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The lightest supersymmetric particle (LSP) is generally regarded as a Higgsino in focus point
supersymmetry (SUSY). Under such a circumstance, it leads to a bileptino LSP when the minimal
supersymmetric Standard Model (MSSM) is extended by the Uð1ÞB−L gauge group within the framework
of double focus point (DFP) supersymmetry. The bileptino is a copy of a Higgsino whose partner, the
bilepton, is used to break Uð1ÞB−L gauge symmetry spontaneously. Such a scenario, however, is not
favored by direct detection since it leads to an unacceptable spin-independent cross section when one
requires a correct self-scattering cross section. We point out that is not necessarily the case even in the
presence of light Z0. The right-handed sneutrino in this model acts as the LSP in most of the parameter
space for nonvanishing soft trilinear coupling Tη. It is thus consistent with the requirement of DFP SUSY
without involving any direct detection issue. The corrected relic abundance could be achieved via a
sneutrino annihilating into a pair of bileptons, which also serve as a light mediator in self-interacting dark
matter (SIDM). Moreover, the stringent constraint that comes from cosmic microwave background
anisotropies can be evaded by considering the retarded decay of right-handed neutrinos. We further stress
the need for a large soft trilinear term Tη in order to generate a desirable self-scattering cross section σ=mν̃R

with moderate Yukawa coupling Yη. The numerical calculation illustrates that SIDM is reliable in our
model from the scales of a dwarf galaxy to a galaxy cluster.
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I. INTRODUCTION

Supersymmetry (SUSY) [1] is a fermion-boson symmetry
and is an indispensable layout of the Coleman-Mandula no-
go theorem [2]. Its particle content is larger than the Standard
Model (SM) in the sense that additional copied degrees of
freedom are required, i.e., superpartners of SM particles.
With the existence of superpartners at hand, especially the
scalar top partner, the quadratic divergence in the loop
correction of the Higgs mass is canceled even when SUSY is
soft breaking [3], and the electroweak hierarchy problem is
solved naturally. Our expectation of what to find beyond the
SM has been deeply shaped by these naturalness arguments,
and arguably low energy SUSY has emerged as the primary
candidate for physics beyond Standard Model (BSM)
physics. In addition, a discrete parity called R-parity is

imposed to forbid dangerous proton decay under which each
particle bears a quantum number,

PR ¼ ð−1Þ3ðB−LÞþ2s; ð1Þ

where B, L, and s are, respectively, the baryon number,
lepton number, and spin of the particle. This parity auto-
matically guarantees that the lightest supersymmetric par-
ticle (LSP) is stable and could naturally qualify as a cold dark
matter (CDM) candidate [4]. Therefore, the simplest reali-
zation of SUSY at the electroweak scale, minimal super-
symmetric SM (MSSM), has led to the study of BSM
physics during recent decades.
However, the situation is challenged by recent experi-

ments. From the perspective of naturalness, the discovery
of a 125 GeV Higgs boson [5,6], together with non-
observation of sparticles in the LHC, put stringent limits
on the parameter space of MSSM. This motivates us to
consider other possible realizations of SUSY. There are in
general two different approaches to improve the current
issue: adding new fields or introducing a new SUSY
breaking scenario. For the first approach, a well-known
example is next-to-minimal supersymmetric StandardModel
(NMSSM) [7–9], which improves fine-tuning through an
additional tree-level F-term contribution on the Higgs mass.
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On the other hand, the focus point mechanism [10–20],
which represents a second approach, keeps heavy enough
sparticles to increase the Higgs mass while keeping the fine-
tuning under control. The two schemes above can even be
combined in a gauge extension SUSY framework, such as
the Uð1ÞB−L extended MSSM model (BLSSM) [21–25],
which is the main focus of this paper.
On the dark matter side, the neutralino is severely limited

by direct, indirect, and collider DM searches. Particularly,
the vast parameter space of neutralino DM has been ruled
out by direct detection experiments, even for the popular
well-tempered neutralino [26]. In spite of these constraints,
the CDM paradigm itself also encounters difficulty in
interpreting small scale structure observations [27–29],
which is known as the core-vs-cusp problem [30] and
the too-big-to-fail problem [31]. Self-interacting dark
matter (SIDM) [32–39] provides a valid solution to
reconcile the above tension. Due to the above intriguing
properties, SIDM has been extensively explored and the
current status for this issue can be found, for instance, in
Ref. [39]. In this scenario, the typical DM self-scattering
cross section required for solving the small scale structure
discrepancy is σ=mDM ∼ 1 cm2=g in galaxies, which is
much larger than the weak-scale cross section preferred by
the weakly interacting massive particle (WIMP) CDM
model. That strongly invokes a light mediator to enhance
the cross section via nonperturbative resummation.
Clearly, the neutralino fails to realize SIDM. To our

knowledge, there is only one supersymmetric realization
for SIDM in the literature, i.e., in the general next-to-
minimal supersymmetric SM (GNMSSM) [40] model. The
underlying reason for choosing GNMSSM rather than scale
invariant NMSSM is due to the fact that the vanishing of
coupling λ in the λSHuHd interaction (where S denotes a
singlet chiral superfield) is plausible, which makes the
singlet sector decouple from the visible MSSM sector. Thus
the fs; s̃g sector provides a desirable singlino SIDM with
an ultralight singlet Higgs being the force mediator.
Inspired by such a strategy, we manage to obtain a similar
sector of SIDM in the framework of BLSSM: the Uð1ÞB−L
extension of MSSM.
The phenomenology of BLSSM with heavy Z0 [the

