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The chromoelectric polarizability of J=ψ is extracted from lattice QCD data on the nucleon-J=ψ
potential in the heavy quark limit. The value of αð1SÞ ¼ ð1.6� 0.8Þ GeV−3 is obtained. This value may
have a systematic uncertainty due to lattice artifacts which cannot be estimated at present, but will become
controllable in future studies. We also comment on the possibility of hadrocharmonia.
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I. INTRODUCTION

The chromoelectric polarizability α of a hadron describes
the hadron’s effective interaction with soft gluonic fields.
This property is analogous to the electric polarizability
quantifying the response of a neutral atom placed in an
external electric field, which describes the emergence of
induced dipole moments and van der Waals forces.
The chromoelectric polarizabilities of charmonia are

important quantities in the heavy quark effective theory.
Among their most interesting applications are studies of
hadrocharmonia: when the compact charmonium pene-
trates a light hadron, its interaction with the soft gluon
fields inside the hadron is systematically described in terms
of a multipole expansion [1,2]. The strength of the effective
interaction between a charmonium and a light hadron is
determined by the chromoelectric polarizability of the
charmonium [3,4]. If this effective interaction is strong
enough, bound states emerge: hadrocharmonia [4–7]. The
binding of J=ψ in nuclear medium and nuclei was also
studied [8–11].
Other important applications of chromoelectric polar-

izabilities include the description of hadronic transitions
between charmonium resonances [12,13] and the interac-
tion of slow charmonia with a nuclear medium. The
chromoelectric polarizabilities also play a vital role for
the understanding of photoproduction and hadroproduction
of charmonia and charmed hadrons on nuclear targets with
important applications for the diagnostics of the creation of
quark gluon plasma in heavy-ion collisions; see [14–18]
and references therein.

Despite their importance little is known about the
phenomenological values of these nonperturbative char-
monium properties. Only on the transitional chromoelectric
polarizability αð2S → 1SÞ is some information available
[4]. The value of αð1SÞ could in principle be inferred from
the rare decay J=ψ → ππlþl− with soft pions [19], but
such an analysis is challenging and αð1SÞ is not yet known.
A nonperturbative determination of αð1SÞ is therefore of

great importance. In this work we present a method to
determine αð1SÞ from lattice QCD calculations of the J=ψ -
nucleon potential. We estimate conservatively the theoreti-
cal uncertainties which are associated with underlying
assumptions, and discuss critically how these assumptions
can be tested with future lattice data. We also comment on
the possibility of nucleon-ψð2SÞ bound states.

II. THE EFFECTIVE QUARKONIUM-BARYON
INTERACTION

The interaction of a heavy quarkonium with a baryon is
dominated in the heavy quark limit by the emission of two
virtual color-singlet chromoelectric dipole gluons [3,4] and
described, for S-wave quarkonia, by an effective potential
in terms of the quarkonium chromoelectric polarizability α
and energy-momentum tensor (EMT) densities of the
baryon as [7]

VeffðrÞ ¼ −α
4π2

b
g2c
g2s

�
νT00ðrÞ − 3pðrÞ

�
;

ν ¼ 1þ ξs
bg2s
8π2

; ð1Þ

where b ¼ ð11
3
Nc − 2

3
NfÞ is the leading coefficient of the

Gell-Mann–Low function, gc (gs) is the strong coupling
constant renormalized at the scale μc (μs) associated with
the heavy quarkonium (baryon) state. The parameter ξs
denotes the fraction of the baryon energy carried by gluons

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 98, 034030 (2018)

2470-0010=2018=98(3)=034030(7) 034030-1 Published by the American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.98.034030&domain=pdf&date_stamp=2018-08-30
https://doi.org/10.1103/PhysRevD.98.034030
https://doi.org/10.1103/PhysRevD.98.034030
https://doi.org/10.1103/PhysRevD.98.034030
https://doi.org/10.1103/PhysRevD.98.034030
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


at the scale μs [13]. In Eq. (1) T00ðrÞ and pðrÞ are the
energy density and pressure inside the baryon [20], which
satisfy respectivelyZ

