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In this paper, a follow-up of [S.C. Chulid, R. Srivastava, and J. W. F. Valle, Phys. Lett. B 781, 122
(2018)], we describe the many pathways to generate Dirac neutrino mass through dimension-six operators.
By using only the standard model Higgs doublet in the external legs, one gets a unique operator
5 L ® ® Dug. In contrast, the presence of new scalars implies new possible field contractions, which

greatly increase the number of possibilities. Here, we study in detail the simplest ones, involving SU(2),
singlets, doublets, and triplets. The extra symmetries needed to ensure the Dirac nature of neutrinos can

also be responsible for stabilizing dark matter.
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I. INTRODUCTION

Elucidating the nature of neutrinos constitutes a key
open challenge in particle physics. The detection of
neutrinoless double-beta decay—Ovpf—would establish
the Majorana nature of at least one neutrino [1] So far,
however, the experimental searches [2—-7] for Ovf3 have not
borne a positive result, leaving us in the dark concerning
whether neutrinos are their own antiparticles or not. One
should stress that, although Dirac neutrinos are not gen-
erally expected within a gauge theoretic framework [8],
they arise in models with extra dimensions [9,10], where
the vy states are required for the consistent high energy
completion of the theory. Dirac neutrinos also emerge in
conventional four dimentional gauge theories with an
adequate extra symmetry. One appealing possibility is
the quarticity symmetry, which was originally suggested
in [11-13]. This mechanism uses a version of U(1), lepton
number symmetry broken into its subgroup Z,.

In summary, there has been a growing interest recently in
Dirac neutrinos [9-41]. The many pathways to generate
Dirac neutrino mass through generalized dimension-five
operators a la Weinberg have been described in Ref. [42]. It
has been shown that the symmetry responsible for
“Diracness” can always be used to stabilize a WIMP dark
matter candidate, thus connecting the Dirac nature of
neutrinos with the stability of dark matter.
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In this article, we take the point of view that neutrinos are
Dirac fermions, extending the results of [42] to include the
analysis of seesaw operators that lead to Dirac neutrino
mass at dimension-six level. Using only the standard model
Higgs doublet in the external legs one is lead to a unique
operator 7y L ® ® ®vg. However the presence of new scalar
bosons beyond the standard Higgs doublet implies many
new possible field contractions. We also notice that, also
here and quite generically, the extra symmetries needed to
ensure the Dirac nature of neutrinos can also be made
responsible for stability of dark matter.

The paper is organized as follows. In Sec. II, we discuss
the various dimension-six operators that can give rise to
Dirac neutrinos. For simplicity we restrict ourselves to the
simplest cases of scalar singlets (y), doublets (®), and
triplets (A) of SU(2), . We also discuss the ultraviolet (UV)
complete theories associated to each operator. All these
completions fall under one of the five distinct topologies,
which we discuss, along with the associated generic
neutrino mass estimate. In Sec. III, we explicitly construct
and discuss all the UV-complete dimension-six models
involving only standard model fields. In Sec. IV, we discuss
the various UV-completions of the dimension-six operators
involving only SU(2), singlet y and doublet @ scalars. In
Sec. V, we consider the possible UV-completions of the
dimension-six seesaw operators involving all three types of
Higgs scalars, singlet y, doublet @ and triplet A. In Sec. VI,
we discuss the UV-completion of the dimension-six oper-
ator involving the doublet ® and triplet A scalars. In
Sec. VII, we present a short summary and discussion.

II. OPERATOR ANALYSIS

We begin our discussion by looking at the possible
dimension-six operators that can lead to naturally small
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TABLE L.

Possible SU(2), assignments for the scalars X, Y, Z; the allowed operators and number of associated

UV-complete models in each case. Here @ denotes either ®° or ®°, depending on the particular SU(2),
contractions. Note that the hypercharge of @ has the opposite sign than the hypercharge of ®. Similar notation is

used for other scalar multiplets.

X Y Z Operator Diagrams X Y Z Operator Diagrams
1 1 2 Lyy®ug 10 2 2 2 LD Dy, 15

1 2 3 Ly®Agvg 16 1 1 2 Ljyy®ug 16

1 2 3 Ly®A g 16 2 3 3 L®AgAgg 31

2 3 3 L®A)Agrg 16 2 3 3 L®AL,A Hup 26

2 3 3 LOAGA g 27

Dirac neutrino masses. In order to cut down the number of
such operators in this work, we will limit our discussion
only to operators involving scalar singlet (y), doublet (®)
and triplet (A) representations of the weak gauge group
SU(2),. The discussion can be easily extended to other
higher SU(2), multiplets. The general form of such
dimension-six operators is given by

1 -
aL®X®Y®ZBu (1)

where L = (v, e;)! is the lepton doublet, vy are the

right-handed neutrinos which are singlet under the standard
model gauge group and X, Y, Z denote scalar fields
which are singlets under SU(3),, transforming under
SU(2), and carrying appropriate U(1), charges such that
the operator is invariant under the full standard model
gauge symmetry. Moreover, A is the cutoff scale above
which the full UV-complete theory must be taken into
account. For sake of simplicity, throughout this work we
will suppress all flavor indices of the fields. Apart from
the standard model gauge symmetry SU(3)- ® SU(2), ®
U(1)y, another symmetry must be imposed to protect the
Diracness of neutrino fields. We will choose this symmetry
to be the Z, quarticity symmetry described in [11-13,42].
The SU(3)- ® SU(2);. ® U(1)y ® Z4 symmetry is bro-
ken by the vacuum expectation values (vev) of the scalars.
Note that the quarticity symmetry is assumed to be exact
throughout this paper and hence unbroken by the vevs of
the scalar fields. After symmetry breaking the neutrinos
acquire naturally small Dirac masses due to the quarticity
symmetry.

