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We propose a Gribov-Zwanziger type model action for the Landau-DeWitt gauge that preserves, for any
gauge group, the invariance under background gauge transformations. At zero temperature, and to one-loop
accuracy, the model can be related to the Gribov no-pole condition. We apply the model to the
deconfinement transition in SU(2) and SU(3) Yang-Mills theories and compare the predictions obtained
with a single or with various (color-dependent) Gribov parameters that can be introduced in the action
without jeopardizing its background gauge invariance. The Gribov parameters associated to color
directions orthogonal to the background can become negative, while keeping the background effective
potential real. In some cases, the proper analysis of the transition requires the potential to be resolved in

those regions.
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I. INTRODUCTION

Much progress has been achieved lately in the con-
tinuum description of the dynamics at play in the decon-
finement transition of pure Yang-Mills theories. First, a
good handle on the related center symmetry was possible
thanks to the use of background field methods [1,2], which
allow for the definition of order parameters equivalent to
the Polyakov loop but simpler to compute in practice [3].
Second, relevant dynamics could be captured thanks to the
use of sophisticated nonperturbative methods such as the
functional renormalization group [3-5], the infinite tower
of Dyson-Schwinger equations [6—10], or variational
approaches [11-14].

On top of these achievements, more phenomenological
approaches [15—18] seem to indicate that, in the Landau
gauge (and in its background extension, the so-called
Landau-DeWitt gauge), a pivotal part of the dynamics
may become accessible to perturbative methods, but only
after a complete gauge-fixing procedure has been achieved,
including the proper handling of the associated Gribov
copy problem [19]. In fact, according to these studies, once
such a gauge fixing is implemented, at least in some
approximate form, the perturbative expansion becomes
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viable at low energies [16,20], while it breaks down in
the more standard Faddeev-Popov gauge fixing. This is an
interesting perspective that could open the way to the
perturbative evaluation of quantities that are usually con-
sidered as genuinely nonperturbative. Although specula-
tive, the idea certainly deserves to be further investigated
and tested.

For instance, in a series of recent works, the Curci-Ferrari
(CF) action [21] has been proposed as a model for a
complete gauge fixing in the Landau gauge [15,16,22].
The underlying conjecture of these studies is that a CF gluon
mass term may arise after the Gribov copies have been
accounted for by means of an uneven averaging procedure
[22]. Although no rigorous mechanism for the generation of
such a CF mass has been identified in the Landau gauge, a
similar mass term could be generated in a nonlinear version
of the Landau gauge [23]. Moreover and interestingly,
relatively simple one-loop calculations of zero-temperature
correlation functions in the CF model [15,16,24] agree pretty
nicely with first principle lattice simulations of Yang-Mills
correlation functions in the Landau gauge [25-30]. The
model has also been extended to finite temperature, within
the Landau-DeWitt gauge framework, where it gives a good
description of center-symmetry breaking in pure Yang-Mills
theories, already at one-loop order [17]. In this case, two-
loop corrections could also be computed [31,32], showing
some sign of apparent convergence and supporting the idea
that perturbation theory may indeed be applicable once the
Gribov problem has been properly handled. Finally, matter
fields can also be included in the analysis see Refs. [33-36].

Another possible way to deal with the Gribov problem
in the Landau gauge is the so-called Gribov-Zwanziger
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approach [19,37,38]. The idea in that case is to restrict
the domain of the functional integral to a region that
contains fewer Gribov copies, in practice the so-called first
Gribov region, defined by the positivity of the Faddeev-
Popov operator —d,D,. With the price of introducing
some auxiliary fields, a formulation of this restriction
was constructed in terms of a local and renormalizable
quantum field theory [37]. It has since then known
various refinements in order to match lattice results at zero
temperature [39,40].

At finite temperature, the situation is less clear. Although
many interesting works apply the Gribov-Zwanziger
approach to thermal scenarios [41-47], they all rely on
the implicit assumption that the output of the Gribov-
Zwanziger construction in such cases is given by the zero-
temperature Gribov-Zwanziger action taken over a compact
(imaginary) time interval of length g = 1/T. Although
natural, this assumption is far from obvious. In fact, as
recently discussed in Refs. [48,49], the presence of the
compact time direction and the related periodic boundary
conditions lift the degeneracy of the lowest, nonzero
eigenvalues of the free Faddeev-Popov operator. This, in
turn, leads to a modification of the Faddeev-Popov action
which is not just the usual zero-temperature modification
taken over a compact time interval. This approach certainly
opens a new line of investigation towards a proper
discussion of the Gribov-Zwanziger gauge fixing at finite
temperature in the Landau gauge. However, it also poses
new questions. In particular, the so-obtained action is not
invariant under O(4) Euclidean space-time rotations' in the
zero-temperature limit, unless the Gribov parameter goes to
zero. It is therefore not clear whether or how the model is
renormalizable. Another issue is that, for the approach to
correspond to a bona fide gauge fixing in the Landau gauge,
the O(4) breaking terms in the zero-temperature limit
should not affect the physical observables. This question
deserves further investigation and probably requires the
identification of the appropriate Becchi-Rouet-Stora-Tyutin
(BRST) symmetry.

In the case of the Landau-DeWitt gauge, the situation is
similar to that of the Landau gauge prior to the results of
Refs. [48,49]. There is to date no first principle derivation of
the associated Gribov-Zwanziger action, only models that try
to incorporate the effect of restricting the functional integral
to the corresponding first Gribov region. In particular,
in Ref. [18], a Gribov-Zwanziger type action for the
Landau-DeWitt gauge has been proposed—independently
of whether it corresponds to a faithful implementation of
the Gribov restriction—and applied to the study of center-
symmetry breaking in SU(2) Yang-Mills theory (see also
Ref. [50]). This action has the convenient property that it
reproduces the usual, renormalizable, O(4) invariant,

'These are the counterpart of Lorentz transformations in the
imaginary time formalism.

Landau gauge Gribov-Zwanziger action in the zero-
temperature and zero-background limits. However, as it
was pointed out in Ref. [51], it is not invariant under
background gauge transformations. Not only is this at odds
with the fact that both the gauge-fixing condition in the
Landau-DeWitt gauge and the condition defining the cor-
responding first Gribov region are invariant under back-
ground gauge transformations, but it also prevents the
implementation of center symmetry at finite temperature.
Surprisingly, the one-loop background effective potential
obtained in Ref. [18] displays background gauge invariance
but, as it was also clarified in Ref. [51], this is due to a
missing term in the evaluation of the potential.

To cure the lack of background gauge invariance, a new
model action was put forward in Ref. [51], based on a
construction that preserves both BRST symmetry and
background gauge invariance with the price however of
introducing a Stueckelberg type field, which is not so easy
to deal with, especially at finite temperature. In this article,
we follow a sightly different route than that of Ref. [51]. We
first revisit the model of Ref. [18] and show how it can be
very simply upgraded into a fully background gauge
invariant one, that, in addition, correctly generates the
one-loop results of that reference. This opens the way to the
evaluation of higher order corrections in a manifestly
background gauge invariant setting. We also try to discuss
to which extent the model can be seen as a faithful
implementation of the Gribov restriction for the Landau-
DeWitt gauge.

In Sec. II, we introduce the model as a minimal,
background gauge invariant modification of the action
used in Ref. [18]. In Sec. III, we compute the corresponding
one-loop background effective potential for any gauge
group and, in Sec. IV, we use it to investigate the
deconfinement phase transition in SU(2) and SU(3)
Yang-Mills theories. In particular, we study the impact
on the transition temperatures of the use of color-dependent
Gribov parameters, as allowed by the model. Finally, in
Sec. V, we provide a further motivation of the model by
showing, at zero temperature and at leading order, how
it is connected to the Gribov no-pole condition applied to
the Landau-DeWitt gauge. We also discuss some of the
difficulties that occur at finite temperature (similar to the
ones discussed in Refs. [48,49] for the Landau gauge),
when trying to interpret the model as arising from a faithful
implementation of the Gribov restriction. More technical
details are gathered in the Appendices. In particular, the
various formulas needed for our analysis, including the
case where certain Gribov parameters become negative,
are given in Appendix D.

