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Photon operators with the proper JPC quantum numbers are constructed, including one made of
elementary plaquettes. In compact U(1) lattice gauge theory, these explicit photon operators are shown to
permit direct confirmation of the massive and massless states on each side of the phase transition. In the
Abelian Higgs model, these explicit photon operators avoid some excited state contamination seen with the
traditional composite operator, and allow more detailed future studies of the Higgs mechanism.
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I. INTRODUCTION

In a pioneering work, Berg and Panagiotakopoulos [1]
showed the existence of a massless photon in compact U(1)
lattice gauge theory. The massless state that they found
corresponds, in the continuum, to an axial vector super-
position of two opposite-helicity nonzero-momentum pho-
tons. The operator used to interpolate this state transforms
as Tþ−

1 under lattice rotations, parity transformation and
charge conjugation. (T1 is the cubic lattice representation
for angular momentum J ¼ 1.) This operator is constructed
from a combination of four plaquettes and has been used in
a number of subsequent lattice studies, e.g., [2–7]. In their
paper, Berg and Panagiotakopoulos [1] mention the pos-
sibility of using operators constructed from 8-link Wilson
loops [8] to investigate states that transform as T−−

1 , which
corresponds to the quantum numbers of a single photon on
the lattice. As far as we are aware, such operators have not
been implemented in a lattice simulation until now.
In this paper we investigate a number of different

operators that can be used to interpolate the photon. In
Sec. II examples of operators with T−−

1 transformation
properties are constructed using 8-link Wilson loops. As
well it is shown that, although a single plaquette does not
contain any T−−

1 , a particular linear combination of 8
elementary plaquettes does form a pure T−−

1 operator.
A numerical simulation of compact U(1) lattice gauge

theory is discussed in Sec. III. As is well known, this theory
has a weak-coupling unconfined phase in which free

photons should exist [9]. Correlation functions of the
operators presented in Sec. II were calculated in this phase
and are shown to describe a state with a dispersion relation
consistent with a massless particle. Furthermore, it is
shown that although there are multiple T−−

1 operators they
are all propagating the same state.
The Tþ−

1 four-plaquette operator of Ref. [1] is adequate
to expose the massless photon but there are situations
where an operator with the proper photon transformation
properties is needed. As an example we consider the lattice
version of the abelian Higgs model [10], i.e., a field theory
of a self-coupled charged scalar field. As a function of its
parameters this model has a Coulomb phase in which
charged particles and massless photons exist, but the model
also has confined and Higgs regions where charged and
massless states disappear from the spectrum [11,12]. The
Abelian Higgs model has been studied extensively using
nonperturbative lattice methods [12–17]. To expose the
Higgs boson and the massive vector boson expected in the
Higgs regime, it is typical to use composite gauge-invariant
operators [13] constructed from the scalar field and gauge
field links. Here we focus on the vector boson. On the
lattice it has transformation properties T−−

1 like the photon.
To demonstrate that the photon acquires a mass in the
Higgs regime, and that it mixes with and describes the
same state as the composite vector boson operator, requires
a photon operator with the correct quantum numbers.
This is discussed in Sec. IV.
Section V gives a summary and mentions possible

future work.

II. PHOTON OPERATORS

The simplest gauge-invariant operator made of gauge
links is the elementary plaquette. With three spatial planes
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and two orientations (clockwise and counterclockwise),
there are 6 spatial plaquettes in total. Standard group theory
methods allow a calculation of the character table, and from
that the multiplicities, resulting in

plaquette ¼ Aþþ
1 ⊕ Eþþ ⊕ Tþ−

1 : ð1Þ

Notice that dimðA1ÞþdimðEÞþdimðT1Þ¼ 1þ2þ3¼ 6
is the number of plaquettes, as required. Also notice
that there is no T−−

1 in the elementary plaquette so it cannot
couple to a single photon. The 3 imaginary parts of the
plaquettes give the Tþ−

1 and the 3 real parts give the Aþþ
1

and Eþþ.
To construct an operator with nonzero momentum, it is

convenient to replace each individual plaquette with the
sum of 4 plaquettes in the same plane that touch a specific
lattice site x. This does not change the group theory given
above. We refer to the imaginary part of this 4-plaquette
operator as O1,

