1þ3χÞ

�
ψþ

�
i
2m

�
1þ13χ

2

�
∇⃗χ · ˆ⃗p

þ
�
2
a0

m
− k̃00ϕϕ

�
χ
ˆ⃗p2

2m
þ 1

4m
ðΔχþ2ð∇⃗χÞ2Þ

þ k̃ð0iÞϕϕ

ˆ⃗p2

4m2
p̂i

�
ψ : ð16Þ

Note that, as the procedure implies, the above equation will
be valid only up to Oð0; 2Þ and Oð1; 1Þ. We divide the
right-hand side of (16) into two parts. In fact, comparing
with the NR Hamiltonian (26) obtained by a quite different

method, we find that, except for the ∇⃗χ · ˆp⃗ term (belonging
to the latter brace), the part enclosed by the former brace is

consistent with (26) up to the desired orders, whereas those
in the latter brace may be classified as divergent higher-
order terms. Indeed, we can even verify this coincidence (of
the NR results obtained with different methods) by choos-
ing another metric, e.g., the uniform accelerating metric. So
it is interesting to explore whether the above NR procedure
can be improved to yield completely consistent results with
the FWT or even extended to higher orders systematically.
This question is beyond the scope of this paper. In the
next section, we will utilize the FWT [32–34,36,37] to
show that the NR approximation can indeed be obtained
systematically.

IV. SCHRÖDINGER-LIKE EQUATION FOR
SCALAR FIELD AND FWT

The Foldy-Wouthuysen transformation for a scalar field
was first introduced in [34] and later refined by [32,36,37].
In order to perform FWT for a scalar field, first we have to
obtain a Schrödinger-like Hamiltonian from the scalar
Lagrangian (1), and then we can do a pseudounitary
transformation parallel to the case of the fermion. Next,
with a series expansion in terms of 1

m, we can obtain the NR
approximation to any desired order we prefer. Below, we
will show the FWT up to Oð1; 1Þ, Oð0; 2Þ in a static
Schwarzschild metric, and we will perform the FWT both
directly [34,36] and indirectly with a unitary transformation
[32] performed first. We will show that these two proce-
dures give the same result, and the result is consistent with
the part enclosed by the first brace in (16).
To formally remove the second-order time derivatives,

first we can obtain the Hamiltonian equation of motion with
a canonical formalism. From Hamiltonian HΦ ¼ R

d3x⃗H,
where H is given by (7), we get

_Φ ¼ δHΦ

δπΦ
¼ −

πΦ†

eG̃00
−
G̃0j

G̃00
DjΦ − i

�
k0�ϕ
G̃00

− qA0

�
Φ;

_πΦ† ¼ −
δHΦ

δΦ† ¼ −Dj

�
G̃j0

G̃00
πΦ†

�
− i

�
k0ϕ
G̃00

− qA0

�
πΦ†

þDi½eḠijDjΦ� − e

�
m2 þ ξRþ 1

2
kϕAμνFμν

−
jk0ϕj2
G̃00

�
Φþ ie

��
kjϕDjΦþ 1

e
Djðekjϕ�ΦÞ

�

−
�
k0ϕ

G̃0j

G̃00
DjΦþ 1

e
Dj

�
e
G̃j0

G̃00
k0�ϕΦ

���
: ð17Þ

Then we can define Θ ¼ þ i
m πΦ† and symmetrize fields Φ,

Θ by the definitionΨ≡ ð η
ζ Þ≡ 1ffiffi

2
p ðΦþ Θ

Φ − Θ Þ. For notational
convenience, we can also define ḡμν ≡ gμν − Kμν and hence
G̃00 ¼ ḡ00. With these definitions, Eq. (17) can be cast into
the Schrödinger form i _Ψ ¼ ĤΨΨ, where
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ĤΨ¼
�
a0

ḡ00
−qA0þ

1

2
∇j

�
S0j

ḡ00

�
þ1

2

�
π̂j;

ḡ0j

ḡ00

��
1̂

þ
�
1

2
∇j

�
ḡ0j

ḡ00

�
−
b0

ḡ00
−
1

2

�
π̂j;