II. A BACKGROUND GAUGE INVARIANT
GRIBOV-ZWANZIGER TYPE MODEL ACTION

We consider a pure Yang-Mills theory in d Euclidean
dimensions with a gauge group of dimension d;. The
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Gribov-Zwanziger gauge-fixing procedure in the Landau
gauge leads to the action

1
S = /X {ZF,‘ZUFZU + ih*d,Aj 4 ¢“0,DiP c?
- @°0,DiPw}* + @0, Db gl

— gy fabe Al (phe + pbe) —yddc}, (1)

where D% = 9,6 — gf**°A¢  denotes the covariant
derivative in the adjoint representation. The first line of
Eq. (1) is nothing but the gauge-fixed action in the Landau
gauge 0,Aj =0 as it arises from the Faddeev-Popov
procedure, while the second and third lines contain the
corrections that arise from further restricting the functional
integral to the first Gribov region, defined by the additional
condition —d,D,, > 0. The complex conjugated bosonic
fields @ and % together with the Grassmanian con-
jugated fields @ and @ allow one to express this
restriction in the form of a local field theory. Without loss
of generality, they can be taken antisymmetric under the
exchange of their color indices. Finally, the parameter y
is known as the Gribov parameter and is fixed using a
saddle-point condition; see below.

A. The problem

In the background generalization of the Landau gauge,
the so-called Landau-DeWitt gauge, one introduces a
background gauge field configuration Az and imposes
the gauge-fixing condition

Débal =0, (2)

where ay = Ay — Aj} is the fluctuation of the field Ay about
Ag, and Dib = 9,67 — gf*"°AS, denotes the background
covariant derivative.

The corresponding Faddeev-Popov action can be
obtained from the one in the Landau gauge using the
simple mnemonic rule d, - D, and A} — af. Based on
this observation, the authors of Ref. [18] proposed the
following action:

1 _ _
S = / {4F;;,,Ffj,, + ih*DgPaj, + ¢ DyP Dye e
X

_ (wZ)eaDszzcwie + ((pZ)eachiszc(pge

_ g2 fabeas (ghe + i) - yddc}, 3)

“For gauge field configurations satisfying the Landau gauge
condition, the Faddeev-Popov operator —0d,D, is Hermitian.
Then, it makes sense to look for gauge field configurations such
that this operator is, in addition, positive definite.

as a model action implementing the Gribov restriction in
the case of the Landau-DeWitt gauge.3 For later conven-
ience, we have used @ = (¢;)* and @%° = (w;)* to
write the terms in the second line as color traces.

It was later realized in Ref. [51] that the action (3) cannot
represent a faithful implementation of the restriction to
the Gribov region in the Landau-DeWitt gauge. Indeed,
despite the fact that the two conditions defining the Gribov
region in this case, namely, Eq. (2) and —DﬂDﬂ > 0, are
invariant under the background gauge transformations

(A7) ()1 = U(0)Aj(x)r° U (x) +§U(X)3ﬂUT(X), (4)

(@)*(x)1* = U(x)ag (x)1°U* (x), (5)

the same does not hold for the action (3). This can be seen
as follows. In terms of coordinates, the adjoint trans-
formation (5) rewrites (aY)*(x) = Uy, (x)a}(x). To make
the last line of Eq. (3) invariant under (5), one should
therefore require the field 2’ to transform as the product of

two adjoint representations:

(@))% (x) = Upe (DU pa(x) " (x)
= uac(x)(psd(x)ujlh(x)’ (6)

where we used that the adjoint representation is real. In
what follows, it will be convenient to write this trans-
formation using a matrix notation, that is,

) (x) = Ux)g, (U (). (7)

The same transformation rule holds for ¢, since this field is
the complex conjugate of ¢, and the adjoint representation
is real. Similarly, it is easily shown that

DYDY =U(x)D,D, U (x). (8)

Therefore, the last term of the second line of Eq. (3)
transforms as

tr ((¢7)"(x) D}/ D}/ 9/ (x))
= tr (U(x)el (x)(X) DDy, (U (). (9)

The U-factors that originate from the left part of the
transformation of ¢, in Eq. (7) have canceled out against
those that appear when transforming the differential

3Here, as compared to Ref. [18], we have considered a general
group of dimension d;, we have taken the gauge-fixing para-
meter to zero by introducing a Nakanishi-Lautrup field 4, and
we have redefined the Gribov parameter y. We have also used a
slightly different notation for the gauge field Aj and the
fluctuation a;;, more in line with the conventions of Ref. [32].
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operator D”DM. In contrast, the {/-factors that originate
from the right part of the transformation in Eq. (7) cannot
be eliminated. Thus, the action (3) is not invariant under the
background gauge transformations (4) and (5).4

To overcome these difficulties, a new action was put
forward in Ref. [51], based on a BRST compatible model
for the Gribov restriction, which automatically ensured the
invariance under background gauge transformations. This
construction is, however, not so easy to implement in
practice because it requires the introduction of a SU(N)-
valued field /& such that A* remains invariant under gauge
transformations. This matrix valued field is usually handled
by a Stueckelberg type field £ such that & = """, which
complicates the analysis. Moreover, at finite temperature, in
order to preserve center symmetry, one needs a priori to
integrate over fields /4 that are periodic up to an element of
the center of the gauge group that is over topologically
distinct sectors. How to achieve this in practice in terms of
the Stuckelberg field is not completely clear.

Here, a different route will be followed: we choose to
sacrifice BRST symmetry with the benefit of obtaining a
background gauge invariant setting that is easy to imple-
ment at finite temperature.5 ‘We show that the action (3) can
be very simply upgraded into a background gauge invariant
one and that the latter leads exactly to the same one-loop
background effective potential as the one that was obtained
in Ref. [18]. In fact our results will be slightly more general
since our analysis will also reveal that it is possible to
introduce color-dependent Gribov parameters without
jeopardizing the background gauge invariance. We shall
investigate this possibility in the application of the model to
the deconfinement transition.

B. A background gauge invariant model

The problem discussed in the previous section could be
summarized by saying that the breaking of background
gauge invariance in the action (3) stems from the fact that
the operator D”Dﬂ is constructed out of covariant deriv-
atives in the adjoint representation, whereas the objects this
operator acts upon—q, and w,—transform in a different
representation, namely, the tensor product of two adjoint
representations. One possibility to restore background
gauge invariance to the model action (3) would be, there-
fore, to replace the operator [_)MD” by an operator Z_)MDﬂ
where the covariant derivatives act now on the appropriate

*As already mentioned in the Introduction, the one-loop
background effective potential obtained from the action (3) in
Ref. [18] appears nevertheless to be background gauge invariant.
As was later observed in Ref. [51], this is due to the omission
of some terms in the evaluation of the one-loop background
effective potential that derives from the action (3).

In the ideal scenario where one would select one Gribov copy
per orbit, we expect BRST symmetry to be broken. We note
however that, in the GZ scenario, a local BRST symmetry could
be identified [52].

representation. With this approach, however, one would
lose contact with the Faddeev-Popov operator D, D,,, which
is at the heart of the definition of the first Gribov region.
Moreover, in the Landau limit A — 0, one does not recover
the usual Gribov-Zwanziger action.