d3rT00ðrÞ ¼ MB;
Z

d3rpðrÞ ¼ 0; ð2Þ

where MB denotes the mass of the baryon. The derivation
of Eq. (1) is justified in the limit that the ratio of the
quarkonium size is small compared to the effective gluon
wavelength [4], and a numerically small term proportional
to the current masses of the light quarks is neglected.
Due to Eq. (2) the effective potential has the following

normalization and mean square radiusZ
d3rVeffðrÞ ¼ −α

4π2

b
g2c
g2s

νMB;

hr2effi≡
R
d3rr2VeffðrÞR
d3rVeffðrÞ

¼ hr2Ei −
12d1
5νM2

B
ð3Þ

with the mean square radius of the energy density hr2Ei ¼R
d3rr2T00ðrÞ=MB and the D-term d1 ¼ 5

4
MB

R
d3rr2pðrÞ

[20,21]. Using the normalization condition for Veff in
Eq. (3) to eliminate the ratio ðgc=gsÞ2 from Eq. (1) and
exploring the large-r behavior of T00ðrÞ and pðrÞ derived in
[22] we obtain the following expression for the long-
distance behavior of VeffðrÞ in the chiral limit, which is
convenient for our purposes:

VeffðrÞ ¼
27

16π2
1þ ν

ν

g2A
MBF2

π

1

r6

Z
d3r0Veffðr0Þ for r large;

ð4Þ
where Fπ ¼ 93 MeV is the pion decay constant, and gA is
the axial coupling constant with gA ¼ 1.26 for the nucleon.
Notice that this result refers to the leading order of the
expansion in a large number of colorsNc [22] withNc → ∞
taken first, andmπ → 0 taken second (in general these limits
do not commute). For finite mπ the behavior is VeffðrÞ ∝
expð−2mπrÞ=r2 at r ≫ 1=mπ [22].

III. CHROMOELECTRIC POLARIZABILITIES

The chromoelectric polarizabilities α are important
properties of quarkonia. Little is known about them
especially for charmonia, except that the chromoelectric
polarizabilities of J=ψ and ψ 0, αð1SÞ and αð2SÞ, are real
and positive, and satisfy the Schwarz inequality αð1SÞα
ð2SÞ ≥ αð2S → 1SÞ2 [4]. The chromoelectric polarizabil-
ities were calculated in the large-Nc limit in the heavy
quark approximation [23]. Applying the results to the
charmonium case yields [7]

αð1SÞpert ≈ 0.2 GeV−3; ð5aÞ
αð2SÞpert ≈ 12 GeV−3; ð5bÞ

αð2S → 1SÞpert ≈ −0.6 GeV−3: ð5cÞ
Independent phenomenological information on the value

of the 2S → 1S transition polarizability is available from
analyses of data on the decay ψ 0 → J=ψππ [4]

jαð2S → 1SÞj ≈ 2 GeV−3ðphenomenologyÞ: ð6Þ
In the heavier bottomonium system 1=Nc corrections to
αð1SÞ are of Oð5%Þ [24]. In the charmonium system
presently no information is available on the chromoelectric
polarizabilities besides the perturbative estimates [23] and
the phenomenological value for the 2S → 1S polarizability
[4] which is only in rough agreement with the perturbative
prediction; see Eq. (5c) vs (6) [notice that ππ final state
interactions [25] may reduce the value in Eq. (6)].
In this situation, independent information on the chro-

moelectric polarizabilities of charmonia is of importance.

IV. EXTRACTION OF THE CHROMOELECTRIC
POLARIZABILITY OF J=ψ

The recent lattice QCD data on the effective charmo-
nium-nucleon interaction [26] put us in the position to
extract the chromoelectric polarizability αð1SÞ of J=ψ . This
nonperturbative determination of αð1SÞ warrants a study,
even though the lattice data [26] (published in a conference
proceeding) may have unestimated systematic uncertain-
ties. The results of Ref. [26] were obtained using 2þ 1
flavor full QCD gauge configurations which were simu-
lated with a Wilson clover quark action on a 163 × 32
lattice with lattice spacing a ¼ 0.1209 fm. Using this
action for heavy quarks “may bring large discretization
errors” as stressed in [26]. Another concern are the
unphysical light quark masses used in [26] which corre-
spond to a pion mass of mπ ¼ 875 MeV. The results of
[26] are in qualitative agreement with earlier studies in
quenched lattice QCD [27]. Until future lattice QCD
studies performed with physical light quark masses on
finer lattices or with relativistic heavy quark action for
charm, we have to keep these points in mind as unestimated
potential systematic uncertainties in our extraction.
The extraction assumes that the charm-quark mass is

sufficiently large to neglect heavy quark mass corrections,
which can be tested with future lattice QCD data. Although
below we will see that the lattice data are compatible with
this assumption, presently also this point has to be kept in
mind as a potential uncontrolled systematic uncertainty.
From Eq. (3) we obtain (here MN denotes the nucleon

mass)

