
 

Neutron magnetic polarizability with Landau mode operators
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The application of a uniform background magnetic field makes standard quark operators utilizing gauge-
covariantGaussian smearing inefficient at isolating theground state nucleon at nontrivial field strengths. In the
absence of QCD interactions, Landau modes govern the quark energy levels. There is evidence that residual
Landau mode effects remain when the strong interaction is turned on. Here, we introduce novel quark
operators constructed from the two-dimensionalUð1Þ Laplacian eigenmodes that describe the Landau levels
of a charged particle on a periodic finite lattice. These eigenmode-projected quark operators provide enhanced
precision for calculating nucleon energy shifts in a magnetic field. Using asymmetric source and sink
operators, we are able to encapsulate the predominant effects of both the QCD and QED interactions in the
interpolating fields for the neutron. Theneutronmagnetic polarizability is calculated using these techniques on
the 323 × 64 dynamical QCD lattices provided by the PACS-CS Collaboration. In conjunction with a chiral
effective-field theory analysis, we obtain a neutronmagnetic polarizability of βn ¼ 2.05ð25Þð19Þ×10−4 fm3,
where the numbers in parentheses describe statistical and systematic uncertainties.
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I. INTRODUCTION

The study of the magnetic polarizability of the neutron is
an area of ongoing experimental and theoretical interest.
Measurement of this quantity remains challenging with
considerable uncertainties [1–3], although improvement
has been seen in recent years [4]. There is scope for lattice
QCD to make important predictions in this area.
The approach used here to calculate this quantity on the

lattice is theuniformbackground-fieldmethod [5–7].AUð1Þ
phase factor on the gauge links induces an external magnetic
field across the entirety of the lattice. The external field
causes an energy shift fromwhich themagnetic polarizability
can be determined by use of the energy-field relation [6–11]

EðBÞ ¼ mþ μ⃗ · B⃗þ jqeBj
2m

−
4π

2
βB2 þOðB3Þ; ð1Þ

where m is the mass and μ⃗ and β are the magnetic moment
and magnetic polarizability respectively. Note that the
jqeBj=2m term corresponds to the lowest Landau energy

and is only present for charged hadrons. There is in principle
a tower of Landau levels, ð2nþ 1ÞjqeBj=2m for n ¼
0; 1; 2;… [12].
At first glance, the method is simple; we can fit the linear

and quadratic coefficients of the resulting energies as a
function of field strength to extract the magnetic moment
and polarizability [6,9]. However, baryon correlation func-
tions suffer from a rapidly decaying signal-to-noise prob-
lem [13]. This makes the extraction of the magnetic
polarizability using standard nucleon interpolating fields
challenging as it appears at second order in the energy
expansion, as demonstrated by previous studies [7,9–11].
The application of three-dimensional gauge-covariant

Gaussian smearing on the quark fields at the source and/or
sink is highly effective at isolating the nucleon ground state
in pure QCD calculations. However, the presence of a
uniform magnetic field alters the physics, breaking three-
dimensional spatial symmetry and introducing electromag-
netic perturbations into the dynamics of the charged quarks.
Under a uniform magnetic field, in the absence of QCD

interactions, each quark will have a Landau energy propor-
tional to its charge. When QCD interactions are enabled,
the quarks will hadronize, such that (in the confining phase)
the Landau energy corresponds to that of the composite
particle. In particular, as the neutron has zero charge, the
ddu quarks must combine such that the overall Landau
energy vanishes.
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It is clear that the QCD and magnetic interactions
compete with each other in the confining phase. Indeed,
there is evidence that residual Landau mode effects remain
when the strong interaction is turned on [10,14]. Here, we
explore the idea of using quark operators on the lattice that
capture both of these forces, choosing asymmetric source
and sink operators to provide better overlap with the energy
eigenstates of the neutron in a background magnetic field.
At the source, we capture the QCD dynamics by using

spatial Gaussian smearing, tuned to maximise overlap with
the nucleon ground state at zero magnetic-field strength. At
the sink, we seek to encode the physics associated with the
magnetic field by using a projection operator constructed
from the eigenmodes associated with the quark lattice
Landau levels. As discussed in Sec. III B, these Landau
modes correspond to the eigenmodes of the two-dimen-
sional Uð1Þ lattice Laplacian [15]. Calculations are per-
formed at multiple quark masses in order to enable a chiral
extrapolation to the physical regime.

