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We propose a Gribov-Zwanziger type model action for the Landau-DeWitt gauge that preserves, for any
gauge group, the invariance under background gauge transformations. At zero temperature, and to one-loop
accuracy, the model can be related to the Gribov no-pole condition. We apply the model to the
deconfinement transition in SU(2) and SU(3) Yang-Mills theories and compare the predictions obtained
with a single or with various (color-dependent) Gribov parameters that can be introduced in the action
without jeopardizing its background gauge invariance. The Gribov parameters associated to color
directions orthogonal to the background can become negative, while keeping the background effective
potential real. In some cases, the proper analysis of the transition requires the potential to be resolved in
those regions.
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I. INTRODUCTION

Much progress has been achieved lately in the con-
tinuum description of the dynamics at play in the decon-
finement transition of pure Yang-Mills theories. First, a
good handle on the related center symmetry was possible
thanks to the use of background field methods [1,2], which
allow for the definition of order parameters equivalent to
the Polyakov loop but simpler to compute in practice [3].
Second, relevant dynamics could be captured thanks to the
use of sophisticated nonperturbative methods such as the
functional renormalization group [3–5], the infinite tower
of Dyson-Schwinger equations [6–10], or variational
approaches [11–14].
On top of these achievements, more phenomenological

approaches [15–18] seem to indicate that, in the Landau
gauge (and in its background extension, the so-called
Landau-DeWitt gauge), a pivotal part of the dynamics
may become accessible to perturbative methods, but only
after a complete gauge-fixing procedure has been achieved,
including the proper handling of the associated Gribov
copy problem [19]. In fact, according to these studies, once
such a gauge fixing is implemented, at least in some
approximate form, the perturbative expansion becomes

viable at low energies [16,20], while it breaks down in
the more standard Faddeev-Popov gauge fixing. This is an
interesting perspective that could open the way to the
perturbative evaluation of quantities that are usually con-
sidered as genuinely nonperturbative. Although specula-
tive, the idea certainly deserves to be further investigated
and tested.
For instance, in a series of recent works, the Curci-Ferrari

(CF) action [21] has been proposed as a model for a
complete gauge fixing in the Landau gauge [15,16,22].
The underlying conjecture of these studies is that a CF gluon
mass term may arise after the Gribov copies have been
accounted for by means of an uneven averaging procedure
[22]. Although no rigorous mechanism for the generation of
such a CF mass has been identified in the Landau gauge, a
similar mass term could be generated in a nonlinear version
of the Landau gauge [23]. Moreover and interestingly,
relatively simple one-loop calculations of zero-temperature
correlation functions in the CF model [15,16,24] agree pretty
nicely with first principle lattice simulations of Yang-Mills
correlation functions in the Landau gauge [25–30]. The
model has also been extended to finite temperature, within
the Landau-DeWitt gauge framework, where it gives a good
description of center-symmetry breaking in pure Yang-Mills
theories, already at one-loop order [17]. In this case, two-
loop corrections could also be computed [31,32], showing
some sign of apparent convergence and supporting the idea
that perturbation theory may indeed be applicable once the
Gribov problem has been properly handled. Finally, matter
fields can also be included in the analysis see Refs. [33–36].
Another possible way to deal with the Gribov problem

in the Landau gauge is the so-called Gribov-Zwanziger
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approach [19,37,38]. The idea in that case is to restrict
the domain of the functional integral to a region that
contains fewer Gribov copies, in practice the so-called first
Gribov region, defined by the positivity of the Faddeev-
Popov operator −∂μDμ. With the price of introducing
some auxiliary fields, a formulation of this restriction
was constructed in terms of a local and renormalizable
quantum field theory [37]. It has since then known
various refinements in order to match lattice results at zero
temperature [39,40].
At finite temperature, the situation is less clear. Although

many interesting works apply the Gribov-Zwanziger
approach to thermal scenarios [41–47], they all rely on
the implicit assumption that the output of the Gribov-
Zwanziger construction in such cases is given by the zero-
temperature Gribov-Zwanziger action taken over a compact
(imaginary) time interval of length β ¼ 1=T. Although
natural, this assumption is far from obvious. In fact, as
recently discussed in Refs. [48,49], the presence of the
compact time direction and the related periodic boundary
conditions lift the degeneracy of the lowest, nonzero
eigenvalues of the free Faddeev-Popov operator. This, in
turn, leads to a modification of the Faddeev-Popov action
which is not just the usual zero-temperature modification
taken over a compact time interval. This approach certainly
opens a new line of investigation towards a proper
discussion of the Gribov-Zwanziger gauge fixing at finite
temperature in the Landau gauge. However, it also poses
new questions. In particular, the so-obtained action is not
invariant under O(4) Euclidean space-time rotations1 in the
zero-temperature limit, unless the Gribov parameter goes to
zero. It is therefore not clear whether or how the model is
renormalizable. Another issue is that, for the approach to
correspond to a bona fide gauge fixing in the Landau gauge,
the Oð4Þ breaking terms in the zero-temperature limit
should not affect the physical observables. This question
deserves further investigation and probably requires the
identification of the appropriate Becchi-Rouet-Stora-Tyutin
(BRST) symmetry.
In the case of the Landau-DeWitt gauge, the situation is

similar to that of the Landau gauge prior to the results of
Refs. [48,49]. There is to date no first principle derivation of
the associated Gribov-Zwanziger action, only models that try
to incorporate the effect of restricting the functional integral
to the corresponding first Gribov region. In particular,
in Ref. [18], a Gribov-Zwanziger type action for the
Landau-DeWitt gauge has been proposed—independently
of whether it corresponds to a faithful implementation of
the Gribov restriction—and applied to the study of center-
symmetry breaking in SU(2) Yang-Mills theory (see also
Ref. [50]). This action has the convenient property that it
reproduces the usual, renormalizable, Oð4Þ invariant,

Landau gauge Gribov-Zwanziger action in the zero-
temperature and zero-background limits. However, as it
was pointed out in Ref. [51], it is not invariant under
background gauge transformations. Not only is this at odds
with the fact that both the gauge-fixing condition in the
Landau-DeWitt gauge and the condition defining the cor-
responding first Gribov region are invariant under back-
ground gauge transformations, but it also prevents the
implementation of center symmetry at finite temperature.
Surprisingly, the one-loop background effective potential
obtained in Ref. [18] displays background gauge invariance
but, as it was also clarified in Ref. [51], this is due to a
missing term in the evaluation of the potential.
To cure the lack of background gauge invariance, a new

model action was put forward in Ref. [51], based on a
construction that preserves both BRST symmetry and
background gauge invariance with the price however of
introducing a Stueckelberg type field, which is not so easy
to deal with, especially at finite temperature. In this article,
we follow a sightly different route than that of Ref. [51]. We
first revisit the model of Ref. [18] and show how it can be
very simply upgraded into a fully background gauge
invariant one, that, in addition, correctly generates the
one-loop results of that reference. This opens the way to the
evaluation of higher order corrections in a manifestly
background gauge invariant setting. We also try to discuss
to which extent the model can be seen as a faithful
implementation of the Gribov restriction for the Landau-
DeWitt gauge.
In Sec. II, we introduce the model as a minimal,

background gauge invariant modification of the action
used in Ref. [18]. In Sec. III, we compute the corresponding
one-loop background effective potential for any gauge
group and, in Sec. IV, we use it to investigate the
deconfinement phase transition in SU(2) and SU(3)
Yang-Mills theories. In particular, we study the impact
on the transition temperatures of the use of color-dependent
Gribov parameters, as allowed by the model. Finally, in
Sec. V, we provide a further motivation of the model by
showing, at zero temperature and at leading order, how
it is connected to the Gribov no-pole condition applied to
the Landau-DeWitt gauge. We also discuss some of the
difficulties that occur at finite temperature (similar to the
ones discussed in Refs. [48,49] for the Landau gauge),
when trying to interpret the model as arising from a faithful
implementation of the Gribov restriction. More technical
details are gathered in the Appendices. In particular, the
various formulas needed for our analysis, including the
case where certain Gribov parameters become negative,
are given in Appendix D.

II. A BACKGROUND GAUGE INVARIANT
GRIBOV-ZWANZIGER TYPE MODEL ACTION

We consider a pure Yang-Mills theory in d Euclidean
dimensions with a gauge group of dimension dG. The

1These are the counterpart of Lorentz transformations in the
imaginary time formalism.
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Gribov-Zwanziger gauge-fixing procedure in the Landau
gauge leads to the action

S ¼
Z
x

�
1

4
Fa
μνFa

μν þ iha∂μAa
μ þ c̄a∂μDab

μ cb

− ω̄ae
ν ∂μDab

μ ωbe
ν þ φ̄ae

ν ∂μDab
μ φbe

ν

− gγ1=2fabcAa
μðφbc

μ þ φ̄bc
μ Þ − γddG

�
; ð1Þ

where Dab
μ ≡ ∂μδ

ab − gfabcAc
μ denotes the covariant

derivative in the adjoint representation. The first line of
Eq. (1) is nothing but the gauge-fixed action in the Landau
gauge ∂μAa

μ ¼ 0 as it arises from the Faddeev-Popov
procedure, while the second and third lines contain the
corrections that arise from further restricting the functional
integral to the first Gribov region, defined by the additional
condition −∂μDμ > 0.2 The complex conjugated bosonic
fields φab

ν and φ̄ab
ν together with the Grassmanian con-

jugated fields ωab
ν and ω̄ab

ν allow one to express this
restriction in the form of a local field theory. Without loss
of generality, they can be taken antisymmetric under the
exchange of their color indices. Finally, the parameter γ
is known as the Gribov parameter and is fixed using a
saddle-point condition; see below.

A. The problem

In the background generalization of the Landau gauge,
the so-called Landau-DeWitt gauge, one introduces a
background gauge field configuration Āa

μ and imposes
the gauge-fixing condition

D̄ab
μ abμ ¼ 0; ð2Þ

where aaμ ≡ Aa
μ − Āa

μ is the fluctuation of the field Aa
μ about

Āa
μ, and D̄ab

μ ≡ ∂μδ
ab − gfabcĀc

μ denotes the background
covariant derivative.
The corresponding Faddeev-Popov action can be

obtained from the one in the Landau gauge using the
simple mnemonic rule ∂μ → D̄μ and Aa

μ → aaμ. Based on
this observation, the authors of Ref. [18] proposed the
following action:

S ¼
Z
x

�
1

4
Fa
μνFa

μν þ ihaD̄ab
μ abμ þ c̄aD̄ab

μ Dbc
μ cc

− ðω†
νÞeaD̄ab

μ Dbc
μ ωce

ν þ ðφ†
νÞeaD̄ab

μ Dbc
μ φce

ν

− g γ1=2fabcaaμðφbc
μ þ φ̄bc

μ Þ − γddG

�
; ð3Þ

as a model action implementing the Gribov restriction in
the case of the Landau-DeWitt gauge.3 For later conven-
ience, we have used φ̄ae

ν ¼ ðφ†
νÞea and ω̄ae

ν ¼ ðω†
νÞea to

write the terms in the second line as color traces.
It was later realized in Ref. [51] that the action (3) cannot

represent a faithful implementation of the restriction to
the Gribov region in the Landau-DeWitt gauge. Indeed,
despite the fact that the two conditions defining the Gribov
region in this case, namely, Eq. (2) and −D̄μDμ > 0, are
invariant under the background gauge transformations

ðĀU
μ ÞaðxÞta ¼ UðxÞĀa

μðxÞtaU†ðxÞ þ i
g
UðxÞ∂μU†ðxÞ; ð4Þ

ðaUμ ÞaðxÞta ¼ UðxÞaaμðxÞtaU†ðxÞ; ð5Þ

the same does not hold for the action (3). This can be seen
as follows. In terms of coordinates, the adjoint trans-
formation (5) rewrites ðaUμ ÞaðxÞ ¼ UabðxÞabμðxÞ. To make
the last line of Eq. (3) invariant under (5), one should
therefore require the field φab

ν to transform as the product of
two adjoint representations:

ðφU
ν ÞabðxÞ ¼ UacðxÞUbdðxÞφcd

ν ðxÞ
¼ UacðxÞφcd

ν ðxÞU†
dbðxÞ; ð6Þ

where we used that the adjoint representation is real. In
what follows, it will be convenient to write this trans-
formation using a matrix notation, that is,

φU
ν ðxÞ ¼ UðxÞφνðxÞU†ðxÞ: ð7Þ

The same transformation rule holds for φ̄ν since this field is
the complex conjugate of φν and the adjoint representation
is real. Similarly, it is easily shown that

D̄U
μ DU

μ ¼ UðxÞD̄μDμ U†ðxÞ: ð8Þ

Therefore, the last term of the second line of Eq. (3)
transforms as

tr ððφU
ν Þ†ðxÞD̄U

μ DU
μ φ

U
ν ðxÞÞ

¼ tr ðUðxÞφ†
νðxÞðxÞD̄μDμ½φνðxÞU†ðxÞ�Þ: ð9Þ

The U-factors that originate from the left part of the
transformation of φν in Eq. (7) have canceled out against
those that appear when transforming the differential

2For gauge field configurations satisfying the Landau gauge
condition, the Faddeev-Popov operator −∂μDμ is Hermitian.
Then, it makes sense to look for gauge field configurations such
that this operator is, in addition, positive definite.