Here, we shall restore background gauge invariance
using a different strategy that keeps contact with the
Faddeev-Popov operator while recovering the well-known
A — 0 limit. The idea is to insert Wilson lines at appro-
priate places such that one of the two representations that
enter the transformation of ¢,, more precisely, the one
acting to the right in Eq. (7), is not gauged. To this purpose,
we replace the action (3) by

1 _ _
Soew = / {Z F F4, + ih"Dibal 4 ¢ DA Dhe ¢
_ (@Z)eabsz/l;c&)ge + (@Z)eabszZc(ﬁge
— g7\ P ag(op + @) —J/ddc}, (10)

where we have introduced ¢ (x) = @ (x)L5¢,.(x, xo) and

@4 (x) = g (x) LA . (x, xo),° with

Licto) = Pesp {ig [ andgorr|

the Wilson line in the ajoint representation 1 + T9 = [¢4, |
connecting the points x, to x through the path C. It is easily
checked that, under a background gauge transformation (4)
and (5), the Wilson line transforms as

Ljv c(x,x0) = UX) L c(x, x0)U (x0),  (12)
and therefore

¢/ (x) = UX)P, (U (x)- (13)

The crucial difference with Eq. (7) is that the right /-factor
of the transformation is x independent. Consequently,
one gets

tr ((¢7)"(x) D}/ D/ ¢}/ (x))
= tr (U(x0)i (x) DD, [, (U (x0)]). (14

The remaining U/-factors are now x independent and can be
pulled out of the action of the covariant derivatives. They
cancel owing to the cyclicity of the trace. Similar remarks
apply to the term involving the fields w, and @,. This
completes the proof of the background gauge invariance of
the model action (10).

®We redefine the field w, using the same Wilson line as that for
¢, because these fields should be treated on an equal footing.
Indeed, the role of the fields w, and @, is to cancel a determinant
generated by the integration over the fields ¢, and ¢,.
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Before closing this section, we mention that there is a
subtlety hidden in the previous discussion. Strictly speaking,
if the background Al‘j is such that F° w 7 0, objects such as the
Wilson line or ¢, (x) and &, (x) are not true functions of x for
they also depend on the chosen path C. In order to guarantee
that our procedure makes sense, we should, therefore, specify
what is meant by the action of the operator D#Dﬂ on these
types of objects. We discuss this technical matter in
Appendix A, where we also show that our construction is
independent of the chosen path C and, in particular, on the
choice of x;. The rest of the work will be concerned with
constant backgrounds for which this subtlety does not appear.

C. Choice of background and Cartan-Weyl basis

The previous considerations apply a priori to any type
of background, including instantonic backgrounds, pro-
vided the correct definitions are used (see Appendix A).
However, for the finite temperature applications that we
have in mind below, we shall restrict to backgrounds that
explicitly preserve the space-time symmetries of the prob-
lem, namely, Euclidean space-time translations and space
rotations. Therefore, we assume that the background is
temporal and constant over Euclidean space-time. In fact,
without loss of generality, these types of backgrounds can
be color rotated to lie in the diagonal part of the algebra, the
Cartan subalgebra:

ﬁgAﬁ(x)t“ = ﬂorjtj, (15)
with [#/,#/] = 0. We have extracted a factor f=1/T to
make the components r/ dimensionless.

For these types of backgrounds, F ,w = 0 and the Wilson
line becomes a true function of its endpoints, no longer
depending on the chosen path in between. Moreover, since
the action does not depend on the value of x,, we choose
Xxo = 0 and we arrive at

1
SneW:/{4F;ll/<FK +lh KDKa _DL ) ( )DKC +lgf

MD )()Z

0.(x) = . (1) (16)
Similarly, the background covariant derivative rewrites
D, =0, —iTs,r'[t,]. (17)

These two quantities are the only sources for background
dependence in the action (10). Since they involve only
commutators with elements of the Cartan subalgebra, it is
convenient to operate a change of basis from the usual
Cartesian basis it“—which we used to write the actions
above—to so-called Cartan-Weyl basis it".

By definition, the elements of a Cartan-Weyl basis
diagonalize simultaneously the adjoint action of the #/’s

[, 1] = K1~ (18)

The color labels x should be seen as vectors in a space
isomorphic to the Cartan subalgebra. They can take two
types of values: either k = 0U) is “a zero” in which case ¢*
is just a different and convenient notation for ¢/, or k = a is
a root of the algebra of the gauge group.” The benefit of
the Cartan-Weyl basis is that the background covariant
derivative becomes diagonal, D¥* = §_,D¥, with

Dy =0, — iTs,0r . (19)
where r - k = r/x/. Similarly, the redefinition of the field ¢,

now appears as a simple multiplication by a phase factor
depending on the rightmost color label of ¢,:

P = pifelit (20)
More details on how to change from the Cartesian basis to

the Cartan-Weyl basis are given in Appendix B. After some
manipulations, we find

= DT (@ el ") D (e ™)

—Hgf MD )( (=k) (= )e/jr:f)anw}&je Eré_ DL—K)(—£—K)(—§)ei7§r~§)l‘)x(¢ e /,r«f)
—igft- ’1’7D )((p(—K)(—é)eiﬁr'é)an(pﬁée ﬂ"f—f—zgyl/zf’d”a ( ﬁ”+¢ﬁ”)_yddG}, (21)

with F%, = 0,A% — 0,A% —igf "MALAL and [, 1] =
fix ‘”t" So deﬁned the structure constants are antisym-
metric and conserve color in the following sense: f** = 0
if k+A+7%#0[32].

7Below, we shall recall the zeros and the roots for the SU(2)
and SU(3) groups. Note that there are as many zeros as there are
dimensions in the Cartan subalgebra, hence the label (j) to denote
the various zeros.

Of course, since we have restricted to backgrounds of
the form (15), we should restrict to transformations that
preserve this form. Those read

ri=r+al, (22)

together with
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X'(x) = e X~ (x), (23)

X/K/I( ) = o' (KH)er( ). (24)
The a’s are certain vectors that we do not need to specify
further here; see, for instance, Ref. [32] for more details.

|

1 ~ (—x
Snew—/{4Fﬂ5F’< + ik Dta — DSl

—igf MDY N allet + igf-

+igr' 2 fas (o + @) — ydda},

which makes the invariance even more explicit.
In what follows, we take the action (25) as our model for
a Gribov-Zwanziger type model action invariant under
background gauge transformations. In Sec. V, we provide a
further motivation for the model by showing that, at zero
temperature and to one-loop accuracy, it is related to the
Gribov no-pole condition applied to the Landau-DeWitt
gauge.®
Moreover, in Sec. VB, we show that, for vanishing
temperatures, the configuration-space correlation functions
of the model (25) are related trivially to those associated
to the Gribov-Zwanziger action in the Landau gauge,
|

1
Spew = /{4F;;FK + ik Dfar

—igft ’1’7D

+ igrd> fas (g

g« )a,,c +igf-

dZJ/K}

We will see below that the Gribov parameters are all
degenerate at zero temperature. At finite temperature, in
contrast, there is no reason for them to remain equal and,
therefore, it will be interesting to compare the situation
where a unique Gribov parameter is attributed to all color
modes with the one where Gribov parameters are allowed
to depend on color.

$We should mention, however, that it is far from obvious that
our proposal or the one in Ref. [51] correspond to faithful
implementations of the Gribov restriction at finite temperature.
We briefly discuss this issue in Sec. V.

°The reason why the color label of y is the one associated to
a, is that the fields ¢, are just auxiliary fields that help with
localizing the action.