II. BACKGROUND FIELD METHOD

To simulate a constant magnetic field along a single axis,
the background-field method is used [5]. To derive this
technique on the lattice, consider the continuum case. In the
continuum, a minimal electromagnetic coupling is added to
form the covariant derivative

Dμ ¼ ∂μ þ iqe Aμ: ð2Þ

Here, Aμ is the electromagnetic four potential, and qe is the
charge on the fermion field. The equivalent modification on
the lattice is to multiply the usual gauge links by an
exponential phase factor,

UμðxÞ → UμðxÞeiaqeAμðxÞ: ð3Þ

A uniformmagnetic field along the ẑ axis is obtained (in the
continuum) using

B⃗ ¼ ∇×A⃗ ð4aÞ

Bz ¼ ∂xAy − ∂yAx; ð4bÞ

which does not uniquely specify the electromagnetic
potential. The choice made over the interior of the lattice
is Ax ¼ −By. This gives a constant magnetic field of
magnitude B in the þẑ direction. In order to maintain the
constant magnetic field across the edges of the lattice where
periodic boundary conditions are in effect, we set Ay ¼
þBNyx along the boundary in the ŷ dimension. This then
induces a quantization condition for the uniform-magnetic-
field strength [10]

qeBa2 ¼ 2πk
NxNy

: ð5Þ

Here, a is the lattice spacing, Nx and Ny are the
spatial dimensions of the lattice, and k is an integer
specifying the field quanta in terms of the minimum field
strength.
In this work, the field quanta k is set in units of the

charge of the down quark, i.e., q ¼ −1=3. Hence, a field
with kd ¼ 1 will be in the −ẑ direction and aligned with
spin-down components.

III. QUARK OPERATORS

We explore the use of asymmetric source and sink
operators in order to construct zero-momentum projected
correlation functions which have greater overlap with the
energy eigenstates of the neutron in a background magnetic
field. This allows us to emulate the dominant QCD and
magnetic effects separately.
We consider fixed boundary conditions in the time

direction and place the source at Nt=4 ¼ 16.

A. Gaussian smeared source

A smeared source is used to provide a representation of
the QCD interactions, while the sink is used to capture the
physics associated with the magnetic field. Several levels of
source smearing are investigated at B ¼ 0 in order to isolate
the QCD nucleon ground state. For mπ ¼ 411 MeV, 300
sweeps of standard Gaussian smearing is optimal, as
illustrated in Fig. 1. An identical process is followed at
each of the quark masses producing optimal smearings of
Nsm ¼ 150, 175, 300, 350 for masses mπ ¼ 702, 570, 411,
296 MeV respectively.

FIG. 1. Neutron zero-field effective mass from smeared source
to point sink correlators for various levels of covariant Gaussian
smearing at the source. The source is at t ¼ 16.
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B. Landau mode quark sink

In the absence of QCD interactions, the charged quarks
will each have an associated Landau level. To capture the
physics associated with the uniform-background magnetic
field, we apply a quark level Uð1Þ Landau mode projection
at the sink. To motivate this sink projection, we briefly
review the relevant Landau mode physics and the relation
to the continuum Dirac equation. A charged scalar particle
which sits in a uniform magnetic field will have an
associated Landau energy which is proportional to its
charge. In the nonrelativistic approximation, the energy
spectrum of a charged particle in a constant magnetic field
along the ẑ direction is equivalent to that of a harmonic
oscillator, En ¼ ðnþ 1

2
Þω, where ω ¼ jqeBj=m is the

classical cyclotron frequency. In the infinite-volume limit,
each energy level is infinitely degenerate.
The relativistic generalization of the Landau energy

levels for a fermion commences with the Dirac operator
coupled to electromagnetism,

=D ¼ γμDμ ¼ γμð∂μ þ iqeAμÞ: ð6Þ

The second-order equation for a Dirac spinor ψ is

�
D2 þ 1

2
qeσμνFμν þm2

�
ψ ¼ 0; ð7Þ

such that for a constant background magnetic field B⃗ (and
in a suitable spinorial representation) we have

�
D2 þ qe

�
σ⃗ · B⃗ 0

0 σ⃗ · B⃗

�
þm2

�
ψ ¼ 0: ð8Þ

Choosing B⃗ ¼ Bẑ in the ẑ direction and introducing a spin-
polarization factor, α ¼ �1, the equation for each spinor
component ψτ is

ðD2 þ αqeBþm2Þψτ ¼ 0; ð9Þ

with α ¼ ð−1Þðτ−1Þ. The eigenenergies as a function of the
mass, m; field strength, B; spin polarization, α; and
momentum in the z direction, pz, are given by [12]

E2ðBÞ ¼ m2 þ jqeBjð2nþ 1 − αÞ þ p2
z ; ð10Þ

with n describing the quantized energy level, that is, the
relativistic Landau energy. The key point here is that, while
the eigenenergies depend on the spin-coupling term, the
basis of eigenmodes of the operator ðD2 þ αqeBþm2Þ is
independent of the constant terms αqeB andm2, depending
only on the covariant Laplacian D2 ¼ DμDμ. Hence, on a
discrete lattice, the Landau modes for a charged Dirac
particle with B⃗ ¼ Bẑ correspond to the eigenmodes of the
two-dimensional Uð1Þ gauge-covariant lattice Laplacian

Δx⃗;x⃗0 ¼ 4δx⃗;x⃗ 0 −
X
μ¼1;2

UB
μ ðx⃗Þδx⃗þμ̂;x⃗ 0 þ UB†

μ ðx⃗ − μ̂Þδx⃗−μ̂;x⃗ 0 ;