Invariance under SU(3). ® SU(2), ® U(1)y dictates
that, if X transforms as a n-plet under SU(2),, then Y ® Z
must transform either as a n + 1-plet or a n — 1-plet. This
leaves many possible choices for the scalars X, Y, Z, as we
now discuss.

For example, if we take X to be a singlet y, then Y ® Z
should transform as a doublet of SU(2), . Restricting our-
selves only to representations up to triplets of SU(2),, one
possibility is ¥ ® Z =y ® ®, where ® denotes a scalar
doublet of SU(2), but with hypercharge opposite to that of
®. It can be either ®" or ®¢, depending on the particular

SU(2), contraction. The only other option is ¥ ® Z =
PRA)or YRZ=DQ® A_, where A;; i =0, =2 is a
scalar triplet of SU(2),. Note that here, depending on the
choice of ® or @, there are two possible U(1), charge
assignments for A; ie., Ay with U(l), =0 and A_,
with U(1), = 2.

Taking X as a doublet ® or @, then Y ® Z must
transform either as a singlet or a triplet under SU(2),
symmetry. Thus we could have ¥ ® Z = y ® y which is
only allowed if X = ®. The other option is to have
YQZ=y®A;; i =0, 2. These operators are the same
as already discussed for X = y case. Apart from these, as
far as transformation under SU(2), is concerned, there are
two new possibilities, namely Y ® Z=A ® A and
YR Z=®Q® ®. The latter is the only dimension-six
operator which can be written down with only standard
model scalar fields.! For the operator Y @ Z=AQ® A
there are several possibilities depending on the hypercharge
of A, as listed in Table L. If X ~ 3 under SU(2), symmetry,
it is easy to see that, restricting up to triplet representations
of SU(2),, no new operator can be written. Each of these
operators can lead to different possible SU(2), contrac-
tions which in turn select the type of new fields needed in a
UV-complete model.? The resulting dimension-six oper-
ators along with the number of possible UV-completions in
each of the cases are summarized in Table 1.

It is important to notice that the dimension-six operators
listed in Table I will give the leading contribution to
neutrino mass only in scenarios where other lower-dimen-
sional operators are forbidden by some symmetry. Such
scenarios can arise in context of many symmetries ranging
from U(1), symmetries [16,20] to Abelian discrete Z,
symmetries [11,22-24,41] up to various types of more
complex flavor symmetries containing non-Abelian groups
[12,13,33]. Keeping this in mind, Table I is divided into two
columns. The operators in the left column are those for
which the lower-dimensional operators can be forbidden by

'Of course, Dirac neutrino masses always require the addition
of the standard model singlet right-handed neutrinos vg.

Notice that, while for operators we have restricted ourselves
up to triplets of SU(2),, for their UV-completion in Table I we
have also allowed exchanges involving higher SU(2), multiplets.
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FIG. 1. Feynman diagrams representing the five different topologies, T4, T,, T3, T4, Ts, respectively.

U(1)y or Z, symmetries. The operators in the right column
will not be leading operators for neutrino mass in such case,
but will require, for example, a soft breaking of such
symmetries. Another appealing possibility is to have two
copies of the scalars involved. Alternatively, one may use
more involved symmetries involving non-Abelian discrete
flavor symmetries. We will further discuss this issue in
latter sections.

Also, notice that the number of UV-complete models for
similar type of operators, e.g., Lyy®vg and Ly y®vy are
different. This is because, while counting the number of
models, we have also taken into account the possible
differences under the symmetry forbidding lower-dimen-
sional operators. Apart from Hermitian conjugated (H.c.)
counterparts which are not listed, there are also other
possibilities beyond the operators listed in Table I, where
one or more hypercharge neutral fields i.e., yy or A, is
replaced by the corresponding 7 or A,. These possibilities
are not listed here as they do not give rise to new operators,
as far as only standard model symmetries are concerned.
However, they can be potentially differentiated by other
symmetries such as those forbidding the lower-dimensional
operators. We will also briefly discuss such possibilities in
latter sections whenever they arise.

We find that all possible UV-completions of the oper-
ators listed in Table I can be arranged into five distinct
topologies for the Feynman diagrams of neutrino mass
generation. For lack of better names, we are calling these
five topologies as T;, i € {1,2,3,4,5}. These topologies
are shown in Fig. 1.

Each topology involves new “messenger fields” which
can be either new scalars (¢), new fermions (¥) or both.
The masses of these heavy messenger fields lying typically
at or above the cutoff scale A of the dimension-six

operators. The first topology 7; involves two messenger
fields, a scalar (¢) and a Dirac fermion (V). The scalar ¢
gets a small induced vev through its trilinear coupling with
Y and Z scalars. Topology T, is very similar to 7| and also
involves two messenger fields, a scalar ¢ and a Dirac
fermion . However, the small vev of ¢ in T’ is induced by
its trilinear coupling with X and Y scalars. The third
topology T is distinct from the first two and only involves
scalar messengers ¢ and ¢'. The scalar ¢’ gets a small
induced vev through its trilinear coupling with ¥ and Z
scalars. The other scalar ¢ subsequently gets a “doubly-
induced vev” through its trilinear coupling with ¢ and X
scalars. The fourth topology 7, only involves a single
messenger scalar ¢ which gets an induced vev through its
quartic coupling with scalars X, Y and Z. The final fifth
topology involves only fermionic Dirac messengers ¥ and
¥, as shown in Fig. 1. The SU(2), ® U(1)y charges of the
messenger fields in all topologies will depend on the details
of the operator under consideration and the contractions
involved. We will discuss all such possibilities in the
following sections. Each topology leads to different

TABLE II.  Possible topologies and messengers leading to light
neutrino masses, and the associated estimates for each topology.

Topology Messenger fields Neutrino mass estimate
! Y. YLV Uy Uz
' 2
T2 Y, ¢ ot
' MY Vx Uy Vg
T3 o0 o
T4 ” sl
@
TS ¥, ¥ MM,
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TABLE III. The possible SU(2), contractions of ® and &,
where 7¢ = 77, 73, 7~ are the three SU(2), generators.