gauge boson associated with Uð1ÞB−L symmetry] has been
extensively explored [21–23,41–43], and the case for
a light Z0 [44] is also interesting since it can account for
a novel Be anomaly [45–48]. Notice that light Z0 causes a
similar small hierarchy problem as in the MSSM, which
motivates the proposal of a double focus point (DFP)
mechanism [24] to solve this problem. Within the frame-
work of BLSSM with DFP, a viable choice for a SIDM
candidate seems to be the bileptino with a light Z0 in the
fZ0; η̃g sector as a mediator. In this paper, however, we
prove that this recipe will lead to a contradiction between
the requirements of SIDM and limits from direct detection
experiments for the bileptino LSP. This is mainly because

the Z0 could couple to quarks in terms of a nonvanishing
gauge interaction; thus, the fZ0; η̃g sector does not hide itself
from MSSM again. Alternatively, we propose the right-
handed sneutrino as a SIDM candidate. The interesting point
is that, in DFP, the sneutrino LSP requires a large trilinear
soft term Tη, which is also the necessary condition of SIDM.
We therefore obtain a natural SIDM with a fν̃1; ηg sector,
where the right-handed sneutinoLSP ν̃1 andbileptons η serve
as the SIDM and force mediator, respectively.
The rest of the paper is organized as follows. In Sec. II

we lay out the BLSSM contents that are necessary for
SIDM calculation. In particular, we illustrate quantitatively
why the bileptino SIDM is not viable. In Sec. III, we show
the analytical derivation of sneutrino LSP from the DFP
consideration. Furthermore, the parameter space of a
sneutrino LSP is discussed in detail. In Sec. IV, we perform
a numerical calculation of SIDM beyond the Born limit,
where the solution of the Schrödinger equation at r → ∞
captures the properties of elastic self-scattering. The
relevant DM properties such as relic abundance involving
the Sommerfeld enhancement (SE) effect and direct detec-
tion are also considered. We finally conclude in Sec. V.

II. THE BLSSM DESCRIPTION

In BLSSM, the chiral superfields are extended by a pair
of bileptons (η̂1; η̂2) and three generations of right-handed
neutrinos ν̂Ri

. The neutrino mass generation and hierarchy
can be obtained via the inverse-seesaw mechanism [49] or
canonical type-I seesaw induced by SUSY breaking [50].
We ignore the neutrino mass issue in this paper and
concentrate on SIDM in DPF SUSY. The complete particle
contents and charge assignments are listed in Tables I
and II. The relevant superpotential of BLSSM is given as

W ¼ Yij
u ÛiQ̂jĤu − Yij

d D̂iQ̂jĤd − Yij
e ÊiL̂jĤd þ μĤuĤd

Yij
η ν̂Riη̂1ν̂Rj þ Yij

ν L̂iĤuν̂Rj − μηη̂1η̂2; ð2Þ

where i, j denote family indices and all color and isospin
indices are suppressed. The first line in Eq. (2) represents
the conventional Yukawa interaction, as well as the μ term
in the MSSM, while the second line stands for the
additional interactions induced by the extended gauge
group Uð1ÞB−L. The corresponding soft-breaking terms
are given as

TABLE I. Vector superfields of the BLSSM and corresponding
gauge couplings.

Superfield Spin 1
2

Spin 1 Gauge group Coupling

B̂ λB̃ B Uð1ÞY g1
Ŵ λW̃ W SUð2ÞL g2
ĝ λg̃ g SUð3Þc g3
B̂0 λB̃0 B0 Uð1ÞB−L gBL
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LBLSSM ¼ LMSSM −MBB0λB̃λB̃0 −
1

2
MB0λB̃0λB̃0

−m2
1jη1j2 −m2

2jη2j2 −m2
ν;ijðν̃cRiÞ�ν̃cRj

− Bμηη1η2 þ Tij
ν Huν̃

c
RiL̃j þ Tij

η η1ν̃
c
Riν̃

c
Rj: ð3Þ

We will see that Yη and Tη ¼ YηAη play a crucial role in
determining the SIDM cross section. Notice that Tη leads
to intrinsic mixing in the right-handed sneutrino sector,
while Tν leads to left-right mixing between the left-handed
sneutrino sector and right-handed one. The conventional
gravity mediation indicates that Tν ¼ YνAν; thus the left-
right mixing can be neglected due to the vanishing Yν.
There is only right-right mixing left in this BLSSM, and
mass splitting between the CP-even andCP-odd part yields

ν̃L ¼ 1ffiffiffi
2

p ðiσL þ ϕLÞ; ν̃R ¼ 1ffiffiffi
2

p ðiσR þ ϕRÞ; ð4Þ

where fϕL;ϕRg are mixed into CP-even sneutrinos, and
fσL; σRg are mixed into CP-odd sneutrinos. Through
Higgs states and bileptons receiving vacuum expectation
values (VEVs), the electroweak andUð1ÞB−L symmetry are
spontaneously broken intoUð1Þe:m:. After symmetry break-
ing, the complex scalars are parametrized as

H0
d ¼

1ffiffiffi
2

p ðiσdþvdþϕdÞ; H0
u ¼

1ffiffiffi
2

p ðiσuþvuþϕuÞ;

η1 ¼
1ffiffiffi
2

p ðiσ1þv1þϕ1Þ; η2¼
1ffiffiffi
2

p ðiσ2þv2þϕ2Þ: ð5Þ

In analogy with tan β in the MSSM, we here denote the
ratio of the two bilepton VEVs as tan β0 ¼ v1=v2. The CP-
even Higgs sector is composed from the mixing of gauge
eigenstates fϕ1;ϕ2;ϕu;ϕdg. For a CP-odd Higgs, two of
the four gauge eigenstates survive after gauge symmetry,

m2
A0 ¼

2Bμ

sin 2β
; m2

A0
η
¼ 2Bμη

sin 2β0
: ð6Þ

Since Bμ and Bμη are not related to DFP, they are relatively
heavy so as not to be a candidate of the light force carrier.
Meanwhile, the CP-even Higgs mass, especially ϕ1, is
quantified as m2