ð11Þ
where UB

μ ðx⃗Þ contains the same Uð1Þ phases as applied in
the full lattice QCD calculation. On a finite-volume lattice,
the degeneracy of the lattice Landau modes is finite and is
dependent on the product qeB of the charge and magnetic-
field strength. This is in contrast to the infinite degeneracy
of the infinite volume. In particular, the lowest Landau level
on the lattice has a degeneracy equal to the magnetic flux
quanta jkj defined in Eq. (5).
The lowest Landau mode in the continuum takes a

Gaussian form, ψ B⃗ðx; yÞ ∼ e−jqeBjðx2þy2Þ=4. It has been noted
elsewhere [9,16] that in a finite volume the periodicity of
the lattice causes the wave function’s form to be altered. We
can calculate the eigenmodes of the two-dimensional (2D)
Laplacian in Eq. (11) and project at the quark level. Define
a projection operator onto the lowest n eigenmodes jψ i;B⃗i
of the 2D Laplacian as

Pn ¼
Xn
i¼1

jψ i;B⃗ihψ i;B⃗j: ð12Þ

A coordinate-space representation of this two-dimensional
projection operator is applied at the sink to the quark
propagator

Snðx⃗; t; 0⃗; 0Þ ¼
X
x⃗0
Pnðx⃗; x⃗0ÞSðx⃗0; t; 0⃗; 0Þ; ð13Þ

where n ¼ j3qfkdj modes for the lowest Landau level.
The Uð1Þ Laplacian is not QCD gauge covariant, and

hence we fix the gluon field to Landau gauge and apply the
appropriate gauge rotation to the quark propagator before
projecting. However, as the hadronic correlation function
(and ground state energy) is gauge invariant, using a gauge-
fixed sink operator can only effect the overlap with the
ground state, which has the potential to improve the final
precision of our result.

C. One-dimensional spatial modulation

The eigenmodes of the two-dimensional Uð1Þ Laplacian
have no dependence on the z coordinate. Using this
freedom, we can apply a functional form to vary the spatial
extent of the Uð1Þ Landau projection in the ẑ direction, an
idea analogous to standard Gaussian smearing. We modu-
late the z dependence of the projected quark propagator
with a normalized Gaussian,

ϕσðzÞ ¼
1

σ
ffiffiffiffiffiffi
2π

p exp

�
−

z2

2σ2

�
; ð14Þ

where the width parameter σ ≡ σz controls the spatial
extent in the z direction. After the Uð1Þ Landau mode
projection has been applied at the sink to the quark
propagator as in Eq. (13), the gauge-fixed propagator is
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then averaged over the z dimension using the modulation
function as a weighting,

Sn;σðx;y;z;t; 0⃗;0Þ¼
X
z0
ϕσðz−z0ÞSnðx;y;z0;t; 0⃗;0Þ: ð15Þ

We define the special case σz ¼ 0 to indicate that no z
modulation is applied, which is equivalent to choosing
ϕσ¼0ðzÞ ¼ δðz0 − zÞ, such that Sn;0 ≡ Sn.
Different spatial extents change the coupling to each of

the energy eigenstates. The lowest lying level is dominant
in the long Euclidean time limit. To determine which spatial
extent provides the greatest overlap with the lowest lying
energy level, many choices of σz are investigated simulta-
neously [17].
The magnetic-field orientation and neutron spin polari-

zation can be chosen independently to be in the positive or
negative z direction. In order to efficiently extract the
magnetic polarizability, combinations of correlation
functions with differing magnetic-field orientation and
spin-polarization alignments are used to create spin and
magnetic field aligned and antialigned correlation func-
tions. These are the energies which will be examined in
order to optimize the quark sink.
The quark sink selected is the one which has the longest

plateau when fitting backward in Euclidean time from
where all of the correlators agree. In evaluating this extent,
the χ2dof is determined via a consideration of the full matrix
of covariances between different time slices under consid-
eration, and we employ an upper limit of 1.2. The sink-
projected correlator that has converged the earliest is
considered optimal. This process is undertaken for each
combination of field strength and aligned or antialigned
energies. Figure 2 shows an example of this process for the
mπ ¼ 411 MeV neutron and the largest magnetic field
considered with jkj ¼ 3. It is quite clear that all the sink

projections agree by t ¼ 29 and that σz ¼ 0, 1 both produce
excellent early plateaus. Figure 3 shows the aligned
energies for mπ ¼ 296 MeV in the smallest field strength.
In this case, there is no clear longest plateau. In cases like
this where multiple σz sink projections are allowed by both
length and the χ2dof , the full process for calculating the
magnetic polarizability is performed for each value of σz.
The resulting magnetic polarizability values are averaged to
give a combined statistical error as well as a systematic
error associated with the range of allowed σz.
In general, small σz values, σz ¼ 0, 1, 2, are preferred

across multiple pion masses, field strengths, and aligned or
antialigned combinations. These sink projections provide a
good representation of the neutron ground state in a
background magnetic field, as can be seen by the plateau
behavior in the energy of the neutron in Fig. 4.