α ¼ −
b

4π2νMN

g2s
g2c

Z
d3rVeffðrÞ: ð7Þ

Let us discuss the different factors which play a role in the
extraction of α and their uncertainties.
The coefficient ν introduced in Eq. (1) was estimated on

the basis of the instanton liquid model of the QCD vacuum

MAXIM V. POLYAKOV and PETER SCHWEITZER PHYS. REV. D 98, 034030 (2018)

034030-2



and the chiral quark soliton model, where the strong
coupling constant freezes at a scale set by the nucleon
size at g2s=ð4πÞ ≈ 0.5. Assuming ξs ≈ 0.5 as suggested by
the fraction of nucleon momentum carried by gluons in DIS
at scales comparable to μs one obtains the value ν ≈ 1.5 [7].
This is supported by the analysis of the nucleon mass
decomposition [28] with ξs ≈ 1

3
leading to ν ≈ 1.4. Based on

these results we will use

ν ≈ 1.5� 0.1 ð8Þ
in this work. Let us remark that a similar result ν ¼
ð1.45…1.6Þ was obtained for the pion in Ref. [13].
In order to estimate the factor g2s=g2c we use two extreme

approaches. One estimate is based on effective nonper-
turbative methods. For that we use the nonperturbative
result g2s=ð4πÞ ≈ 0.5 from the instanton vacuum model
mentioned above which refers to a low scale of the
nucleon; see above. Interestingly, phenomenological cal-
culations of charmonium properties require g2c=ð4πÞ ¼
0.5461 at a scale associated with charmonia [29]. This
indicates that g2s=g2c ∼ 1 is a reasonable assumption [7].
Another “extreme” result is provided by the leading-order
QCD running coupling constant. We follow Ref. [30] where
the description of the strong coupling constant was opti-
mized to guarantee perturbative stability down to a low
initial scale μ2LO ¼ 0.26 GeV2 of the parametrizations for the
unpolarized parton distribution functions. In this way we
obtain g2s=ð4πÞ ¼ 0.46 at a scale set by the nucleon mass,
while g2c=ð4πÞ ¼ ð0.27…0.36Þ depending on whether one
evaluates the running coupling constant at the scale mc or
2mc [the leading-order derivation of Eq. (1) does not fix
the scale, and both choices are equally acceptable]. In this
way we obtain the “leading-order perturbative estimate”
g2s=g2c ∼ ð1.3…1.7Þ. This indicates that this quantity is
associated with a substantial theoretical uncertainty. In order
to cover both extreme cases, we will assume that

g2s
g2c

≈ 1.37� 0.37: ð9Þ

The information on
R
d3rVeffðrÞ is obtained from the

lattice QCD calculation [26] performed with unphysical
light quark masses such that mπ ¼ 875 MeV and MN ¼
1816 MeV but with a physical value of mc. In the heavy
quark limit the effective potential factorizes in the chromo-
electric polarizability α and nucleonic properties, and we
may expect the extracted value of α to be weakly affected
by the unphysical light quark masses. (The heavy quark
mass corrections might be sensitive to light quark masses.
This is part of the currently uncontrolled systematic
uncertainties, which can be revisited in the future when
lattice calculations with physical light quark masses will
become available for Veff.)
In the lattice calculation VeffðrÞ was computed in the

region 0 ≤ r ≤ 1.7 fm in the angular momentum channels
J ¼ 1

2
and J ¼ 3

2
as shown in Fig. 1. The lattice data in both

channels can be fitted with functions of the form

VeffðrÞ ¼ C0e
− r

r0
1

1þ r2

r2
1

þ C2e
−r2

r2
2 ; ð10Þ

where the first term is defined such that at large r it has the
form dictated by chiral symmetry [22], while the second
term constrains the parametrization in the small-r region.
(We are not aware of a deep physical reason why the second
term should be Gaussian, besides the fact that among the
Ansätzewe explored it yields the lowest χ2; see below.) The
best fit parameters in the channel J ¼ 1