S0j

ḡ00

��
iσ1

þ
�

e
2m

M̄2þ m
2eḡ00

þ 1

2m
π̂iðeḠijπ̂jÞ− Ôk

�
iσ2

þ
�

e
2m

M2−
m

2eḡ00
þ 1

2m
π̂iðeḠijπ̂jÞ− Ôk

�
σ3: ð18Þ

In (18), π̂≡ ½p̂i−qAi�, Ôk≡ 1
2mf½∇⃗ · ðeb⃗Þ−fπ̂j;eajg�þ

½∇j½eða0S0j−b0ḡ0jÞ=ḡ00�þfπ̂j; e
ḡ00 ða0ḡ0jþb0S0jÞg�g, and

σi, i ¼ 1, 2, 3, are the Pauli matrices. For completeness,
until now, we have not assumed the isotropic metric and
Aμ ¼ 0 or done any approximation. From the definition of
pseudohermiticity σ̂3Ô

†σ̂3 ¼ Ô [36], it is straightforward
to verify that ĤΨ in (18) is pseudohermitian. The pseudo-
hermiticity requirement is necessary to ensure that all of the
eigenenergies of ĤΨ are real values. We also note the
formal similarity of pseudohermiticity defined by σ3 and
that defined by γ0 in spinor space, i.e., γ0M†γ0 ¼ M. This
indicates that σ3 plays a role very similar to that of γ0, as
can be seen from the process of dividing operators into even
and odd parts in FWT [33,34]. In the following, we will
take Aμ ¼ 0 and the isotropic metric (9), so (18) becomes

ĤΨ¼
�
a0

g00
−
K0j

g00
p̂j−

1

2
p̂j

�
k̃j0ϕϕ
g00

��
1̂−

�
i
2
p̂j

�
k̃j0ϕϕ
g00

�

þ b0

g00
−
Sj0

g00
p̂j

�
iσ1

þ
�

e
2m

M2þ m
2eḡ00

þ 1

2m
p̂iðeḠijp̂jÞ− Ôk

�
iσ2

þ
�

e
2m

M2−
m

2eḡ00
þ 1

2m
p̂iðeḠijp̂jÞ− Ôk

�
σ3; ð19Þ

where M2 ≡ ½m2 þ ξR�, Ôk ≡ 1
2m ½∇⃗ · ðeb⃗Þ − fp̂j; eajg�

and ḡ00 ¼ −ð 1
V2 þ K00Þ, Ḡij ¼ δij

W2 − k̃ijϕϕ, e ¼ VW3. Note
by replacing ḡ00 with g00 in the denominators, we have
already ignored terms with second-order LV couplings.

A. Pseudounitary transformation

With the relativistic Hamiltonian (19), we can perform
FWT directly to obtain the NR approximation. However,
we wish to perform a pseudo-unitary transformation first,
which will make the Hamiltonian more suitable for FWT,
and then we will do the FWT afterward. We call this
procedure the Cognola-Vanzo-Zerbini (CVZ) method,
which was first introduced in [32]. For a similarity trans-
formation to be defined as pseudounitary, its associated
operator Û must satisfy σ̂3Û

†σ̂3 ¼ Û−1 [32,34,36]. The
goal of the desired pseudounitary transformation is to
make the term proportional to m, e

2mM
2 þ m

2eḡ00, associated

with σ2, vanish. Because the square brackets in (19)
associated with 1̂ and iσ1 do not contain any term pro-
portional to m, we can perform a “rotation” only in the
space spanned by σ2 and σ3; i.e., define Û ≡ f þ gσ1 to
eliminate the mass proportional term in the large brace
multiplied by iσ2. Assuming f, g ∈ R∞, the pseudounitary
condition of Û indicates Û−1 ¼ f − gσ1 and f2 − g2 ¼ 1.
With a little algebra, the mass-eliminating requirement
gives f−g

fþg ¼ e
ffiffiffiffiffiffiffiffiffiffi
−ḡ00

p
¼ W3½1þ k̃00ϕϕV

2�12. Combined with

f2 − g2 ¼ 1, we get

Û ¼ 1

2
ðe

ffiffiffiffiffiffiffiffiffiffi
−ḡ00

q
Þ−1

2

h
1þ e

ffiffiffiffiffiffiffiffiffiffi
−ḡ00

q
þ ð1 − e

ffiffiffiffiffiffiffiffiffiffi
−ḡ00

q
Þσ1

i
:

ð20Þ

Then we can use (20) to perform a pseudounitary trans-
formation Ĥ0

Ψ ≡ Û−1ĤΨÛ on (19), which gives

Ĥ0
Ψ ¼

�
mffiffiffiffiffiffiffiffiffiffi
−ḡ00

p þ ξR

2m
ffiffiffiffiffiffiffiffiffiffi
−ḡ00

p þ ðe
ffiffiffiffiffiffiffiffiffiffi
−ḡ00

q
Þ−1

2

�
1

2m
p̂iðeḠijp̂jÞ − Ôk

�
ðe

ffiffiffiffiffiffiffiffiffiffi
−ḡ00

q
Þ−1

2

�
σ3

þ
�

ξR

2m
ffiffiffiffiffiffiffiffiffiffi
−ḡ00

p þ ðe
ffiffiffiffiffiffiffiffiffiffi
−ḡ00

q
Þ−1

2

�
1

2m
p̂iðeḠijp̂jÞ − Ôk

�
ðe

ffiffiffiffiffiffiffiffiffiffi
−ḡ00

q
Þ−1

2

�
iσ2 −

�
b0

g00
þ i
2
p̂j

�
k̃j0ϕϕ
g00

�
þ S0j

g00
p̂j

þ 3

2

K0j

g00
∇j lnW

�
iσ1 þ

�
a0

g00
−
K0j

g00
p̂j −

1

2
p̂j

�
k̃j0ϕϕ
g00

�
þ 3

2

S0j

g00
∇j lnW

�
1̂: ð21Þ

Following the spirit of FWT [33,34], we can separate Ĥ0
Ψ into even and odd parts according to whether they commutate or

anticommutate with σ3, where σ3 plays the role of γ0 in the fermion case, as mentioned before. In other words, we can write
Ĥ0

Ψ ¼ mσ3 þ E þO, where ½E; σ3� ¼ 0 and fO; σ3g ¼ 0. Ignoring the nonminimal coupling term ξR and those which are
products of the derivatives of χ and LV coefficients, the even and odd operators are
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E ¼
�
ðe

ffiffiffiffiffiffiffiffiffiffi
−ḡ00

q
Þ−1

2

�
1

2m
p̂iðeḠijp̂jÞ − Ôk

�
ðe

ffiffiffiffiffiffiffiffiffiffi
−ḡ00

q
Þ−1

2 þm

�
1ffiffiffiffiffiffiffiffiffiffi
−ḡ00

p − 1

��
σ3 þ

�
a0

g00
−
K0j

g00
p̂j

�
1̂; ð22Þ

O ¼
�
ðe

ffiffiffiffiffiffiffiffiffiffi
−ḡ00

q
Þ−1

2

�
1

2m
p̂iðeḠijp̂jÞ − Ôk

�
ðe

ffiffiffiffiffiffiffiffiffiffi
−ḡ00

q
Þ−1

2

�
iσ2 −

�
b0

g00
þ S0j

g00
p̂j

�
iσ1: ð23Þ

Now, clearly, E is already diagonal and hence decouples the
two-component field Ψ, whereasO is off-diagonal and still
needs to be diagonalized. In order to make the off-diagonal
part smaller and smaller, we can perform a further unitary
transformation,

Ψ0 → A−1Ψ0; Ĥ0
Ψ → A−1Ĥ0

ΨA − iA−1ð∂tAÞ; ð24Þ

where A ¼ exp½− 1
2m σ3O� [34]. For a static metric, this

transformation leads to

ˆ̃HΨ ¼ e
1
2mσ3OĤ0

Ψe
− 1
2mσ3O

¼ Ĥ0
Ψ þ 1

2m
½σ3O; Ĥ0

Ψ� þ
1

8m2
½σ3O; ½σ3O; Ĥ0

Ψ��

þ 1

3!ð2mÞ3 ½σ3O; ½σ3O; ½σ3O; Ĥ0
Ψ��� þ � � �

¼ σ3mþ
�
E þ 1

2m
σ3O2 −

1

8m2
½O; ½O; E�� þ � � �

�

þ
�

1

2m
σ3½O; E� − 1

3m2
O3 þ � � �

�
: ð25Þ

Note that, compared to m, all terms in O, E are either
proportional to various powers of the metric perturbation χ
and its derivatives or powers of tiny LV coefficients or some
products between the two, which are all small parameters
(as mentioned before, in a weak gravitation field, ˆp⃗2=2m ∼
mχ ≪ m can also be regarded as small). Therefore,
products of O, E must be much smaller, which legitimizes
the approximation procedure of the expansion in (25) [35].
Substituting the Schwarzschild metric V¼ð1þ1