Field 1 Field 2  Implicit contraction  Explicit contraction
(0] (0] PR P D%, =0
1
O 0 b () S Ak

O] ® D5, D)
1

® @ °®0 (1), /e, @7
3

) d OR D (), /D
3

() () PR D Dy’ =0
1

_ - ) ® ) q)zea(;(,[a)uﬂq)};

——

3

estimates for the associated light neutrino mass generated
in each case, neglecting the three generation structure of
the various Yukawa coupling matrices in family space. The
resulting formulas for the neutrino masses are listed in
Table II.

Having discussed the various possible dimension-six
operators for Dirac neutrino mass generation and the
various topologies involved in the UV- complete-models,
in the following sections we discuss the various operators
and topologies in more detail. To clarify the notation used
in upcoming sections we list, as an illustration, all possible
SU(2) contractions of ® and ® explicitly in Table III.

Similar notation will be used for contractions of other
field multiplets in upcoming sections. For the sake of
brevity we will not write them explicitly, though the
contractions involved should be clear from the context.
The UV-complete models arising from the operators listed
in Table I will all involve certain new bosonic and/or
fermionic messengers. These fields will be heavy, with
masses close to the cutoff scale A. All relevant messenger
fields will be singlet under SU(3)., while their trans-
formation under SU(2); ® U(1), will vary. For quick
reference we list all such messenger fields, their Lorentz
transformation and SU(2), and U(1), charges are given in
the Table I'V. Everywhere, except for standard model fields,
the subscript denotes the hypercharge. To make the
notation lighter this is not done for standard model fields.
In contrast to y(, @, and A;, which are the external scalars
that acquire vevs, we denote as y;, the messenger singlets
which develop only an induced vev. The corresponding
doublets will be denoted as 6, = @' and the triplets are
denoted as A]. The electric charge conservation implies that
all the components appearing in the diagrams must be
electrically neutral.

Note that certain messenger fields, e.g., A} and A’ ,, are
related to each other, for example A, = A’,. We have
chosen to give them different symbols to avoid any

TABLE IV. Messengers transform under SU(2), and U(1), as
given, they are color singlets and we are using the convention
0=Ts+ % See text for the explanation of the notation used.

Messenger field Lorentz SU(_2), U(l)y
Xo Scalar 1 0
Npo» Nro Fermion 1 0
0] Scalar 2 1
Ep 1. Ega Fermion 2 1
Ep 1, Ep Fermion 2 1
Af Scalar 3 0
A Scalar 3 2
AL, Scalar 3 )
2105 Zro Fermion 3 0
Zp2s ZRo Fermion 3 2
Xy -2, Zp2 Fermion 3 )
E| Scalar 4 1
Or-1> Or-1 Fermion 4 -1

confusion and also for aesthetics reasons. The notation
and transformation properties of these messenger fields as
listed in Table IV will be used throughout the rest of the

paper.

III. OPERATOR INVOLVING ONLY THE
STANDARD MODEL DOUBLET

We begin our discussion with the operator involving only
standard model scalar doublet ® and discuss the various
possible UV-complete models for this case. As has been
argued in [42], for Dirac neutrinos, after the Yukawa term,
the lowest-dimensional operator involving only the stan-
dard model scalar doublet appears at dimension six and is
given by

%L®<D®<D®<D®UR (2)
where L and @ denote the lepton and Higgs doublets, vy is
the right-handed neutrino field and A represents the cutoff
scale. Above A the ultraviolet (UV) complete theory is at
play, involving new “messenger” fields, whose masses lie
close to the scale A. Recently, this operator has also been
studied in [29] and our results agree with those obtained in
that work.

Before starting our systematic classification of the
UV-complete seesaw models emerging from this operator,
we stress that, in order for this operator to give the leading
contribution to Dirac neutrino masses, the lower dimen-
sional Yukawa term L @ vy should be forbidden. This can
happen in many scenarios involving flavor symmetries
[11-13] and/or additional U(1)g_, symmetries with
unconventional charges for vy [16,20]. If this dimension-
four operator is forbidden by a simple U(1) or Z, sym-
metry, then it is easy to see that the dimension-six operator
will also be forbidden. However, the dimension-four
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operator can be forbidden in other ways. As a first
possibility, one could have a softly broken symmetry, such
as Z3 [29]. Alternatively, one can add a new Higgs doublet
@, transforming as the standard model Higgs under the
gauge group. One can show that, in such a two-doublet
Higgs model (2HDM) the imposition of a Z; symmetry,
under which the two Higgses transform nontrivially, is
sufficient. The diagrams and discussion of this section will
be identical for the 2HDM case, except that a label ®@; or
®, should be added instead of simply ®. Finally, one may
invoke non-Abelian discrete symmetries such as Sy [29].

The operator in (2) can lead to several different
UV-complete seesaw models, depending on the field
contractions involved. There are fifteen inequivalent ways
of contracting these fields, each of which will require
different types of messenger fields for UV-completion. Out
of these, one is similar to the type-I Dirac seesaw but with
induced vev for the singlet scalar. Three of them are type-II-
like, with induced vevs for the messenger scalars. Five of
them are analogous to the three type-III Dirac seesaws
discussed in [42], with induced vevs for either the singlet or
the triplet, while the other six are new diagrams. We now
look at these possibilities one by one.

A. Type-I seesaw mechanism with induced vev

One of the simplest contractions for the dimension-six
operator of (2) is as follows:

LRIPRIPQDR g (3)
Y Yy
N e’

1

TV
Type-I with induced vev Fig. 2

(@)

~ .

vy
L. L. L.
> > > >

EEEEFS CEREE

FIG. 2. Feynman diagram representing the Dirac type-I seesaw
with an induced vev for y,.