3Here, as compared to Ref. [18], we have considered a general
group of dimension dG, we have taken the gauge-fixing para-
meter to zero by introducing a Nakanishi-Lautrup field h, and
we have redefined the Gribov parameter γ. We have also used a
slightly different notation for the gauge field Aa

μ and the
fluctuation aaμ, more in line with the conventions of Ref. [32].
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operator D̄μDμ. In contrast, the U-factors that originate
from the right part of the transformation in Eq. (7) cannot
be eliminated. Thus, the action (3) is not invariant under the
background gauge transformations (4) and (5).4

To overcome these difficulties, a new action was put
forward in Ref. [51], based on a BRST compatible model
for the Gribov restriction, which automatically ensured the
invariance under background gauge transformations. This
construction is, however, not so easy to implement in
practice because it requires the introduction of a SU(N)-
valued field h such that Ah remains invariant under gauge
transformations. This matrix valued field is usually handled
by a Stueckelberg type field ξ such that h ¼ eiξ

ata , which
complicates the analysis. Moreover, at finite temperature, in
order to preserve center symmetry, one needs a priori to
integrate over fields h that are periodic up to an element of
the center of the gauge group that is over topologically
distinct sectors. How to achieve this in practice in terms of
the Stuckelberg field is not completely clear.
Here, a different route will be followed: we choose to

sacrifice BRST symmetry with the benefit of obtaining a
background gauge invariant setting that is easy to imple-
ment at finite temperature.5 We show that the action (3) can
be very simply upgraded into a background gauge invariant
one and that the latter leads exactly to the same one-loop
background effective potential as the one that was obtained
in Ref. [18]. In fact our results will be slightly more general
since our analysis will also reveal that it is possible to
introduce color-dependent Gribov parameters without
jeopardizing the background gauge invariance. We shall
investigate this possibility in the application of the model to
the deconfinement transition.

B. A background gauge invariant model

The problem discussed in the previous section could be
summarized by saying that the breaking of background
gauge invariance in the action (3) stems from the fact that
the operator D̄μDμ is constructed out of covariant deriv-
atives in the adjoint representation, whereas the objects this
operator acts upon—φν and ων—transform in a different
representation, namely, the tensor product of two adjoint
representations. One possibility to restore background
gauge invariance to the model action (3) would be, there-
fore, to replace the operator D̄μDμ by an operator D̄μDμ

where the covariant derivatives act now on the appropriate

representation. With this approach, however, one would
lose contact with the Faddeev-Popov operator D̄μDμ, which
is at the heart of the definition of the first Gribov region.
Moreover, in the Landau limit Ā → 0, one does not recover
the usual Gribov-Zwanziger action.
Here, we shall restore background gauge invariance

using a different strategy that keeps contact with the
Faddeev-Popov operator while recovering the well-known
Ā → 0 limit. The idea is to insert Wilson lines at appro-
priate places such that one of the two representations that
enter the transformation of φν, more precisely, the one
acting to the right in Eq. (7), is not gauged. To this purpose,
we replace the action (3) by

Snew ¼
Z
x

�
1

4
Fa
μνFa

μν þ ihaD̄ab
μ abμ þ c̄aD̄ab

μ Dbc
μ cc

− ðω̂†
νÞeaD̄ab

μ Dbc
μ ω̂ce

ν þ ðφ̂†
νÞeaD̄ab

μ Dbc
μ φ̂ce

ν

− g γ1=2fabcaaμðφbc
μ þ φ̄bc

μ Þ − γddG

�
; ð10Þ

where we have introduced φ̂ac
ν ðxÞ ¼ φab

ν ðxÞLbc
Ā;C

ðx; x0Þ and
ω̂ac
ν ðxÞ ¼ ωab

ν ðxÞLbc
Ā;C

ðx; x0Þ,6 with

LĀ;Cðx; x0Þ≡ P exp

�
ig
Z
C
dyμĀa

μðyÞTa

�
ð11Þ

the Wilson line in the ajoint representation ta ↦ Ta ≡ ½ta; �
connecting the points x0 to x through the path C. It is easily
checked that, under a background gauge transformation (4)
and (5), the Wilson line transforms as

LĀU;Cðx; x0Þ ¼ UðxÞLĀ;Cðx; x0ÞU†ðx0Þ; ð12Þ

and therefore

φ̂U
ν ðxÞ ¼ UðxÞφ̂νðxÞU†ðx0Þ: ð13Þ

The crucial difference with Eq. (7) is that the right U-factor
of the transformation is x independent. Consequently,
one gets

tr ððφ̂U
ν Þ†ðxÞD̄U

μ DU
μ φ̂

U
ν ðxÞÞ

¼ tr ðUðx0Þφ̂†
νðxÞD̄μDμ½φ̂νðxÞU†ðx0Þ�Þ: ð14Þ

The remaining U-factors are now x independent and can be
pulled out of the action of the covariant derivatives. They
cancel owing to the cyclicity of the trace. Similar remarks
apply to the term involving the fields ων and ω̄ν. This
completes the proof of the background gauge invariance of
the model action (10).

4As already mentioned in the Introduction, the one-loop
background effective potential obtained from the action (3) in
Ref. [18] appears nevertheless to be background gauge invariant.
As was later observed in Ref. [51], this is due to the omission
of some terms in the evaluation of the one-loop background
effective potential that derives from the action (3).

5In the ideal scenario where one would select one Gribov copy
per orbit, we expect BRST symmetry to be broken. We note
however that, in the GZ scenario, a local BRST symmetry could
be identified [52].

6We redefine the field ων using the same Wilson line as that for
φν because these fields should be treated on an equal footing.
Indeed, the role of the fields ων and ω̄ν is to cancel a determinant
generated by the integration over the fields φν and φ̄ν.
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Before closing this section, we mention that there is a
subtlety hidden in the previous discussion. Strictly speaking,
if the background Āa

μ is such that F̄a
μν ≠ 0, objects such as the

Wilson line or φ̂νðxÞ and ω̂νðxÞ are not true functions of x for
they also depend on the chosen path C. In order to guarantee
that our proceduremakes sense, we should, therefore, specify
what is meant by the action of the operator D̄μDμ on these
types of objects. We discuss this technical matter in
Appendix A, where we also show that our construction is
independent of the chosen path C and, in particular, on the
choice of x0. The rest of the work will be concerned with
constant backgrounds forwhich this subtlety does not appear.

C. Choice of background and Cartan-Weyl basis

The previous considerations apply a priori to any type
of background, including instantonic backgrounds, pro-
vided the correct definitions are used (see Appendix A).
However, for the finite temperature applications that we
have in mind below, we shall restrict to backgrounds that
explicitly preserve the space-time symmetries of the prob-
lem, namely, Euclidean space-time translations and space
rotations. Therefore, we assume that the background is
temporal and constant over Euclidean space-time. In fact,
without loss of generality, these types of backgrounds can
be color rotated to lie in the diagonal part of the algebra, the
Cartan subalgebra:

βgĀa
μðxÞta ¼ δμ0rjtj; ð15Þ

with ½tj; tj0 � ¼ 0. We have extracted a factor β≡ 1=T to
make the components rj dimensionless.
For these types of backgrounds, F̄μν ¼ 0 and the Wilson

line becomes a true function of its endpoints, no longer
depending on the chosen path in between. Moreover, since
the action does not depend on the value of x0, we choose
x0 ¼ 0 and we arrive at

φ̂νðxÞ ¼ φνðxÞei
τ
β r

j½tj;�: ð16Þ

Similarly, the background covariant derivative rewrites

D̄μ ¼ ∂μ − iTδμ0 rj½tj; �: ð17Þ
These two quantities are the only sources for background
dependence in the action (10). Since they involve only
commutators with elements of the Cartan subalgebra, it is
convenient to operate a change of basis from the usual
Cartesian basis ita—which we used to write the actions
above—to so-called Cartan-Weyl basis itκ.
By definition, the elements of a Cartan-Weyl basis

diagonalize simultaneously the adjoint action of the tj’s

½tj; tκ� ¼ κjtκ: ð18Þ

The color labels κ should be seen as vectors in a space
isomorphic to the Cartan subalgebra. They can take two
types of values: either κ ¼ 0ðjÞ is “a zero” in which case tκ

is just a different and convenient notation for tj, or κ ¼ α is
a root of the algebra of the gauge group.7 The benefit of
the Cartan-Weyl basis is that the background covariant
derivative becomes diagonal, D̄κλ

μ ¼ δκλD̄κ
μ, with

D̄κ
μ ¼ ∂μ − iTδμ0r · κ; ð19Þ

where r · κ ≡ rjκj. Similarly, the redefinition of the field φν

now appears as a simple multiplication by a phase factor
depending on the rightmost color label of φν:

φ̂κξ
ν ¼ φκξ

ν e
iτβ r·ξ: ð20Þ

More details on how to change from the Cartesian basis to
the Cartan-Weyl basis are given in Appendix B. After some
manipulations, we find

Snew ¼
Z
x

�
1

4
F−κ
μνFκ

μν þ ih−κD̄κ
μaκμ − D̄ð−κÞ

μ c̄ð−κÞD̄κ
μcκ þ igfð−κÞληD̄ð−κÞ

μ c̄ð−κÞaημcλ − D̄ð−κÞ
μ ðω̄ð−κÞð−ξÞ

ν ei
τ
β r·ξÞD̄κ

μðωκξ
ν e

−iτβ r·ξÞ

þ igfð−κÞληD̄ð−κÞ
μ ðω̄ð−κÞð−ξÞ

ν ei
τ
β r·ξÞaημωλξ

ν e
−iτβ r·ξ − D̄ð−κÞ

μ ðφ̄ð−κÞð−ξÞ
ν ei

τ
β r·ξÞD̄κ

μðφκξ
ν e

−iτβ r·ξÞ

− igfð−κÞληD̄ð−κÞ
μ ðφ̄ð−κÞð−ξÞ

ν ei
τ
β r·ξÞaημφλξ

ν e
−iτβ r·ξ þ igγ1=2fκληaκμðφλη

μ þ φ̄λη
μ Þ − γddG

�
; ð21Þ

with Fκ
μν ¼ ∂μAκ

ν − ∂νAκ
μ − igfð−κÞληAλ

μA
η
ν and ½tλ; tη� ¼

fð−κÞληtκ. So defined, the structure constants are antisym-
metric and conserve color in the following sense: fκλτ ¼ 0
if κ þ λþ τ ≠ 0 [32].

Of course, since we have restricted to backgrounds of
the form (15), we should restrict to transformations that
preserve this form. Those read

r0j ¼ rj þ ᾱj; ð22Þ

together with

7Below, we shall recall the zeros and the roots for the SU(2)
and SU(3) groups. Note that there are as many zeros as there are
dimensions in the Cartan subalgebra, hence the label (j) to denote
the various zeros.
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X0κðxÞ ¼ ei
τ
β ᾱ·κXκðxÞ; ð23Þ

X0κλðxÞ ¼ ei
τ
β ᾱ·ðκþλÞXκλðxÞ: ð24Þ

The ᾱ’s are certain vectors that we do not need to specify
further here; see, for instance, Ref. [32] for more details.

Using the property D̄0κ
μ X0κðxÞ ¼ ei

τ
β ᾱ·κD̄κ

μXκðxÞ and the fact
that fκλη conserves color, one easily checks that the action
(21) is invariant under the background gauge transforma-
tions (22)–(24). Again, the role of the phase factors
originating from the Wilson lines is crucial. The action
can be equivalently rewritten as

Snew ¼
Z
x

�
1

4
F−κ
μνFκ

μν þ ih−κD̄κ
μaκμ − D̄ð−κÞ

μ c̄ð−κÞD̄κ
μcκ þ D̄ð−κ−ξÞ

μ ω̄ð−κÞð−ξÞ
ν D̄κþξ

μ ωκξ
ν − D̄ð−κ−ξÞ

μ φ̄ð−κÞð−ξÞ
ν D̄κþξ

μ φκξ
ν

− igfð−κÞληD̄ð−κÞ
μ c̄ð−κÞaημcλ þ igfð−κÞληD̄ð−κ−ξÞ

μ ω̄ð−κÞð−ξÞ
ν aημω

λξ
ν − igfð−κÞληD̄ð−κ−ξÞ

μ φ̄ð−κÞð−ξÞ
ν aημφ

λξ
ν

þ igγ1=2fκληaκμðφλη
μ þ φ̄λη

μ Þ − γddG

�
; ð25Þ

which makes the invariance even more explicit.
In what follows, we take the action (25) as our model for

a Gribov-Zwanziger type model action invariant under
background gauge transformations. In Sec. V, we provide a
further motivation for the model by showing that, at zero
temperature and to one-loop accuracy, it is related to the
Gribov no-pole condition applied to the Landau-DeWitt
gauge.8

Moreover, in Sec. V B, we show that, for vanishing
temperatures, the configuration-space correlation functions
of the model (25) are related trivially to those associated
to the Gribov-Zwanziger action in the Landau gauge,

implying that the addition of a background field does
not spoil renormalizability at T ¼ 0. As one moves to finite
temperature, one should also expect renormalizability to
hold, for the thermal contributions always come with a
statistical factor, which works as a smooth UV cutoff.