η1 , which is very tiny in DFP; thus it
naturally leads to a light force carrier. For simplicity, we
define η1 as a lightest CP-even Higgs in order to recall that
it comes mostly from the gauge eigenstate η1.
A special property of BLSSM is that it gives rise to a

gauge-kinetic mixing term with two Abelian gauge groups
Uð1ÞB−L and Uð1ÞY via

L ¼ 1

4
ξFB−L

μν FY;μν; ð7Þ

where ξ is a function of g̃ in Eq. (8). Even absent at tree
level, it will be reintroduced via loop correction with the
running effect of a renormalization group equation (RGE).
In terms of a triangle form of the gauge coupling matrix
[51], the bilepton contributions to the Z mass vanish,

�
gYY gYB
gBY gBB

�
→

�
g1 g̃

0 gBL

�
; ð8Þ

and the gauge couplings are related by [52]

g1 ¼
gYYgBB − gYBgBYffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g2BB þ g2BY
p ;

g̃ ¼ gYBgBB þ gBYgYYffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2BB þ g2BY

p ;

gBL ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2BB þ g2BY

q
: ð9Þ

In addition, after electroweak and Uð1ÞB−L breaking, the
gauge-kinetic mixing further induces a mixing between the
neutral SUSY particles from the MSSM and from the new
sector, resulting in seven neutralinos in this model:

χ01 ¼ cB̃B̃þ cW̃W̃ þ cH̃u
H̃u þ cH̃d

H̃d

þ cη̃1 η̃1 þ cη̃2 η̃2 þ c ˜̃B0B̃0: ð10Þ

The LSP is then determined by the mixing coefficients ci.
For instance, in conventional MSSM with focus point
SUSY, the Higgsino is the LSP with cη̃1 ∼ cη̃2 ∼ 0.5. DM in
the BLSSM with a heavy Z0 has been discussed in [43].
BLSSM with a light Z0 is different and introduces a similar
small hierarchy problem with MSSM from the perspective
of a tadpole equation:

m2
Z ∼ −2m2

Hu
− 2μ2; m2

Z0 ∼ −m2
η − μ2η: ð11Þ

From the above equation, one can see that for heavy Z0
around TeV, there is no need to worry about the fine-tuning

TABLE II. Chiral superfields of the BLSSM and their charges
under the Uð1ÞY ⊗ SUð2ÞL ⊗ SUð3Þc ⊗ Uð1ÞB−L gauge group.

Superfield NG Uð1ÞY ⊗ SUð2ÞL ⊗ SUð3Þc ⊗ Uð1ÞB−L
Q̂ 3 1

6
⊗ 2 ⊗ 3 ⊗ 1

6

Û 3 − 2
3
⊗ 1 ⊗ 3̄ ⊗ − 1

6

D̂ 3 1
3
⊗ 1 ⊗ 3̄ ⊗ − 1

6

L̂ 3 − 1
2
⊗ 2 ⊗ 1 ⊗ − 1

2

Ê 3 1 ⊗ 1 ⊗ 1 ⊗ 1
2

ν̂R 3 0 ⊗ 1 ⊗ 1 ⊗ 1
2

Ĥu 1 1
2
⊗ 2 ⊗ 1 ⊗ 0

Ĥd 1 − 1
2
⊗ 2 ⊗ 1 ⊗ 0

η̂1 1 0 ⊗ 1 ⊗ 1 ⊗ −1
η̂2 1 0 ⊗ 1 ⊗ 1 ⊗ 1
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issue. However, a very light Z0 is still allowed for tiny gBL
[44], which forces us to consider the fine-tuning seriously.
In order to retain naturalness, m2

Hu
and m2

η should vanish at
the electroweak scale simultaneously through the RGE
running effect. Such a mechanism is called DFP SUSY,

2
666664

m2
Hu
½QGUT�

m2
q½QGUT�

m2
u½QGUT�

A2
t ½QGUT�

3
777775
¼

2
666664

m2
0

m2
0 þ κ00 −

2κ12
3

m2
0 − κ00 −

4κ12
3

6κ12

3
777775

→2
666664

m2
Hu
½QSUSY�

m2
q½QSUSY�

m2
u½QSUSY�

A2
t ½QSUSY�

3
777775
¼

2
666664

0
m2

0

3
þ κ00 −

2κ12
5

2m2
0

3
þ κ00 −

4κ12
5

2
3
κ12

3
777775
; ð12Þ

and
2
664
m2

η1 ½QGUT�
m2

νR ½QGUT�
A2
η½QGUT

3
775 ¼

2
664

m2
0

43
54
m2

0 − 7
20
ϵ28

7ϵ28

3
775

→2
664
m2

η1 ½QSUSY�
m2

νR ½QSUSY�
A2
η½QSUSY�

3
775 ¼

2
664

0

7
54
m2

0 − 7
20
ϵ28

7
100

ϵ28

3
775: ð13Þ

At first glance, since the m2
η becomes tiny through the

DFP mechanism, the corresponding μη is small too. The
bileptino fη̃1;2g thus becomes the LSP when Z0 is much
lighter than the Z boson. We also mention that once the
gauge kinetic term g̃ is tiny compared with gBL, the
Uð1ÞB−L sector then decouples from the MSSM sector,
which is the main point of obtaining SIDM in BLSSM.
Furthermore, the hidden sector requirement in [24] is also
the necessary condition of DFP SUSY.
It appears that the bileptino as the LSP with ultralight Z0

as the mediator, i.e., fZ0; η̃1; η̃2g sector can furnish itself
as SIDM without any fine-tuning issue. Nevertheless, it is
not true when we consider the direct detection. As we
know, the LSP is a Majorana type neutralino in MSSM
which undergos spin-dependent scattering off nuclei via the
exchange of the Z boson. In the case of the bileptino in
BLSSM, the interaction mediated by a light Z0 is, however,
a vectorlike type, which leads to a spin-independent
interaction. Such an interaction can be constrained by
the recent direct detection limits such as the LUX [53],
XENON1T [54], and PandaX-II [55] experiments. The
spin-independent scattering cross section can be written in
terms of the spin-averaged squared matrix element,