2
are as follows:

Cð1=2Þ
0 ¼ −ð178.2� 3.7Þ MeV;

rð1=2Þ0 ¼ ð0.573� 0.065Þ fm;

rð1=2Þ1 ¼ ð0.429� 0.041Þ fm;

Cð1=2Þ
2 ¼ −ð157.4� 4.3Þ MeV;

rð1=2Þ2 ¼ ð0.091� 0.003Þ fm;

χ2d:o:f: ¼ 0.18: ð11Þ
The best fit parameters in the channel J ¼ 3

2
are as

follows:

-300

-200

-100

 0

 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6

(a)Veff(r)/MeV     J = 1
2

r/fm

best fit
lattice data

-10

 0

 1  1.1  1.2  1.3  1.4  1.5  1.6  1.7

chiral tail

-300

-200

-100

 0

 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6

(b)Veff(r)/MeV     J = 3
2

r/fm

best fit
lattice data

-10

 0

 1  1.1  1.2  1.3  1.4  1.5  1.6  1.7

chiral tail

FIG. 1. Effective J=ψ -nucleon potential VeffðrÞ as function of r from the lattice QCD calculation [26] and the best fits (10)–(12) in the
channels: (a) J ¼ 1

2
, and (b) J ¼ 3

2
. The shaded areas show the 1-σ regions of the fits. The insets show the regions of 1 fm < r < 1.7 fm

where the available lattice data are compatible within error bars also with zero or with chiral predictions.

DETERMINATION OF THE J=ψ CHROMOELECTRIC … PHYS. REV. D 98, 034030 (2018)

034030-3



Cð3=2Þ
0 ¼ −ð160.4� 3.3Þ MeV;

rð3=2Þ0 ¼ ð0.619� 0.073Þ fm;

rð3=2Þ1 ¼ ð0.426� 0.039Þ fm;

Cð3=2Þ
2 ¼ −ð136.0� 3.9Þ MeV;

rð3=2Þ2 ¼ ð0.088� 0.004Þ fm;

χ2d:o:f: ¼ 0.17: ð12Þ

The fits are shown in Fig. 1. Several remarks are in order.
First, the potentials in both channels are very similar, and

agree with each other within�5% relative accuracy. In fact,
except for the point at r ¼ 0 both lattice data sets are
compatible with each other within error bars. Let us remark
that, if heavy quark mass corrections play a role, one should
expect them to have an impact especially in the region of
small r≲ 1=mc ≈ 0.13 fm. The independence of VeffðrÞ
of J ¼ 1

2
or 3

2
is an important consistency check of our

approach. The effective potential is universal in our
approach, and differences due to different J are expected
to be suppressed in the heavy quark limit, as we observe.
Thus, we have no indication that heavy quark mass
corrections are significant for VeffðrÞ in the charmonium
system. As mentioned above, this point can be tested
quantitatively with future lattice data.
Second, chiral symmetry dictates r0¼ð2mπÞ−1¼0.11fm.

The fits are a factor of 5 off. Notice, however, that the lattice
data clearly constrain VeffðrÞ in both channels only up to
about r≲ 1 fm. It is likely that this limited r-region does not
extend far enough to see the chiral asymptotics. Indeed, for
1 fm < r < 1.7 fm the lattice data on VeffðrÞ are actually
compatiblewith zerowithin error bars; see the insets inFig. 1.
Notice, however, that a fit with the fixed parameter r0 ¼
ð2mπÞ−1 (withmπ ¼ 875 MeV here) has still an excellent χ2

per degree of freedom of χ2d:o:f: ¼ 0.4 for both channels. This
is remarkable and indicates that the lattice data are compat-
ible with chiral symmetry.
Third, we explored also other shapes for the fit functions

with practically no difference in the region r≲ 1 fm where
the lattice data have the strongest constraining power. We
will comment below on the region r > 1 fm.