D. Color-dependent Gribov parameters

Before closing this section, it should be mentioned
that the model can, and will, be extended by introducing
color-dependent Gribov parameters γκ without affecting the
background gauge invariance (22)–(24)9:

Snew ¼
Z
x

�
1

4
F−κ
μνFκ

μν þ ih−κD̄κ
μaκ − D̄ð−κÞ

μ c̄ð−κÞD̄κ
μcκ þ D̄ð−κ−ξÞ

μ ω̄ð−κÞð−ξÞ
ν D̄κþξ

μ ωκξ
ν − D̄ð−κ−ξÞ

μ φ̄ð−κÞð−ξÞ
ν D̄κþξ

μ φκξ
ν

− igfð−κÞληD̄ð−κÞ
μ c̄ð−κÞaημcλ þ igfð−κÞληD̄ð−κ−ξÞ

μ ω̄ð−κÞð−ξÞ
ν aημω

λξ
ν − igfð−κÞληD̄ð−κ−ξÞ

μ φ̄ð−κÞð−ξÞ
ν aημφ

λξ
ν

þ igγ1=2κ fκληaκμðφλη
μ þ φ̄λη

μ Þ − d
X
κ

γκ

�
: ð26Þ

We will see below that the Gribov parameters are all
degenerate at zero temperature. At finite temperature, in
contrast, there is no reason for them to remain equal and,
therefore, it will be interesting to compare the situation
where a unique Gribov parameter is attributed to all color
modes with the one where Gribov parameters are allowed
to depend on color.

Our main focus being the study of the deconfinement
transition it is however of crucial importance to preserve the
invariance under so-called Weyl transformations,10 because
only then is the background field, as obtained from the
minimization of the background effective potential, an
order parameter for center symmetry [32,53]. Since the
Weyl transformations typically connect certain roots α and
β with each other, a simple way to ensure Weyl symmetry is
to impose that γα ¼ γβ for such roots. If one also wants to
preserve invariance under charge conjugation, one pos-
sibility is to impose that γα ¼ γ−α. In what follows, we shall
consider groups where Weyl transformations and charge

9The reason why the color label of γ is the one associated to
aμ is that the fields φμ are just auxiliary fields that help with
localizing the action.

8We should mention, however, that it is far from obvious that
our proposal or the one in Ref. [51] correspond to faithful
implementations of the Gribov restriction at finite temperature.
We briefly discuss this issue in Sec. V.

10These are finite color rotations that leave the Cartan sub-
algebra globally invariant.
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conjugation allow one to connect all roots with each other
and therefore we introduce a single Gribov parameter γch
for all these “charged” modes. In contrast, for each
“neutral”mode,11 corresponding to κ ¼ 0ðjÞ, we can a priori
introduce a different Gribov parameter γ0ðjÞ.
In fact, this choice of Gribov parameters is just a

sufficient condition to ensure Weyl symmetry but it is
not necessary. Weyl symmetry is more generally preserved
in the following sense: the action (26) is invariant under a
Weyl transformation that exchanges α and β provided one
also performs the transformation γα ↔ γβ. This symmetry
is trivially inherited by the background effective potential
due to the extremization needed to determine the Gribov
parameters, which are then promoted to functions of the
background. That is, when action (26) is evaluated for the
values of the γ’s obtained through this process, Weyl
invariance is guaranteed in the usual sense. The same
remarks apply to charge conjugation.
In summary, we shall study three different scenarios, all

compatible with background gauge invariance, including
Weyl invariance:

Degenerate case: all γκ’s taken equal.
Partially degenerate case: all γα’s taken equal.
Nondegenerate case: all γκ’s taken different.
For simplicity, however, we shall assume that γκ ¼ γ−κ,

even in the third scenario.

III. THE MODEL AT ONE-LOOP

In this section, we evaluate the background effective
potential and the corresponding gap equation(s) at one-loop
order, for any gauge group.

A. Background effective potential

The field aκμðxÞ contains both real (a0
ðjÞ
μ ) and complex

conjugated components [aαμðxÞ and a−αμ ðxÞ]. Moreover,

φηξ
ρ ðxÞ and φ̄ð−ηÞð−ξÞ

ρ ðxÞ are also complex conjugates of
each other; see Appendix B. Following Appendix C, one
way to deal with the presence of both real and complex
conjugated degrees of freedom is to write the quadratic part
of the action in the bosonic sector as

1

2

Z
x;y

χ†ðxÞMðx − yÞχðyÞ; ð27Þ

with χ†ðxÞ ¼ ðaκμðxÞ; hλðxÞ;φηξ
ρ ðxÞ; φ̄ð−ηÞð−ξÞ

ρ ðxÞÞ�, while in
the Grassmannian sector, it is enough to write

Z
x;y

ϒ̄tðxÞN ðx − yÞϒðyÞ; ð28Þ

with ϒtðxÞ ¼ ðcκðxÞ;ωηξ
ρ ðxÞÞ.

The one-loop background effective potential reads

VðĀ; fγκgÞ ¼ −d
X
κ

γκ þ
1

2
ln detM − ln detN : ð29Þ

In Fourier space, Eq. (27) rewrites 1
2

R
QðχðQÞÞ†MðQÞχðQÞ

with ðχðQÞÞ† ¼ ðaκμðQÞ; hλðQÞ;φηξ
ρ ðQÞ; φ̄ð−ηÞð−ξÞ

ρ ðQÞÞ� and

MðQÞ ¼

0
BBBBBB@

Q2
κP⊥

μμ0 ðQκÞδκκ0 −Qκ
μδκλ0 igγ1=2κ fð−κÞη0ξ0δμρ0 −igγ1=2κ fκη

0ξ0
� δμρ̄0

Qκ0
μ0δκ0λ 0 0 0

−igγ1=2κ0 fð−κ
0Þηξ

� δμ0ρ 0 −Q2
η0þξ0δηη0δξξ0δρρ0 0

igγ1=2κ0 fκ
0ηξδμ0ρ̄ 0 0 −Q2

−η0−ξ0δηη0δξξ0δρρ0

1
CCCCCCA
; ð30Þ

where we have used our assumption γκ ¼ γ−κ, we have introduced the shifted momenta Qκ
μ ≡Qμ þ r · κTδμ0 and we have

used fð−κÞð−ηÞð−ξÞ ¼ −fκηξ� , where the subscript � on fκλτ� denotes complex conjugation. In order to compute the determinant
of M, we consider it as a block matrix of the form ðABjCDÞ, with A and D invertible, and use

detM ¼ detD × detðA − BD−1CÞ ¼ detA × detðD − CA−1BÞ: ð31Þ

A simple calculation shows that

A − BD−1C ¼
�Q2

κP⊥
μμ0 ðQκÞδκκ0 þ 2g2γ1=2κ γ1=2κ0 fð−κÞηξfð−κ

0Þηξ
� Q−2

ηþξδμμ0 −Qκ
μδκλ0

Qκ0
μ0δκ0λ 0

�
; ð32Þ

11The terminology “charged” and “neutral” arises from the fact that κ · rT can be seen as a color-dependent imaginary chemical
potential.
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where a summation over η and ξ is implied in the first element. We next use that the structure constants conserve color, to

write γ1=2κ γ1=2κ0 fð−κÞηξfð−κ
0Þηξ

� Q−2
ηþξ ¼ γ1=2κ γ1=2κ0 fð−κÞηξfð−κ

0Þηξ
� Q−2

κ ¼ Cadγκδκκ0Q−2
κ , where Cad denotes the Casimir of the adjoint

representation. We obtain

A − BD−1C ¼
� ½m4

κQ−2
κ Pk

μμ0 ðQκÞ þ ðQ2
κ þm4

κQ−2
κ ÞP⊥

μμ0 ðQκÞ�δκκ0 −Qκ
μδκλ0

Qκ0
μ0δκ0λ 0

�
; ð33Þ

where we have defined m4
κ ≡ 2g2Cadγκ. Using the second form of Eq. (31), we find

detðA − BD−1CÞ ¼
Y
κ

m4
κ

Q2
κ

�
Q4

κ þm4
κ

Q2
κ

�
d−1 Q4

κ

m4
κ
¼

Y
κ

�
Q4

κ þm4
κ

Q2
κ

�
d−1

Q2
κ ; ð34Þ

and then

detM ¼ detD ×
Y
κ

�
Q4

κ þm4
κ

Q2
κ

�
d−1

Q2
κ : ð35Þ

On the other hand, it is trivially shown that

detN ¼ ðdetDÞ1=2 ×
Y
κ

Q2
κ : ð36Þ

Therefore,

Vðr; fm4
κgÞ ¼ −

d
2

P
κm

4
κ

g2Cad
þ d − 1

2

X
κ

Z
T

Q
ln
Q4

κ þm4
κ

Q2
κ

−
1

2

X
κ

Z
T

Q
lnQ2

κ ; ð37Þ

where we have introduced the notations

Z
T

Q
≡μ2ϵT

X
n

Z
q

and
Z
q
≡
Z

dd−1q
ð2πÞd−1 ; ð38Þ

with d ¼ 4 − 2ϵ.
In the SU(2) case, and assuming that all the Gribov

parameters γκ ∝ m4
κ are equal, the expression in Eq. (37) is

exactly the one-loop potential obtained in Ref. [18] but
this time obtained from the action (26) and not from (3). So
it seems that the terms missed in the computation of the
one-loop effective potential from action (3), as performed
in Ref. [18], are exactly eaten up by the extra phase factors
introduced in Eq. (21). Besides providing a proper justi-
fication to the one-loop formula of Ref. [18], our model
opens the way to the evaluation of higher order corrections
in a background gauge invariant setting, which we plan to
investigate in a future work.

B. Gribov parameters

The Gribov parameters are usually obtained from a
saddle-point approximation, which boils down to extremiz-
ing the potential, not only with respect to the background but
also with respect to the Gribov parameters themselves. It is
important to realize that, even though the Gribov parameters
will, at least in the present setting, always be found real,
some of them could—and will—become negative. For the
various cases studied, we find the following gap equations:
Degenerate case:

0 ¼
X
κ

�
d

d − 1

1

g2Cad
− Ĵκðm4Þ

�
; ð39Þ

Partially degenerate case:

∀j; 0 ¼ d
d − 1

1

g2Cad
− Ĵ0ðjÞ ðm4

0ðjÞ Þ;

0 ¼
X
α

�
d

d − 1

1

g2Cad
− Ĵαðm4

ChÞ
�
; ð40Þ

Nondegenerate case:

∀j; 0 ¼ d
d − 1

1

g2Cad
− Ĵ0ðjÞ ðm4

0ðjÞ Þ;

∀α; 0 ¼ d
d − 1

2

g2Cad
− ðĴαðm4

αÞ þ Ĵ−αðm4
αÞÞ; ð41Þ

where we have introduced the sum integral

Ĵκðm4Þ≡
Z

T

Q

1

Q4
κ þm4

: ð42Þ

Note that, because Ĵκðm4Þ ¼ Ĵ−κðm4Þ, the second equation
in the nondegenerate case simplifies to

∀α; 0 ¼ d
d − 1

1

g2Cad
− Ĵαðm4

αÞ: ð43Þ
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1. Zero-temperature limit

In the zero-temperature limit, because the shifted momen-
tum Qκ can always be shifted back to Q via a change of
variables, all Gribov parameters obey the same equation

0 ¼ d
d − 1

1

g2Cad
− Ĵðm4

vacÞ; ð44Þ

with

Ĵðm4Þ≡
Z
Q

1

Q4 þm4
ð45Þ

the zero-temperature version of Ĵκðm4Þ. This integral, if
restricted to real Gribov parameters, is defined only for
m4 > 0; its evaluation is recalled in Appendix D. We then
arrive at the well-known zero-temperature gap equation [40]

0 ¼ 1 −
3g2Cad

64π2

�
1

ϵ
þ 1

2
ln

μ̄4

m4
vac

þ 5

6

�
; ð46Þ

which can be renormalized by setting (minimal subtraction
scheme)

1

g2Cad
¼ 1

g2ðμ̄ÞCad
þ 3

64π2
1

ϵ
: ð47Þ

The renormalized equation reads

0 ¼ 1 −
3g2ðμ̄ÞCad

128π2

�
ln

μ̄4

m4
vac

þ 5

3

�
; ð48Þ

and is solved as

m4
vac ¼ μ̄4 exp

�
5

3
−

128π2

3g2ðμ̄ÞCad

�
: ð49Þ

From Eq. (47), we find that the renormalized coupling runs
with the beta function

βg2 ≡ μ̄
dg2

dμ̄
¼ −g4μ̄

dð1=g2Þ
dμ̄

¼ −
3g4Cad

32π2
: ð50Þ

The sign is compatible with asymptotic freedom but the
coefficient is not the expected one at order g4. This happens
because certain g4 contributions, that would arise from the
two-loop corrections to the background effective potential,
are missed. The two-loop gap equation has been determined
and renormalized at zero temperature in Ref. [54]. At this
order the Gribov parameter is also renormalized. We expect
the same renormalization factors to renormalize the finite
temperature two-loop gap equation. We shall consider this
equation in a subsequent work together with the two-loop
corrections to the background effective potential.

In principle, we could use Eq. (49) to fix the scalemvac in
terms of the known value of gðμ̄Þ in the minimal subtraction
scheme at some large ultraviolet scale μ̄ ¼ μ̄0. However,
since the running of gðμ̄Þ does not coincide, not even at
order g4, with the true running, we expect large errors in the
scale setting. We therefore postpone this question to a
forthcoming two-loop study—where the running coupling
should be exact at leading order. In what follows, we
express all our results in units of mvac. This also allows for
an easy comparison with Ref. [18]. We finally mention that
the solution m4

vac is unique, given the renormalized cou-
pling at the scale μ̄. This means that not only do the Gribov
parameters all obey the same equation at zero temperature
but also that they all become equal, as announced above.