σSI ¼
μ2

16πm2
χm2

A

�
1

4

X
s

jMj2
�
; ð14Þ

where μ is the reduced mass andmA is the mass of the target
nucleus. The effective operator for spin-independent DM
scattering through Z0 exchange can be written as

OZ0 ¼ λχZ0λqZ0
1

mZ0
ð χ̄γμχÞðq̄γμqÞ; ð15Þ

with λqZ0 is the vertex between Z0 and quarks, which is
determined by the Uð1ÞB−L gauge coupling gBL. The
coupling λχZ0 is given explicitly as

λχZ0 ¼ gBLðjN15j2 − jN16j2Þ; ð16Þ

where N15 and N16 are the same as cη1;2 and stand for the
bileptino fraction in LSP. Therefore, we find that the direct
detection constraint can be evaded when the bileptino is
composed with an equivalent fraction of η̃1; η̃2, i.e., N15 ¼
N16 ¼ 0.5 or very small gBL. The purity of the Dirac
bileptino seems to escape from direct detections for almost
canceled λχZ0 . However, under these circumstances it leads
to a vanishing SIDM scattering cross section since λχZ0 also
determines the self-interacting scattering process. In turn,
the large self-interacting cross section results in a large
spin-independent cross section. This is the biggest chal-
lenge of BLSSM for the bileptino having the same coupling
in direct detection and SIDM.
The conventional approach for escaping the direct

detection constraint is to break the Dirac-type property
of the bileptino. The degeneracy between bileptinos is
broken by the nonvanishing expectation value of η1, η2. If
the mass spitting is above keV, which is the threshold of
direct detection, i.e., the sensitivity of dark matter nucleus
collision, there is only one Majorana bileptino left in the
direct detection. The spin-independent scattering mediated
by the Z0 boson turns out to be a spin-dependent type whose
constraint is relatively relaxed. Nevertheless, if the mass
difference δ is as small as Oð100Þ keV, the inelastic
scattering process occurs and reintroduces the constraint
from direct detection [56–58]. In BLSSM, the mass
splitting1 between bileptinos is approximately proportional
to m2

Z0=2MB0 , which is below several hundred keVand thus
constrained by inelastic scattering again. Finally, we con-
clude that the bileptino η̃1;2 cannot be regarded as SIDM in
BLSSM unless a very fine-tuned spectrum is imposed.

1The derivation of mass splitting could be found in the
Appendix. The inelastic spin-independent constraints will be
studied in an upcoming paper.
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III. SNEUTRINO LSP CONSIDERATION

The inconsistency between SIDM and BLSSM origi-
nates from the wrong illustration that DFP SUSY yields a
Higgsino-like LSP, i.e., the bileptino in BLSSM. We point
out that it is not necessarily the case even in the presence of
a light Z0. From Eq. (13), it is easy to find thatm2

νR can be as
small as mη1 when large Aη is given at the boundary. The
sneutrino, especially the right-hand one, could also provide
a plausible candidate of SIDM. In particular, the sneutrino
mass can even vanish at one loop when ϵ28 ∼ 10=27m2

0.
After neglecting the kinetic mixing effect g̃ and setting

Yν to be zero, we obtain the mass of right-handed
sneutrinos in a compact form [41]:

m2
ν̃þ ¼ m2

νR þm2
Z0

�
1

4
cos 2β0 þ 2Y2

η

g2BL

�

þmZ0

ffiffiffi
2

p
Yη

gBL
ðAη sin β0 − μη cos β0Þ;

m2
ν̃− ¼ m2

νR þm2
Z0

�
1

4
cos 2β0 þ 2Y2

η

g2BL

�

−mZ0

ffiffiffi
2

p
Yη

gBL
ðAη sin β0 − μη cos β0Þ: ð17Þ

Here the sign þ (−) stands for a CP-even (CP-odd)
sneutrino. In DFP SUSY, the m0 and Aη are related as Aη ∼
�0.18m0 in order to guarantee mνR to be the LSP. The
typical value ofm0 in DFP is ð5 − 8Þ × 103 GeV in order to
increase the Higgs mass to 125 GeV. Large m0, however,
does not result in fine-tuning in the context of DFP SUSY.
Thus, Aη could be �ð900 − 1400Þ GeV and could lead to a
totally different result depending on the sign of Aη. The
combination of Aη sin β0 − μ cos β0 further determines
whether or not the CP-even sneutrino is the LSP. If
Aη tan β0 ∼ μη, we obtain a nearly degenerated right-hand
sneutrino sector where the calculation of SIDM and SE
must consider the inelastic scattering with an excited state
[59–61]. However, a large tan β0 ∼ 10 is a necessary
condition for DFP, which leads to a large μη in the
degenerated sneutrino sector. That is unnatural so we ignore
it in this paper. That is to say, the μη is suppressed not only
by itself but also by small cot β0. The most important and
relevant term for LSP determination is the sign of Aη.
In Fig. 1, we plot the behavior of the sneutrino as a

function of the Z0 mass after setting mν̃R ¼ 100 GeV,
tan β0 ¼ 10, Yη ¼ 0.5, Aη ¼ �900 GeV, μη ¼ 100 GeV,
and gBL ¼ 0.1. The upper panel of Fig. 1 indicates that
the CP-odd sneutrino is the LSP for positive Aη. This is
because a positive Aη drives the CP-odd senutrino lighter
than 100 GeV. While a negative Aη leads to a CP-even
sneutrino LSP. We should mention that the Z0 mass must

be 2 GeV in order to evade the dangerous tachyon problem
of sneutrinos.
The only tree-level interactions responsible for dark

matter annihilation are the Higgs mediator and Z0 mediator.
It is interesting to note that Z0 must be removed since it
couples to oneCP-even and oneCP-odd sneutrino at a time
[43] that the coupling itself is always off-diagonal, i.e.,
Z0ν̃þ1 ν̃