ð2Þ

where x is at the center of each diagram and i is orthogonal
to the page. Previous authors [1–5,7] have used this O1 to
couple to a pair of photons.
The same group theory approach reveals 8-link Wilson

loops that do contain T−−
1 . Some examples are listed in

Table 3.2 of [8], including two “figure eight” paths that they
call #12 and #13 with the following contents:

#12∶ Aþþ
1 ⊕ Aþþ

2 ⊕ 2Eþþ ⊕ T−−
1 ⊕ T−−

2 ; ð3Þ

#13∶ Aþþ
1 ⊕ Eþþ ⊕ Tþþ

2 ⊕ T−−
1 ⊕ T−−

2 : ð4Þ

We take an additional step to extract the pure T−−
1 from

each, thus creating our O2 and O3:

ð5Þ

ð6Þ

where x is at the center of each diagram1 and i points
toward the top of the page. Each of these two operators is
pure T−−

1 and will couple to a single photon.
Although the elementary plaquette does not contain T−−

1 ,
one can build a sum of elementary plaquettes that does.
Moreover, an operator can be constructed from elementary
plaquettes that couples only to T−−

1 . The result, denoted by
O4, is a sum of 8 elementary plaquettes. For compactness,
we draw all 8 plaquettes in a single diagram:

ð7Þ

where x is at the center of each diagram and i points toward
the top of the page. This diagram shows that the link
directions are reminiscent of a solenoid. This operator is
found to produce an excellent signal for the photon.
Explicit expressions for O1, O2, O3 and O4 are given in

the Appendix. Other T−−
1 operators could be constructed as

well, and Table 3.2 of [8] provides a good starting point
since it lists several Wilson loops containing a T−−

1

component. We chose the two operators (#12 and #13)
from Table 3.2 that contain no Tþ−

1 component and, being
planar, they are also straightforward to implement.
Likewise our O4 operator is not the only sum of plaquettes
that is purely T−−

1 but, having only 8 plaquettes, it is a
convenient operator and in numerical simulations it turns
out to have the smallest statistical fluctuations among our
list of operators.

III. COMPACT U(1) LATTICE GAUGE THEORY

The compact U(1) gauge theory on a hypercubic lattice is
described by the action

SG ¼ −
β

2

X
P

ðUP þU�
PÞ ð8Þ

where UP are products of links around the elementary
plaquettes. In terms of real phase angles the gauge field
links UμðxÞ are eiθμðxÞ. At strong coupling, i.e., small β, the
theory is confining due to the self interaction induced by
exponentiating the gauge field. At β ¼ βc ≈ 1.01 there is a
transition to an unconfined phase [9,18,19]. For β > βc
there should be a massless vector state (photon) in the
spectrum.
Numerical simulationswere carried out on 164 site lattices

with periodic boundary conditions for a variety ofβ values up
to β ¼ 2.8. A multi-hit Metropolis updating algorithm was
used. As an example of the correlation functions that were

1Another option for Oi
2ðxÞ is to include 8 more terms in the

sum, where x can be at each of the 4 corners of the Wilson loop in
the 2 available planes.
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obtained, Fig. 1 shows the diagonal correlators at β ¼ 1.2 of
the operators discussed in Sec. II projected with one unit of
lattice momentum (p⃗ ¼ π

8
ð1; 0; 0Þ and permutations with

momentum transverse to the vector operator). Energies were
obtained using a constrained two-exponential fit [20] over
the whole time range (excluding the source point). The
results for β > βc are shown in Fig. 2 for operators projected
with one and two lattice units of momentum. The dashed
lines in the figure are the energies calculated using the lattice
dispersion relation

2 coshðEÞ ¼ m2 þ 8 − 2
X
i

cosðpiÞ ð9Þ

with m2 ¼ 0.
Below βc the photon operators propagate massive states.