2
χÞð1−1

2
χÞ−1

and W ¼ ð1 − 1
2
χÞ2 into (22) and (23) and preserving only

terms up to Oð0; 2Þ, Oð1; 1Þ, from (25), we get

ĤCVZ¼
�
mþ

�
mχ

�
1þχ

2
þχ2

4

�
−m

k̃00ϕϕ
2

ð1þ3χÞ
�

þ
�
ð1þ3χþ5χ2Þ− k̃00ϕϕ

2
ð1þ5χÞ

� ˆ⃗p2

2m
−
ð ˆ⃗p2Þ2
8m3

þð1þχÞ
2m

½2a⃗ · ˆ⃗p− k̃ijϕϕ
ˆ⃗pi
ˆ⃗pj�−

3

4m
½2ð∇⃗χÞ2þΔχ�

−
i
2m

ð3þ10χÞ∇⃗χ · ˆ⃗p

�
σ3þð1þ2χÞ½K0jp̂j−a0�1̂:

ð26Þ

Note that − ð ˆp⃗2Þ2
8m3 comes from the lowest-order LI contri-

bution of 1
2m σ3O

2, and all other terms except for m come
from E. Up to Oð1; 1Þ, Oð0; 2Þ, we have not calculated
− 1

8m2 ½O; ½O; E��. Compared to direct FWT, which will
be shown below, we see that the pseudounitary trans-
formation saves the work of calculating commutators in
(25) if the NR approximation is only required to proceed to
the next leading order. As mentioned before, except for the
last two terms in the large brace, Eq. (26) agrees well with
the terms in the first brace of (16), indicating that it is still
possible to improve the NR procedure using the conven-
tional method.

B. Foldy-Wouthuysen transformation

In this subsection, we show that direct FWT on (19) can
also lead to the same result in (26). For calculational
convenience, we can separate both E and O into LI and LV
parts, i.e., E ¼ ELI þ ELV and O ¼ OLI þOLV . In detail,

ELI ¼
�
em
2

−
m

2eg00
−mþ 1

2m
p̂iðVWp̂iÞ

�
σ3; ð27Þ

ELV ¼
�
−
m
2
k̃00ϕϕF

3 þ VW3

2m
½2a⃗ · ˆp⃗ − k̃ijϕϕp̂ip̂j�

�
σ3

þ fV2½K0jp̂j − a0�g1̂; ð28Þ

OLI ¼
�
em
2

þ m
2eg00

þ 1

2m
p̂iðVWp̂iÞ

�
iσ2; ð29Þ

OLV ¼
�
m
2
k̃00ϕϕF

3 þ VW3

2m
½2a⃗ · ˆp⃗ − k̃ijϕϕp̂ip̂j�

�
iσ2

þ fV2½b0 þ S0jp̂j�giσ1: ð30Þ

So expanded in terms of χ and its derivatives, we have up to
linear order of LV coefficients,
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O2 ¼ O2
LI þ fOLI;OLVg

¼ −1̂
�
9m2χ2

�
1þ 5

2
χ

�
þ
� ˆp⃗2

2m

�
2

− 3χ

�
1þ 5

4
χ

�
ˆp⃗2 þ 3i

�
1þ 5

2
χ

�
∇⃗χ · ˆp⃗þ 3

2

�
Δχ þ 5

2
ð∇⃗χÞ2

�

þ k̃00ϕϕ
2

ð1þ 6χÞ ˆp⃗2 − 3m2k̃00ϕϕχ þ
�
ð1 − 2χÞ

ˆp⃗2

m2
− 6χ

��
a⃗ · ˆp⃗ −

k̃ijϕϕ
2

p̂ip̂j

��
; ð31Þ

and

½O; ½O; E�� ¼ ½OLI; ½OLI; ELI�� þ ½OLI; ½OLI; ELV �� þ ½OLI; ½OLV; ELI�� þ ½OLV; ½OLI; ELI��; ð32Þ

where

½OLI; ½OLI; ELI�� ¼
�
½ð5χ ˆp⃗2 − 8i∇⃗χ · ˆp⃗ − ΔχÞ�

ˆp⃗2

m
−
1

2

� ˆp⃗2

m

�
3

þ6mχ½2ði∇⃗χ · ˆp⃗þ ΔχÞ − 6m2χ2 − χ ˆp⃗2�
�
σ3; ð33Þ

½OLI; ½OLI; ELV �� þ ½OLI; ½OLV; ELI�� þ ½OLV; ½OLI; ELI�� ¼
�
k̃00ϕϕ
4

χ
ˆp⃗2

m
þ k̃00ϕϕ

16

� ˆp⃗2

m

�
2

−
17χ

8m

�
a⃗ · ˆp⃗
m

−
k̃ijϕϕ
2m

p̂ip̂j

� ˆp⃗2

m

�
σ3:

ð34Þ

Substituting all of the above Eqs. (27)–(34) back into (25), we get the NR scalar Hamiltonian (up to second-order
commutators of FWT) as

ĤFWT ¼
�
mþmχ

�
1þ χ

2
þ χ2

4

�
−

i
2m

ð3þ 10χÞ∇⃗χ · ˆp⃗þ
�
ð1þ 3χ þ 5χ2Þ − k̃00ϕϕ

2
ð1þ 5χÞ

� ˆp⃗2

2m
−
ð ˆp⃗2Þ2
8m3

−m
k̃00ϕϕ
2

ð1þ 3χÞ þ ð1þ χÞ
2m

½2a⃗ · ˆp⃗ − k̃ijϕϕ
ˆp⃗i
ˆp⃗j�−

3

4m
Δχ −

�
1þ 9

4
χ

�
½2a⃗ · ˆp⃗ − k̃ijϕϕ

ˆp⃗i
ˆp⃗j�

ˆp⃗2

4m3

�
σ3

þ ð1þ 2χÞ½K0jp̂j − a0�1̂: ð35Þ

Compared with (26), we see that, except for the LV term

proportional to
ˆp⃗2

4m3, the NR Hamiltonian obtained by direct
FWT is completely the same as that obtained with the CVZ
method; though to the next lowest order, the latter can be
obtained without substantially calculating any commuta-
tors. At first glance, this is a little surprising because the
results are expected to differ by a pseudounitary trans-
formation; however, inspecting the CVZ method, we see
that it is exactly the pseudounitary transformation, which
ensures that the NR Hamiltonian is the same as that
obtained with direct FWT [38]. The pseudounitary trans-
formation preserves both the charge and matrix elements of
the Hamiltonian after transformation [36].

C. Consistency check and partial support

Another confirmation can be seen by applying the
different methods mentioned above to the linear accelerat-
ing metric g00 ¼ −½1þ a⃗·x⃗

c2 �2, gij ¼ δij. With either direct
FWT, the CVZ method, or even the unsystematically
traditional method in Sec. III, we can obtain an NR
Hamiltonian:

ĤNRL ¼ mð1þ ϕÞ þ
�
ð1þ ϕÞ − k̃00ϕϕ

2
ð1þ 3ϕÞ

� ˆp⃗2

2m

−
k̃00ϕϕ
2

mð1þ 3ϕÞ þ ð1þ ϕÞ
�
a⃗ · ˆp⃗
m

−
k̃ijϕϕ
2m

ˆp⃗i
ˆp⃗j

�

−
i
2m

∇⃗ϕ · ˆp⃗þ ð1þ 2ϕÞ½K0jp̂j − a0� − ð ˆp⃗2Þ2
8m3

;

ð36Þ
where ϕ≡ a⃗·x⃗

c2 . The correctness of (35) and (36) can be
partially supported by comparing the LI part of these
Hamiltonians with the Eqs. (20) and (21) in [37]. We
can even compare the LI part of (36) with the fermion
Hamiltonian obtained in [29,35,39]. The consistency of this
comparison lies in the fact that each spinor component
satisfies the Klein-Gordon equation as dictated by the
relativistic dispersion relation. In other words, the NR
Hamiltonian for a scalar field is equivalent to that of a
fermion field by ignoring its spin contribution. In the same
spirit, we can also expect an equivalence between the LV
contribution to the NR scalar Hamiltonian with the fermion
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counterpart; see [27,29]. Comparing Eq. (36) with
Eqs. (21), (23), and (27) in [29] by ignoring the spin
interactions, we find

ðkϕÞ0 ∼ ½ã0 −me0�; ðkϕÞj ∼ ½ãj −mej�;
k̃00ϕϕ
2

∼ c00;
k̃ijϕϕ
2

∼ cðijÞ; K0i ∼ 2cð0iÞ: ð37Þ

Note that to avoid notational confusion of the real part of
ðkϕÞμ, i.e., aμ, with the fermionic LV coefficient “aμ”, we
instead use ãμ to represent the latter in (37). Relation (37) is
also consistent with the CPT properties of the correspond-
ing LV coefficients. The incompleteness of the formal
similarity between the spin-independent NR LV
Hamiltonian (36) and the one in [29] can be attributed
to the fact that we only preserve LV perturbations to
Oð1; 1Þ for simplicity, whereas in [29], these perturbations
are preserved to much higher orders. An interesting
scenario is that if we start with a Lagrangian describing
spin-1 boson (such as meson) and carry out the above
procedure again, we may also establish a relationship
between the spin-dependent LV coefficients for an effective
boson with the more fundamental fermionic LV couplings,
like bμ, Hμν, gλμν, etc.
Finally, we mention again the advantage of the CVZ

method over direct FWTs, at least to the next lowest order
of the NR approximation, is that the CVZ method can
largely save work in calculating various commutators, such
as ½O; ½O; E�� in FWT.