_K)D;CK + D/(J_K_

MD(_K_ ) = (_K)(—‘f)

D/(t K) (—K)DK K+D/4

in B ) g

Using the property D/ X'*(x) = e~ D% X*(x) and the fact
that f**! conserves color, one easily checks that the action
(21) is invariant under the background gauge transforma-
tions (22)-(24). Again, the role of the phase factors
originating from the Wilson lines is crucial. The action
can be equivalently rewritten as

) {8 Py st _ e (R (-8 v

(ﬂz/

K)(=&) n A&

MD _K_§)¢(_ asgy

igf=

aﬂwy

(25)

implying that the addition of a background field does
not spoil renormalizability at 7 = 0. As one moves to finite
temperature, one should also expect renormalizability to
hold, for the thermal contributions always come with a
statistical factor, which works as a smooth UV cutoff.

D. Color-dependent Gribov parameters

Before closing this section, it should be mentioned
that the model can, and will, be extended by introducing
color-dependent Gribov parameters y, without affecting the
background gauge invariance (22)—(24)9:

(0= py+t

(500 0 (-8) pyere e _ e85

(Pu

in i) 0 g1 e

igf=

a,,a),,

(26)

Our main focus being the study of the deconfinement
transition it is however of crucial importance to preserve the
invariance under so-called Weyl transformations,'” because
only then is the background field, as obtained from the
minimization of the background effective potential, an
order parameter for center symmetry [32,53]. Since the
Weyl transformations typically connect certain roots a and
f with each other, a simple way to ensure Weyl symmetry is
to impose that y, = y4 for such roots. If one also wants to
preserve invariance under charge conjugation, one pos-
sibility is to impose that y, = y_,. In what follows, we shall
consider groups where Weyl transformations and charge

0These are finite color rotations that leave the Cartan sub-
algebra globally invariant.
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conjugation allow one to connect all roots with each other
and therefore we introduce a single Gribov parameter y,
for all these “charged” modes. In contrast, for each
“neutral” mode,11 corresponding to k = ou ), we can a priori
introduce a different Gribov parameter y.

In fact, this choice of Gribov parameters is just a
sufficient condition to ensure Weyl symmetry but it is
not necessary. Weyl symmetry is more generally preserved
in the following sense: the action (26) is invariant under a
Weyl transformation that exchanges « and 8 provided one
also performs the transformation y, <> yg. This symmetry
is trivially inherited by the background effective potential
due to the extremization needed to determine the Gribov
parameters, which are then promoted to functions of the
background. That is, when action (26) is evaluated for the
values of the y’s obtained through this process, Weyl
invariance is guaranteed in the usual sense. The same
remarks apply to charge conjugation.

In summary, we shall study three different scenarios, all
compatible with background gauge invariance, including
Weyl invariance:

Degenerate case: all y,’s taken equal.

Partially degenerate case: all y,’s taken equal.

Nondegenerate case: all y.’s taken different.

For simplicity, however, we shall assume that y, = y_,,
even in the third scenario.

III. THE MODEL AT ONE-LOOP

In this section, we evaluate the background effective
potential and the corresponding gap equation(s) at one-loop
order, for any gauge group.

|

Q%Pj”/ (QK)ékK’ _Q/Iiéld’
056 0
M(Q) =
—igr P, 0
igy' /2 fees 0

where we have used our assumption y, = y_,,

used f(_K)(_”)(_'f) — f né

we have introduced the shifted momenta Qj =
, where the subscript * on f** denotes complex conjugation. In order to compute the determinant

A. Background effective potential

The field aj(x) contains both real (ag(j)) and complex
conjugated components [af(x) and a,“(x)]. Moreover,

@l (x) and g‘of(,_w_é)(x) are also complex conjugates of
each other; see Appendix B. Following Appendix C, one
way to deal with the presence of both real and complex
conjugated degrees of freedom is to write the quadratic part
of the action in the bosonic sector as

1

3 | £ WM =0, 1)

with y7(x) = (a(x), h*(x), goﬁé(x), q'o,(,_”x_é) (x))*, while in
the Grassmannian sector, it is enough to write

[ T @A =010 (28)
xy
with T'(x) = (c*(x), 0 (x)).
The one-loop background effective potential reads
= 1
VA {r.}) = —dZyK + Eln det M —Indet . (29)

)IM(Q)x(Q)
as(0), Q). ¢ (0). @5 "' (0))" and

In Fourier space, Eq. (27) rewrites 1 [ o(x(Q
with (7(0))" = (

igr 2 fes, =g,y
0 0
2 , (30)
— 02, 18,5568, 0
0 —02,_ BB,y

Q, + r-«kT6, and we have

of M, we consider it as a block matrix of the form (AB|CD), with A and D invertible, and use

det M = detD x det(A — BD™'C) = detA x det(D — CA™'B).

A simple calculation shows that

A—-BD7IC = (

Q2PL (06 + 20%1 12
Qﬂ/ék’l

(31)

(= )né )~
"Igf* i Q;r/_|2.§§,u,u’

—O%S...,
Q’,{ K/1>’ (32)
0

"The terminology ‘“charged” and “neutral” arises from the fact that « - rT can be seen as a color-dependent imaginary chemical

potential.
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where a summation over 7 and £ is implied in the first element. We next use that the structure constants conserve color, to
write y/ 2y 1/zf e fl=* ”§Q e ya/? l/zf e fMEG2 = Ly 5,002, where C,y denotes the Casimir of the adjoint
representation. We obtain

4 -2 pll 2 4n-2\pLl (O« —0%S..,
A— BD_IC _ ([mKQK Pm/(QK) + (QK/ + mKQK )PW/(Q )]5KK’ Qﬂélc/l )7 (33)
QZ/&K% 0
where we have defined m# = 2¢*>C,q7,.. Using the second form of Eq. (31), we find
_ Q4 + m d-1 Q4 Q4 + m4 d-1
1 _ K _ K K 2
det(A — BD'C) = H o ( o it = H —or ) % (34)

and then B. Gribov parameters

The Gribov parameters are usually obtained from a

Ot +m saddle-point approximation, which boils down to extremiz-

det M = det D x H ( : 02 : 2 (35) ing the potential, not only with respect to the background but
K - also with respect to the Gribov parameters themselves. It is

important to realize that, even though the Gribov parameters

On the other hand, it is trivially shown that will, at least in the present setting, always be found real,
some of them could—and will—become negative. For the
det \V = (det D)!/2 x H 02 (36) various cases studied, we find the following gap equations:
Degenerate case:
Therefore 0= Z 41 Je(m*) (39)
’ P d— ngCad K ’
V(r {mt}) = ‘21 sz / Q4 Partially degenerate case:
g Caq
vio=— L jum)
——Z/ In 02, (37) S e TR
25 Jo P

0= =T (mE)]. 40
S [ hime - ht)]. @

where we have introduced the notations

Nondegenerate case:

dd 1
—,,2€
/ =u TZ/ and / / d_l, 38) d 1 A
0 27) Vj,0 = = Jou (),

d - 1 g2C d
. d 2 .
with d = 4 — 2. Va,0 = — St = (Jy(md) + T o(md)). (41)
In the SU(2) case, and assuming that all the Gribov d—1g"Cy

parameters 7, o« my are equal, the expression in Eq. (37) is

exactly the one-loop potential obtained in Ref. [18] but
this time obtained from the action (26) and not from (3). So
it seems that the terms missed in the computation of the Je(m*) = / ——- (42)
one-loop effective potential from action (3), as performed Oc +m

in Ref. [18], are exactly eaten up by the extra phase factors R R )
introduced in Eq. (21). Besides providing a proper justi- ~ Note that, because J «(m*) = J_(m*"), the second equation
fication to the one-loop formula of Ref. [18], our model in the nondegenerate case simplifies to

opens the way to the evaluation of higher order corrections

in a background gauge invariant setting, which we plan to Va,0 = L% — J,(m3). (43)
investigate in a future work. d—1g"Cy

where we have introduced the sum integral
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1. Zero-temperature limit