This can be inferred, e.g., from the momentum-projected
correlation functions of O4 calculated at some values

of β just below the critical value and plotted in Fig. 3.
The correlators survive only a few time steps before
disappearing into noise so it is difficult to determine the
asymptotic value of the ground state energy. However, the
rate of falloff of the correlation functions where they are
statistically significant would indicate a mass greater than
one, i.e., larger than the cutoff scale. This is consistent with
the results of Refs. [1,21].
To confirm that our set of four operators is providing

evidence that the theory contains just one photon, we can
study the full 4 × 4 correlation matrix of sources and sinks.
First, the correlation function ofO1 with any of the others is
found to be statistically consistent with zero at every time
step, as expected because O1 contains no T−−

1 component
while the others are exclusively T−−

1 . Next we consider all
elements of the 3 × 3 correlation matrix forO2,O3 andO4.
The normalization of each operator is chosen such that

its diagonal correlator is unity at t ¼ 1 (which is right
beside the source). This rescales all 9 elements of the
correlation matrix as follows:

CijðtÞ →
CijðtÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ciið1ÞCjjð1Þ
p ð10Þ

where i ∈ ð2; 3; 4Þ and j ∈ ð2; 3; 4Þ. The resulting corre-
lation functions are shown in Fig. 4. Data sets in this plot
have a small horizontal offset for clarity, but the main point
is that all nine sets are essentially indistinguishable up to
some overall minus signs. Mathematically, the plot says our
correlation matrix is proportional to

M ¼

0
B@

1 1 −1
1 1 −1

−1 −1 1

1
CA ð11Þ

which has a pair of vanishing eigenvalues and a single
eigenvalue equal to 3. The corresponding eigenvectors are
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FIG. 1. Correlation functions of photon operators in compact
U(1) lattice gauge theory at β ¼ 1.2 plotted versus Euclidean
timestep t.
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FIG. 2. Energies extracted from correlators of photon operators
in compact U(1) lattice gauge theory as a function of β. Lower
points are for one unit of lattice momentum. Upper points are for
two units. The dashed lines show energies calculated using the
lattice dispersion relation for a massless particle.
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FIG. 3. Momentum-projected correlation functions of O4 at β
values just below βc ≈ 1.01 in compact U(1) lattice gauge theory.
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λ1 ¼ 0 ⇒ v1 ¼ O2 −O3; ð12Þ

λ2 ¼ 0 ⇒ v2 ¼ O2 þO3 þ 2O4; ð13Þ

λ3 ¼ 3 ⇒ v3 ¼ O2 þO3 −O4: ð14Þ

Calculations of the vivj correlation functions confirm that
all of them are statistically consistent with zero at every
time step, except v3v3 which alone retains the original
photon signal from Fig. 4. Therefore the original operators
Oi are all coupling to the same photon, and v3 is
maximizing our overlap with that photon.

IV. ABELIAN HIGGS MODEL

As an application for the operators discussed in the
previous section, we consider the Abelian Higgs model.
The lattice action for this model is S ¼ SG þ Sφ where the
gauge action was defined in Eq. (8) and

Sφ ¼ −κ
X
x;μ

ðφ�ðxÞUμðxÞφðxþ μ̂Þ þ H:c:Þ

þ
X
x

φ�ðxÞφðxÞ þ λ
X
x

ðφ�ðxÞφðxÞ − 1Þ2: ð15Þ

The phase diagram at fixed λ is shown schematically in
Fig. 5. Numerical calculations for this work were done
assuming that the complex scalar field φ has a fixed unit
norm, i.e., the value in the limit λ → ∞. In this limit only
the hopping term of Sφ is needed and this saves some time
in doing the simulation. The interest here is in showing the
existence of a massless photon in the Coulomb phase and
the fate of the photon in the Higgs region and we do not
expect these qualitative aspects to depend on λ. In addition
to the four operators discussed in previous sections, the
composite vector boson operator

O5 ¼ Imφ�ðxÞUiðxÞφðxþ îÞ ð16Þ

is considered here.
Numerical simulations were carried out on 164 lattices

for a range of κ values at fixed β ¼ 2, well above the critical
β of the pure gauge theory. Although strictly speaking not
an order parameter, the quantity