2. Finite temperature case

Following Ref. [18], we can always parametrize the gap
equations at finite temperature in terms of the solution
m4

vac at zero temperature. Subtracting the zero-temperature
equations from the finite temperature ones we find the
following gap equations:
Degenerate case:

0 ¼
X
κ

ΔĴκðm4;m4
vacÞ; ð51Þ

Partially degenerate case:

∀j; 0 ¼ ΔĴ0ðjÞ ðm4
0ðjÞ ;m

4
vacÞ;

0 ¼
X
α

ΔĴαðm4
Ch;m

4
vacÞ; ð52Þ

Nondegenerate case:

∀j; 0 ¼ ΔĴ0ðjÞ ðm4
0ðjÞ ;m

4
vacÞ;

∀α; 0 ¼ ΔĴαðm4
α;m4

vacÞ; ð53Þ

where we have introduced the UV finite difference

ΔĴκðm4;m4
vacÞ≡ Ĵκðm4Þ − ĴT¼0ðm4

vacÞ

¼
Z

T

Q

1

ððωn þ Tr · κÞ2 þ q2Þ2 þm4

−
Z
Q

1

Q4 þm4
vac

: ð54Þ

Some useful remarks are in order here. First of all,
ΔĴ0ðjÞ ðm4;m4

vacÞ is a strictly decreasing function over the
interval m4 ∈ �0;þ∞½ that diverges positively as m4 → 0þ

and becomes negative as m4 → þ∞. This implies that the
gap equation for the neutral Gribov parameter m4

0ðjÞ has a
unique solution and therefore that all neutral Gribov
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parameters coincide. We shall denote their common value
m4

N in the following. The same behavior holds for the
function

P
κΔĴκðm4;m4

vacÞ and then the gap equation for
the degenerate Gribov parameter m4 has a unique solution.
It also follows that m4

N and m4 are strictly positive.
Similar conclusions hold for m4

α and m4
Ch with the

noticeable difference that these parameters can become
negative. Indeed, it is easily checked that ΔĴαðm4;m4

vacÞ
is a strictly decreasing function over the interval
m4∈ �−M4

r·α;þ∞½, with M4
r·α ≡minn∈Zð2πnþ r · αÞ4T4.

It diverges positively as m4 → −M4þ
r·α and becomes neg-

ative asm4 → ∞. From this it follows that the gap equation
for m4

α has a unique solution for given values of the
temperature and the background but this solution can
become negative since the only constraint is that it should
remain strictly larger than −M4

r·κ. In fact, we can determine
at which temperature m4

α may vanish. We just need to

enforce a zero solution in the corresponding equation,
namely,

0 ¼ ΔĴαð0;m4
vacÞ: ð55Þ

Similar considerations apply to m2
Ch but now the functionP

αĴαðm4;m4
vacÞ diverges as m4 → −minα M4

r·α. Again the
temperature at which m4

Ch may vanish can be obtained by
solving the equation

0 ¼
X
α

ΔĴαð0;m4
vacÞ: ð56Þ

In practice, when evaluating ΔĴκðm4;m4
vacÞ, we need to

distinguish the case where m4 > 0 and the case where
−M4

r·κ < m4 < 0. These two cases are discussed in
Appendix D. For m4 > 0, we find

ΔĴκðm4;m4
vacÞ ¼

1

32π2
ln
m4

vac

m4
þ 1

4im2

Z
q

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ im2

p cosðr · κÞ − e−β
ffiffiffiffiffiffiffiffiffiffiffi
q2þim2

p

cosðr · κÞ − cosh
	
β

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ im2

p 


−
1

4im2

Z
q

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 − im2

p cosðr · κÞ − e−β
ffiffiffiffiffiffiffiffiffiffiffi
q2−im2

p

cosðr · κÞ − cosh
	
β

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 − im2

p 
 : ð57Þ

For −M4
r·κ < m4 ≡ −M4 < 0, we find instead

ΔĴκðm4;m4
vacÞ¼

1

32π2
ln
m4

vac

M4
−

1

4M2

Z
q<M

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2−q2

p sinðβ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2−q2

p
Þ

cosðr ·κÞ−cos
	
β

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2−q2

p 


−
1

4M2

Z
q>M

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2−M2

p cosðr ·κÞ−e−β
ffiffiffiffiffiffiffiffiffiffi
q2−M2

p

cosðr ·κÞ−cosh
	
β

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2−M2

p 
þ 1

4M2

Z
q

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2þM2

p cosðr ·κÞ−e−β
ffiffiffiffiffiffiffiffiffiffiffi
q2þM2

p

cosðr ·κÞ−cosh
	
β

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2þM2

p 
 :
ð58Þ

For practical purposes, it is convenient to absorb the
integrable singularity (in the second integral) as q → M
using the change of variables u ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 −M2

p
. For con-

sistency, we apply similar changes of variables to the other
two integrals.

C. Finite form of the effective potential

Finally, the integrals that enter the one-loop potential
are also well known and recalled in Appendix D. Using
Eq (44), we find Vðr; fm4

κgÞ ¼
P

κVκðr;m4
κÞ with

Vκðr;m4Þ ¼ d − 1

2
ΔK̂κðm4; m4

vacÞ −
d
4
ΔK̂κð0; m4

vacÞ ð59Þ

and

ΔK̂κðm4;m4
vacÞ≡

Z
T

Q
lnðQ4

κ þm4Þ−
Z
Q

m4

Q4þm4
vac

: ð60Þ

It is easily checked that this expression is UV finite, up to a
quartic divergence that vanishes in dimensional regulari-
zation. More precisely, in the case where m4 is positive, we
find (see Appendix D)

ΔK̂κðm4;m4
vacÞ ¼

m4

32π2

�
ln
m4

vac

m4
þ 1

�
þ T

Z
q
ln
	
e−2β

ffiffiffiffiffiffiffiffiffiffiffi
q2þim2

p
− 2e−β

ffiffiffiffiffiffiffiffiffiffiffi
q2þim2

p
cosðr · κÞ þ 1




þ T
Z
q
ln
	
e−2β

ffiffiffiffiffiffiffiffiffiffiffi
q2−im2

p
− 2e−β

ffiffiffiffiffiffiffiffiffiffiffi
q2−im2

p
cosðr · κÞ þ 1



: ð61Þ
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For −M4
r·κ < m4 ¼ −M4 < 0, we find instead

ΔK̂κðm4; m4
vacÞ ¼ −

M4

32π2

�
1þ ln

m4
vac

M4

�
þ T

Z
q<M

ln
	
2 cos

	
β

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − q2

q 

− 2 cosðr · κÞ




þ T
Z
q>M

ln
	
e−2β

ffiffiffiffiffiffiffiffiffiffi
q2−M2

p
− 2e−β

ffiffiffiffiffiffiffiffiffiffi
q2−M2

p
cosðr · κÞ þ 1




þ T
Z
q
ln
	
e−2β

ffiffiffiffiffiffiffiffiffiffiffi
q2þM2

p
− 2e−β

ffiffiffiffiffiffiffiffiffiffiffi
q2þM2

p
cosðr · κÞ þ 1



: ð62Þ

IV. APPLICATION TO THE
DECONFINEMENT TRANSITION

In what follows we use the previous formalism to study
the deconfinement transition in SU(2) and SU(3) Yang-
Mills theories. We minimize the background effective
potential with respect to the order parameter r, taking into
account the r dependence of the Gribov parameter(s) via
the gap equation(s), that is by minimizing Vðr; fm4

κðrÞgÞ.
We first revisit the SU(2) results of Ref. [18] by including
the possibility of color-dependent Gribov parameters and
then extend our analysis to the SU(3) case.

A. SU(2) case

In this case κ ∈ f−1; 0;þ1g and the confining point
corresponds to r ¼ π. The partially degenerate and non-
degenerate cases coincide.

1. Critical temperature

Since we expect the transition to be second order, we can
evaluate Tc by requiring that (we illustrate the degenerate
case here but the same discussion holds for the non-
degenerate one)

d2

dr2
Vðr;m2ðrÞÞ

����
r¼π

¼ 0: ð63Þ

Since ∂V=∂m2jr;m2ðrÞ ¼ 0, we have

d
dr

Vðr;m2ðrÞÞ ¼ ∂
∂r Vðr;m

2ðrÞÞ ð64Þ

and then

d2

dr2
Vðr;m2ðrÞÞ ¼ ∂2

∂r2 Vðr;m
2ðrÞÞ

þ ∂2

∂r∂m2
Vðr;m2ðrÞÞ dm

2ðrÞ
dr

: ð65Þ

Finally, it is easily shown that dm2ðrÞ=drjr¼π ¼ 0.12

Therefore

d2

dr2
Vðr;m2ðrÞÞ

����
r¼π

¼ ∂2

∂r2 Vðr;m
2ðrÞÞ

����
r¼π

: ð66Þ

After a simple calculation, the condition for a vanishing
curvature reads

FIG. 1. Top: Degenerate vs nondegenerate Gribov parameters
(in units of mvac) for a confining background. These correspond
to the actual Gribov parameters up to T̄c ≡ Tc=mvac ∼ 0.402
and T̄c ∼ 0.324, respectively. Bottom: Gribov parameters at the
minimum of the background effective potential.

12This is because dm2ðrÞ=drjr¼π is proportional to

X
α

α

Z
T

Q

Qα
0Q

2
α

Q4
α þm4

¼
Z

T

Q

ðωn þ πTÞððωn þ πTÞ2 þ q2Þ
ððωn þ πTÞ2 þ q2Þ2 þm4

−
Z

T

Q

ðωn − πTÞððωn − πTÞ2 þ q2Þ
ððωn − πTÞ2 þ q2Þ2 þm4

:

Using the changes of variables ωn → −ωn − 2πT and ωn →
−ωn þ 2πT, we find that the sum integrals are both zero.

GRIBOV-ZWANZIGER TYPE MODEL ACTION INVARIANT … PHYS. REV. D 98, 034029 (2018)

034029-11



3

2
Re

Z
q

e−β
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2þim2ðπÞ

p

ðe−β
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2þim2ðπÞ

p
þ 1Þ2

¼
Z
q

e−βq

ðe−βq þ 1Þ2 : ð67Þ

The nondegenerate case is obtained upon making the
replacement m2ðπÞ → m2

ChðπÞ.
In order to find the transition temperatures in each case,

we need to determine the temperature dependence ofm4ðπÞ
and m4

ChðπÞ. This is shown in Fig. 1, together with the
temperature dependence of m4

NðπÞ for completeness. We
observe that m4

ChðπÞ decreases rapidly and even changes
sign (as already anticipated in the previous section) at a
temperature T=mvac ∼ 0.344, obtained from solving
Eq. (55) which takes here the form

1

8π2
¼

Z
q

�
1 − 2fq
4q3

þ 1

m2
vac

Im
1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ im2

vac

p
�
;

where fq ≡ 1=ðeq=T þ 1Þ denotes the Fermi-Dirac distri-
bution function. The decrease of m4

ChðπÞ with the temper-
ature has the effect of lowering the transition temperature as
compared to the degenerate case. We find

Tnon−deg
c

mvac
∼ 0.324; ð68Þ

which should be compared to the result of Ref. [18]

Tdeg
c

mvac
∼ 0.402: ð69Þ

This represents a change of the transition temperature by
20%–25%.

2. Effective potential

In order to compute the potential as a function of r,
we first need to determine, for each temperature, the r
dependence of the Gribov parameters. This dependence is
shown in Fig. 2. Above T=mvac ∼ 0.344, a gap opens in the
values of r, over which m4

Ch becomes negative. At each
temperature, the boundaries of this interval can be deter-
mined by solving

1

8π2
¼

Z
q

�
1þ 2Renq−ir·κT

4q3
þ 1

m2
vac

Im
1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ im2

vac

p
�
;

FIG. 2. r dependence of the Gribov parameters for various
temperatures (in units of mvac). Top: Degenerate case. Middle:
Nondegenerate case, neutral mode. Bottom: Nondegenerate case,
charged mode.

FIG. 3. SU(2) background effective potentials for various
temperatures (in units of mvac). Top: Degenerate case. Bottom:
Nondegenerate case.
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where nq ≡ 1=ðeq=T − 1Þ denotes the Bose-Einstein dis-
tribution function. We stress that, despite m4

Ch becoming
negative, the potential remains real. The results for the
potential are shown in Fig. 3. We verify that the transition is
second order and that the transition temperatures agree with
the estimates given above. We also note that the minimum
never enters the region of negative m4

Ch, as can also be seen
in Fig. 1 (bottom), where we show the Gribov parameters at
the minimum of the potential.

B. SU(3) case

We can repeat a similar analysis for the SU(3) gauge
group. In this case there are two neutral modes κ ¼ 0ð3Þ

and κ ¼ 0ð8Þ, and six roots κ ¼ α, with α ∈ f�ð1; 0Þ;
�ð1=2; ffiffiffi

3
p

=2Þ;�ð1=2;− ffiffiffi
3

p
=2Þg. The confining point is

r ¼ ð4π=3; 0Þ. Moreover, due to charge conjugation
invariance, we can restrict the analysis to r¼ðr3;0Þ. We
shall rename r3 as r in what follows. We also mention that

m4
ð1;0Þ ¼ m4

ð−1;0Þ ð70Þ

and

m4
ð1=2; ffiffi

3
p

=2Þ ¼ m4
ð−1=2; ffiffi

3
p

=2Þ
¼ m4

ð1=2;− ffiffi
3

p
=2Þ ¼ m4

ð−1=2;− ffiffi
3

p
=2Þ: ð71Þ

Therefore, in the nondegenerate case, we only need to
introduce two charged Gribov parameters, denoted m4

Ch;1

and m4
Ch;2, respectively. As it is easily checked, at the

confining point they both coincide with the charged Gribov
parameter m4

ChðrÞ of the partially degenerate case, and in
general, m4

Ch;2ðrÞ ¼ m4
Ch;1ðr=2Þ.