In (3), the underbrace denotes a SU(2), contraction of
the fields involved, whereas the number given under it
denotes the transformation of the contracted fields under
SU(2), (note that the other possible contraction in which
® ® ® goes to a singlet is simply 0). Although not made
explicit, we take it for granted that the global contraction
leading to a UV-complete model where the neutrino mass is
generated by the diagram shown in Fig. 2 should always be
an SU(2), singlet.

The diagram in Fig. 2 belongs to the topology 7T'; and
involves two messenger fields, a vectorlike neutral fermion
Ny and a scalar y(, both of which are singlet under the
SU(3)c ® SU(2), ® U(1)y gauge group. As listed in
Table II, the light neutrino mass is doubly suppressed first
by the mass of the fermion N, and also by the small
induced vev for y{. In contrast to the type-I Dirac seesaw
diagram of Ref. [42], here the messenger field y, required
for the UV-completion gets a small induced vev via its
cubic coupling with the standard model Higgs doublet.

B. Type-II seesaw mechanism with induced vev

The three possibilities for this case are shown in (4).

L®UR®q><§lz>q>® cf, L®DR®®3(I)® of, LR, 00 d; ® T (4)
2 2 2 2
2 2

Type II with induced vev Fig. 3

These three contraction possibilities lead to three differ-
ent UV-completions, as illustrated in Fig. 3. All diagrams in
Fig. 3 belong to the T topology, and require two scalar
messengers. The diagram on the left requires a SU(2),
singlet y{, and a new doublet o, (different from the standard
model Higgs doublet) with U(1), = 1. The middle one
requires an SU(2), triplet Aj (with U(1), =0) and an
SU(2); doublet ¢, (with U(1), = 1) scalar messengers.
The third diagram is identical to the second, exchanging
® < @ in two external legs. Note that the hypercharges of
the intermediate fields A{, and A/ are different so that,
although the UV-completions share the same topology, the

Type II with induced vev Fig. 3

Type II with induced vev Fig. 3

underlying models are different. The associated light
neutrino mass estimate is given in Table II.

C. Type-III seesaw mechanism with induced vevs

The operator of (2) also leads to five distinct type-III-like
seesaw possibilities with induced vevs.” The various possible
contractions leading to such possibilities as shown in (5).

*We denote all diagrams with 7' or T, topologies as type-III
seesawlike if they involve fermions transforming nontrivially
under SU(2);.
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FIG. 3. Feynman diagrams representing the three realizations of the Dirac type-II seesaw with an induced vev for y; or Al
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FIG. 4. Feynman diagram representing the five realizations of the Dirac type-III seesaw with an induced vev for y{, or A
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The UV-completions of each of these possible contrac-
tions involve different messenger fields, leading to five
inequivalent models. The neutrino mass generation in these
models is shown diagrammatically in Fig. 4. The first
diagram in Fig. 4 involves, as messenger fields, scalar
singlet y;, and vectorlike fermions E_; transforming as an

Type II with induced vev Fig. 4
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SU(2), tdoublet with U(1), = —1. The second diagram
involves hypercharge-less SU(2), triplet scalars Aj, and the
same SU(2), doublet vectorlike fermion E_; as messenger
fields. The third diagram is identical to the second one, but
with exchange ® <> @ in the external legs. This leads to a
different hypercharge U(1), =2 for the intermediate
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FIG. 5. Feynman diagram representing the new possible UV
completion belonging to topology 7.

scalar triplet A’, as well as for the SU(2); doublet vector
fermion E;, with U(1), = 1. The fourth and fifth diagrams
again are related to each other by exchanging ® <> @ in
two external legs. They involve, as messenger fields,
SU(2), triplet scalars A’; i = 0, 2 together with vectorlike
SU(2), triplet fermions X;; i = 0, —2. The hypercharges of
Al are U(1)y, =0, 2 and of %; are U(l), =0, -2
respectively. The first three diagrams belong to 7, top-
ology, while the fourth and fifth diagrams have the top-
ology T; and the associated light neutrino masses for 7
and T, are given in Table II. Notice that, in contrast to the
type-IlI-like Dirac seesaw diagrams discussed in [42], here

|

the y; and A/ both get induced vevs from their cubic
interaction terms with the standard model Higgs doublet.

D. New diagrams

Apart from the above diagrams, there are also six new
ones which have no dimension-five analogues listed in
Ref. [42]. The first of these possibilities arise from the field
contraction shown in (6).

LA RPQ DR D, (6)
N—— N———

2 2

Fig.5

This particular contraction of the operators leads to a UV-
complete model where the neutrino mass arises from the
Feynman diagram shown in Fig. 5 involving a single scalar
messenger field o, transforming as SU(2), doublet with
U(1)y = 1. The field o, gets a small induced vev through
its quartic coupling with the standard model Higgs doublet.
This diagram belongs to the 74 topology and the resulting
light neutrino mass estimate is given in Table II.

Finally, there are five other field contractions of the
dimension-six operator, as shown in (7) and (8).

LRPR & @D Q vp, LRIPR® & PR 7
<zl<> ® ! QP ® g é? ®, 2 QP ® g (7)
2 2
—_—— —_—
2 2
Fig. 6 Fig. 6
[3P® & 0@y LOO® O 0@y LOO® & 001w (8)
3 2 2 3 2 2 3 2 2
—_——— —_——— —_———
2 2 2
Fig. 6 Fig.6 Fig. 6
() () () (®) (@) (®)
Y Y A Y A Y
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FIG. 6. Feynman diagram representing the five realizations of the topology T's diagrams.
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FIG. 7. Diagrams showing the T, and T, topologies of the operator Lyqy,®v.

Notice that the UV-completions of these five field con-
tractions lead to the neutrino mass generation through
topology T5,4 as shown diagrammatically in Fig. 6.