GðxÞ ¼ Re
X
μ

φ�ðxÞUμðxÞφðxþ μ̂Þ ð17Þ

is used to locate the transition region from the Coulomb to
the Higgs phase. The results are plotted in Fig. 6 where one
can see that the critical κ is around 0.16. Diagonal
correlators of the operators O1 to O4 projected with one
unit of momentum were calculated for a range of κ values
using a sample of 80 000 field configurations. Figure 7
showing the results at κ ¼ 0.145 illustrates the quality of
the correlators. The energies extracted from diagonal
photon correlators are plotted in Fig. 8. The dashed line
in the figure shows the energy expected for a zero-mass
particle. A massless photon exists in the Coulomb region
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FIG. 4. Entries in the 3 × 3 correlation matrix for O2, O3 and
O4 in compact U(1) lattice gauge theory with one unit of
momentum at β ¼ 2.
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FIG. 6. The expectation value of GðxÞ as a function of κ for the
Abelian Higgs model at β ¼ 2 and λ ¼ ∞.
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but beyond κ ¼ 0.16 the increasing energies indicate an
increasing nonzero mass.
The correlation function of the composite boson operator

O5 is plotted in Fig. 9 for κ values in the Higgs region. Near
the transition the correlators are too noisy to obtain a
reliable estimate of the ground state energy. At κ ¼ 0.175
and above, the ground state energy can be determined
reasonably well and the values are shown in Fig. 10 for
correlators projected with one unit of momentum. For
comparison the energies extracted from the correlator ofO4

are also shown.
In the semiclassical treatment of the Abelian Higgs

model, the massive vector boson appears as an elementary
field [10] and it is natural to interpret it as a photon having
acquired a mass. In contrast, nonperturbative lattice cal-
culations typically use the gauge-invariant composite
operator O5 to reveal the presence of a massive vector
state [13]. As shown here there are photon interpolating

operators which, when used in the Higgs region, exhibit a
mass compatible with that of the composite vector boson.
The question is whether the photon operators and the
operator O5 are propagating the same state or not. To
answer this question, cross correlations between different
operators are needed. In previous studies [13] where only
the simple plaquette operator O1 was considered, the
mixing of the photon with the composite vector could
not be addressed. Recall that operatorO1 transforms as Tþ−

1

and has no correlation with O5 which transforms as T−−
1 .

What is different in this work is that operators with the
appropriate photon transformation properties T−−

1 have
been introduced so cross correlations can be studied.
It was shown in Sec. III that the operatorsO2,O3 andO4

all propagate the same photon state so, to study cross
correlations with O5, the operator O4 which has the
smallest statistical fluctuations is chosen. Results will be
shown here for κ ¼ 0.180. Other κ’s at 0.175 and above
show similar behaviour. The four correlation functions
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FIG. 7. Correlation functions of photon operators in the
Abelian Higgs model at κ ¼ 0.145, β ¼ 2 and λ ¼ ∞.
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FIG. 8. Energies extracted from correlators of photon operators
projected with one unit of momentum in the Abelian Higgs model
as a function of κ at β ¼ 2 and λ ¼ ∞. The dashed line shows
energy calculated using the lattice dispersion relation for a
massless particle.
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FIG. 9. Correlation functions of the composite vector operator
O5 in the Abelian Higgs model at β ¼ 2 and λ ¼ ∞.
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FIG. 10. Energies extracted from the correlators of O5 and O4

in the Higgs region of the Abelian Higgs model.
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(momentum projected) that can be constructed using
operators O4 and O5 are shown in Fig. 11. It is apparent
even without a quantitative fit that the diagonal correlator of
O5 contains a substantial heavy non-ground state contri-
bution which is not propagated by the photon operator O4.
The cross correlators falling nicely in between the diagonal
correlators is already an indication of the high degree of
correlation between the operators.
The eigenvalues of the 2 × 2 correlator matrix were

calculated at every time step and are plotted in Fig. 12. The
two eigenvalues are very different in magnitude and time
dependence. The ground state energy extracted from the
large eigenvalue is compatible with that extracted from the
diagonal correlators alone. This is shown in Fig. 13 along
with results for other κ values. The small eigenvalue is
statistically significant only near the source and reflects the
fact that O5 can excite some high lying states. This
eigenvalue is too small to measure at larger time separations
which is an indication that the operators O4 and O5

propagate the same ground state. This result reminds us

that in the nonperturbative context the view that the massive
vector boson present in the Higgs regime is a massive
photon is too simplistic and does not account for the fact
that in a field theory all allowable field configurations can
contribute to physical states.