1. Highest spinodal

In the SU(3) case, we expect the transition to be first
order so we cannot determine the transition temperature so
simply as above. However, we expect the spinodal
temperatures to be quite close to the transition temper-
ature. The highest spinodal can be determined using the
same method as above because it occurs at r ¼ 4π=3. We
first evaluate the curvature at r ¼ 4π=3. To this purpose,
we notice that Eqs. (64) and (65) are still valid. Moreover,
both in the degenerate and the partially degenerated cases,
it is easily shown that dm2ðrÞ=drjr¼4π=3 ¼ 0.13 It follows
that

d2

dr2
Vðr;mðrÞÞ

����
r¼4π=3

¼ ∂2

∂r2 Vðr;mðrÞÞ
����
r¼4π=3

: ð72Þ

In the degenerate case, the condition for a vanishing
curvature reads then

FIG. 4. Top: Degenerate vs partially or nondegenerate Gribov
parameters (in units ofmvac) for a confining background. Middle:
Degenerate vs partially degenerate Gribov parameters at the
minimum of the background effective potential. Bottom: Degen-
erate vs nondegenerate Gribov parameters at the minimum of the
background effective potential.

13This is because dm2ðrÞ=drjr¼4π=3 is proportional to

X
α

α3

Z
T

Q

Qα
0Q

2
α

Q4
αþm4

Ch

¼2

�Z
T

Q

ðωnþ4π=3TÞðωnþ4π=3TÞ2þq2Þ
ððωnþ4π=3TÞ2þq2Þ2þm4

Ch

þ
Z

T

Q

ðωnþ2π=3TÞðωnþ2π=3TÞ2þq2Þ
ððωnþ2π=3TÞ2þq2Þ2þm4

Ch

�
:

Using the change of variables ωn → −ωn − 2πT in the second
integral, we find that the bracket is zero.

GRIBOV-ZWANZIGER TYPE MODEL ACTION INVARIANT … PHYS. REV. D 98, 034029 (2018)

034029-13



3

2
Re

Z
q

e−3β
ffiffiffiffiffiffiffiffiffiffiffi
q2þim2

p
þ 4e−2β

ffiffiffiffiffiffiffiffiffiffiffi
q2þim2

p
þ e−β

ffiffiffiffiffiffiffiffiffiffiffi
q2þim2

p
	
e−2β

ffiffiffiffiffiffiffiffiffiffiffi
q2þim2

p
þ e−β

ffiffiffiffiffiffiffiffiffiffiffi
q2þim2

p
þ 1



2

−
Z
q

e−3βq þ 4e−2βq þ e−βq

ðe−2βq þ e−βq þ 1Þ2 ¼ 0: ð73Þ

The partially degenerate case is obtained upon making the
replacement m2ð4π=3Þ → m2

Chð4π=3Þ. The nondegenerate
case cannot be treated in this way. The corresponding
transition temperaturewill be determined in the next section.
The temperature dependence of the Gribov parameters at

the minimum is shown in Fig. 4. Using this temperature
dependence, we can determine the spinodal temperatures.
We find

Tpart−deg
c

mvac
≃
Tpart−deg
spinod

mvac
∼ 0.409; ð74Þ

as compared to the result of Ref. [18]

Tdeg
c

mvac
≃
Tdeg
spinod

mvac
∼ 0.512; ð75Þ

so again a 20% difference.

2. Effective potential

Once again, to compute the potential we need to know
the background dependence of the Gribov parameters. This
is shown in Fig. 5 where one sees that the charged ones can
becomes negative. For the degenerate and partially degen-
erate cases, we find transition temperatures very close to the
higher spinodal temperatures determined above. For the
completely nondegenerate case, we find

Tnon−deg
c

mvac
∼ 0.48; ð76Þ

FIG. 5. r dependence of the Gribov parameters for various
temperatures (in units of mvac). We show only the degenerate and
partially degenerate cases. The nondegenerate charged Gribov
parameters are obtained in terms of the SU(2) one respectively as
m4

Ch;1ðrÞ ¼ m4
Ch;SUð2ÞðrÞ and m4

Ch;2ðrÞ ¼ m4
Ch;SUð2Þðr=2Þ.

FIG. 6. SU(3) background effective potentials for various
temperatures (in units of mvac) with degenerate, partially degen-
erate, and nondegenerate Gribov parameters.
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which represents a 6% difference with respect to the
degenerate case. The corresponding potentials are shown
in Fig. 6. We mention that, as compared to the degenerate
and partially degenerated cases, it was crucial in the
nondegenerate case to be able to resolve the potential in
the region where the Gribov parameters become negative
because the minimum lies in this region just before the
transition occurs, as can be seen in the bottom plot of Fig. 4.

C. Comparison with the Curci-Ferrari model

We finally compare our model at one-loop with a similar
calculation in the CF model. To this purpose we show the
Polyakov loops in Fig. 7. We observe that the growth of the
order parameter above Tc is slower in the Gribov-Zwanziger
approach than in the CFmodel. This is more qualitatively in
line with the behavior observed on the lattice.
We shall not display the thermodynamical observables in

the low temperature phase since they suffer from problems
similar to those reported in other approaches [18,31,55],
especially in the limit of vanishing temperature. At the
transition however, we can estimate the latent heat which, at
one-loop order, does not depend on the parameter mvac. We
find ðL=T4

cÞ ≈ 0.31 in the degenerate case, ðL=T4
cÞ ≈ 0.17

in the partially degenerate case, and ðL=T4
cÞ≈3.25 in the

nondegenerate case, to be compared to the value ðL=T4
cÞ ≈

0.43 obtained within the Curci-Ferrari model at one-loop
[32]. The lattice gives instead ðL=T4

cÞ ≈ 1.4 [56]. It would
be interesting to see if higher order corrections can help
with diminishing the discrepancy in at least one of the
scenarios.

V. RELATION WITH THE
GRIBOV RESTRICTION

In this section, we investigate the relation between the
model (25) and the restriction of the functional integral to
the first Gribov region. We first show that, at zero temper-
ature and to one-loop accuracy, the model can be related to
the Gribov no-pole condition applied to the Landau-DeWitt
gauge. We then argue that the result is not so surprising
since, at zero temperature, there is a trivial mapping
between the Landau and Landau-DeWitt gauges. Finally,
we investigate the extension to the finite temperature case,
emphasizing similar difficulties to the ones discussed in
Refs. [48,49].

A. Relation with the Gribov no-pole condition
at zero temperature

We first recall how the no-pole condition is constructed
at one-loop order in the Landau gauge at zero temperature14

and then extend it to the Landau-DeWitt gauge.

Consider the ghost propagator GabðK;P; AÞ in the
presence of a gauge field configuration A. If we evaluate
this propagator for P ¼ K and b ¼ a, we obtain

GaaðK;K; AÞ ¼
Z
x

Z
y
ðeiKxδacÞ�ð−∂DÞ−1cd ðx; yÞðeiKyδadÞ:

ð77Þ

If A belongs to the first Gribov region, it follows by
construction that GaaðK;K; AÞ > 0, ∀a and ∀K. In other
words, by imposing these inequalities, one restricts A to lie
in a domain that still contains the Gribov region. Moreover,
if starting from inside the Gribov region (say from A ¼ 0),
we approach its boundary (the so-called Gribov horizon), at
least one of the GaaðK;K; AÞ’s diverges and changes sign.
This means that the Gribov horizon lies inside the boundary
of the region defined by the conditions GaaðK;K; AÞ > 0,
∀a and ∀K.
In practice, it is not simple to impose the conditions

for all a’s and K’s separately and instead one imposes
tr GðK;K; AÞ > 0, ∀K, where

OðK;AÞ≡ 1

VolOð4Þ
Z
Λ∈Oð4Þ

OðΛK;AÞ: ð78Þ

This defines a priori a larger domain in A-space but again,
when approaching the Gribov horizon from inside the

FIG. 7. Polyakov loops. Top: SU(2). Bottom: SU(3).

14Up to some slight modifications, we follow the nice
presentation given in Ref. [40].
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Gribov region, at least one of the tr GðK;K; AÞ’s has
to change sign and the Gribov horizon lies inside the
boundary of the region defined by tr GðK;K; AÞ > 0, ∀K.
Let us also mention that, for the practical evaluation

of tr GðK;K; AÞ, one can always assume that A is
transverse.
Given these preliminary remarks, at order g2, one

finds [40]

GabðK;P;AÞ ¼
ð2πÞd
K2

δabδ
ðdÞðK −PÞ þ igfbda

1

K2

Pμ

P2
Ad
μðK −PÞ þ ðigÞ2fcdafbec

1

K2

Z
Q

ðK −QÞμ
ðK −QÞ2

Pν

P2
Ad
μðQÞAe

νðK −Q−PÞ;

ð79Þ

and therefore

1

VddG
tr GðK;K;AÞ ¼ 1

K2
½1þ σðK2; AÞ�; ð80Þ

with

σðK2; AÞ ¼ 1

Vdðd − 1Þ
g2Cad

dG
Pk
μνðKÞ

×
Z
Q

P⊥
μνðQÞ

ðK −QÞ2 A
α
ρðQÞAα

ρð−QÞ; ð81Þ

where the labels α and ρ are summed over. In deriving this
expression, we have used that A can be taken transverse,
and, by using appropriate changes of variables, we have
traded the average over Oð4Þ Euclidean rotations of K by
the average

Aα
ρðQÞAα

ρð−QÞ ¼ 1

VolOð4Þ
Z
Λ∈Oð4Þ

Aα
ρðΛQÞAα

ρð−ΛQÞ:

ð82Þ

The previous formula corresponds to the strict expansion of
a propagator to order g2. To this order, this is equivalent to

1

VddG
tr GðK;K; AÞ ¼ 1

K2

1

1 − σðK2; AÞ : ð83Þ

In this 1PI-resummed form, the result is expected to be
more accurate.
The Gribov no-pole condition corresponds a priori to the

infinite set of conditions

∀K; 1 − σðK2; AÞ > 0: ð84Þ

However, it is usually argued that it is enough to impose the
no-pole condition in the form

1 − σð0; AÞ > 0: ð85Þ

This is because σðK2; AÞ is a decreasing function of K2.
In fact, because Aα

ρðQÞAα
ρð−QÞ depends only on Q2, the

dependence with respect to K originates only from the
angular integral

ΩdðK2=Q2Þ≡
Z

π

0

dθ sindθ
K2=Q2 þ 1 − 2K=Q cos θ

: ð86Þ

In Fig. 8, we show that ΩdðxÞ is a decreasing function of
x > 0, for d ≥ 2 and, since Aα

ρðQÞAα
ρð−QÞ is positive, it

follows that σðK2; AÞ decreases indeed with K2.
In the limit K → 0, one finds

σð0; AÞ ¼ 1

Vdd
g2Cad

dG

Z
Q

Aα
ρðQÞAα

ρð−QÞ
Q2

; ð87Þ

where we have used that
R
Q fðQ2ÞAα

ρðQÞAα
ρðQÞ ¼R

ddQfðQ2ÞAα
ρðQÞAα

ρðQÞ. In order to implement the con-
straint (85), one then writes

θð1 − σð0; AÞÞ ∝
Z þi∞þϵ

−i∞þϵ

dβ
2πiβ

eβð1−σð0;AÞÞ: ð88Þ

The partition function becomes

Z ¼
Z

DAcc̄h θð1 − σð0; AÞÞe−SFP½A;c;c̄;h�

¼
Z þi∞þϵ

−i∞þϵ

dβ
2πi

eβ−ln β−VdfðβÞ: ð89Þ
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FIG. 8. The function ΩdðxÞ for d ≥ 2 and x > 0.
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Given that, in the gluonic sector, the quadratic part
of the action in Fourier space becomes (we introduce a
gauge-fixing parameter ξ that we will send to zero at
the end)

Kab
μνðQÞ ¼ δab

�
Q2P⊥

μνðQÞ þQ2

ξ
Pk
μνðQÞ þm4ðβÞ

Q2
δμν

�
;

ð90Þ

with

m4ðβÞ≡ 2

d
g2Cad

dG

β

Vd
; ð91Þ

one obtains, at one-loop order

fðβÞ ¼ dG

�
d − 1

2

Z
Q
ln
Q4 þm4ðβÞ

Q2

þ 1

2

Z
Q
ln
Q4 þ ξm4ðβÞ

ξQ2
−
Z
Q
lnQ2

�
; ð92Þ

where the last term is the ghost contribution. One can
evaluate the integral over β using a saddle-point approxi-
mation. One finds lnZ ∼ β⋆ − ln β⋆ − Vdfðβ⋆Þ, with

0 ¼ 1 −
1

β⋆
−
d − 1

d
g2Cad

Z
Q

1

Q4 þm4ðβ⋆Þ
: ð93Þ

If we assume m4ðβ⋆Þ to have a nontrivial infinite volume
limit, β⋆ has to diverge linearly with Vd and we arrive

at a free-energy density that coincides with the zero-
temperature and zero-background limit of Eq. (37) with