All these UV complete models only involve fermionic
messengers. One sees that two different types of fermionic
messengers are needed. In the first and second diagrams, the
Ny is a vectorlike gauge singlet fermion, whereas the vector
fermions E or E_; are SU(2), doublets. In the first diagram,
the field E; carries a hypercharge U(1), = 1 while in the
second diagram E_; carries a hypercharge U(1), = —1. The
last three diagrams in Fig. 6 also involve two types of
fermionic messengers the vectorlike fermions E; or E_;
are SU(2), doublets, while the vectorlike fermions %; trans-
form as triplet under the SU(2), symmetry. In the third
diagram, X carries no hypercharge while E; has U(1), = 1.
In the fourth diagram, %, carries no hypercharge, but £_; has
U(l)y = —1. In the fifth diagram X_, has hypercharge
U(1), = =2, while E_; again has U(1), = —1. The light
neutrino mass expected for all these diagrams is the same as
that given in Table II for 7’5 topology.

IV. OPERATORS INVOLVING ONLY
SINGLET (y) AND DOUBLET (®)

Having discussed the dimension-six operator involving
only the standard model Higgs doublet, we now move on to
discuss other dimension-six operators listed in Table I and
their UV completions. We start our discussion with the
relatively simpler operator L ® yy ® yo ® ® ® vg which,
apart from the standard model Higgs doublet @, also has a
vev carrying singlet y,. It is clear that the y, should not
carry any U(1), charge, otherwise its vev will sponta-
neously break the electric charge conservation.

If y, is a complex field then, apart from the H.c. of the
above operator, one can also write down two other

operators namely L ® 7o ® 7o @ ® ® vz and L ® yp ®

“This is analogous to the topologies characterizing the inverse
(or double) seesaw mechanism [43,44] of Majorana neutrino
mass generation.

Yo ® ® ® vg. In this section, we will focus on the L ®
20 ® xo ® ® ® vy case, since the other operator contrac-
tions and UV-completions are very similar and can be
treated analogously. The operator L ® yo ® yo @ ® ® v
will give the leading contribution to neutrino masses only
if similar operators of equal or lower dimensionality are
forbidden by some symmetry. Thus lower-dimensional
operators allowed by SU(2); ® U(1), gauge symmetry,
such as L®uvg, L®yyg, and L y,vg, should be
forbidden. It is also desirable that this operator provides
the sole contribution to neutrino masses, avoiding other
dimension-six operators such as L®®®dy,. A consistent
scenario can arise in many ways with different symmetries.
For example, one of the simplest symmetries can be a Z,
symmetry (distinct from quarticity symmetry) under which
the fields transform as

L®ug~z", o~z @~ )

Note that under these charge assignments the operator
L®y ®yo® P Qg is forbidden though both L ®
Yo ® 10 @D ® vg and L ® 7o ® 7o @ P ® v, are allowed.
Hence, in principle, they can simultaneously contribute to
neutrino mass generation, as long as they have consistent
UV-completions. Here, we will only discuss the first
operator, though the other may be present in some cases.
Moreover, note that the masses of charged leptons and
quarks can be generated through the usual Yukawa terms,
ie., L®lp, Q®dg, and O ® uy can be trivially allowed by
this symmetry with appropriate Z, charges of Q, Ig, ug,
and dj.

Moving on to the operator contractions and UV com-
pletions, there are ten different ways of contracting this
operator. Each of the topologies T, T,, and T3 appears
twice, while one diagram belongs to the 7, topology and
the three others belong to the 75 topology. The operator
contractions which lead to diagrams with 7| or T,
topologies are listed in (10), and the corresponding dia-
grams are shown in Fig. 7:
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FIG. 8. Diagrams showing the 75 and T, topologies of the operator Ly oy, ®v.

L®rp@P®r® vg, LOP®r®x® vg , L ®y®x®P® g, L ®P®x® yo® v
2 2 1 1 1 1 2 1

——— —— —————
1 1 2 1

(10)

As before, the UV completion of these diagrams will involve new messenger fields. In all of the cases shown in Fig. 7,
there is a scalar (y, or 0,) and a vectorlike lepton (N, or E;) messenger involved. Notice that y(, cannot be identified with y
as in that case lower dimension-five operators would be allowed. Thus, they must carry different charges under the
symmetry forbidding lower-dimensional operators (e.g., Z, mentioned above).

UV-completion lead to other possible contractions with the 75 and T, topology, as shown in Fig. 8:

LOur® 0o ®x @, LOur® P ® xo® 0. L®ur ® P ® xo ® xo. (11)
2 1 2 2 2 1 2 2
— S———
2 1 1

All the three diagrams in Fig. 8 involve only scalar  lower-dimensional operators [e.g., Z4 of (9)]. Likewise,
messenger fields which can be either y, or ;. The y{ has to be distinct from y, and o, and ¢} must be
last diagram was realized in the Diracon model of  different from ®.

Ref. [22]. Notice that in the first diagram the messengers Finally, three other possible contractions lead to
o, and o) must be different fields, since they will  the Ts-type UV completion. These diagrams are shown
transform differently under the symmetry forbidding  in Fig. 9.

|

LODP® xo ®xo® i, L®y® @ ® yo® vk, L®x® xo ®P® 1y (12)
1 1 1 2 2 1 2 1 2
—— — —_— — —_———

1 1 2
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FIG. 9. Diagrams showing the T'5 topology of the operator Lyqyo®vg.
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All of the diagrams in Fig. 9 involve only fermionic
messengers N, g or E; . Again, note that the fields N, and
Nj in the first diagram and the fields E_; and E’ | in the
third diagram must be different fields, since they transform
differently under the symmetry forbidding lower-dimen-
sional operators [e.g., Z, of (9)].