In the zero-temperature limit, because the shifted momen-
tum Q, can always be shifted back to Q via a change of
variables, all Gribov parameters obey the same equation

d 1 .
0=— —J(mdye), 44
T It (44
with
f(m4)5/71 (45)
QQ4+m4

the zero-temperature version of J.(m*). This integral, if
restricted to real Gribov parameters, is defined only for
m* > 0; its evaluation is recalled in Appendix D. We then
arrive at the well-known zero-temperature gap equation [40]

1. gt
Z1n =,
e 2" m@&.fé]

0=1- (46)

3 92 Cad 1
647>

which can be renormalized by setting (minimal subtraction
scheme)

1 1 31
== + -. (47)
7Ca G (A)C  6An’€
The renormalized equation reads
392 (ﬂ)cad /24 5
0=1- 1 =, 48
282 |"mi. '3 (48)
and is solved as
5 12872
vac — 49
i = ' exp (3 3% (1) Ca ) )

From Eq. (47), we find that the renormalized coupling runs
with the beta function

ﬂ2 di gﬂ (1/92) :_394Cad
o dii 327°

(50)

The sign is compatible with asymptotic freedom but the
coefficient is not the expected one at order g*. This happens
because certain ¢* contributions, that would arise from the
two-loop corrections to the background effective potential,
are missed. The two-loop gap equation has been determined
and renormalized at zero temperature in Ref. [54]. At this
order the Gribov parameter is also renormalized. We expect
the same renormalization factors to renormalize the finite
temperature two-loop gap equation. We shall consider this
equation in a subsequent work together with the two-loop
corrections to the background effective potential.

In principle, we could use Eq. (49) to fix the scale m,,. in
terms of the known value of g(j) in the minimal subtraction
scheme at some large ultraviolet scale ji = ji;. However,
since the running of g(jz) does not coincide, not even at
order g*, with the true running, we expect large errors in the
scale setting. We therefore postpone this question to a
forthcoming two-loop study—where the running coupling
should be exact at leading order. In what follows, we
express all our results in units of m,,.. This also allows for
an easy comparison with Ref. [18]. We finally mention that
the solution m¥,. is unique, given the renormalized cou-
pling at the scale z. This means that not only do the Gribov
parameters all obey the same equation at zero temperature
but also that they all become equal, as announced above.

2. Finite temperature case

Following Ref. [18], we can always parametrize the gap
equations at finite temperature in terms of the solution
mi,. at zero temperature. Subtracting the zero-temperature
equations from the finite temperature ones we find the
following gap equations:

Degenerate case:

0= ZAJAK(m“;méaC), (51)

Partially degenerate case:

VJ 0= AJO ( médC)
0= ZAJa mCh; mvac)v (52)

Nondegenerate case:

V] 0= AJ()(/ ( méac)
Va,0 = AJ (ma,méac) (53)

where we have introduced the UV finite difference

AjK(le;méaC)EjK( ) JT O( vac)

T 1
_/ (w, —|—Tr K)? +q*)?* + m*

/ O +mi, (54

Some useful remarks are in order here. First of all,
AJy (m*;m,.) is a strictly decreasing function over the
interval m* € ]0, +oo| that diverges positively as m* — 0*
and becomes negative as m* — +oo. This implies that the
gap equation for the neutral Gribov parameter mg( , has a

unique solution and therefore that all neutral Gribov
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parameters coincide. We shall denote their common value
m% in the following. The same behavior holds for the
function > AJ(m*;m¥,.) and then the gap equation for
the degenerate Gribov parameter m* has a unique solution.
It also follows that my; and m* are strictly positive.
Similar conclusions hold for mj and m¢, with the
noticeable difference that these parameters can become
negative. Indeed, it is easily checked that AJ,(m*;md,.)
is a strictly decreasing function over the interval
€]-M} ,,+oo|, with M}, =min,c;(27n + r-a)*T*.
It dlverges positively as m* — —M%*} and becomes neg-
ative as m* — oco. From this it follows that the gap equation
for m% has a unique solution for given values of the
temperature and the background but this solution can
become negative since the only constraint is that it should
remain strictly larger than —M?# . In fact, we can determine
at which temperature m} may vanish. We just need to
|

1

enforce a zero solution in the corresponding equation,
namely,

0= AJ,(0;mdy). (55)
Similar considerations apply to mZ, but now the function
S S (m*smiy) dlverges as m* = —min, M?,. Again the
temperature at which mCh may vanish can be obtained by
solving the equation

0= AJ(0:m). (56)

In practice, when evaluating AfK(m4; mi,.), we need to
distinguish the case where m* > 0 and the case where
M7}, <m* <0. These two cases are discussed in
Appendix D. For m* > 0, we find

cos(r- k) — e PV tin’

Ajk(m‘l;méac) - 1

e L1 / 1
3272 mt - dim® [ /g7 + im? cos(r- k) — cosh(ﬂ\/ g+ im2)
cos(r K) — e PV =in®

~ 4im? /vq —im? cos(

For —M?,. < m* = —M* < 0, we find instead

— cosh (ﬂm)

sin(f\/M? —q?)

X 1
AJ 4; 3 _ vac
() ="

Am? /q<M M? —¢* cos(r ) cos(ﬁ\/Mz—cf)

1 / 1 COS(r-K)—e'ﬁ\/m / COS( k) —e PV
am? a>M\/ q* =M cos(r- cosh(ﬂ\/q M2 % 9\ q*+Mcos(r COSh(ﬂ\/ f12+M2)
(58)
I
For practical purposes, it is convenient to absorb the v (r m*) :% AK, (m*, m¥y.) —%AIQK(O,m‘V‘aC) (59)

integrable singularity (in the second integral) as ¢ - M

using the change of variables u = \/g*> — M?. For con-
sistency, we apply similar changes of variables to the other
two integrals.

C. Finite form of the effective potential

Finally, the integrals that enter the one-loop potential
are also well known and recalled in Appendix D. Using
Eq (44), we find V(r, {mt}) = >, V. (r,mt) with
|

and

ARt ) = [ In(Qf +m)— _mt (60)
s Mhvac) = 0 K QQ“—J—méac‘

It is easily checked that this expression is UV finite, up to a
quartic divergence that vanishes in dimensional regulari-
zation. More precisely, in the case where m* is positive, we
find (see Appendix D)

4
AR (m*;mby) = —— [lnm =+ 1] + T/ ln(e‘zﬁ\/ GHim’ _ eIV EHIM cog(r k) + 1)
q

+ T/ In e‘zﬁ\/ =i’ _ 2 e=PV 4= cog(r - k) + 1).
q

(61)
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For —M%, < m* = —M* < 0, we find instead

AI%K’(mL" méac)

m 1+1In i +T / In (2 cos (ﬂ M? 2) 2 cos( ))
=—— -¢*) - rex
3277 M* g<M !

+ T/ In (e‘zﬁv =M _2o~PV @M cos(r - k) + 1)
q>M

- T/ ln<e‘2ﬂ\/ M _ 2PV THM cos(r - k) + 1). (62)
q

IV. APPLICATION TO THE
DECONFINEMENT TRANSITION

In what follows we use the previous formalism to study
the deconfinement transition in SU(2) and SU(3) Yang-
Mills theories. We minimize the background effective
potential with respect to the order parameter r, taking into
account the r dependence of the Gribov parameter(s) via
the gap equation(s), that is by minimizing V(r, {m(r)}).
We first revisit the SU(2) results of Ref. [18] by including
the possibility of color-dependent Gribov parameters and
then extend our analysis to the SU(3) case.

A. SU(2) case

In this case k € {—1,0,+1} and the confining point
corresponds to r = z. The partially degenerate and non-
degenerate cases coincide.