FIG. 2. Antialigned effective energy of the neutron in the
largest field strength, jkj ¼ 3, for Uð1Þ Landau-projected sinks at
mπ ¼ 411 MeV. Consecutive fits ending at t ¼ 29 where all
effective masses agree with χ2dof ≤ 1.2 are shown.

FIG. 3. Aligned effective energy of the neutron in the smallest
field strength, jkj ¼ 1, for Uð1Þ Landau-projected sinks at
mπ ¼ 296 MeV. Consecutive fits ending at t ¼ 28 where all
effective masses agree with χ2dof ≤ 1.2 are shown.

FIG. 4. Aligned (up arrows) and antialigned (down arrows)
effective energies of the mπ ¼ 411 MeV neutron using a Uð1Þ,
σz ¼ 1.0 Landau mode sink projection. Three nonzero-field-
strength energies and the zero-field mass are illustrated.
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This result represents a significant advance in the
determination of magnetic polarizabilities. For the first
time, clear plateaus are identified, a direct result of our
consideration of Landau modes at the quark level.

IV. MAGNETIC POLARIZABILITY

A. Formalism

Recalling the energy-field relation of Eq. (1), we note
that a combination of energies at different spin orientations
and field strengths can be used to isolate the neutron
magnetic polarizability β,

δEðBÞ ¼ 1

2
½ðE↑ðBÞ − E↑ð0ÞÞ þ ðE↓ðBÞ − E↓ð0ÞÞ�

¼ −
4π

2
βB2 þOðB4Þ; ð16Þ

noting that as q ¼ 0 for the neutron the Landau energy term
vanishes. Here, the arrows denote the neutron spin polari-
zation along the ẑ axis.
This method of isolating the polarizability term is valid,

but in practice due to the cancellation of correlated fluctua-
tions on a common ensemble of lattice configurations, it is
much more effective to take ratios of appropriate spin-up
(þs) and spin-down (−s) correlators. We can also average
over both positive (þB) and negative (−B) magnetic-field
orientations to provide an improved unbiased estimator.
Thus, we define the spin-field aligned correlator by

G↿↾ðBÞ ¼ Gðþs;þBÞ þ Gð−s;−BÞ ð17Þ
and the spin-field antialigned correlator by

G↿⇂ðBÞ ¼ Gðþs;−BÞ þ Gð−s;þBÞ: ð18Þ
The spin-field aligned and antialigned correlators, combined
with the spin-averaged zero-field correlator, are used to form
the ratio

RðB; tÞ ¼ G↿↾ðB; tÞG↿⇂ðB; tÞ
Gð0; tÞ2 : ð19Þ

The product of the spin-field aligned and antialigned
correlators yields an exponent that is the sum of the
respective energies ∼E↿↾ þ E↿⇂, removing the contribution
from the magnetic moment term. Our calculation is sys-
tematically improved by including the contributions from all
four field and spin pairings, such that upon taking the
effective energy we obtain the desired energy shift,

δEðB; tÞ ¼ 1

2

1

δt
log

�
RðB; tÞ

RðB; tþ δtÞ
�

¼ −
4π

2
βB2 þOðB4Þ: ð20Þ

Note that we define the magnetic field �B to be that
experienced by the nucleon and is hence related to the
down quark magnetic field by a factor of −3.

Any correlated QCD fluctuations between the finite field
strength and zero-field effective energies are significantly
reduced by taking the ratio in Eq. (19). As the zero-field
correlator does not have a Landau level, the Uð1Þ eigen-
mode projection technique is not applied, and we use a
standard point sink instead. This motivates the source
tuning process outlined in Sec. III A. By using a source
optimized for the zero-field neutron in the denominator of
Eq. (19), the onset of plateau behavior in the effective
energies occurs at an early Euclidean time. This improved
method is particularly important as the polarizability is at
second order in B, and as such at these small field strengths,
its contribution to Eq. (1) is small. It is essential to have a
precise determination of the polarizability energy shift. The
efficiency of the Landau mode sink projection can be seen
in Fig. 5 where the energy shift for a standard, point sink is
compared to aUð1Þ Landau mode sink projection; the latter
is seen to display better plateau behavior.

B. Simulation details

In this work, 2þ 1 flavor dynamical gauge configura-
tions provided by the PACS-CS [18] group through the
ILDG [19] are used. These have a clover fermion action and
Iwasaki gauge action with a physical lattice spacing of
a ¼ 0.0907ð13Þ. Four values of the light quark hopping
parameter κud ¼ 0.137 00, 0.137 27, 0.137 54, 0.137 70 are
considered, corresponding to pion masses of mπ ¼ 702,
570, 411, 296 MeV respectively. The lattice spacing for
each mass was set using the Sommer scale with
r0 ¼ 0.49 fm. The lattice volume is L3 × T ¼ 323 × 64,
and the ensemble sizes are 399, 400, 449, 400 configura-
tions respectively. Source locations were systematically
varied in order to produce large distances between adjacent
source locations. Starting from an initial source location at