−
1 . The inelastic scattering is equivalent to large μη in

order to cancel Aη contribution. Therefore, it ultimately
leads to large fine-tuning. As a result, we only consider the
Higgs mediator, which is now the light bilepton sector
for a relatively heavy LSP sneutrino ν̃1. The effective
Lagrangian of the hidden sector is then given as

Lν̃1ν̃1η1 ¼
1

2
∂μη1∂μη1 −

m2
η

2
η21 þ

1

2
∂μν̃1∂μν̃1 −

mν̃1

2
ν̃21

−
λ

2
η1ν̃

2
1 −

Yη

2
η1ν

2
R; ð18Þ

where λ is the coupling constant between the two ν̃1 and η1,
which is used to mediate long-range interaction for SIDM

0 2 4 6 8 10
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FIG. 1. The dependence of the sneutrino mass on mZ0 is
given explicitly with mν̃R ¼ 100 GeV; tan β0 ¼ 10; Yη ¼ 0.5;
Aη ¼ �900 GeV, μη ¼ 100 GeV; gBL ¼ 0.1. The positive Aη

corresponds to a CP-odd sneutrino LSP, while negative Aη

corresponds to a CP-even sneutrino LSP.
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and SE. The last term represents the interaction between the
bilepton mediator and right-handed neutrinos, which comes
from the superpotential (2). All the parameters in Eq. (18)
are the function of SUSY breaking effects or superpotential
couplings. Depending on whether the sneutrino LSP is CP
even or CP odd, the coupling constant λ is read as

λþ=−
ν̃1ν̃1η1

¼∓ ffiffiffi
2

p
Tη − 4vηY2

η

¼∓ ffiffiffi
2

p
AηYη − 4

mz0

gBL
sin β0Y2

η: ð19Þ

The Lagrangian in Eq. (18) describes the relevant inter-
actions of relic density and the direct/indirect detection for
sneutrino DM that have been discussed in [62]. The crucial
difference is that in this paper we realize the SIDM in the
sneutrino sector by retaining naturalness.
There is no severe direct detection constraint for right-

handed sneutrino DM because the mediator bilepton has no
tree level couplings to quarks. However, the direct detection
constraint will be reintroduced if the bilepton mediator
rapidly decays into SM final states before the BBN era
[34,63–65], and bileptino DM seems to encounter the same
obstacle. Such a dilemma can be solved easily in the
framework of BLSSM where the mediator dominantly
decays into right-handed neutrinos η1 → νRνR with the
decay width,

Γ½η1 → νRνR� ¼ Y2
η

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

η1=4 −m2
νR

q
2π

: ð20Þ

Equation (20) there sets the lower bound of Yη. The
dominant channel for relic density and indirect detection
is bilepton final states via ν̃1ν̃1 → η1η1 through t-channel
and u-channel annihilation [66], plus the subsequent decay
of bileptons.
At first sight, the total process is s-wave dominated and

independent of the velocity of DM. However, it is not true
when we consider the long-range Yukawa potential induced
by the infinite exchange of bilepton mediators. It modifies
the wave function of the annihilating DM pair at the origin,
thus greatly altering the calculation of relic density and
indirect detections. When only one partial wave is domi-
nated in the annihilation process, the SE effect can be
factorized as

σtot ¼ Sσ0 ¼ jψð0Þj2σ0; ð21Þ
where S is the SE factor. The impact of the SE effect on
relic abundance is encoded in the Boltzmann equation,

dY
dx

¼ −
ffiffiffiffiffi
π

45

r
g1=2⋆;effMPlmν̃1hσvreli

x2
ðY2 − Y2

eqÞ; ð22Þ

where Y ¼ n=s, with s ¼ ð2π2=45Þg⋆sT3 being the entropy
density of the Universe. Moreover, g⋆;eff and g⋆;s are the

energy and entropy degrees of freedom, respectively. The
most important quantity for capturing particle physics input
is the thermal average cross section,

hσvreli ¼
Z

ðσvrelÞtotfðv1Þfðv2Þd3v1d3v2

¼
Z

S0ðσvrelÞ0fðv1Þfðv2Þd3v1d3v2: ð23Þ

The factor S0 encapsulates the effect of long-range inter-
action, which should be obtained by solving the radial part
of the Schrödinger equation at the origin. Here we mention
that the subscript 0 in S0 corresponds to the s-wave
contribution where only l ¼ 0 is considered though there
were semianalytical studies for higher waves [67–69]. This
is mainly because higher partial wave contributions are
seriously suppressed by velocity.
Therefore, the total cross section is actually velocity

dependent, which is consistent with the basic requirement
of SIDM in order to be consistent with astrophysical
observations. At low velocity, the cross section is enhanced
to a large extent. Thus it puts strong constraints over the
SIDM parameter space, which will be discussed in the next
section. In particular, cosmic microwave background
(CMB) reionization at ultralow velocity almost excludes
the whole parameter space for s-wave annihilation SIDM
[70]. This is the biggest constraint that we must consider in
computing SIDM.