10 T T T T "*
5 e
of =
® .
< -5 A8
E iy
egenerate 3
—-10f \
—-=== Non-deg neutral 3,
—15p-—-=- Non-deg charged \‘\
-20 - - S B
0.0 0.2 0.4 0.6 0.8 1.0
T
4
/,
Degenerate ,
3 - /7
—-=-== Non-deg neutral ,

’5 ----- Non-deg charged . R4
= 4l A
B
o”
R
0.0 0.5 1.0 1.5 2.0

FIG. 1. Top: Degenerate vs nondegenerate Gribov parameters
(in units of my,.) for a confining background. These correspond
to the actual Gribov parameters up to T, = T,/my, ~ 0.402
and T, ~ 0.324, respectively. Bottom: Gribov parameters at the
minimum of the background effective potential.

1. Critical temperature

Since we expect the transition to be second order, we can
evaluate 7. by requiring that (we illustrate the degenerate
case here but the same discussion holds for the non-
degenerate one)

d2

e V(r,m?(r)) =0. (63)

r=nu

Since QV/Om?|, ,»(,) = 0, we have

d 5 0 )
EV(I",m (I")) —EV(r,m (}")) (64)
and then
2 2
%V(r, m?(r)) = %V(r, m?(r))
d? dm?(r)
+WV(r, m?(r)) - (65)

Finally, it is easily shown that dm?(r)/dr|,_, =0."
Therefore

& ) o
a2V =5z

r=rx

V(r,m*(r))| . (66)

r=m

After a simple calculation, the condition for a vanishing
curvature reads

"This is because dm?>(r)/dr|,_, is proportional to
T 0§0: _ [T (wu+aT)(@, +aT)’ +¢°)
Za 4 4= 2, 22 r
w Jo Qatm® Jo  ((@,+2T)"+q°)" +m

_ /T (CU,, - ﬂ'T)((a)n — ﬂ'T)2 + q2>
o ((w,—7T)*+q*)*+m*

Using the changes of variables w, - —w, —2zT and o, —
—w,, + 27T, we find that the sum integrals are both zero.
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25T . . . —
™, -—-= T=0.2 7
\ o /
2.0f \ T=0.3 /
= e \\ ----- - T=04 /7
< 1.5f NN — s
5 R p— - T=05 [/
5 1
N 4
. WY
e 7
S
05 . . . . . .
0 1 2 3 4 5 6
T
| asmansman T ]
——==T=0.2
T=0.3
----- -T=04
2.0f L 1
o T N . -T=0.5
Jé ...............................................
S
1.5f
1.0p======——m—m————— [====T====71===——]
0 1 2 3 4 5 6
T

FIG. 2. r dependence of the Gribov parameters for various
temperatures (in units of m,,.). Top: Degenerate case. Middle:
Nondegenerate case, neutral mode. Bottom: Nondegenerate case,
charged mode.

3 e~ PV @ +im(n) e Pa
= e/ :/ (67)
a( q

R .
2 e PV PHIm (@) 4 )2 (e7P1+1)2

The nondegenerate case is obtained upon making the
replacement m?(z) — mZ, (x).

In order to find the transition temperatures in each case,
we need to determine the temperature dependence of m*(r)
and m¢, (). This is shown in Fig. 1, together with the
temperature dependence of my;(7) for completeness. We
observe that m4Ch(7r) decreases rapidly and even changes
sign (as already anticipated in the previous section) at a
temperature  7/m,. ~0.344, obtained from solving
Eq. (55) which takes here the form

1 / [1 -2, 1| 1
— m s
8”2 q 4q3 m%ac 24/ C]2 + im%ac

0.017 — e —r
-- T=0.36 - T=0.38 -=- T=0.40

0.016}

= T=0.42 — T=0.44

0.015f

Vet (r)

N e e e

TS
SIS
0.014f ¥

0.013} S~

~
Sead

0.012
1.8

0.020(
0.018R

0.016f

Vege(r)

0.014f

0.012

1.6 1.8 20 22 24 26 28 3.0
T

FIG. 3. SU(2) background effective potentials for various
temperatures (in units of m,,.). Top: Degenerate case. Bottom:
Nondegenerate case.

where f, =1/(e?/T + 1) denotes the Fermi-Dirac distri-
bution function. The decrease of m¢, () with the temper-
ature has the effect of lowering the transition temperature as
compared to the degenerate case. We find

Tgon—deg
C 0324, (68)

mvac
which should be compared to the result of Ref. [18]

d
T:®

~ 0.402. (69)

mV‘dC

This represents a change of the transition temperature by
20%—-25%.

2. Effective potential

In order to compute the potential as a function of r,
we first need to determine, for each temperature, the r
dependence of the Gribov parameters. This dependence is
shown in Fig. 2. Above T /m,,, ~ 0.344, a gap opens in the
values of r, over which m¢, becomes negative. At each
temperature, the boundaries of this interval can be deter-
mined by solving

1 / |:1 =+ ZRenq_,-,.KT n 1 I 1
R — m s
872 Jg 4q° Miae  2/q% + im2ge
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where n, =1/ (e4/T — 1) denotes the Bose-Einstein dis-
tribution function. We stress that, despite m‘éh becoming
negative, the potential remains real. The results for the
potential are shown in Fig. 3. We verify that the transition is
second order and that the transition temperatures agree with
the estimates given above. We also note that the minimum
never enters the region of negative mg,,, as can also be seen
in Fig. 1 (bottom), where we show the Gribov parameters at
the minimum of the potential.

B. SU(3) case

We can repeat a similar analysis for the SU(3) gauge
group. In this case there are two neutral modes x = 0©)

-
5t - ]
’/
’f
-
3 or e 1
< S
S ——— Degenerate S,

—=== Par. deg neutral = >

] — Par. deg charged \\ ]
' L L \.
0.0 02 0.4 0.6 08 1.0
T/Myac
8 i T ' '
/
/
o Deg. ,,'
----- = Par. deg. Ch /
/”
SEl)
/' ’/
’ ’
2 Rl
g 4"-’
_-————--g-—-_”_,‘ -
ok . . : -
0.0 0.5 1.0 L5 20
T/T.
] — o
Deg. '/'/I
6b == - Non-deg. Ch,1 ‘/;/
4
----- - Non-deg. Ch,2 /"/,
a4 .
‘E 4ar /"/,,, /’
./"/’, s ‘
2 - ‘,/’ ,/"
———————— -7 7
0 \\-’_,.
0.0 0.5 L0 15 20
T/T.

FIG. 4. Top: Degenerate vs partially or nondegenerate Gribov
parameters (in units of m,,.) for a confining background. Middle:
Degenerate vs partially degenerate Gribov parameters at the
minimum of the background effective potential. Bottom: Degen-
erate vs nondegenerate Gribov parameters at the minimum of the
background effective potential.

and « =0®), and six roots k = a, with a € {#(1,0),
+(1/2,4/3/2),£(1/2,—+/3/2)}. The confining point is
r = (4z/3,0). Moreover, due to charge conjugation
invariance, we can restrict the analysis to r=(r3,0). We
shall rename r5 as r in what follows. We also mention that

mfy o) = m?_m) (70)

and

4
MG T

4

M 1/2.:302)
4

i

a4
12-v3/2) — "M-12-v3/2)° (71)

Therefore, in the nondegenerate case, we only need to
introduce two charged Gribov parameters, denoted m, |
and méh.Z’ respectively. As it is easily checked, at the
confining point they both coincide with the charged Gribov
parameter méh(r) of the partially degenerate case, and in
general, m¢y ,(r) = m¢, (r/2).