0 ¼ 1 −
d − 1

d
g2Cad

Z
Q

1

Q4 þm4ðβ⋆Þ
: ð94Þ

The extension to the Landau-DeWitt gauge is rather
straightforward: one switches to a Cartan-Weyl basis
(which implies in particular replacing ifabc by fκλτ),
replaces Aμ by aμ and each momentum by its appropriately
shifted version. One then considers the ghost propagator
GκλðK;P; a; ĀÞ in the presence of a gauge-field configura-
tion a and a background Ā, and evaluates

GκκðK−κ; K−κ; a; ĀÞ

¼
Z
x

Z
y
ðeiK−κxδκηÞ�ð−D̄DÞ−1ηξ ðx; yÞðeiK−κyδκξÞ: ð95Þ

Again, if a belongs to the first Gribov region, we have
GκκðK−κ; K−κ; a; ĀÞ > 0, ∀κ and ∀K. Similarly to the
Landau gauge case, we shall impose insteadP

κGκκðK−κ; K−κ; a; ĀÞ > 0, ∀K, with

OðK; a; ĀÞ≡ 1

VolOð4Þ
Z
Λ∈Oð4Þ

OðΛK; a; ĀÞ; ð96Þ

and where we can assume that a is transverse in a
background covariant way. At order g2, We find

GκλðK;P;a;ĀÞ¼ð2πÞd
K2

κ
δκλδ

ðdÞðK−PÞþgfληκ
1

K2
κ

Pλ
μ

P2
λ

aημðK−PÞþg2fηξð−κÞfλζð−ηÞ
1

K2
κ

Z
Q

ðKκ−QξÞμ
ðKκ−QξÞ2

Pλ
ν

P2
λ

aξμðQÞaζνðK−Q−PÞ;

ð97Þ

and therefore

1

VddG

X
κ

GκκðK−κ;K−κ;a;ĀÞ¼
1

K2

1

1−σðK2;a;ĀÞ; ð98Þ

with

σðK2; a; ĀÞ ¼ 1

Vdðd − 1Þ
g2Cad

dG
Pk
μνðKÞ

×
Z
Q

P⊥
μνðQÞ

ðK −QÞ2 a
ξ
ρðQ−ξÞa−ξρ ð−Q−ξÞ: ð99Þ

In deriving these expressions, before taking the average
over Λ transformations, we have used that, at zero

temperature, one can always shift the integration momen-
tumQξ toQ. Then, by appropriate changes of variables, we
have traded the average overOð4Þ Euclidean rotations of K
by the average

aξρðQ−ξÞa−ξρ ð−Q−ξÞ

¼ 1

VolOð4Þ
Z
Λ∈Oð4Þ

aξρððΛQÞ−ξÞa−ξρ ð−ðΛQÞ−ξÞ: ð100Þ

It is easily checked that aξρðQ−ξÞa−ξρ ð−Q−ξÞ is positive
and depends only on Q2. Therefore, we are in a similar
situation as above, with σðK2; a; ĀÞ < σð0; a; ĀÞ and
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σð0; a; ĀÞ ¼ 1

Vdd
g2Cad

dG

Z
Q

aξρðQ−ξÞa−ξρ ð−Q−ξÞ
Q2

¼ 1

Vdd
g2Cad

dG

Z
Q

aξρðQÞa−ξρ ð−QÞ
Q2

ξ

; ð101Þ

where we made use of
R
Q fðQ2ÞaξρðQ−ξÞa−ξρ ð−Q−ξÞ ¼R

Q fðQ2ÞaξρðQ−ξÞa−ξρ ð−Q−ξÞ and we changed the integra-
tion variable back to Qξ.
After introducing a parameter β to impose the no-pole

condition, we arrive at lnZ ¼ β⋆ − ln β⋆ − Vd
P

κfκðβ⋆Þ
with

fκðβÞ ¼
d − 1

2

Z
Q
ln
Q4

κ þm4ðβÞ
Q2

κ
þ 1

2

Z
Q
ln
Q4

κ þ ξm4ðβÞ
ξQ2

κ

−
Z
Q
lnQ2

κ ; ð102Þ

and

m4ðβÞ ¼ 2

d
g2Cad

dG

β

Vd
: ð103Þ

The parameter m4 is fixed through the saddle-point
equation

1 ¼ d − 1

d
g2Cad

dG

X
κ

Z
Q

1

Q4
κ þm4

: ð104Þ

This is nothing but the gap equation obtained with the
model (25). Of course at zero temperature, one can always
shift the momenta Qκ back to Q, in which case the free-
energy density and the gap equations coincide trivially with
the ones obtained in the Landau gauge.

B. Mapping to the Landau gauge

The previous results are not surprising because, at zero
temperature, the expression for the partition function in
the Landau-DeWitt gauge can be related to the one in the
Landau gauge through a trivial transformation of the fields,
namely,15

ðXUÞκðxÞ ¼ eiτgĀ·κXκðxÞ: ð105Þ

First, using the property

D̄κ
μðXUÞκðxÞ ¼ eiτgĀ·κ∂μXκðxÞ; ð106Þ

it is easily checked that, upon this change of variables,
the Faddev-Popov action for the Landau-DeWitt gauge

becomes the Faddeev-Popov action for the Landau gauge,
after one renames aμ into Aμ. It is then easily checked that if
one starts from the Gribov-Zwanziger action for the Landau
gauge and applies the change of variables (after renaming
Aμ into aμ)

ðXUÞκðxÞ ¼ e−iτgĀ·κXκðxÞ; ð107Þ

ðXUÞκλðxÞ ¼ e−iτgĀ·ðκþλÞXκλðxÞ; ð108Þ

one obtains the action (21).
We should mention, however, that this mapping crucially

relies on the fact that the boundary conditions are not
important at zero temperature, at least in the Faddeev-
Popov framework. To check this, consider Yang-Mills fields
on a compact time interval of lengthL (which will eventually
be sent to ∞) with boundary conditions of the form

bc1∶ aκμðτ þ L; x⃗Þ ¼ eigB̄·κaκμðτ; x⃗Þ; ð109Þ

with B̄ a constant vector in a space isomorphic to the
Cartan subalgebra. For the partition function to be invariant
under gauge transformations, the latter should be chosen to
preserve the boundary condition (109). This means that the
Faddeev-Popov procedure applied to the Landau-DeWitt
gauge leads to the usual action but with the peculiarity that
all fields obey the boundary conditions (109).16

Consider now a two-point function (this could be any
correlation function, including the partition function)
GL;bc1
κλ ðx; y; ĀÞ, computed within this particular gauge fix-

ing. We will now show that, in the “zero-temperature” limit
(L → ∞) it coincides with the same correlation function
computed within the same gauge, but with periodic
boundary conditions

bc2∶ aκμðτ þ ðL → ∞Þ; x⃗Þ ¼ aκμðτ; x⃗Þ: ð110Þ

To show this, we first apply the change of variables in (107)
and (108) with Ā replaced by B̄. This turns the boundary
conditions of all fields into periodic ones, while changing
the background from Ā to Āþ B̄ and multiplying all
correlation functions by appropriate phase factors:

GL;bc1
κλ ðx; y; ĀÞ ¼ e−iðτκþτ0λÞ·gB̄GL;bc2

κλ ðx; y; Āþ B̄Þ: ð111Þ

Next, one applies a background gauge transformations to
obtain

GL;bc1
κλ ðx; y; ĀÞ ¼ e−iðτκþτ0λÞ·gB̄0

GL;bc2
κλ ðx; y; Āþ B̄0Þ; ð112Þ

15Of course this does not mean that the two gauges are identical
because the correlations functions are not the same. However, they
are related by trivial identities, see for instance [32].

16Under an infinitesimal transformation we have δaκμ ¼∂μθ
κ − igf−κληθλaημ. If θκ obeys the boundary conditions (109),

then, using that f−κλη is color conserving, one finds that δaκμ also
obeys the boundary conditions (109).
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with B̄0 ¼ B̄ − nᾱ=ðgLÞ, for any ᾱ that maintains the 1=L
periodicity of the fields and for any n ∈ Z. Taking the zero-
temperature limit as L ¼ n=ðugÞ with u any real number
and n → ∞, we arrive at

G∞;bc1
κλ ðx; y; ĀÞ ¼ e−iðτκþτ0λÞ·gB̄0

G∞;bc2
κλ ðx; y; Āþ B̄0Þ; ð113Þ

with B̄0 ¼ B̄ − uᾱ. Since the ᾱ’s form a basis of the Cartan
subalgebra, repeated use of the previous formula leads to

G∞;bc1
κλ ðx; y; ĀÞ ¼ G∞;bc2

κλ ðx; y; ĀÞ: ð114Þ

As announced, the zero-temperature correlations functions
in the Faddeev-Popov gauge fixing are the same for the two
sets of boundary conditions.
It is, however, not clear how these remarks extend to the

Gribov gauge-fixing. In particular, we should notice that in
the above derivation, the use of shifted momenta in (95)
implicitly restricts the search for eigenstates of the
Faddeev-Popov operator to eigenstates with certain boun-
dary conditions, those that are precisely mapped to the
periodic eigenstates in the Landau gauge. It is not clear to
us whether this is what should be done or how taking into
account other boundary conditions would affect the result.

C. Extension to finite temperature?

The problem with the boundary conditions is even more
visible at finite temperature. First of all, in this case, there is
no change of variable that allows us to get rid of the
background, since the allowed transformations are con-
strained by the periodicity of the fields. Moreover, as it has
been discussed in Refs. [48,49], the periodic boundary
conditions directly affect the implementation of the Gribov
gauge fixing via the Gribov-Zwanziger construction.17 Let
us here summarize the argument in the case of the Landau
gauge and then briefly speculate on the consequences for
the Landau-DeWitt gauge. A more detailed discussion is
postponed to a future investigation.
The Gribov-Zwanziger construction is based on the

perturbative evaluation of the lowest nonzero eigenvalues
of the Faddeev-Popov operator, starting from the lowest
nonzero (degenerate) eigenvalue of the free Faddeev-Popov
operator. At zero temperature, working in a box of volume
L4 with periodic boundary conditions, the eigenstates
of the free Faddeev-Popov operator are of the form
expðið2π=LÞðn0τ þ n⃗ · x⃗ÞÞ, with nμ ∈ Z, ∀μ, and the
corresponding eigenvalues are ð2π=LÞ2ðn20 þ kn⃗k2Þ.
Therefore, the lowest nonzero eigenvalue corresponds
to states with n20 þ kn⃗k2 ¼ 1. In contrast, at finite temper-
ature, where the system is in a box of size βL3, the periodic
eigenstates are rather expðið2π=βÞn0τ þ ð2π=Ln⃗Þ · x⃗Þ

and the corresponding eigenvalues are ð2π=βÞ2n20 þ
ð2π=LÞ2kn⃗k2. Therefore, in this case, the smallest, nonzero
eigenvalue corresponds to states with n0 ¼ 0 and kn⃗k2 ¼ 1.
This has a direct imprint on the Gribov-Zwanziger con-
struction and leads to an action that is not simply the zero-
temperature Gribov-Zwanziger action taken over a compact
time interval; see Refs. [48,49] for more details.
We mention here that, even though this asymmetrical

treatment of the temporal and spatial components is to be
expected at finite temperature, it leads to some unex-
pected features. In particular, in the zero-temperature
limit, one does not recover the usual Gribov-Zwanziger
action but rather an action that explicitly breaks the
Euclidean Oð4Þ invariance of the vacuum theory. This
raises some conceptual issues, in particular, concerning
the renormalizability of the action or the potential
contamination of the zero-temperature observables by
these Oð4Þ-breaking terms. Of course, if the Gribov-
Zwanziger construction corresponds to a bona fide gauge
fixing, we expect the Oð4Þ-breaking terms to be restricted
to the gauge-fixing sector and not to affect the Oð4Þ
invariance or the UV finiteness of the zero-temperature
observables. However, since the Gribov restriction is
never implemented exactly in practice,18 these issues
deserve a careful investigation.
We leave these interesting questions for a future work

and end this section by speculating on the implications of
the previous remarks for the Landau-DeWitt gauge. In the
Landau-DeWitt gauge at finite temperature, the role of the
free Faddeev-Popov operator is played by D̄2 but the fields
remain periodic. Therefore, the eigenstates are still of the
form expðið2π=βÞn0τ þ ð2π=LÞn⃗ · x⃗Þ but the eigenvalues
become ð2πn0 þ r · κÞ2=β2 þ ð2π=LÞ2kn⃗k2. It follows that,
for generic backgrounds such that r · κ is not a multiple of
2π, the lowest nonzero eigenvalues correspond to κ ¼ 0,
n0 ¼ 0, and kn⃗k2 ¼ 1. So not only would the Gribov-
Zwanziger procedure affect only the spatial components
of the gauge field but only those color components that
are aligned with the background. In this case the order
parameter for the deconfinement transition—the Polyakov
loop or the background Ā at the minimum of the back-
ground effective potential—would not interact with the
Gribov region at one-loop order, in contrast to what
happens in the present work or in [18]; the search for
possible effects on the deconfinement transition would
necessarily start at two-loop order.

17We shall not discuss it here but the implementation of the
Gribov no-pole condition is also substantially modified.