In order to evaluate
R
d3rVeffðrÞ we consider separately

the region r < 1 fm where the lattice data are clearly
nonzero, and r ≥ 1 fm where the lattice data are compatible
with zero within error bars (including the region r > 1.7 fm
with no available lattice data); see the inset in Fig. 1. In the
region r < 1 fm the fits in Eqs. (10)–(12) yield

Z
r<1 fm

d3rVeffðrÞ ¼
(
ð−9.3� 0.8Þ GeV−2 for J ¼ 1

2
;

ð−8.9� 0.8Þ GeV−2 for J ¼ 3
2
:

ð13Þ
The uncertainty of these results is due to the statistical
uncertainty of the lattice data. We tried several other fit
Ansätze which all had larger χ2d:o:f:, and gave results com-
patible with (13) within statistical error bars. The systematic
uncertainty due to the choice of fit Ansatz is therefore
negligible compared to the statistical uncertainty of the fits.
In the region r > 1 fm systematic uncertainties due to the

choice of fit Ansatz are not negligible. The form (10) of the
best fit is well motivated by chiral symmetry. But the lattice
data [26] have a modest constraining power for 1 fm <
r < 1.7 fm, and no lattice data are available beyond that.
To proceed we assume that the fits (10)–(12) give useful
estimates for the central values of contributions from
r > 1 fm to the integrals over VeffðrÞ, and assign a system-
atic error by using two extreme estimates. For the first
estimate we approximate VeffðrÞ ¼ 0 for r ≥ 1 fm, which
fits the lattice data in the region 1 fm < r < 1.7 fm with a
χ2d:o:f: ¼ 0.7, and certainly leads to overestimates of the
contributions from the large-r region to

R
d3rVeffðrÞ in both

channels. For the second extreme estimate we assume
VeffðrÞ ∝ 1=r6 with the coefficient given by Eq. (4).
Notice that the coefficient strictly speaking needs the full
result for

R
d3rVeffðrÞ which we do not yet know. At this

point one could design an iterative procedure, but for
our purposes it is sufficient to assume that

R
d3rVeffðrÞ≈

−ð10…20Þ GeV−2. This is also compatible with the lattice
data [a fit assuming

R
d3rVeffðrÞ ¼ −15 GeV−2 has χ2d:o:f: ¼

0.20 and is shown in Fig. 1] and certainly leads to an
underestimate of the large-r contribution to the integral. To
summarize, in the large-r region we obtain

Z
r≥1 fm

d3rVeffðrÞ¼

8>>>>><
>>>>>:

0 J¼ 1
2
;3
2
extremeestimate ðiÞ∶ VeffðrÞ¼ 0 for r> 1 fm;

−ð4.9�3.4ÞGeV−2 J¼ 1
2
→ extrapolation based on the best fit in Eqs: ð10Þ and ð11Þ;

−ð5.4�3.9ÞGeV−2 J¼ 3
2
→ extrapolation based on the best fit in Eqs: ð10Þ andð12Þ

−ð3.3…6.6ÞGeV−2 J¼ 1
2
;3
2
extremeestimate ðiiÞ∶ VeffðrÞwith“chiral tail” for r> 1 fm:

ð14Þ

We use the best fit results as central values and the extreme estimates to assign a systematic uncertainty as follows:

Z
r≥1 fm

d3rVeffðrÞ ¼
(
−4.9� 3.4þ4.9

−1.7 GeV−2 J ¼ 1
2
;

−5.4� 3.9þ5.4
−1.2 GeV−2 J ¼ 3

2
:

ð15Þ
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Combining Eqs. (13) and (15) the final result for the full
integral of the effective potential is

Z
d3rVeffðrÞ¼

(
ð−14.2�0.8þ6.0

−3.8ÞGeV−2 J¼ 1
2
;

ð−14.3�0.8þ6.7
−4.1ÞGeV−2 J¼ 3

2
;

ð16Þ

where the first error is due to the statistical accuracy of the
lattice data in the region r < 1 fm and the second error is
due to the systematic uncertainty in the extrapolation for
r > 1 fm (with the uncertainties from Eq. (15) combined in
quadrature).
From Eqs. (8), (9), and (16) we obtain the value for the

chromoelectric polarizability

αð1SÞ ¼
(
ð1.63� 0.09þ0.69−0.44 � 0.44� 0.11� 0.01Þ GeV−3 J ¼ 1

2
;