V. RELATION TO THE TEST OF THE
EQUIVALENCE PRINCIPLE

Next, we discuss the relevance of the scalar Hamiltonian
to the test of the EP. Actually, there are various inequivalent
definitions on EP in the extensive discussions found in the
literature [40]. Thus there is no doubt that discussions of
inequivalent subjects necessarily cause conflicting conclu-
sions on the validity of EP [19,20]. As mentioned at the
very beginning, we constrain ourselves to the WEP.
Speaking more precisely, we mean the equivalence between
the law of mechanics for any free-moving test body with
negligible self-gravity in a sufficiently small local region of
spacetime (in a gravitational field) with that in a uniform
accelerating frame (with proper acceleration) in the absence
of gravity [40,41]. Note that in this statement, universal free
fall (UFF, the world line of any free-moving test body with
given initial conditions is independent of its mass and
internal properties) cannot be equivalent to WEP [42] and
ceases to be valid in a quantum domain. More importantly,
UFF is even meaningless in quantum mechanics as the
world line (or trajectory for an object) is purely a classical
concept. In this sense, it is better to view UFF as a classical
manifestation of WEP. On the contrary, WEP can still be
safely guaranteed in a quantum realm, particularly

constrained to the NR region reduced in [20,21,43] from
GR. Actually, WEP provides a key to “gauge away” the
gravitational analogy of gauge potential, the first deriva-
tives of metric tensor, i.e., ∂ρgμν ∼ Γρμν, and thus is an
essential ingredient to attach quantum matter (neglecting
spin-gravity couplings) to the classical gravitational back-
ground. In relativistic quantum field theory, WEP may not
be valid due to the nonlocal nature of the radiative
corrections even in a classical GR background [44].
In this respect, we think it is more meaningful to test

WEP in an extended theory of GR, especially in the
quantum domain. Many alternative theories fit into this
category, such as Einstein-Cartan theory [45], metric-affine
theory [46], etc. In a much broader context, it is valuable to
incorporate Lorentz and CPT violation together with the
test of WEP in a single framework, especially considering
the intimate relationship between LLI and WEP, as indi-
cated by Schiff’s conjecture [15,18]. SME provides such an
ideal test ground. In fact, testing WEP in SME allows more
exotic signals, such as the distinctive nature between
gravitational force and acceleration in the presence of
LV [27]. Discussion of EP in the context of SME is
abundant [27–30,47]; however, it seems that two important
points have been overlooked or not been taken seriously,
which we further address below.
First, it is logically more consistent to start with an

intrinsically curved metric instead of a uniform accelerating
metric, though the latter is an excellent approximation in
most circumstances (up to an irrelevant constant), e.g.,
g00≃−ð1þ2χÞ¼−½1þ2g⃗·Δr⃗=c2þ2GMc2R�∼−ð1þ2ϕÞ (R is
Earth’s radius). However, this approximation cannot be
reliable to higher orders. In essence, the metric g00 ¼ −ð1þ
a⃗ · x⃗=c2Þ2, gij ¼ δij is only a general relativistic description
of uniform acceleration, which is essentially flat and
contains no information of gravity. Comparing (35) with
(36), we see, even staying at the metric level and in the
absence of LV, the two Hamiltonians cannot be equivalent

at orders other than OðχÞ, including the ∇⃗χ · ˆp⃗ or ∇⃗ϕ · ˆp⃗
term. Viewed in another way, the failure of this match may
precisely reflect the realm of validity in the statement of
WEP, “a sufficiently small local region of spacetime”.
Going beyond this “local” patch of spacetime necessarily
means going out of the domain of WEP, where “violation”
is naturally expected even in GR.
Second, determining how small should be considered as

local enough, which depends on experimental capabilities.
For an experimental apparatus capable of achieving the
precision of δsμgal in a gravitational acceleration meas-
urement near Earth’s surface, the length scale is roughly