FIG. 5. The magnetic polarizability effective energy shift at the
largest field strength for the neutron as a function of Euclidean
time (in lattice units), using a smeared source. A point sink
(orange) and a Uð1Þ Landau mode quark sink (blue) are
illustrated.
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ð0⃗; 16Þ, shifts of ð0⃗; 16Þ were applied three times for a total
of four source locations. A further set of four shifts starting
at ð1⃗6; 8Þ, where only the time component increased by 16,
were also applied. As such, a total of eight sources were
used for each configuration.
Correlation functions at four distinct magnetic-field

strengths are calculated. To do this, propagators at ten
nonzero-field strengths, eB ¼ �0.087, �0.174, �0.261,
�0.348,�0.522 GeV2, are calculated. These correspond to
kd ¼ �1, �2, �3, �4, �6 in Eq. (5). The zero-momentum
projected correlation functions contain spin-up and spin-
down components.
We note that at the higher field strengths considered here

one might be concerned about the validity of the energy-
field expansion of Eq. (1). We can relate the energy-field
expansion in Eq. (1) to the relativistic energy of a baryon in
an external background magnetic field by considering
E2ðBÞ −m2 ¼ ðEðBÞ −mÞðEðBÞ þmÞ and applying the
nonrelativistic approximation ðEþmÞ ≃ 2m. Thus,
2m=ðEþmÞ ≃ 1 is a measure of the importance of
relativistic effects. We find 2m=ðEþmÞ to be typically
within a few percent of one for all but the largest field
strength. At the lightest quark mass, the effect can approach
10%. However, this is a small effect in the context of the
current statistical uncertainties and other systematic uncer-
tainties discussed in the following. Still, it is an important
issue to consider as one moves toward the precision era of
magnetic polarizability calculations in lattice QCD. It is
also important to note that these configurations are electro-
quenched; the field exists only for the valence quarks of the
hadron. To include the background field at configuration,
generation time is possible [20], but requires a separate
Monte Carlo simulation for each field strength and is hence
prohibitively expensive. Separate calculations also destroy
the advantageous correlations between the field strengths
used when constructing the ratio in Eq. (19). An alternative
is to use a reweighting procedure on the gauge-field
configurations [21] for the different field strengths B,
but this is not performed here.

V. FITTING

The energy shift at each field strength has the form
specified by Eq. (16), and as such, we fit with a quadratic
term,

δEðB; tÞ ¼ 4π

2
βB2 þOðB4Þ: ð21Þ

Figures 6 and 7 show fits for the neutron energy shift with a
smeared source and a Uð1Þ Landau mode sink projection.
For the first time, clear plateaus are present in this difficult-
to-obtain quantity. It is required that a plateau be present at
each of the three nonzero-field strengths in order to proceed
to the next stage.

The plateau does not occur until t ¼ 24; this region is a
common starting point across the heavier masses. The
primary cause for this late plateau onset time is the zero-
field correlator, which has fundamentally different physics.
As such, its potential excited state behavior is different than
that of the background-field correlators. Plateaus only form
once both correlators have decayed to the ground state.
The fit performed is as a function of kd, the integer

magnetic flux quanta in Eq. (5),

δEðkdÞ ¼ c2k2d: ð22Þ

Here, c2 is the fit parameter and has units of GeV as these
are the units of δEðkdÞ. As a check of the validity of the

FIG. 6. The magnetic-polarizability effective-energy shift for
the mπ ¼ 411 MeV neutron as a function of Euclidean time (in
lattice units), using a smeared source and σz ¼ 1.0 Uð1Þ Landau
mode sink projection. Results for field strengths kB ¼ 1, 2, 3 are
shown, with the magnetic-field strength increasing away from
zero. The selected fits and χ2dof are also illustrated.

FIG. 7. The magnetic-polarizability effective-energy shift for
the mπ ¼ 702 MeV neutron as a function of Euclidean time (in
lattice units), using a smeared source and σz ¼ 0.0 Uð1Þ Landau
mode sink projections. Symbols are as described in Fig. 6.
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expansion in Eq. (1) and hence the energy shift in Eq. (21),
we also perform a quadratic þ quartic fit, c2k2d þ c4k4d,
where the size of the quartic term provides an estimate of
the corrections. It is found that for the two heavier masses,
mπ ¼ 702, 570 MeV, the quartic term is indistinguishable
from zero, while for mπ ¼ 411 MeV, the fit is disfavored
by the χ2dof of the fit. While the quadraticþ quartic fit works
for mπ ¼ 293 MeV, the uncertainties are extremely large,
suggesting that such a fit is only possible due to the larger
uncertainties associated with lighter quark mass. If Eq. (1)
were not valid at the field strengths considered herein, a
remnant magnetic moment term proportional to B would
exist in Eq. (21). It was found that it is possible to fit a
purely quadratic term as in Eq. (22) at each pion mass, and
the inclusion of a quartic term is not required, confirming
the validity of Eq. (1) for the neutron at the field strengths
considered in this study. The quadratic fits are displayed
in Fig. 8.
In order to convert this fit parameter to the physical units