18In the case of the Gribov-Zwanziger approach, even though
the true condition should be that the smallest value of the
Faddeev-Popov operator remains positive, in practice, one
imposes the sum of the smallest eigenvalues (as described above)
to remain positive, which obviously does not imply that the
smallest one is positive. In fact, in our view this is the reason why
the Gribov-Zwanziger approach and the zero-temperature limit
do not seem to commute.
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VI. CONCLUSIONS AND OUTLOOK

We have put forward a Gribov-Zwanziger type action
for the Landau-DeWitt gauge that remains invariant under
background gauge transformations. At zero-temperature
and to one-loop accuracy, our model can be related to
the Gribov no-pole condition applied to the Landau-
DeWitt gauge. Moreover, in contrast to other recent
proposals, our model does not require the introduction
of a Stueckelberg field.
Without spoiling the background gauge invariance, our

approach allows for color-dependent Gribov parameters, a
possibility which we have investigated together with its
impact on the deconfinement transition. We have observed
variations of the transition temperature up to 20%. We have
also observed that certain Gribov parameters can become
negative while maintaining a real effective potential. In fact,
in some cases, the transition is only properly accounted for
if m4 is allowed to become negative. We mention that, in a
recent study, the three scenarios proposed here have been
tested against lattice simulations [57]. The degenerate
scenario seems to be favored.
Our model allows for the evaluation of higher

corrections in a manifestly background gauge invariant
way. We are currently evaluating the two-loop back-
ground effective potential and the corresponding finite
temperature two-loop gap equations for the Gribov
parameters.
Finally, it is important to mention that, at finite temper-

ature, none of the existing proposals, including ours, can be
understood so far as faithful implementations of the
Gribov-Zwanziger restriction for the Landau-DeWitt
gauge. In this respect, it would be important to generalize
the considerations of Refs. [48,49] to the Landau-DeWitt
gauge, along the lines of the discussion that we have
initiated in Sec. V C.

ACKNOWLEDGMENTS

We would like to thank David Dudal and Cédric
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APPENDIX A: PATH (IN-)DEPENDENCE

Even though we did not make it explicit in our
notation, for general backgrounds (such that F̄μν ≠ 0)
the redefinitions φ̂νðxÞ and ω̂νðxÞ of the fields φνðxÞ and
ωνðxÞ through the Wilson line (11) are not true functions
of x, since they also depend on the path C used to define
the Wilson line. Therefore, we need to be more specific
about what is meant by “covariant derivatives” acting on
these types of objects in Eq. (10). We write our action
proposal as

Snew ¼
Z
x

�
1

4
Fa
μνFa

μν þ ihaD̄ab
μ abμ þ c̄aD̄ab

μ Dbc
μ cc

− ðω̂†
νÞeaΔ̄ab

μ Δbc
μ ω̂ce

ν þ ðφ̂†
νÞeaΔ̄ab

μ Δbc
μ φ̂ce

ν

− gγ1=2fabcaaμðφbc
μ þ φ̄bc

μ Þ − γddG

�
; ðA1Þ

and define

Δμφ̂νðxÞ≡ ðDμφνðxÞÞLĀ;Cðx; x0Þ
þ igφνðxÞĀa

μðxÞTaLĀ;Cðx; x0Þ; ðA2Þ

and similarly for Δ̄μ. These definitions coincide with the
usual covariant derivatives in the case where F̄μν ¼ 0.
Moreover, by noticing that the rhs of (A2) is a linear
combination of true functions multiplied by the Wilson
line, the repeated action of such operators can be simply
defined by assuming that Δμ acts linearly on these types
of linear combinations.
The definition (A2) is similar in spirit to the so-called

Mandelstam derivative of the Wilson line [58]. We stress,
however, that because it does not apply to functions (unless
F̄μν ¼ 0), this is not a true derivative and thus it should not
be used as such (a similar word of caution applies to the
Mandelstam derivative). To make this point clear, we use
the notation Δμ for the rest of this section. In the
manipulations to be discussed now, we shall always rely
on the above definition and will not assume without proof
that Δμ shares the same properties as a derivative operator.
For instance, it will be convenient to show that given two
objects φ̂ and ψ̂ of the form “function times Wilson line,”
the following formula of integration by parts holds:

Z
x
tr ψ̂†Δμφ̂ ¼ −

Z
x
trðΔμψ̂Þ†φ̂: ðA3Þ

To this purpose, we write

tr ðψLĀ;CÞ†ΔμðφLĀ;CÞ þ tr ðΔμðψLĀ;CÞÞ†φLĀ;C

¼ trL†
Ā;C

ψ†ðDμφÞLĀ;C þ trL†
Ā;C

ðDμψ
†ÞφLĀ;C

þ ig trL†
Ā;C

ψ†φĀa
μTaLĀ;C − ig trL†

Ā;C
Āa
μTaψ†φLĀ;C

¼ tr ∂μðψ†φÞ − gðψ†ÞeafabcAc
μφ

be − gfeacAc
μðψ†Þabφbe

¼ tr ∂μðψ†φÞ: ðA4Þ

In the last step, we have used that the fields φab and ψab are
antisymmetric. An integration over x leads finally to (A3).
We are now ready to check the background gauge

invariance of (A1) in a more rigorous way. To that aim,
we first use the integration by parts formula (A3) to rewrite
the action as
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Snew ¼
Z
x

�
1

4
Fa
μνFa

μν þ ihaD̄ab
μ abμ þ c̄aD̄ab

μ Dbc
μ cc þ trðΔ̄μω̂μÞ†ðΔμω̂νÞ − trðΔ̄φ̂νÞ†ðΔμφ̂νÞ

− g γ1=2fabcaaμðφbc
μ þ φ̄bc

μ Þ − γddG

�
: ðA5Þ

Then, we evaluate

ΔU
μ ðφU

ν ðxÞLĀU;Cðx; x0ÞÞ≡ ðDU
μ φ

U
ν ðxÞÞLĀU;Cðx; x0Þ þ igφU

ν ðxÞðAU
μ ÞaðxÞTaLĀU;Cðx; x0Þ

¼ DU
μ ðUðxÞφνðxÞÞLĀ;Cðx; x0ÞU†ðx0Þ þ UðxÞφνðxÞ∂μU†ðxÞUðxÞLĀ;Cðx; x0ÞU†ðx0Þ

þ igUðxÞφνðxÞAa
μðxÞTaLĀ;Cðx; x0ÞU†ðx0Þ − UðxÞφνðxÞ∂μU†ðxÞUðxÞLĀ;Cðx; x0ÞU†ðx0Þ

¼ UðxÞðDμφνðxÞÞLĀU;Cðx; x0ÞU†ðx0Þ þ igUðxÞφνðxÞAa
μðxÞTaLĀ;Cðx; x0ÞU†ðx0Þ

¼ UðxÞ½ΔμðφνðxÞLĀ;Cðx; x0ÞÞ�U†ðx0Þ: ðA6Þ

The background gauge invariance of (A5) and therefore
of (A1) follows immediately.
We can also check the independence of our procedure

with respect to the chosen path. Indeed, if we consider a
second path C0, we have

φ̂0ðxÞ ¼ φðxÞLĀ;C0 ðx; x0Þ
¼ φ̂ðxÞL−1

Ā;Cðx; x0ÞLĀ;C0 ðx; x0Þ: ðA7Þ

By definition

Δμφ̂
0ðxÞ≡ ðDμφðxÞÞLĀ;C0 ðx; x0Þ

þ igφðxÞAa
μðxÞTaLĀ;C0 ðx; x0Þ: ðA8Þ

Using (A2), it is trivially seen that

Δμφ̂
0ðxÞ ¼ ðΔμφ̂ðxÞÞL−1

Ā;Cðx; x0ÞLĀ;C0 ðx; x0Þ: ðA9Þ

Therefore, the second line of (A5) can be reexpressed
identically in terms of φ̂0 and ω̂0. This completes the proof
that our procedure is independent of the chosen path C, as
announced above.

APPENDIX B: CHANGE TO
A CARTAN-WEYL BASIS

The change from a Cartesian basis fitag to a Cartan-
Weyl basis fitκg is a change of basis in the complexified
version of the Lie algebra. Therefore, in what follows, it
will be convenient to introduce a formal complex con-
jugation to distinguish the elements of the original (real)
Lie algebra, such that X̄ ¼ X, from those in the purely
imaginary component of the complexified algebra, such
that X̄ ¼ −X. In the case of SUðNÞ, where the elements of
the original Lie algebra are anti-Hermitian matrices, this

complex conjugation can be represented as X̄ ≡ −X†.19 In
particular, we have ita ¼ ita. The Cartan-Weyl basis can
always be chosen such that itκ ¼ it−κ. In particular, if

X ¼ Xaita ¼ Xκitκ; ðB1Þ

then

X̄ ¼ ðXaÞ�ita ¼ ðX−κÞ�itκ: ðB2Þ

This is exactly as with the Fourier transformation, for
which X̄ðQÞ ¼ ðXð−QÞÞ�. If the field is real (meaning
X̄ ¼ X), we find of course ðXaÞ� ¼ Xa and ðX−κÞ� ¼ Xκ.
The change to a Cartan-Weyl basis is in fact an

orthonormal change of basis if we equip the complexified
algebra with the Hermitian product

hX;Yi ¼ 2 trX†Y ¼ −2trX̄Y: ðB3Þ

It follows that

ðXaÞ�Ya ¼ ðXκÞ�Yκ; ðB4Þ

which also rewrites

X̄aYa ¼ X̄−κYκ: ðB5Þ

This is similar to the Parseval-Plancherel identity. This
identity has been extensively used in deriving Eq. (21).
We mention finally that in Eq. (21), the components φκξ

ν

or φ̂κξ
ν are tensor components whereas in Eq. (20) the same

notation stands for matrix components. The reason why we
use tensor components in Eq. (21) is that the derivation is

19This formal complex conjugation should not be mistaken,
however, with the standard complex conjugation of matrices,
which we denote by X�.
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simpler for it relies directly on the identities given above.
The matrix notation was useful in Sec. II B to identify
invariant terms in the action. Changing from the matrix
components to the tensor components simply amounts to
changing the sign of ξ. To see this let us write the unitary
change from Cartesian to Cartan-Weyl coordinates as

Xκ ¼ MκaXa; ðB6Þ

with M† ¼ M−1. Since this change of variables applies to
any element of the complexified algebra, in particular, to
those in the real part, we have

X−κ ¼ M�
κaXa; ðB7Þ

from which we deduce that M�
κa ¼ Mð−κÞa and then

M−1
bξ ¼ M†

bξ ¼ M�
ξb ¼ Mð−ξÞb. Let us now write the matrix

and tensor components of φ in the Cartan-Weyl basis,
respectively, as

φ̃κξ ¼ Mκaφ
abM−1

bξ ; ðB8Þ

φκξ ¼ MκaMξbφ
ab: ðB9Þ

It follows that

φ̃κξ ¼ MκaMð−ξÞbφab ¼ φκð−ξÞ; ðB10Þ

as announced.

APPENDIX C: GAUSSIAN INTEGRALS

In some cases, we need to evaluate Gaussian integrals
that mix real and complex variables. Consider for instance
the integral

I ¼
Z

dnx
dnzdnz�

in
e−

1
2
XtMX−Z†NZ−XtP†Z−Z†PX; ðC1Þ

with M real and symmetric and N Hermitian so that the
“action” is real. We can integrate over the complex
variables first. Using the change of variables

Z → Z − N−1PX; ðC2Þ

Z� → Z� − ðN�Þ−1P�X; ðC3Þ

we find

I ¼
Z

dnx
dnzdnz�

i
e−

1
2
XtðM−2P†N−1PÞX−Z†NZ: ðC4Þ

After symmetrization of the newly obtained real quadratic
form, we find

I ¼ ð2πÞ3n=2
detN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðM − P†N−1P − ðP†N−1PÞtÞ

p : ðC5Þ

A mnemonic way to recall this result is to rewrite the
original integral as

I ¼
Z

d3nξe−
1
2
χ†N χ ; ðC6Þ

with

χ ¼

0
B@

X

Z

Z�

1
CA ðC7Þ

and

N ¼

0
B@

M P† Pt

P N 0

P� 0 Nt

1
CA: ðC8Þ

A simple calculation, using Schur decomposition leads to

detN ¼ detN × det

�
M − PtðNtÞ−1P� P†

P N

�

¼ ðdetNÞ2 × detðM − P†N−1P − ðP†N−1PÞtÞ:
ðC9Þ

Therefore, we can rewrite the result (C5) as

I ¼ ð2πÞ3n=2ffiffiffiffiffiffiffiffiffiffiffiffi
detN

p ; ðC10Þ

that is, as it would result from (C6) by considering the
integral as a purely real one (i.e., disregarding the presence
of the dagger and the fact that some of the components of χ
are complex).
This is the reason why we have written the quadratic part

of the action (26) in the A − φ − φ̄ sector as

1

2

Z
x;y

χ†ðxÞMðx − yÞχðyÞ; ðC11Þ

with χ†ðxÞ ¼ ðaκμðxÞ; hλðxÞ;φηξ
ρ ðxÞ; φ̄η̄ ξ̄

ρ̄ ðxÞÞ�. This vector

contains real components a0
ðjÞ
μ ðxÞ and h0

ðjÞ ðxÞ, as well as
complex conjugated components aαμðxÞ and a−αμ ðxÞ, hαðxÞ
and h−αðxÞ, φηξ

ρ ðxÞ and φ̄ð−ηÞð−ξÞ
ρ ðxÞ, and finally φ̄η̄ ξ̄

ρ̄ ðxÞ
and φð−η̄Þð−ξ̄Þ

ρ̄ ðxÞ.
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APPENDIX D: FORMULAS

In what follows, we derive various formulas used in
the main text. It will be important to allow for negative
values of the Gribov parameter m4 in those sum
integrals where the frequency is shifted by r · κ. In fact
the parameter m4 can take values down to −M4

r·κ with
M4

r·κ ≡minn∈Zð2πnþ r · κÞ4T4.