about L ¼ LðδsÞ ∼ δjg⃗jmaxR
2g ∼ 10−8 × δsR

2g to ensure the local
requirement of the WEP test; otherwise, even the conven-
tional tidal gravity can have a non-null effect. For example,
if the gravimeter precision is on the order of 1 mgal, the
length scale involved in the gravimeter measurement must
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be less than 3.24 m, which is easy to satisfy. For a 1μgal
precision measurement, the length scale is smaller by a
factor of 1000, which excludes many conventional macro-
scopic gravitational experiments.
On the other hand, if the flavor-dependent LV coeffi-

cients k̃μνϕϕ, k̃
μ
ϕ are nonzero, WEP is apparently violated. To

see this, we collect the LV Hamiltonian up to OðχÞ from
(35) as shown below:

ĤFWT ¼
�
mχ

�
1 −

3k̃00ϕϕ
2

− 2
a0

m

�
−
mk̃00ϕϕ
2

− a0
�

þ
�
1 −

k̃00ϕϕ
2

� ˆp⃗2

2m
þ ð1þ 2χÞK0jp̂j

þ ð1þ χÞ
2m

½2a⃗ · ˆp⃗ − k̃ijϕϕ
ˆp⃗i
ˆp⃗j�: ð38Þ

The first term in the large square bracket can be regarded as
potential energy, which depends not only on the LV

corrected mass term mð1 − 3k̃00ϕϕ
2

− 2 a0
mÞ but also directly

on the combination of LV coefficients, −½mk̃00ϕϕ=2þ a0�. In
general, the LV coefficients are directionally dependent and
hence necessarily lead to breaking of UFF even in the
context of classical mechanics. We can see this more
transparently from the classical Lagrangian (40) derived
below. In fact, even when the usual coordinate trans-
formation z → z0 ¼ zþ g

2
t2, t → t0 ¼ t is performed on

the Schrödinger equation [21] associated with the
Hamiltonian (38), it cannot be reduced to the free motion
case even locally (χ → g⃗ · Δr⃗=c2) due to the presence of LV
coefficients. So LV necessarily violates WEP by definition.
Inspection of (35) also reveals that the gravitational redshift
associated with k̃μνϕϕ depends on the number of its zero
indices, so this can be utilized to discriminate different LV
coefficients, as already been noticed in [29]. This also
prevents us from using a coordinate transformation to the
local patch of a uniform acceleration frame to transform
Hamiltonian (38) to the flat space one with LV couplings.
To see the violation of WEP in another way, from the

quadratic dispersion relation,
�

1

V2
þ k̃00ϕϕ

�
p0

2 þ
�
k̃ijϕϕ −

δij

W2

�
pipj þ k̃ð0iÞϕϕ pip0

þ i
W2

∇i lnðVWÞpi − 2ða0p0 þ ajpjÞ ¼ m2; ð39Þ

derived from (2), we can construct a classical relativistic
Lagrangian [48]:

L ¼ −μ½V2ð1 − k̃00ϕϕV
2Þu02 −W2ðδij þ KijW2Þuiuj

þ2V2W2K0iu0ui�12 þ
�
W2aj −

i
2
∇j lnðVWÞ

�
uj

− a0V2u0; ð40Þ

where μ≡ fm2 þ 1
4W2 ½∇⃗ lnðVWÞ�2g, Kμν ≡ Re½k̃μνϕϕ� ¼

Kνμ, uμ ≡ dxμ
dτ . As a simple approximation, we have only

retained the LV coefficients in the above calculation to
linear order. It can be readily verified that the particle
trajectory obtained from (40) deviates from geodesic

equation du0
dτ þ 2ðu⃗ · ∇⃗ lnVÞu0 ¼ 0, du⃗

dτ þ 1
2
∇⃗V2

W2 u02 þ 2ðu⃗ ·

∇⃗ lnWÞu⃗ − u⃗2∇⃗ lnW ¼ 0 without LV and hence appa-
rently violates WEP classically (i.e., UFF). Note that
(40) is only an example illustration to show that the
inclusion of LV necessarily indicates deviation from
geodesic for a classical particle trajectory. Because the
equation of motion derived from (40) automatically
includes various products of LV coefficients with ∂ig00
or ∂igjk, to be self-consistent, we have to include higher-
order LV contributions, as well, which is beyond the scope
of this paper.
At the end of this section, we note that there are several