V. SUMMARY

Past studies of lattice theories containing U(1) gauge
fields provided evidence of a massless photon in the
theory’s unconfined phase without having a single-photon
operator, relying instead on an operator for a pair of
photons. Here we have constructed three different operators
with single-photon transformation properties T−−

1 and used
them to confirm the massless photon. The pattern of cross
correlations among these operators shows that they are all
propagating the same photon state. Our “solenoidal”
operator (here called O4) was found to give a particularly
robust signal for the photon.
As a further application of the single photon operators

we consider the fate of the photon in the Abelian Higgs
model. Past lattice studies of this model have used a
composite vector operator (here called O5) built from both
the scalar and gauge fields to expose the presence of a
massive vector particle in the Higgs regime. Now that we
have T−−

1 operators built purely from gauge fields (O2, O3

andO4), cross correlations can be studied and it was shown
that the photon and composite vector operators couple to
the same massive vector state. It was also observed that
there is some excited state contribution present in the
correlator of O5 which is absent from O2, O3 and O4. It
may be interesting for future work to study these excited
state effects in detail.
The photon operators discussed in this work can be

applied in other field theories. Of particular relevance may
be SUð2Þ × Uð1Þ gauge theory with a complex Higgs
doublet, where the photon, customarily understood to
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FIG. 11. The four correlation functions constructed from the
operators O4 and O5 at κ ¼ 0.180.
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emerge as a linear combination of the SU(2) and U(1)
gauge fields, remains massless in the Higgs phase. The
operators discussed here could be useful for investigating
the lattice version of this scenario.
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APPENDIX: EXPLICIT OPERATORS

The operators are constructed in a spatial lattice at a fixed
Euclidean time. Using i, j, k to denote the 3 distinct spatial
directions, the operators are

Oi
1ðxÞ ¼ ImðPjkðxÞ þ Pjkðx − ĵÞ þ Pjkðx − ĵ − k̂Þ þ Pjkðx − k̂ÞÞ; ðA1Þ

Oi
2ðxÞ ¼ ImðQijðxÞ þQijðx − îÞ þQikðxÞ þQikðx − îÞÞ; ðA2Þ

Oi
3ðxÞ ¼ ImðRijðxÞ þ SijðxÞ þ RikðxÞ þ SikðxÞÞ; ðA3Þ

Oi
4ðxÞ ¼ ImðPijðxÞ þ Pjiðx − ĵÞ þ Pijðx − îÞ þ Pjiðx − î − ĵÞPikðxÞ þ Pkiðx − k̂Þ þ Pikðx − îÞ þ Pkiðx − î − k̂ÞÞ; ðA4Þ

where

PijðxÞ ¼ UiðxÞUjðxþ îÞU†
i ðxþ ĵÞU†

jðxÞ; ðA5Þ

QijðxÞ ¼ UjðxÞUiðxþ ĵÞU†
jðxþ îÞU†

i ðxÞU†
jðx − ĵÞUiðx − ĵÞUjðxþ î − ĵÞU†

i ðxÞ; ðA6Þ

RijðxÞ ¼ UiðxÞUjðxþ îÞU†
i ðxþ ĵÞU†

jðxÞU†
jðx − ĵÞU†

i ðx − î − ĵÞUjðx − î − ĵÞUiðx − îÞ; ðA7Þ

SijðxÞ ¼ UiðxÞU†
jðxþ î − ĵÞU†

i ðx − ĵÞUjðx − ĵÞUjðxÞU†
i ðx − îþ ĵÞU†

jðx − îÞUiðx − îÞ: ðA8Þ

Another option for operator O2 is given by

Oi
2ðxÞ ¼ ImðQijðxÞ þQijðx − îÞ þQijðx − ĵÞ þQijðx − î − ĵÞ þQijðxþ ĵÞ þQijðx − îþ ĵÞ

þQikðxÞ þQikðx − îÞ þQikðx − k̂Þ þQikðx − î − k̂Þ þQikðxþ k̂Þ þQikðx − îþ k̂ÞÞ: ðA9Þ
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