of magnetic polarizability, fm3, Eq. (5) is used to produce
the transformation

β ¼ −2c2αq2da4
�
NxNy

2π

�
2

; ð23Þ

Here, α is the fine structure constant, α ≈ 1=137.
The quadratic fitting process uses only energy shifts

which have the same spatial modulation of Eq. (14). As was
seen in Figs. 2 and 3, the spatial extent affects the coupling
to the energy eigenstates. It is hence important that when
we fit we use the optimal sink projection. This is achieved
using a simultaneous investigation of the spatial extent, σz,
and field strength. For a specified spatial modulation to be
suitable, it must provide early isolation of the eigenstate at
each field strength. This isolation is visible in the long
plateaus of Figs. 2 and 3.

This is already a strong constraint on the sink choice, but
in order to determine where to fit energy shifts for the
quadratic fit in B, a further constraint is needed. This
constraint comes from considering the constant plateau fits
to the energy shift at all field strengths. By considering all
possible fit windows, we select fit windows where good
plateau behavior exists for all field strengths simultane-
ously. Good plateau behavior is characterized by a fit χ2dof
of less than 1.2. This process of requiring good plateau
behavior at each field strength simultaneously dramatically
reduces the number of possible fit windows. In particular, it
is often difficult to obtain acceptable energy shift plateaus
for the largest field strength considered.
The final constraint on the fitting process comes from the

quadratic fit itself. This fit must also be acceptable having a
χ2dof ≤ 1.2. If multiple fit windows remain after this
process, the one with the longer time extent and χ2dof’s
closest to one are preferred.
Once the specific quadratic fit has been chosen, the

magnetic polarizability, β, is extracted from the quadratic
coefficient of the fit. In order to test the presence of higher-
order terms in the energy shift of Eq. (21), a quartic term is
also considered. It is found that the quartic term is not
needed in order to fit the energy shifts well with accept-
able χ2dof .
Using the sink eigenmode-projection technique at each

quark mass, it is possible to extract magnetic polarizabil-
ities from the fits to the constant energy shift plateaus as a
function field strength. Results are presented in Table I for
the magnetic polarizability of the neutron at each quark
mass. Note that for the mπ ¼ 570 MeV ensemble no
systematic error due to the choice of σz is reported as
only σz ¼ 0 provided good access to the ground state
across all field strengths.

VI. CHIRAL EXTRAPOLATION

A. Formalism

Chiral effective-field theory (χEFT) is an important tool
for connecting lattice results to the physical point. The
analysis here follows that of Ref. [22] and is summarized
briefly below.

TABLE I. Magnetic polarizability values for the neutron at each
quark mass. Eight sources are used for each quark mass. The
numbers in parentheses describe statistical and systematic un-
certainties respectively.

κ mπ (MeV) β ðfm3 × 10−4Þ χ2dof

0.137 00 702 1.51(21)(6) 0.21
0.137 27 570 1.63(16) 0.44
0.137 54 411 1.29(20)(11) 1.06
0.137 70 296 1.14(25)(17) 0.91

FIG. 8. Quadratic fits of the energy shift to the field quanta at
each quark mass for the neutron for a single σz value each.
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We consider the chiral expansion

βðm2
πÞ ¼ βπNðm2

πÞ þ βπΔðm2
πÞ þ a0 þ a2m2

π: ð24Þ

The leading-order loop contributions βπNðm2
πÞ and βπΔðm2

πÞ
are depicted in Figs. 9 and 10. The loop integral of Eq. (25)
for βπNðm2

πÞ contains the leading nonanalytic contribution
to the chiral expansion proportional to 1=mπ [23].
Similarly, the integral of Eq. (26) for βπΔðm2

πÞ accounts
for transitions to a Delta baryon. For a finite nucleon-Delta
mass splitting, Δ ¼ MΔ −MN , this diagram contributes a
nonanalytic logarithmic contribution proportional to
ð−1=ΔÞ logðmπ=ΛÞ to the expansion. Here, Λ is a renorm-
alization scale. The coefficients a0 and a2 are residual-
series coefficients [24] which will be constrained by our
lattice QCD results after they are corrected to infinite
volume. Once combined with the analytic contributions
contained in the loop integrals [25], these parameters form
the renormalized low-energy coefficients of the chiral
expansion. Complete details of the renormalization pro-
cedure are provided in the Appendix of Ref. [25].
The loop-integral contributions βπNðm2

πÞ and βπΔðm2
πÞ

are evaluated in the heavy-baryon limit [26] appropriate to
a low-energy expansion. The three-dimensional integral
forms are [22]

βπNðm2
πÞ ¼

e2

4π

1

288π3f2π
χN

Z
d3k

k⃗2u2ðk;ΛÞ
ðk⃗2 þm2

πÞ3
; ð25Þ

βπΔðm2
πÞ ¼

e2

4π

1

288π3f2π
χΔ

Z
d3ku2ðk;ΛÞ

×
ω2

k⃗
Δð3ωk⃗ þ ΔÞ þ k⃗2ð8ω2

k⃗
þ 9ωk⃗Δþ 3Δ2Þ

8ω5

k⃗
ðωk⃗ þ ΔÞ3 :