subtleties in the discussion of WEP. One issue is that the
nonlocal nature of vacuum polarization may induce non-
minimal couplings even starting with a minimal coupled
action [44], as mentioned before. This effect can introduce
a very tiny length scale, the Compton wavelength λC of a
massive particle, say, the electron, and this will definitely
violate WEP due to the tidal effects. The other issue is
particular for the presence of LV, the so-called vacuum
Cherenkov radiation [49–52]. For an energetically charged
particle whose velocity exceeds the phase velocity of the
LV photon, the charge is expected to radiate [49,50].
Similarly, a Cherenkov-type process can occur for modified
electroweak and gravity sectors, as well, leading to the
emission of W, Z bosons and gravitons, respectively [52].
The back-reaction due to this radiation can lead to a
deviation from geodesic motion [49]; however, except
for the electromagnetic Maxwell-Chern-Simons theory
[50], due to the existence of threshold energy, this scenario
will be nonrelevant for a NR particle in general. For the LV-
charged fermion, the situation is slightly complicated.
Certain spin-flip LV coefficients such as H, d, and g can
also lead to threshold-free vacuum Cherenkov radiation
[51], and this will drive even a NR-charged particle away
from its geodesic. For an effective neutral particle com-
posed of charged fermions, it is still unclear whether the
composite-charged fermions in the bound state can radiate
or not. If they can, the back-reaction may lead to WEP
violation, as well, though this could be a higher-order LV
effect.

VI. SUMMARY

In this work, we have derived a NR gravitationally
coupled scalar Hamiltonian from the scalar Lagrangian of
minimal SME. Using the test particle assumption, we
derive it from two different methods in a static isotropic
metric. One derivation utilizes the usual ansatz Φðt; r⃗Þ ¼
e−imtΨðt; r⃗Þ. The other is the FWT transformation with a
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pseudounitary transformation developed by Cognola et al.
[32], and we call it the CVZmethod. At least toOð1; 1Þ, the
results (16) and (26), obtained from the two different
methods, match. In the former method, we used an iteration
procedure to perturbatively eliminate additional time
derivative terms such as ψ̈

2m, which proves to be crucial
for correct approximation. This method is a bit loose,
though we think it is much more straightforward, and it will
be interesting to explore whether this method can be further
developed to obtain higher-order corrections systemati-
cally. We also check the CVZ method with a direct FWT,
and the result (35) confirms (26) very well. However, at
least for the next-leading-order approximation, the CVZ
method appears more economical, as it largely saves the
work in calculating various commutators.
In the context of SME, various NR Hamiltonians

stemming from fermion Lagrangian have been developed
in the literature [9,53]. It is natural because matter is
composed of fermions. However, in an effective point of
view, it is complementary to start directly with a bosonic
action as many quantum tests of WEP use bosonic atoms
[11,54,55] as test particles. Our result provides such an
example for the spin-0 boson, which may be useful to the
analysis of the 88Sr atom [54]. Generalization to the spin-1
case will be straightforward and may be more interesting
because spin interaction allows experimental testing in a
more general framework, such as the metric-affine theory
with torsion and nonmetricity [56,57], so more broad test
schemes [24,58] are involved. As a bonus, comparison of
the NR Hamiltonian for scalar and fermion fields enables us
to bridge a relation between the corresponding LV coef-
ficients; see (37). Accordingly, we may also be able
to establish a relation between the LV coefficients of the

spin-1 boson field and those of the fermion field in a future
work. Then the spin-dependent LV coefficients, such as
Hμν, dμν, and gλμν may be able to match the counterparts of
the spin-1 boson, which is not attainable in the scalar case.
Finally, we also discuss the relevance of the scalar

Hamiltonianwith the test ofWEP, which in our conservative
point of view is still valid in the semiclassical context in the
nonrelativistic regime reduced from GR. Therefore, tests of
WEP are more natural in an extended theory of GR. With
both a classical Lagrangian and a NRHamiltonian, we show
that, classically, the presence of LVindeed leads to deviation
of the geodesic, which is apparently a signal of UFF
violation. Furthermore, as the LV coefficients are direction-
ally dependent and receive the gravitational redshift differ-
ently, we argue that this also leads to breaking of WEP even
when transformed to a uniform accelerating frame with
a⃗ ¼ −g⃗. Specifically, if LV leads to vacuum Cherenkov
radiation, due to the back-reaction of the emitted quanta to
test particle, more subtleWEP violation effects are expected
for a composite neutral scalar.
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