Before closing the section, let us briefly discuss the
operator L ® 7y ® yo @ ® ® vg. In addition to diagrams
analogous to those above, there will be six other diagrams,
as noted in Table I. These new diagrams appear because,
under the symmetry forbidding lower-dimensional oper-
ators, yo and y, transform differently so that the exchange
Yo <> Yo leads to distinct UV completions. Finally, also for
this operator, lower-dimensional operators cannot be for-
bidden by simple U(1) or Z, symmetries. More involved
symmetries similar to those discussed in Sec. III would be

needed. Alternatively, similar to the discussion in Sec. III,

one may introduce two different singlet scalar fields )((()1)

and )((()2>

transforming differently under a Z, symmetry.
V. OPERATORS INVOLVING SINGLET (y),
DOUBLET (®), AND TRIPLET (A)

For this class of operators, there are two U(1), pos-
sibilities for scalar field A. One is the operator L ® yy ®
® ® A_, ® vg, in which A_, ~ =2 under U(1)y, while the
other possibility is L @ yo @ ® ® Ay ® vg with Ay ~0
under U(1)y. Apart from hermitian conjugation, one can
also write down several other operators by replacing one or
more of y,, ®, A; by yo, @, A; respectively. Since the
operator contractions and UV completion of these oper-
ators are all very similar, in this section we will primarily
focus on L @ yy ® ® ® Ay ® vy operator. We will also
comment on the changes required for the operator L ®
Yo ® x® ® A_, ® vg. The discussion here will equally
apply to the other operators which can be treated
analogously.

As before, in order to ensure that this operator gives the
leading contribution to neutrino masses we need extra
symmetries. For the case of the operator Ly ®Avg, due to
the zero hypercharge of A, there are many operators to
forbid, so that Z, will not be enough, although a Z¢ can
work with the charge assignments shown in (13):
L®ug~2A, d~1,

Ag~2. (13)

X0 Nllz’

LOyw@PRA® vg ,
2 2 1

LD A ,
‘%’ ®uo®A) ® v

where 1% = 1. Note that these charge assignments forbid
the SU(2), ® U(1), allowed operators L ® vy, L ® ® duy,
Lyoyo®ug, I:)(E)(Od_)uR, ix&géyR, LAA®v,, LATADuy,
LATAT®ug, Ly ®ug, Z)(g(i)yR, and LA®uy.

For the other U(1), allowed operator Ly ®A_,vy, the
minimal symmetry that works is another Z,, under which
the charges of particles are given in Eq. (14):
o~z A~z (14)

E®UR~Z, q)"-’],

This charge assignment will forbid operators such as
LOvg, LODDu,, Ly DPug, I:)(g;(oti)yR, I:)(S;(SQ_JI/R,
LATA®ug, Lyg®ug, Lyi®ug, and LAGuy.

Note that Yukawa terms for other standard model
fermions, i.e., L®lz, OPdg, and O ® uy can be trivially
allowed by these symmetries with appropriate Z, or Zg
charges of Q, I, ug and dy.

It is easy to see that, with this charge assignment, all
unwanted operators will be forbidden. We stress that the
above two symmetries are given just for illustration. The
unwanted operators can be forbidden in many other ways.

As mentioned before, for sake of brevity we will only
explicitly discuss the case of L @ yo @ ® ® Ay ® g
operator. The diagrams and topologies of the L ® yo ®
D ® A_, ® vp operator will be quite similar and can be
obtained from the A case by just changing the direction of
the arrow and the U(1), charges of the intermediate
messenger fields. The diagrams for the other operators
mentioned before can also be obtained in a similar manner.
Before discussing the possible contractions, we would like
to remark that one must be careful to ensure that, in an
ultraviolet complete model, there is no Goldstone coming
from the triplet. The triplet Goldstone can be easily avoided
by having the vev of the triplet arising as an induced vev. In
such a case, the dimensionality of the operator will
increase. Alternatively, one can also add two copies of
the triplet and invoke explicit soft breaking terms to avoid
the Goldstone boson altogether.

Moving on to the possible operator contractions and UV-
completions, here we have now sixteen possibilities: three
diagrams in each topology 7', T5, and T3, plus a diagram in
T4 and the remaining six diagrams in the 7’5 topology.

The three operator contractions which lead to diagrams
with the T'; topology are given in (15), and their the UV
complete diagrams are shown in Fig. 10.

LA 1P 1 (15)
—_ = =~

3 1 2 2 1

Note that the first and third diagrams in Fig. 10 have the same field content and therefore coexist in the same model
having this particle content unless a symmetry like the example symmetry in (13) forbids one of them.
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FIG. 10. Diagrams associated to the T topology of the operator Ly ®A,vg. Note that for the other choice of U(1)y, i.e., the operator
Lyo®A_,vg, the only difference in the diagrams will be flipping the direction of the arrow of the external ® and A,.
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FIG. 11. Diagrams showing the T, topology of the operator Ly,®A,vg. Note that the diagrams for operator Ly ®A_,vx can be
obtained from these by flipping the direction of the arrow of the external ® and A, fields.

The three operator contractions (16) and the corresponding diagrams for the 7, topology are shown in Fig. 11.

L Q@r®@P® A Q g, L Qro®@ A QPR g, L QPQ@A ®yo®v 16
\2,)(02 03R ‘2,)(030 2R ‘2, 20)(01R ()
N———— —_— N———
3 2 1

The contractions (17) and the UV-completions that lead to topologies 7’3 or T are shown in Fig. 12.

LOUR® 1o ®P®A), LOUR® A ®r®P, LOR® P ®ro®A) LOuy®rn®P®4a, (17)
—— —— — ——— —_———
2 2 3

3 2 2

Again, we note that in Fig. 12 the first and second diagrams have the same field content. Therefore, in a typical model
both diagrams will contribute to neutrino masses, unless one of them is explicitly forbidden by some symmetry.
Finally, there are six possible operator contractions leading to the 7’5 topology, as shown in Fig. 13.