1. Highest spinodal

In the SU(3) case, we expect the transition to be first
order so we cannot determine the transition temperature so
simply as above. However, we expect the spinodal
temperatures to be quite close to the transition temper-
ature. The highest spinodal can be determined using the
same method as above because it occurs at r = 47/3. We
first evaluate the curvature at r = 4z/3. To this purpose,
we notice that Egs. (64) and (65) are still valid. Moreover,
both in the degenerate and the partially degenerated cases,
it is easily shown that dm?*(r)/dr|,_4, /3 = 0." 1t follows
that

dZ 82
==V
dr rdn/3  OF

(r,m(r)) - (1)

r=4r/3

In the degenerate case, the condition for a vanishing
curvature reads then

"This is because dm?(r)/dr|,_s,/3 is proportional to
S a /TM_Z{/T(wn+4ﬂ/3T)(a)n+47r/3T)2+q2)
5 Jo Qirmi, Lo (@, +42/3T) + )+ mi,

/r(wn+2ﬂ/3T)(a),,+2,,/3T)2+q2)
0 ((07,1+27t/3T)2_|_q2)2_|_méh

Using the change of variables w, - —w, — 2T in the second
integral, we find that the bracket is zero.
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FIG. 5. r dependence of the Gribov parameters for various
temperatures (in units of m,,.). We show only the degenerate and
partially degenerate cases. The nondegenerate charged Gribov
parameters are obtained in terms of the SU(2) one respectively as

mep(r) = méh.su(z)(") and m, »(r) = méh,su(z)(r/z)'

é e/ e—3f)’\/q2+im2 + 46—2/3\/q2+im2 + e—/)’\/qurimz
p (e—zﬁ\/m+e—ﬁ\/m+ 1)2

2
/ e3P 4o~ 4 g~P4 -
(74 f e P14 1)2
The partially degenerate case is obtained upon making the
replacement m?*(4z/3) — m, (4z/3). The nondegenerate
case cannot be treated in this way. The corresponding
transition temperature will be determined in the next section.
The temperature dependence of the Gribov parameters at
the minimum is shown in Fig. 4. Using this temperature

dependence, we can determine the spinodal temperatures.
We find

(73)

Tpart—deg Paﬁ—geg
c L6400, (74)
Myac Myac

0.048 R T T
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FIG. 6. SU(3) background effective potentials for various
temperatures (in units of m,,.) with degenerate, partially degen-
erate, and nondegenerate Gribov parameters.

as compared to the result of Ref. [18]

d
ﬁN%Noslz (75)

mvac mvac

so again a 20% difference.

2. Effective potential

Once again, to compute the potential we need to know
the background dependence of the Gribov parameters. This
is shown in Fig. 5 where one sees that the charged ones can
becomes negative. For the degenerate and partially degen-
erate cases, we find transition temperatures very close to the
higher spinodal temperatures determined above. For the
completely nondegenerate case, we find

Tgon—deg

L 048, (76)

mVﬂC
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which represents a 6% difference with respect to the
degenerate case. The corresponding potentials are shown
in Fig. 6. We mention that, as compared to the degenerate
and partially degenerated cases, it was crucial in the
nondegenerate case to be able to resolve the potential in
the region where the Gribov parameters become negative
because the minimum lies in this region just before the
transition occurs, as can be seen in the bottom plot of Fig. 4.

C. Comparison with the Curci-Ferrari model

We finally compare our model at one-loop with a similar
calculation in the CF model. To this purpose we show the
Polyakov loops in Fig. 7. We observe that the growth of the
order parameter above T is slower in the Gribov-Zwanziger
approach than in the CF model. This is more qualitatively in
line with the behavior observed on the lattice.

We shall not display the thermodynamical observables in
the low temperature phase since they suffer from problems
similar to those reported in other approaches [18,31,55],
especially in the limit of vanishing temperature. At the
transition however, we can estimate the latent heat which, at
one-loop order, does not depend on the parameter m,,.. We
find (L/T%) ~0.31 in the degenerate case, (L/T%) ~0.17
in the partially degenerate case, and (L/T%)~3.25 in the
nondegenerate case, to be compared to the value (L/T%) ~
0.43 obtained within the Curci-Ferrari model at one-loop
[32]. The lattice gives instead (L/T%) ~ 1.4 [56]. It would
be interesting to see if higher order corrections can help
with diminishing the discrepancy in at least one of the
scenarios.

V. RELATION WITH THE
GRIBOV RESTRICTION

In this section, we investigate the relation between the
model (25) and the restriction of the functional integral to
the first Gribov region. We first show that, at zero temper-
ature and to one-loop accuracy, the model can be related to
the Gribov no-pole condition applied to the Landau-DeWitt
gauge. We then argue that the result is not so surprising
since, at zero temperature, there is a trivial mapping
between the Landau and Landau-DeWitt gauges. Finally,
we investigate the extension to the finite temperature case,
emphasizing similar difficulties to the ones discussed in
Refs. [48,49].

A. Relation with the Gribov no-pole condition
at zero temperature

We first recall how the no-pole condition is constructed
at one-loop order in the Landau gauge at zero temperature14
and then extend it to the Landau-DeWitt gauge.

14Up to some slight modifications, we follow the nice
presentation given in Ref. [40].

Consider the ghost propagator G,,(K,P,A) in the
presence of a gauge field configuration A. If we evaluate
this propagator for P = K and b = a, we obtain

Gual K. K, A) = / / (€558,0)(~OD) 7} (x, ) (€776,).
(77)

If A belongs to the first Gribov region, it follows by
construction that G,,(K,K,A) > 0, Va and VK. In other
words, by imposing these inequalities, one restricts A to lie
in a domain that still contains the Gribov region. Moreover,
if starting from inside the Gribov region (say from A = 0),
we approach its boundary (the so-called Gribov horizon), at
least one of the G,,(K, K,A)’s diverges and changes sign.
This means that the Gribov horizon lies inside the boundary
of the region defined by the conditions G,,(K, K,A) > 0,
Ya and VK.

In practice, it is not simple to impose the conditions
for all a’s and K’s separately and instead one imposes

trG(K,K,A) > 0, VK, where

OK,A)=—

=507 /A L CAKAL ()

This defines a priori a larger domain in A-space but again,
when approaching the Gribov horizon from inside the

p———
-=-=- Deg.
----- - Non-deg. ]
— CF
4 5 6
1.0} ' S—
BT
i
0.8F Vs
’5
¥
L [
. 0.6 ,lll -—== Deg
0.4F ",-' ----- Par. deg
¥
[ - Non-deg
0.2} §
I — CF
0.0 . . L . .
0 1 2 3 4 5 6
/T,

FIG. 7. Polyakov loops. Top: SU(2). Bottom: SU(3).
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Gribov region, at least one of the trG(K,K,A)’s has
to change sign and the Gribov horizon lies inside the
boundary of the region defined by tr G(K,K,A) > 0, VK.
Let us also mention that, for the practical evaluation

|

(2z) Py

K? P2

) 1 . 1
Gu(K,P;A) = ?5@5(‘1)(1{—10) +i9f paa =55 ALK — P) + (lg)zfcdafbecﬁ/

and therefore

TG(K, K;A) — % 1 +0(K%A),  (80)

Vg
with
__ 1 gCuy
U(Kzﬂ“)*m deP;w(K)
L
« | A w0

where the labels a and p are summed over. In deriving this
expression, we have used that A can be taken transverse,
and, by using appropriate changes of variables, we have
traded the average over O(4) Euclidean rotations of K by
the average

1

AS(Q)AZ(-0) = VolO(4)

| anomg-ao)
A€O(4)
(82)

The previous formula corresponds to the strict expansion of
a propagator to order g>. To this order, this is equivalent to

o 1
TOK KA ——— (83
v TIK K. A) K2 1— (K% A) (83)

1.6«
1.4

\
1.2
0,00 (1): — N\

N
0.6 AN
0.4
0.2k )
0.0 0.5 1.0 1.5 2.0
X
FIG. 8. The function Q,(x) for d > 2 and x > 0.

of trG(K,K,A), one can always assume that A is
transverse.