ð26Þ

Here, ωk⃗ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k⃗2 þm2

π

q
is the energy carried by the pion

which has three-momentum k⃗, Δ is the aforementioned
mass splitting between the Delta baryon and the nucleon,
Δ≡MΔ −MN ¼ 292 MeV, and the pion decay constant
is taken as fπ ¼ 92.4 MeV. The dipole regulator

uðk;ΛÞ ¼ 1

ð1þ k⃗2=Λ2Þ2
ð27Þ

of Eqs. (25) and (26) ensures that only soft momenta flow
through the effective-field theory degrees of freedom.
The lattice QCD results do not incorporate contributions

from photons coupling to the disconnected sea-quark loops
of the vacuum which form the full meson dressings of
χEFT—they are electroquenched. Thus, it is necessary to
model the corrections associated with these effects. This is
done using partially quenched χEFT. In this case, the
standard coefficients for full QCD,

χN ¼ 2g2A; ð28Þ

χΔ ¼ 16

9
C2; ð29Þ

are modified to account for partial quenching effects [27] as
explained in Ref. [22]. Thus, when fitting the lattice QCD
results, we use coefficients that reflect the absence of
disconnected sea-quark-loop contributions.

χN → χpQN ¼ 2g2A − ðD − FÞ2 − 7

27
ðDþ 3FÞ2; ð30Þ

χΔ → χpQΔ ¼ 16

9
C2 −

2

9
C2: ð31Þ

We use the standard values of gA ¼ 1.267 and C ¼ −1.52
with gA ¼ Dþ F and the SUð6Þ symmetry relation
F ¼ 2

3
D.

In anticipation of accounting for the missing discon-
nected sea-quark-loop contributions in the lattice QCD
calculations, the value Λ ¼ 0.80 GeV is adopted [28–32].
This regulator mass defines a pion cloud contribution to
masses [29], magnetic moments [30], and charge radii [28],
which enables corrections to the pion cloud contributions
associated with missing disconnected sea-quark-loop con-
tributions. This particular choice of regulator mass defines
a neutron core contribution insensitive to sea-quark-loop
contributions [33].

FIG. 9. The leading-order pion-loop contribution to the mag-
netic polarizability of the neutron.

FIG. 10. Pion-loop contributions to the magnetic polarizability
of the neutron, allowing transitions to the nearby and strongly
coupled Δ baryons.
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Finite-volume effects are considered by replacing the
continuum integrals of the chiral expansion with sums over
the momenta available on the periodic lattice. We note that
the lattice volume varies slightly across the four lattice data
points available due to our use of the Sommer scale.

B. Analysis

We proceed by calculating the integrals of Eqs. (25) and
(26) in the finite volume of the periodic lattice by replacing
the continuum integrals of the chiral expansion with sums
over the momenta available. As the lattice QCD results do
not include the contributions of disconnected sea-quark-
loop contributions, the coefficients of Eqs. (30) and (31) are
used in Eqs. (25) and (26). This calculation is carried out at
each quark mass considered on the lattice.
One then numerically integrates Eqs. (25) and (26) in

infinite volume and with the full QCD coefficients of
Eqs. (28) and (29). The difference between this infinite-
volume full-QCD result and aforementioned finite-volume
partially quenched result at each quark mass is used to
correct the lattice QCD results to infinite volume and full
QCD. In this way, both finite-volume and sea-quark-
loop contribution corrections are incorporated. These
corrections are illustrated in Fig. 11 by the (blue square)
“Full-QCD Infinite-Volume Results” next to the original
(violet-diamond) “Lattice Results.”
At this point, the fit function of Eq. (24) is fit to the

corrected lattice QCD results by adjusting the residual-
series coefficients, a0 and a2. Once a0 and a2 are con-
strained, any volume can be considered. Figure 11 shows
chiral extrapolations for a range of volumes to provide
guidance to future lattice QCD simulations. Large box sizes

are required in order to obtain an extrapolation close to the
infinite-volume value at the physical point.
The physical polarizability is obtained from the con-

strained fit function of Eq. (24) with mπ ¼ mphys
π ¼

140 MeV.While the coefficients of the leading nonanalytic
terms of the chiral expansion are determined in a model-
independent manner, uncertainty in the higher-order terms
of the expansion can be examined through a variation
of the regulator parameter Λ, which affects the sum
of these contributions. Consideration of the broad range of
0.6 ≤ Λ ≤ 1.0 GeV provides a systematic uncertainty of
0.19 × 10−3 fm3 at the physical point. Thus, we find
βn ¼ 2.05ð25Þð19Þ×10−4 fm3 at the physical point. The
uncertainties are derived from the statistical errors of the fit
parameters and the systematic uncertainty associated with
the chiral extrapolation respectively.
A comparison between this result and the experimental data

is provided in Fig. 12. Our calculation is in good agreement
with a number of the experimental results and poses an
interesting challenge for greater experimental precision.
Similarly, progress in experimental measurement would drive
further lattice QCD and chiral effective-field theory work.
These lattice results use a single lattice spacing, and as

such, it is not possible to quantify an uncertainty associated
with taking the continuum limit. However, as a non-
perturbatively improved clover fermion action is used,
the Oða2Þ corrections are expected to be small relative
to the uncertainties already presented. It is anticipated that
there is some degree of additive quark mass renormaliza-
tion due to the interaction of the background field with the
Wilson term in the fermion action [35], and the extent to