LO®y® P ® A ® g, LO®y® Ay @ D® v, LODP® yy @A ®ug (18)
2 2 3 2 3 2 3 1 3
—_—— —_—— —— —_—
3 2 3
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FIG. 12. Diagrams showing the T5 and T4 topologies of the operator Ly,®Avg. Note that the diagrams for operator Ly ®A _,vg can
be obtained from these by flipping the direction of the arrow of the external @ and A, fields.

Z@‘i@ AQ ®)(0®1/R, I:®A0® X0 ®(i)®URv Z®AO®\&),®)(O®UR (19)
3 3 1 2 1 2 2 2 1
%,_/ N— — ~—_———
1 2 1

|

Again note that, owing to their different transformation  field content. However, these two diagrams belong to two

under symmetry forbidding lower-dimensional operators,  distinct UV-complete models, due to the different charges

the fields E_; and E’ | in the second and fifth diagrams of  of the messenger fields under symmetry forbidding lower-

Fig. 13 must be different. Also, comparing these two  dimensional operators. Hence, they correspond to different
diagrams one can see that they have the same messenger =~ models with the same field content.
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FIG. 13. Diagrams showing the T's topology of the operator Ly,®Ayvg. Note that the diagrams for operator Ly ®A_,vx can be
obtained from these by flipping the direction of the arrow of the external ® and A fields.
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VI. OPERATORS INVOLVING ONLY
DOUBLET (@) AND TRIPLET (A)

There are several possibilities for dimension-six oper-
ators involving SU(2), doublet and triplet scalars, as listed
in Table I. As before, an extra symmetry is required in order
to ensure that these operators give the leading contribution
to neutrino masses. Again, the nature of this symmetry can
vary from a simple U(1), symmetry to its Z, subgroup, or
more complex symmetries involving non-Abelian groups.
As discussed in Sec. II, depending on the symmetry
required these operators can be classified into two catego-
ries (see Table I) namely operators for which the lower-
dimensional operators can be forbidden by U(1)y or Z,
symmetries and operators for which U(1)y or Z,, symmetry
is not enough.

For example, the operators L @ ® ® Ay ® Ay ® vy
and LOQD®Q® Ay ® A, ® ug can both be made the
leading contributions to neutrino masses by forbidding
lower order terms using a simple Z, symmetry. The
minimal consistent one is a Z, symmetry, under which
the various particles transform as

L ®ug~7%, Dd~1, A; ~z, (20)
where A;, i =0, —2, denote the two different types of
SU(2), triplets. Note that under these charge assignments
other operators where A, — A, are also allowed and could,
in principle, also contribute to neutrino masses, as long as
they have consistent UV-completions. The other operators
LODP®A, ®A; @ug; i =0, =2 belong to a different

c
5
5

class and for such operators simple U(1)y or Z, sym-
metries are not enough to forbid all other dimension-six and
lower-dimensional operators. Just as the case of L @ ® ®
® ® ® ® vy operator discussed in Sec. 11, these operators
can also give leading contribution to neutrino masses
through a softly broken Z, symmetry or for certain non-
Abelian discrete symmetries, such as S,. Alternatively, for
this case one may also introduce another copy of A;, in
which case (as before) a simple Z,, symmetry could suffice.
Again, one must ensure that there are no Goldstones
coming from the triplets. As before, the triplet
Goldstones can be easily avoided either by inducing their
vevs (leading to an increase in the dimensionality) or
adding soft breaking terms.

Moving on to possible operator contractions and
UV-completions we first note that the UV-completions
of all these operators are very similar to each other. To avoid
unnecessary repetition we will only discuss in detail the
UV-completion of the operator L @ ® @ Ay ® Ay ® vi.
We have singled out this operator since, amongst all the
operators of this category, it offers the maximum number of
possible completions, see Table I. The other operators can be
treated in the same manner and we will comment on some of
their salient features as we go along.

There are thirty one different ways of contracting this
operator. Six diagrams lie in each of the topologies 7, T,
and T5. One belongs to 7, topology, while the remaining
twelve belong to 7’5 topology.

The six operator contractions are given in (21), while
their UV-complete diagrams are shown in Fig. 14.

=
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FIG. 14. Diagrams showing the T, topology of the operator L ® AyAyvk.
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FIG. 15. Diagrams showing the T, topology of the operator L ® AgAyvg.
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Notice that the last two diagrams in Fig. 14 involve
messengers transforming as quartets of SU(2),. The
fermionic quartet Q;  carry U(1), = —1, while the scalar
quartet 2 has U(1), = 1.

At this point, we comment on the other operators
mentioned in Table I. For example, for the operator
LOPR®A,®A,®ug the third contraction of
(21) will be forbidden, since it involves a contraction
of L and A_, going to a doublet. This contraction
implies that the resulting messenger will be an
SU(2), doublet with U(1), =3. Hence it will not
contribute to neutrino mass since it has no neutral
component.

LOARARDP® vp, LOARRARDPR vy,
2 2 1 2 2 1

(1)

For the operator LRO® Ay ® A_, ® vy the first con-
traction of (21) will have the same problem, namely the
contraction of L with ® implies an SU(2), singlet messenger
field with U(1), = —2. For the operator L @ ® ® Ay ®
Ay ® vp, the second contraction of (21) will be forbidden, as
in this case it involves a contraction of two identical triplets
going to a triplet, which is zero. Moreover, for this case the
third and fourth, as well as fifth and sixth contractions of (21)
are identical to each other. Therefore only one diagram out of
each pair should be counted for this case.

The six operator contractions which lead to 7, topol-
ogies are given in (22). The corresponding diagrams are
shown in Fig. 15.

D S — — —
I S -3
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FIG. 16. Diagrams showing the 75 and T, topologies of the operator L ® AyAyvg.