ð1.64� 0.09þ0.76−0.47 � 0.44� 0.11� 0.01Þ GeV−3 J ¼ 3
2
;

ð17Þ

with the errors due to the following uncertainties (in this
order): statistical accuracy of the lattice data in the region
r < 1 fm, systematic uncertainty of

R
d3rVeffðrÞ due to

extrapolation in the region r > 1 fm, uncertainty of the
ratio ðgc=gsÞ2 and that of ν, and uncertainty of the lattice
value for MN [the latter was not quoted in [26] but is
estimated to be of the order ofOð10 MeVÞ [31]]. Combing
the uncertainties in quadrature we obtain

αð1SÞ ¼
(

ð1.63� 0.09þ0.82−0.63Þ GeV−3 J ¼ 1
2
;

ð1.64� 0.09þ0.89−0.65Þ GeV−3 J ¼ 3
2
:

ð18Þ

The agreement of the αð1SÞ values extracted from VeffðrÞ in
the J ¼ 1

2
and 3

2
channels supports the assumption that

heavy quark mass corrections do not play a dominant role
in our analysis. Rounding off and combing all sources
(statistical and systematic) of uncertainties, we obtain for
both channels

αð1SÞ ¼ ð1.6� 0.8Þ GeV−3: ð19Þ

We stress that this result has very little sensitivity to the
shape of Veff at small r since we need the integralR
d3rVeffðrÞ where the volume element suppresses the

small-r region. The result is much more sensitive to the
large-r dependence of Veff . We have conservatively esti-
mated the pertinent systematic uncertainty by assuming
extreme limiting cases in Eq. (14). It is important to keep in
mind that the result (19) may have further systematic
uncertainties inherent to the lattice data (discretization
effects, unphysical light quark masses) which cannot be
estimated at this point.

V. POSSIBILITY FOR HADROCHARMONIA

The charmonium-nucleon potential is attractive and
we can study the possibility of a bound state—
hadrocharmonium [5]. A candidate for such a state with
a mass around 4450 MeV was recently observed by LHCb
[32]. To do this we rescale the lattice effective potential by

the factor Mphys
N =Mlattice

N , where Mphys
N ¼ 940 MeV is the

physical nucleon mass and Mlattice
N ¼ 1816 MeV the

nucleon mass obtained in lattice measurements of [26].
We need this rescaling to ensure the physical normalization
condition (3) for the effective potential.
Solving the Schrödinger equation for the rescaled poten-

tial we confirm the conclusion of Ref. [26] that J=ψ does not
form the bound statewith the nucleon. Nowwe can study the
possibility of a nucleon bound statewithψð2SÞ. To do thiswe
note that according to Eq. (1) the shape of the nucleon-ψð2SÞ
potential is the same as for the corresponding potential for
J=ψ ; the only difference is the overall normalization factor
due to chromoelectric polarizability.
Using the results for the shape of the effective potential

extracted here from the lattice data and treating αð2SÞ as a
free parameter, we obtain the following results:

(i) The nucleon-ψð2SÞ bound states can form if
αð2SÞ ≥ αcritð2SÞ ¼ ð8� 4Þ GeV−3, where error
bars are due to the statistical and systematic error
of our fit, and due to the uncertainty of ðgs=gcÞ2; see
Eq. (9). Note that in the ratio αð2SÞ=αð1SÞ many
systematic uncertainties are canceled. For this ratiowe
obtain αcritð2SÞ=αð1SÞ ¼ ð5.0� 0.5Þ. The values of
αcritð2SÞ from the J ¼ 1=2 and J ¼ 3=2 potentials are
indistinguishable within error bars. The obtained
value of αcritð2SÞ is compatible with those obtained
in Refs. [7,33] in completely different frameworks.

(ii) For αð2SÞ ¼ ð24� 12Þ GeV−3 the bound state with
mass 4450 MeV is formed. It may correspond to the
narrow LHCb pentaquark Pcð4450Þ. Again we have
a good agreement with the findings of Refs. [7,33].
In terms of the ratio αð2SÞ=αð1SÞ the hadrocharmo-
nium Pcð4450Þ exists for αð2SÞ=αð1SÞ ¼ ð15� 1Þ.
Such a value of αð2SÞ and the results in Eqs. (6) and
(19) satisfy the Schwarz inequality αð1SÞαð2SÞ ≥
αð2S → 1SÞ2 [4].