FIG. 11. Correction of the lattice QCD results (violet diamond)
for the neutron magnetic polarizability βn to infinite volume and
full QCD (blue square) as described in the text. Extrapolations of
βn for a variety of spatial lattice volumes provide a guide to future
lattice QCD simulations. The infinite-volume case relevant to
experiment is also illustrated.

FIG. 12. The magnetic polarizability of the neutron, βn
obtained herein is compared with experimental results. The
uncertainties in the lattice results contain both statistical and
systematic errors simply added together. This is a conservative
approach to produce a reliable estimation. Experimental results
from Griesshammer et al. [3], the PDG [34], Kossert et al. [1,2],
and Myers et al. [4] are offset for clarity.
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which this small effect remains with the clover fermion
action is under investigation [36].

VII. CONCLUSION

The neutron magnetic polarizability has been calculated
using a novel approach in which asymmetric operators
are used at the source and sink. The use of gauge-
invariant Gaussian smearing at the source encapsulates
the dominant QCD dynamics, while a gauge-fixed Uð1Þ
two-dimensional eigenmode projection technique is used at
the sink to encode the Landau level physics resulting from
the presence of the uniform magnetic field. A systematic
exploration of the parameter space was used to optimize
operators that couple efficiently to the neutron ground state
in a magnetic field. The use of this Landau mode projection
at the sink has for the first time enabled the fitting of
plateaus in the magnetic polarizability energy shifts.
Calculations at several pion masses have enabled the use

of heavy-baryon chiral effective-field theory to relate the
lattice QCD results to experiment. This enables us to make
a theoretical prediction for the neutron magnetic polar-
izability of βn ¼ 2.05ð25Þð19Þ×10−4 fm3. This prediction
is founded on ab initio lattice QCD simulations, with
effective-field theory techniques used to account for the
finite-volume of the lattice, disconnected sea-quark-loop
contributions and an extrapolation to the light quark masses
of nature. The resulting value is in agreement with the
current experimental estimates and presents an interesting
challenge for greater experimental precision.
A range of finite-volume extrapolations is performed in

the framework of chiral effective-field theory. As these
curves incorporate the contributions of sea-quark loops,
they are presented as a guide to future lattice QCD
simulations. At the physical pion mass, the 7 fm curve
still differs from the infinite-volume prediction by 6%.
Our result does not directly incorporate the sea-quark-

loop effects of the magnetic field in the lattice simulation,
which would require a separate Monte Carlo ensemble for
each value of B considered and as such is prohibitively
expensive. We also note that in this study we have not
considered the effects from the B-dependent additive quark
mass renormalization that arises due to the use of Wilson-
type fermions [35]. The detailed impact of this effect on
clover fermions has not been studied and will be addressed
in a separate work that is in preparation [36]. While the
effect can be observed in pion correlators, our preliminary
tests indicate it is hidden by the large statistical fluctuations
inherent in baryon correlators.

It is interesting to consider that, in obtaining the
magnetic polarizability, we want to work with small B⃗-
field strengths in order to make use of the perturbative
energy expansion for the neutron. This means we are the
confining phase of QCD, such that quarks cannot have
individual Landau levels. Nonetheless, the success of our
Landau mode sinks indicates that the effects of the
magnetic field on the quark distribution in the neutron
are significant.
Future work will examine the effect of using a gauge-

covariant sink projection based on the eigenmodes of the
two-dimensional Uð1Þ × SUð3Þ Laplacian [15]. This alters
the Landau level structure, breaking the degeneracy and
mixing different levels. Indeed, a recent finite temperature
study using the staggered quark formulation found that the
contribution of the lowest Landau level eigenmodes
remains important even after QCD interactions are intro-
duced [14], further motivating our investigation of the
effectiveness of an eigenmode-projected sink which is
aware of the QCD gauge field.
Another potential avenue for future investigation would

be to explore relativistic corrections to the energy-field
expansion of Eq. (1). To move beyond the use of Eq. (1)
requires one to separate the ratio of correlators in Eq. (19)
to fit spin-field aligned and antialigned correlators sepa-
rately. It will be interesting to examine the behavior of these
correlators and the extent to which QCD correlations can be
exploited to obtain accurate fits for the energies EðBÞ þm
and EðBÞ −m. These considerations may be particularly
important in the study of charged hadrons.
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