Again notice the appearance of the scalar SU(2), quartet
in the last two diagrams of Fig. 15. For the other
operators listed in Table I, some of the contractions in (22)
are forbidden. For the operator LQP Q@ A_, ® A_, @ v,
the third contraction of (22) is forbidden as it implies a
messenger doublet with U(1), = 3 which does not have a
neutral component. For the operator L @ ® ® Ay ®
A_, ® vp, the first contraction of (22) leads to a singlet
messenger with U(1), = —2 and hence is forbidden. On the

—
=
—

(Ag) (Ag) (D)
A Y Y
VL S Epo1) Bro Ep, ' VR
— P H—P———H—>——>—
(@) (Ag) (Ag)
Y A Y
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— > —>———
)
(Ag) (Ag) (P)
A Y Y
VI ' Qrr Qrt Ep. Ep-1 ! vp

)

other hand, for the operator LRIDPR® Ay @Ay @up, the
second contraction of (22) is forbidden, as it involves a
contraction of two identical triplets going to a triplet, which
is zero. Also, the third and fourth, as well as the fifth and
sixth contractions are identical for this case. Therefore only
one diagram out of each pair should be counted for this case.
The possible operator contractions leading to the 7’5 and
T, topologies are shown in (23) and in (24), while the
corresponding diagrams are shown in Fig. 16.

(Ao) (®) (o)
1 1 1
1 1 1
1 1 1
1 1 '
A Y Y
VL v Bra Epi} TRy Yo 4 v
— > — P —>————
b
(@) (Do) (Do)
1 ' '
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VL HER N o 4+ Zko Yo 4 VR
— PP —P—H——————
)
(Bo) (D) (Ag)
1 1 1
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1 1 1
1 1 '
A Y Y
VL ' Qrr Qpat Twp Sro b vp

FIG. 17. Diagrams showing the T's topology of the operator L ® AyAyv.
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FIG. 18.
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Diagrams showing the T's topology of the operator L ® AyAyvpg.

® A RA,, L ® QA RA 23
Rup ® ®A)®A Qur® P ®A®4, (23)

2 2 3
[
1 3

2 2 1

LOu® Ay @D ® A, LOu® Ay @D ® A,, LR @A @PR® A, (24)
N — ~—~ N—— S — ~—~ N—— S — N e’
2 3 4 2 3 4 2 2
—_———— | ——
4 4

Notice the appearance of the scalar SU(2), quartet &
in the fifth and sixth diagrams of Fig. 16 and the fact that
o, and ¢ must be different fields, owing to their different
transformations under symmetries forbidding lower-
dimensional operators.

Concerning other operators in Table I, some of the con-
tractions of (23) and (24) are forbidden. For example, for the
operator L  ® ® A_, ® A_, ® vy the second contraction

of (23) is again forbidden because the messenger field will
|

|
have no neutral component. The same happens with the third
contraction of (23) for the operator L @ ® @ A_, @ Ay @ vg.
Lastly, for the operator L ® DR Ay ® Ay ® vp the fourth
diagram of (23) is forbidden and only one out of the first and
second contraction of (23) and one out of first and second
contraction of (24) should be counted.

Finally, the twelve possible operator contractions leading
to the T5 topology are shown in (25)—(28). The corre-
sponding diagrams are shown in Figs. 17 and 18.

LA R Ay @D ® g, LA P ®A) i, LODO® Ay ® Ay ® 12 (25)
2 3 2 2 2 3 1 3 3
e — e —
2 3 3
LRDOP® Ay ® Ay ® vk, LOA® Ay @D R iy, LRAR® P ®A)®up (26)
3 3 4 3 4 3
N e’ D — N
3 2 3
LRA® Ay @ PR v, LRA® @ ®A)® i, LRDOP® Ay @A) vy (27)
N — ~—~ N—— N—— ~—~ N —
2 3 2 2 2 3 1 3 3
—_—— N—— — _—
2 3 3
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LRDOP® Ay ® Ay ® vk, LOA® Ay @D R g, LRAR® P ®A) ® g (28)
N————— Ve | Oy —
3 2 3

Notice that the contractions in Fig. 17 and the ones in
Fig. 18 differ just in the exchange of A <> A. While these
diagrams involve messengers having similar transforma-
tions under the standard model gauge group, they differ
from each other in how they transform under the symmetry
group used to forbid lower-dimensional operators. This
also implies that the messenger pairs E_; and E’ | as well as
Y, and X, must be different from each other. Keeping this
in mind we have counted them as different UV-complete
models.

For the operator L@ P Q@ A, ® A_, ® vy the first
and second contractions of (27) are forbidden due to
messenger fields not having any neutral component. For
the same reason, the third contractions of (25) and (27) are
forbidden for the operator L @ ® ® Ay ® A_, ® vg. For
the case of the operator L @ ® ® Ay ® Ay ® vy all the
contractions in (27) and (28) are indistinguishable from
those in (25) and (26) and hence should not be counted as
separate contractions.

VII. DISCUSSION AND SUMMARY

As a follow-up to our recent paper in Ref. [42], here we
have classified and analysed the various ways to generate
Dirac neutrino mass through the use of dimension-six
operators. The UV-completion of such scenarios will

|

require new messenger fields carrying SU(2), ® U(1)y
charges that may be probed at colliders, since the scale
involved may be phenomenologically accessible. By using
only the standard model Higgs doublet in the external legs
one has a unique operator, Eq. (2). We have shown,
however, that the presence of new scalars implies the
existence of many possible field contractions. We have
described in detail the simplest ones of these, involving
SU(2), singlets, doublets, and triplets. In order to ensure
the Dirac nature of neutrinos, as well as the seesaw origin of
their mass (in our case, at the dimension-six level), extra
symmetries are needed. They can be realized in several
ways, a simple example being lepton quarticity. Such
symmetries can also be used to provide the stability of
dark matter. In fact, one should emphasize the generality of
this connection, already explained in Ref. [42] in the
context of the dimension-five Dirac seesaw scenario.
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