IV. SELF-INTERACTING DM CALCULATION

The merit of SIDM is the relevant quantity σ=mν̃1, which
undergoes velocity-dependent cross sections: for dwarf
galaxies, σ=mν̃1 ∼ 0.1–10 cm2 g−1 for velocity around
Oð10Þ km s−1, which is sufficient to solve the core-vs-
cusp and too-big-to-fail problems, while the constraints
from Milky Way sized galaxies and galaxy clusters require
smaller σ=mν̃1, with 0.1–1 cm2 g−1 [71].
Since we are interested in the process with energy

transfer in SIDM, the conventional total cross section σtot ¼R
dΩdσ=dΩ is not suitable for estimating the process

without energy transfer. Alternatively, we adapt two rep-
resentative cross sections that have been discussed in
plasma literature: one is the transfer cross section σT ,
and the other is the viscosity cross section σV ,

σT ¼
Z

dΩð1− cosθÞ dσ
dΩ

; σV ¼
Z

dΩsin2θ
dσ
dΩ

: ð24Þ

The transfer cross section σT is used to regulate the
forward scattering in terms of weight ð1 − cos θÞ, which is
usually used to study the Dirac fermion or complex scalar
field. Meanwhile, the viscosity cross section σV regulates
forward and backward scattering simultaneously in terms
of the weight sin2 θ. Thus it is suitable for studying
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Majorana fermion or real scalar field DM. In our paper,
the LSP is the real scalar particle ν̃1 and we use σV
throughout the paper.
The desirable cross section for SIDM is far larger

than the typical WIMP freeze-out cross section, which
strongly suggests the existence of a dark hidden sector
[72,73], i.e., a sneutrino LSP with bilepton mediator. We
are now considering the interactions between two slowly
moving CP-odd sneutrino DM mediated by a light force
mediator η. Since the DM particles are nonrelativistic,
the dominant process is the one exchanging multiple
scalars η1 while undergoing either an annihilation for
relic abundance or scattering process for self-interaction.
Such a process is well beyond the perturbation regime,
i.e., the Born limit, and needs a resummation, which is
equivalent to solving the Schrödinger equation in a
reduced system. The induced Yukawa potential between
the two particles alters the wave function of the reduced
system at r ¼ 0, thus resulting in SE [67,74–77] for
relic density and indirect detection. Meanwhile it also
affects the wave function at r → ∞, thus enhancing the
self-interacting cross section. The underlying reason
for the existence of enhancements on both r → 0 and
r → ∞ comes from the similarity of the ladder diagrams
between these two processes. The only difference comes
from the fact that the annihilation diagram needs addi-
tional operator insertion for annihilating into SM par-
ticles, so the extent of these enhancements is not the
same, though we can solve them simultaneously.
Here we define a dimensionless coupling constant which

plays a crucial role in the nonperturbative regime as

αη ¼
1

4π

�
λ

2mν̃1

�
2

¼ Y2
η

4π

� ffiffiffi
2

p
Aη − 4vηYη

2mν̃1

�2

; ð25Þ

where ν̃1 is the mass eigenstate of the CP-odd sneutrino,
which is related to the soft mass mν̃R and Aη through
Eq. (17). In Fig. 2 we give a schematic overview of the
dimensionless coupling constant αη depending on mν̃R and
Aη after setting mZ0 ¼ 1.5 GeV; gBL ¼ 0.01; tan β0 ¼ 10,
and Yη ¼ 0.5. It is easy to find in the vast parameter space
that the magnitude of α is approximately 0.01–0.25. The
wave function with spherical symmetry can be expanded
into spherical harmonics,

ψðrÞ ¼
X
lm

RlðrÞYlmðθ;ϕÞ: ð26Þ

The radial part of the wave function encodes all the relevant
information that needs to be solved,

1

r2
d
dr

�
r2
dRl

dr

�
þ
�
k2 −

lðlþ 1Þ
r2

− 2μVðrÞ
�
Rl ¼ 0;

ð27Þ

where VðrÞ is the long-range potential that must be given at
first. The Sommerfeld effect in MSSM is given in [78–80]
explicitly through nonrelativistic effective field theory
(NREFT). The derivation is quite similar with the quarko-
nium except that the sneutrino and bilepton are both scalars
such that we do not need to worry about spin statistics.
From the Lagrangian equation (18), the light mediator η1
could be integrated out with the effective Lagrangian being
given as [81]

Seff ¼
Z

d4x

�
1

2
∂μν̃1∂μν̃1 þ

m2
ν̃1

2
ν̃21

�

þ i
2

Z
d4xd4yjðxÞDη1ðx − yÞjðyÞ; ð28Þ

where the current jðxÞ is defined to be λν̃21=2 and Dη1 is the
propagator of η1. The residue field ν̃1 is further split up into
nonrelativistic and relativistic parts in momentum space.
The induced potential V is equivalent to the interaction
term with only nonrelativistic fields,

V ¼ i
2

Z
d4xd4yjðxÞDη1ðx − yÞjðyÞ

¼ i
λ2

8

Z
d4xd4yν̃21NRDη1ðx − yÞν̃21NR: ð29Þ

The leading order contribution of sneutrino annihilation
into bileptons can be obtained from the imaginary part of
box diagrams for self-scattering, i.e., the optical theorem.
Therefore, the corresponding effective action is
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FIG. 2. The magnitude of α as a function of mν̃R and Aη.
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Sann ¼ −i
A4

8

Z
d4xd4yd4zd4wðν̃1NRDη1ðx − yÞν̃1NR

Dν̃1ðy − zÞν̃1NRDη1ðz − wÞν̃1NRDν̃1ðw − zÞÞ
þ ðz → wÞ: ð30Þ

Here the two different terms are known to be the t-channel
and u-channel box diagrams, respectively. The nonrelativ-
istic form of the sneutrino is given as

ν̃1NR ¼ 1ffiffiffiffiffiffiffiffiffiffi
2mν̃1

p ðϕðxÞ expð−imν̃1tÞ þ ϕðxÞ† expðimν̃1tÞÞ:

ð31Þ

Combining Eqs. (29) and (30) with (31) yields the
potential and annihilation cross section,

V ¼ −
λ2

16πm2
ν̃1

e−mη1
r

r
¼ −

αη
r
e−mη1

r;

ðσvrelÞ0 ¼
3λ4

512πm6
ν̃1

ð1 −m2
η1=m

2
ν̃1
Þ1=2

½1 −m2
η1=4m

2
ν̃1
�2

¼ 3πα2η
2m2

ν̃1

ð1 −m2
η1=m

2
ν̃1
Þ1=2

½1 −m2
η1=4m

2
ν̃1
�2 ; ð32Þ

where in the first line of Eq. (32), we recognize the Yukawa
potential. The negative sign means that the effective
potential of scalar-scalar annihilation mediated by a light
scalar particle is always attractive. The second line repre-
sents the annihilation cross section and the subscript 0
denotes that it does not consider loop and nonperturbative
correction. It is also responsible for the finite lifetime of the
bound state [82,83] due to the decay of the reduced system
where the bound state itself has an impact on dark matter
freeze-out. Since our focus in this paper is to demonstrate
the long-range effect of the bilepton η1, we do not consider
the bound state effects here and leave them for future work.
A different, but completely equivalent approach [68,84–87]
can reproduce the Yukawa potential. But the advantage of
NREFT is that it not only calculates the potential but
obtains the annihilation cross section. That is why we adapt
this approach in this paper.
The Schrödinger equation with a Yukawa potential

cannot be solved in an analytical form. The partial wave
expansion method is thus introduced to cope with it
numerically. The starting point is the assumption of the
wave function,

ψðrÞ ∼ eikz þ fðθÞ e
ik·r

r
;

fðθÞ ¼
X∞
l¼0

ð2lþ 1ÞflðkÞPlðcos θÞ; ð33Þ

where Plðcos θÞ is the Bessel function, and flðkÞ encodes
the scattering information,

flðkÞ ¼
e2iδlðkÞ − 1

2ik
: ð34Þ

The one that determines the scattering process is the phase
shift δl of a certain partial wave. From δl we can obtain the
differential cross section,

dσ
dΩ

¼ 1

k2
jð2lþ 1ÞeiδlPlðcos θÞ sin δlj2; ð35Þ

The integral viscosity cross section is expressed in terms of
phase shifts δl, via the analytical nonrelativistic formula,

σV ¼ 4π

k2
X∞
l¼0

ðlþ 1Þðlþ 2Þ
ð2lþ 3Þ sin2ðδlþ2 − δlÞ: ð36Þ

In order to obtain σV , one must solve for δl from the
asymptotic behavior of the radial function,

lim
r→∞

RlðrÞ ∼ cos δljlðkrÞ − sin δlnlðkrÞ; ð37Þ

where jl and nl are the spherical Bessel and Neumann
functions, respectively. We explicitly calculate the viscosity
cross section σV from δl numerically. Equation (27) is not
easy to implement in numerical calculation. We adapt the
following parameter choice [35,84]:

χl ¼ rRl; x ¼ αηmν̃1r;

a ¼ v
2αη

; b ¼ αηmν̃1

mη1

: ð38Þ

In terms of Eq. (38), the radial wave function is reduced
to be

�
d2

dx2
þ a2 −

lðlþ 1Þ
x2

þ 1

x
expð−x=bÞ

�
χl ¼ 0: ð39Þ

Before showing our numerical results, we briefly discuss
the effects of various constraints for SIDM on our model:

(i) Thermal relic abundance should yield Ων̃1h
2 ≃ 0.12

and the impact of the SE on the leading order
annihilation cross section in Eq. (32) should be
taken into account. However, the naturalness argu-
ment requires the sneutrino mass to be no larger
than 100 GeV unless the bileptino becomes the LSP.
Thus SE at freeze-out is negligible. We can use the
relic density requirement to determine αη, with mν̃1 ,
mη1 being input parameters.

(ii) Bilepton mediator decay provides a robust constraint
on the sneutrino annihilation process from CMB
observation and indirect detections. The enhance-
ment at recombination time excludes most of the
parameter space of DM annihilation dominated by
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the s-wave process. In BLSSM, the story is slightly
different, given that the bilepton mediator is not
directly decaying into SM final states but into right-
handed neutrinos. Since the right-handed neutrino
must be lighter than the mediator η in order to allow
(20) to be kinematically accessible, its subsequent
decay process must be off shell into three fermions
[88,89]. Such a decay width is so small due to the
three-body phase space suppression that the right-
handed neutrino could serve as a long-lived inter-
mediator [90,91]. As the effective DM density that
enters in the indirect signals is smeared by media-
tors, observations from indirect detection, especially
gamma rays, are much less constraining than that of
[70], where the vector mediator SIDM suffers from
serious indirect detection constraints. Furthermore,
the right-handed neutrino at the recombination scale
does not insert energy for CMB; thus the retarded
decay process also solves the CMB issue. One thus
expects that there are no CMB and indirect detection
constraints over SIDMparameter space.Wewill leave
a detailed discussion of this issue to another work.