(iii) From the data [26] for J ¼ 1=2 and J ¼ 3=2
effective potentials we are able to estimate the
hyperfine splitting between 3

2
− and 1

2
− components

of Pcð4450Þ. We find the hyperfine mass splitting
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ð30� 30Þ MeV with a tendency for J ¼ 3=2 to be
heavier. This is compatible with both zero and with
the estimate of 5–10 MeV obtained in [7].

We see that the lattice data of [26] confirm the conclusions
about nucleon-ψð2SÞ bound state made in Refs. [7,33]. It
would be very interesting to make an independent lattice
measurement of the nucleon-ψð2SÞ effective potential.

VI. CONCLUSIONS

The chromoelectric polarizability αð1SÞ of J=ψ was
extracted on the basis of the formalism [3] from the lattice
QCD data [26] on the effective nucleon-J=ψ potential Veff .
The final result is αð1SÞ ¼ ð1.5� 0.6Þ GeV−3.
The quoted error bar includes uncertainties due to strong

coupling constants at nucleon and charmonium scales,
parameter ξs describing the fraction of baryon energy
carried by gluons, and statistical error bars of the lattice
data [26] on Veff for r ≤ 1 fm. In this region the systematic
uncertainty due to choosing a specific fit Ansatz for Veff is
negligible because only the integral

R
d3rVeffðrÞ is needed

for the extraction. Exploring guidance from chiral sym-
metry (which dictates the behavior of Veff at large r) we
were able to provide a conservative estimate of the system-
atic uncertainty due to extrapolation beyond r > 1 fm where
the lattice data for Veff are compatible with zero or not
available.
The extracted αð1SÞ-value may have further systematic

uncertainties which cannot be estimated at this point, one of
which concerns our approach and the assumption of the
heavy quark limit. The compatibility of lattice data for Veff

in the angular momentum channels J ¼ 1
2
and J ¼ 3

2
[26]

provides an encouraging hint (but not more than that) that
heavy quark mass corrections to Veff might be within
statistical error bars of the lattice data [26]. Unestimated
potential systematic uncertainties pertain also to the lattice
data (discretization effects, unphysical light quark masses)
[26]. Future lattice QCD studies will allow us to test
whether the charm quark mass is large enough for the

validity of our approach, and allow us to assess systematic
uncertainties inherent to lattice simulations.
The obtained value αð1SÞ ¼ ð1.6� 0.8Þ GeV−3 is larger

than the perturbative prediction αð1SÞpert ≈ 0.2 GeV−3

[7,23] which was so far basically the only available
information on the chromoelectric polarizability of J=ψ .
The larger value obtained here is in line with the suspicion
αð1SÞ≳ jαð2S → 1SÞj [6] with the value jαð2S → 1SÞj ≈
2 GeV−3 from ψ 0 → J=ψππ decays [4] (which may be
reduced [25] by final state interaction effects). This argu-
ment is not rigorous but based on the intuitive assumption
that off-diagonal matrix elements may be naturally
expected to be smaller than diagonal ones [6].
We also studied the possibility of the nucleon-ψð2SÞ

bound state. We came to conclusions which are similar to
those in Refs. [7,33], and support the interpretation of
Pcð4450Þ as a ψð2SÞ-nucleon bound state if αð2SÞ=αð1SÞ ≈
15. Our result is compatible with the value of αð2SÞ ≈
17 GeV−3 obtained in Refs. [7,33] in completely different
frameworks. This is remarkable, considering that in
Refs. [7,33] chiral models were used with massless [7]
and physical [33] pionmasses,while hereweused lattice data
obtained at large unphysical mπ. The results for the ψð2SÞ
chromoelectric polarizability obtained in Refs. [7,33] and
here are based on the interpretation of Pcð4450Þ as a
hadrocharmonium. Our analysis also provides independent
support for this interpretation.
The results obtained in this work contribute to a better

understanding of the chromoelectric polarizabilities of
charmonia, and will have interesting applications for the
phenomenology of hadrocharmonia.
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