1. Sum integral entering the gap equation

The gap equation involves the sum integral

Ĵκðm4Þ≡
Z

T

Q

1

Q4
κ þm4

: ðD1Þ

At zero temperature, it does not depend on the background
since the latter can be shifted away by a change of
variables. In that case, the Gribov parameter m4 should
be taken positive (without loss of generality, we can assume
that m2 > 0). We can then use

1

Q4 þm4
¼ −

1

m2
Im

1

Q2 þ im2
; ðD2Þ

together with the formula

Z
Q

1

Q2 þM2
¼ −

M2

16π2

�
1

ϵ
þ ln

μ̄2

M2
þ 1

�
; ðD3Þ

valid for any non-negative (possibly complex) M2, to
arrive at

Ĵðm4Þ≡
Z
Q

1

Q4 þm4
¼ 1

16π2

�
1

ϵ
þ 1

2
ln

μ̄4

m4
þ 1

�
: ðD4Þ

We can proceed similarly at finite temperature, but
this time we need to distinguish the cases m4 > 0 and
−M4

r·κ < m4 < 0. If m4 > 0, we use again (D2) and the
usual formula for the tadpole sum integral at finite temper-
ature. We find

Ĵκðm4Þ¼−
1

m2

Z
q
Im

�1þn ffiffiffiffiffiffiffiffiffiffiffi
q2þim2

p
−iTr·κ

þn ffiffiffiffiffiffiffiffiffiffiffi
q2þim2

p
þiTr·κ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2þ im2

p
�
;

ðD5Þ

where nq ≡ 1=ðeq=T − 1Þ denotes the Bose-Einstein dis-
tribution function. Because m2 is real, the contribution 1 in
the numerator leads to the zero-temperature limit (D4).
Rewriting also the finite temperature contribution in a
simpler way, we arrive at

ΔĴκðm4;m4
vacÞ≡ Ĵκðm4Þ − ĴT¼0ðm4

vacÞ

¼ 1

32π2
ln
m4

vac

m4
−

1

m2

Z
q
Im

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ im2

p e
ffiffiffiffiffiffiffiffiffiffiffi
q2þim2

p
=T cosðr · κÞ − 1

e2
ffiffiffiffiffiffiffiffiffiffiffi
q2þim2

p
=T − 2e

ffiffiffiffiffiffiffiffiffiffiffi
q2þim2

p
=T cosðr · κÞ þ 1

; ðD6Þ

which we also rewrite for later convenience as

ΔĴκðm4;m4
vacÞ ¼

1

32π2
ln
m4

vac

m4
þ 1

2im2

Z
q

1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ im2

p cosðr · κÞ − e−
ffiffiffiffiffiffiffiffiffiffiffi
q2þim2

p
=T

cosðr · κÞ − coshð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ im2

p
=TÞ

−
1

2im2

Z
q

1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 − im2

p cosðr · κÞ − e−
ffiffiffiffiffiffiffiffiffiffiffi
q2−im2

p
=T

cosðr · κÞ − coshð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 − im2

p
=TÞ

: ðD7Þ

If −M4
r·κ < m4 < 0, we writem2 ¼ iM2 (we can assume thatM2 > 0) and use again (D2) but rather as a difference. We find

Ĵκðm4Þ ¼ 1

2M2

Z
q<M

1þ n
i

ffiffiffiffiffiffiffiffiffiffi
M2−q2

p
−iTr·κ

þ n
i

ffiffiffiffiffiffiffiffiffiffi
M2−q2

p
þiTr·κ

2i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − q2

p þ 1

2M2

Z
q>M

1þ n ffiffiffiffiffiffiffiffiffiffi
q2−M2

p
−iTr·κ

þ n ffiffiffiffiffiffiffiffiffiffi
q2−M2

p
þiTr·κ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 −M2

p

−
1

2M2

Z
q

1þ n ffiffiffiffiffiffiffiffiffiffiffi
q2þM2

p
−iTr·κ

þ n ffiffiffiffiffiffiffiffiffiffiffi
q2þM2

p
þiTr·κ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þM2

p ; ðD8Þ

where we have conveniently separated the first two integrals. We note that the integrands are regular when q → M.
Moreover, the first integrand does not have singularities arising from the Bose-Einstein distributions because, by
assumption, 0 < M < Mr·κ and we haveMr·κ < πT. We also note that all the integrals that enter the above formula are real.
For the first integral this is shown using
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1þ nia þ nib ¼ nia − n−ib ¼
e−ib − eia

ðeia − 1Þðe−ib − 1Þ ¼
sinððaþ bÞ=2Þ

2i sinða=2Þ sinðb=2Þ

¼ 1

2i

�
1

tanða=2Þ þ
1

tanðb=2Þ
�

¼ 1

i
sinððaþ bÞ=2Þ

cosðða − bÞ=2Þ − cosððaþ bÞ=2Þ : ðD9Þ

Contrary to the previous case, not all the 1’s in (D8) lead to the zero-temperature contribution, so we cannot use the same
trick as above to compute ΔĴκðm4; m2

vacÞ. However, since the latter is finite, we can compute it using any regulator. With a
3d cutoff, we have

Ĵðm4Þ ¼ 1

4π2m2
Im

Z
Λ

0

dq
q2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q2 − im2
p ðD10Þ

and then, after some calculation,

ΔĴκðm4Þ ¼ 1

32π2
ln
m4

vac

M4
−

1

2M2

Z
q<M

1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − q2

p sinð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − q2

p
=TÞ

cosðr · κÞ − cosð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − q2

p
=TÞ

þ 1

2M2

Z
q>M

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 −M2

p e
ffiffiffiffiffiffiffiffiffiffi
q2−M2

p
=T cosðr · κÞ − 1

e2
ffiffiffiffiffiffiffiffiffiffi
q2−M2

p
=T − 2e

ffiffiffiffiffiffiffiffiffiffi
q2−M2

p
=T cosðr · κÞ þ 1

−
1

2M2

Z
q

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þM2

p e
ffiffiffiffiffiffiffiffiffiffiffi
q2þM2

p
=T cosðr · κÞ − 1

e2
ffiffiffiffiffiffiffiffiffiffiffi
q2þM2

p
=T − 2e

ffiffiffiffiffiffiffiffiffiffiffi
q2þM2

p
=T cosðr · κÞ þ 1

ðD11Þ

or equivalently

Ĵκðm4Þ ¼ 1

32π2
ln
m4

vac

M4
−

1

2M2

Z
q<M

1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − q2

p sinð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − q2

p
=TÞ

cosðr · κÞ − cosð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − q2

p
=TÞ

−
1

2M2

Z
q>M

1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 −M2

p cosðr · κÞ − e−
ffiffiffiffiffiffiffiffiffiffi
q2−M2

p
=T

cosðr · κÞ − coshð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 −M2

p
=TÞ

þ 1

2M2

Z
q

1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þM2

p cosðr · κÞ − e−
ffiffiffiffiffiffiffiffiffiffiffi
q2þM2

p
=T

cosðr · κÞ − coshð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þM2

p
=TÞ

: ðD12Þ

Finally, we will also need Jκðm4Þm4 → 0 (which exists for r · κ ∉ 2πZ). Using (D13), we find

Ĵκðm4 → 0Þ ¼ −
Z
q

d
dq2

1þ nq−iTr·κ þ nqþiTr·κ

2q
−

1

8π2
þ
Z
q

1þ nq−iTr·κ þ nqþiTr·κ

4q3
: ðD13Þ

2. Sum integral entering the potential

The same discussion can be applied to the sum integral

K̂κðm4Þ≡
Z

T

Q
lnðQ4

κ þm4Þ ðD14Þ

that appears in the effective potential. At zero temperature,
the integral is defined only for m4 > 0 (again if we restrict
to real values of m4). We then use

lnðQ4 þm4Þ ¼ 2Re lnðQ2 þ im2Þ; ðD15Þ

together with

Z
Q
lnðQ2 þM2Þ ¼ −

M4

32π2

�
1

ϵ
þ ln

μ̄2

M2
þ 3

2

�
; ðD16Þ

valid for any non-negative M2. We find

K̂ðm4Þ≡
Z
Q
lnðQ4 þm4Þ ¼ m4

16π2

�
1

ϵ
þ 1

2
ln

μ̄4

m4
þ 3

2

�
:

ðD17Þ
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Similarly, at finite temperature, we have

K̂κðm4Þ ¼
Z
q
2Re

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ im2

q
þ T ln

	
e−2

ffiffiffiffiffiffiffiffiffiffiffi
q2þim2

p
=T − 2e−

ffiffiffiffiffiffiffiffiffiffiffi
q2þim2

p
=T cosðr · κÞ þ 1


�
; ðD18Þ

for m4 > 0. In this case the first term inside the bracket corresponds to the zero-temperature contribution and can be
replaced by the explicit formula (D17). Then

ΔK̂κðm4;m4
vacÞ≡ K̂κðm4Þ −m4ĴT¼0ðm4

vacÞ

¼ m4

32π2

�
ln
m4

vac

m4
þ 1

�
þ T

Z
q
ln
	
e−2

ffiffiffiffiffiffiffiffiffiffiffi
q2þim2

p
=T − 2e−

ffiffiffiffiffiffiffiffiffiffiffi
q2þim2

p
=T cosðr · κÞ þ 1




þ T
Z
q
ln
	
e−2

ffiffiffiffiffiffiffiffiffiffiffi
q2−im2

p
=T − 2e−

ffiffiffiffiffiffiffiffiffiffiffi
q2−im2

p
=T cosðr · κÞ þ 1



: ðD19Þ

Instead, if −M4
r·κ < m4 ¼ −M2 < 0, we find

K̂κðm4Þ ¼
Z
q<M

�
i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − q2

q
þ T ln

	
e−2i

ffiffiffiffiffiffiffiffiffiffi
M2−q2

p
=T − 2e−i

ffiffiffiffiffiffiffiffiffiffi
M2−q2

p
=T cosðr · κÞ þ 1


�

þ
Z
q>M

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 −M2

q
þ T ln

	
e−2

ffiffiffiffiffiffiffiffiffiffi
q2−M2

p
=T − 2e−

ffiffiffiffiffiffiffiffiffiffi
q2−M2

p
=T cosðr · κÞ þ 1


�

þ
Z
q

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þM2

q
þ T ln

	
e−2

ffiffiffiffiffiffiffiffiffiffiffi
q2þM2

p
=T − 2e−

ffiffiffiffiffiffiffiffiffiffiffi
q2þM2

p
=T cosðr · κÞ þ 1


�
: ðD20Þ

We have

e−2i
ffiffiffiffiffiffiffiffiffiffi
M2−q2

p
=T − 2e−i

ffiffiffiffiffiffiffiffiffiffi
M2−q2

p
=T cosðr · κÞ þ 1 ¼ 2e−i

ffiffiffiffiffiffiffiffiffiffi
M2−q2

p
=T
	
cos

	 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − q2

q
=T



− cosðr · κÞ



: ðD21Þ

Since 0 < M=T < π, we can apply the formula lnðabÞ ¼ ln aþ ln b and then

K̂κðm4Þ ¼
Z
q<M

T ln
	
2 cos

	 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − q2

q
=T



− 2 cosðr · κÞ




þ
Z
q>M

h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 −M2

q
þ T ln

	
e−2

ffiffiffiffiffiffiffiffiffiffi
q2−M2

p
=T − 2e−

ffiffiffiffiffiffiffiffiffiffi
q2−M2

p
=T cosðr · κÞ þ 1


i

þ
Z
q

h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þM2

q
þ T ln

	
e−2

ffiffiffiffiffiffiffiffiffiffiffi
q2þM2

p
=T − 2e−

ffiffiffiffiffiffiffiffiffiffiffi
q2þM2

p
=T cosðr · κÞ þ 1


i
; ðD22Þ

where each integral is real. Once again, in this case, the zero-temperature contribution is not so easily extracted and we
cannot use the same trick as above to computeΔκKκðm4; m4

vacÞ. However, up to quartic divergence (that does not depend on
T or r), we can compute it using any regulator. We use a 3d cutoff and find

ΔK̂κðm4; m4
vacÞ ¼ −

M4

32π2

�
1þ ln

�
m4

vac

M4

��
þ
Z
q<M

T ln
	
2 cos

	 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − q2

q
=T



− 2 cosðr · κÞ




þ
Z
q>M

T ln
	
e−2

ffiffiffiffiffiffiffiffiffiffi
q2−M2

p
=T − 2e−

ffiffiffiffiffiffiffiffiffiffi
q2−M2

p
=T cosðr · κÞ þ 1




þ
Z
q
T ln

	
e−2

ffiffiffiffiffiffiffiffiffiffiffi
q2þM2

p
=T − 2e−

ffiffiffiffiffiffiffiffiffiffiffi
q2þM2

p
=T cosðr · κÞ þ 1



: ðD23Þ

We check that the derivative with respect to M4 gives −ΔĴκðm4; m2
vacÞ, as it should.
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