As a consequence, the only two important constraints in
our model are relic abundance and the viscosity cross
section by SIDM. In our model, the dominant DM
annihilation channel is ν̃1ν̃1 → η1η1, and the corresponding
annihilation cross section is given in Eq. (32). One can
further eliminate αη through the relic abundance constraint,
leaving DM mass mν̃1 and mediator mass mη1 as two free
parameters.
Here we follow Ref. [71] to investigate the effect of

SIDM on different galaxy scales. For this purpose, we
define hσV=mν̃1iv as σV averaged over a Maxwellian
velocity distribution with the most probable velocity equal
to vðkm s−1Þ, which corresponds to the typical velocity
dispersion for a given galaxy. For dwarf galaxies, we
choose hσV=mν̃1iv ∈ 0.1–10 cm2 g−1 at v ¼ 30 km s−1,
while for galaxy clusters, there exist several upper limits:
the constraint from the bullet cluster requires σV=mν̃1 <
1.25 cm2 g−1 at 68% confidential level (C.L.) [92] and
the constraint from the ensemble of merging clusters
imposes σV=mν̃1 < 0.47 cm2 g−1 at 95% C.L. [93]. We
thus choose more conservative regions such that
hσV=mν̃1iv ∈ 0.1–1.25 cm2 g−1 at v ¼ 2000 km s−1 and
hσV=mν̃1iv ∈ 0.1–0.47 cm2 g−1 at v ¼ 900 km s−1, respec-
tively. Finally, for relic abundance, we require it to match
the Planck observed value Ων̃1h

2 ¼ 0.1199� 0.0027 at
95% C.L. [94]. Our results, shown in Fig. 3, illustrate the
preferred parameter regions for different galaxy scales. The
blue and green shaded bands show the regions preferred
by dwarf galaxies, while the orange and purple regions
present the parameter space preferred by galaxy clusters.
Compared to dwarf galaxies, galaxy clusters hold smaller
regions due to a more stringent requirement on σV=mν̃1 , and

the common parameter space can exist formν̃1 ∼ 1–10 GeV
and mη1 ∼ 1–4 MeV. Moreover, for coupling αη, one
observes from Eq. (32) that the annihilation cross section
is insensitive to the mediator mass for mη1 ≪ mν̃1. αη thus
increases monotonically with DM mass mν̃1 and varies
from 5 × 10−6 to 3 × 10−2 (from 5 × 10−6 to 3 × 10−4) for
dwarf galaxies (galaxy clusters) within our interested
parameter regions.

V. CONCLUSION

In this paper, we have discussed in detail the realization
of SIDMwithin the framework of theUð1ÞB−L extension of
MSSM and the DFP mechanism. The right-handed sneu-
trino serves as the LSP in most of the parameter space for a
nonvanishing soft trilinear coupling Tη. It is thus compat-
ible with the requirement of DFP SUSY without introduc-
ing dangerous direct detection limits. Its relic abundance
is achieved via a sneutrino annihilating into a pair of
bileptons, which also serve as a light mediator in DM self-
scattering. More interestingly, the annoying CMB con-
straint can be escaped by the retarded decay of right-handed
neutrinos. The numerical calculation indicates that SIDM
can be realized in our model from the scales of a dwarf
galaxy to a galaxy cluster.

ACKNOWLEDGMENTS

We would like to thank Wenyu Wang for help on
numerical calculation, and Fei Wang for helpful discussion.
B. Z. is supported by the National Science Foundation of

FIG. 3. Preferred parameter regions by relic abundance and
SIDM in the ½mη1 ; mν̃1 � plane. The blue and green shaded regions
correspond to hσV=mν̃1i30 ∈ 0.1–10 cm2 g−1, which would sig-
nificantly affect astrophysical observables at the scale of dwarf
galaxies. Also shown are regions preferred by galaxy clusters
with hσV=mν̃1i2000 ∈ 0.1–1.25 cm2 g−1 (orange shaded) and
hσV=mν̃1i900 ∈ 0.1–0.47 cm2 g−1 (purple shaded).

REALIZATION OF SNEUTRINO SELF-INTERACTING … PHYS. REV. D 98, 035007 (2018)

035007-9



China (Grants No. 11747026 and No. 11575151). Y. L. is
also supported by the Natural Science Foundation of
Shandong Province (Grant No. ZR2016JL001).

APPENDIX: DERIVATION OF MASS
SPLITTING IN BILEPTINOS

Here we give a derivation of the mass splitting for
bileptinos in BLSSM. The procedure is similar to that in
[95,96]. In BLSSM, the mass term for bileptinos η̃1;2 is
given explicitly from the superpotential,

Lbileptino ¼ −μηη̃1η̃2 þ H:c: ðA1Þ

η̃1;2 is the Dirac fermion if no mixing effect is introduced.
As a result, an accidental global Uð1Þ symmetry is induced
where η̃1;2 could be rotated with each other. The mixing
effect which divides the Dirac fermion into two nearly
degenerated Majorana fermion thus must come from the
Uð1Þ breaking operator. Considering the dimension-five
operator,

Leff ¼
X2
i¼1

ciOi þ H:c:; ðA2Þ

where

O1 ¼ η2η̃1η2η̃1;

O2 ¼ η1η̃2η1η̃2: ðA3Þ

These two operators can be obtained through integra-
ting out the corresponding heavy blino, which is the
superpartner of the Uð1ÞB−L gauge boson. The Wilson

coefficients give rise to mass splitting for bileptinos that can
be found in the mass matrix directly,

L ¼ −
1

2
ðη̃1; η̃2ÞM

�
η̃1

η̃2

�
; ðA4Þ

with

M ¼
�−cos2β0c1v2η −μη

−μη −sin2β0c2v2η

�
: ðA5Þ

The symmetric mass matrix M can be diagonalized, and
the resulting mass eigenvalues are

m1 ¼ μ −
1

2
ðc1cos2β0 þ c2sin2β0Þv2η;

m2 ¼ μþ 1

2
ðc1cos2β0 þ c2sin2β0Þv2η: ðA6Þ

Therefore, the mass splitting is found to be

δ ¼ m2 −m1 ¼ ðc1 cos β0 þ c2 sin β0Þv2η: ðA7Þ

The Wilson coefficients c1 and c2 can be obtained by
matching the blino-bileptino-bilepton vertex,

c1 ¼ c2 ¼
g2BL
4M2

B0
: ðA8Þ

The resulting mass splitting is

δ ¼ m2
Z0

2MB0
: ðA9Þ
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