Given these preliminary remarks, at order g%, one
finds [40]

A oM (K- 0= )

(79)

In this 1PI-resummed form, the result is expected to be
more accurate.

The Gribov no-pole condition corresponds a priori to the
infinite set of conditions

VK, 1 — (K%, A) > 0. (84)

However, it is usually argued that it is enough to impose the
no-pole condition in the form

1 —06(0,A) > 0. (85)

This is because (K2, A) is a decreasing function of K.
In fact, because A%(Q)A%(—Q) depends only on Q?, the
dependence with respect to K originates only from the
angular integral

n ind
Qd(Kz/Qz) E/ dl sin“0

o K*/Q*+1-2K/QcosO’ (86)

In Fig. 8, we show that Q,(x) is a decreasing function of
x >0, for d > 2 and, since Aj(Q)A5(—-Q) is positive, it
follows that (K2, A) decreases indeed with K2.

In the limit K — 0, one finds

c(0,A) =

LG [ BOKEO)
o

Vud dg 0? '

where we have used that [, f(Q%)A5(Q)A%(Q) =
[d*Qf(0*)A%(Q)AS(Q). In order to implement the con-
straint (85), one then writes

+icot+e ]
0(1 —6(0,A)) x / P pi-ot0), (88)

—ico+e 271'lﬁ
The partition function becomes
Z= / DActhO(1 — 6(0,A))eSeeldce ]

_ /+ioo+€ﬁeﬁ_]n/f—vdf(ﬁ). (89)

ico+te 2mi
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Given that, in the gluonic sector, the quadratic part
of the action in Fourier space becomes (we introduce a
gauge-fixing parameter £ that we will send to zero at
the end)

2 4
k(@) = o |opi(0)+ L rbie) + " s,
(90)
with
2 $2C,
=2l o1)

one obtains, at one-loop order

_ o [d=1 [ 0+ mt(p)
1) = do |5+ [ 5,
1

Q4+§m4(ﬂ) 2]
m= ="V [ np2]. (92
[ /QHQ (92)

where the last term is the ghost contribution. One can
evaluate the integral over f using a saddle-point approxi-
mation. One finds InZ ~ 3, —Ing, — V,f(f.), with

1 d-1 1
0=1-—-—-¢C / 93
.- T ooy Y
If we assume m*(f3,) to have a nontrivial infinite volume
limit, f, has to diverge linearly with V, and we arrive
J

- (2n)? 1 P}
GuK.P.:3) = G0, (K=P)-+of e
and therefore
1 1
_oK_.a —, 98
VddGZgKK x ) KZI—G(Kz,a;A) ( )
with
o(K2 a3 A) = L Gy (K)
Vid-1) dg "
P(0)
X - a5(0_) a5 (-0_,). 99
| oo e -00. o)

In deriving these expressions, before taking the average
over A transformations, we have used that, at zero

(K =P)+G freao ficin

at a free-energy density that coincides with the zero-
temperature and zero-background limit of Eq. (37) with

o, d-1, 1
S gCad/QQ4+m4(ﬂ*). (94)

The extension to the Landau-DeWitt gauge is rather
straightforward: one switches to a Cartan-Weyl basis
(which implies in particular replacing if“° by f%),
replaces A, by a, and each momentum by its appropriately
shifted version. One then considers the ghost propagator
G (K, P,a;A) in the presence of a gauge-field configura-
tion a and a background A, and evaluates

g ( —K> —K’aA)

:// elK,xxé

Again, if a belongs to the first Gribov region, we have
Geo(K_.K_c,a;A) >0, Vk and VK. Similarly to the

“(=DD) (x.y)(e*5).  (95)

—K

Landau gauge case, we shall impose instead
3 Ge(K_, K_,a; A) > 0, VK, with
- 1 B
OK,a,A E/ O(AK,a,A), (96

and where we can assume that g is transverse in a
background covariant way. At order g%, We find

;2/ Ell?_ggizﬁg ai(Q)ag(K— Q-P),

97)

I

temperature, one can always shift the integration momen-
tum Q; to Q. Then, by appropriate changes of variables, we
have traded the average over O(4) Euclidean rotations of K
by the average

a3(0-5)a,*(-0-)

1 —
~ Volo(4) /AGO(4) a;((AQ)_)a;*(—(AQ) ). (100)

It is easily checked that af,(Q_f)ap_‘f(—Q_é) is positive
and depends only on Q7. Therefore, we are in a similar
situation as above, with ¢(K?, a;A) < 6(0,a;A) and
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- 1 ¢°C, £(0_Nat (-0
J(O,a;A):mgde/Qaﬂ(Q é)anz( 0_¢)

_ 1 gCy /ai(Q)af(—Q)
Ved dg Jo O
where we, made use of [, f( F(0¥)a5(0_)ay* (—0_s) =
fQ F(0¥)a5(0_s)ay* (—0- ¢) and we changed the integra-
tion variable back to Q.

After introducing a parameter f to impose the no-pole
condition, we arrive at InZ =g, —Inf, =V, > f(B.)

, (101)

with
—1/ Q4 / Ox +&m*(p)
EQx
—/1nQ§, (102)
0
and
2 4°C,
mi(p) =57 (103)

The parameter m*

equation

is fixed through the saddle-point

(104)

d—lgzcad 1
G K QQK+m

This is nothing but the gap equation obtained with the
model (25). Of course at zero temperature, one can always
shift the momenta Q, back to Q, in which case the free-
energy density and the gap equations coincide trivially with
the ones obtained in the Landau gauge.

B. Mapping to the Landau gauge

The previous results are not surprising because, at zero
temperature, the expression for the partition function in
the Landau-DeWitt gauge can be related to the one in the
Landau fgauge through a trivial transformation of the fields,
namely,

(XU)<(x) = el™A X" (x). (105)
First, using the property
D(XU)*(x) = el™94%9, X" (x), (106)

it is easily checked that, upon this change of variables,
the Faddev-Popov action for the Landau-DeWitt gauge

">Of course this does not mean that the two gauges are identical
because the correlations functions are not the same. However, they
are related by trivial identities, see for instance [32].

becomes the Faddeev-Popov action for the Landau gauge,
after one renames a,, into A,,. Itis then easily checked that if
one starts from the Gribov-Zwanziger action for the Landau
gauge and applies the change of variables (after renaming
A, into a,)

(XV)<(x) = e x(x), (107)

(XU>K/1<x) — e—irgA~(r<+/1)X;o1(x), (108)
one obtains the action (21).

We should mention, however, that this mapping crucially
relies on the fact that the boundary conditions are not
important at zero temperature, at least in the Faddeev-
Popov framework. To check this, consider Yang-Mills fields
on a compact time interval of length L (which will eventually
be sent to co) with boundary conditions of the form

bel: af(t+ L, X) = e"B*af(z, %), (109)
with B a constant vector in a space isomorphic to the
Cartan subalgebra. For the partition function to be invariant
under gauge transformations, the latter should be chosen to
preserve the boundary condition (109). This means that the
Faddeev-Popov procedure applied to the Landau-DeWitt
gauge leads to the usual action but with the peculiarity that
all fields obey the boundary conditions (109).'°

Consider now a two-point function (this could be any
correlation function, including the partition function)
Gk bd(x, y;A), computed within this particular gauge fix-
ing. We will now show that, in the “zero-temperature” limit
(L = o0) it coincides with the same correlation function
computed within the same gauge, but with periodic
boundary conditions

be2: af(r+ (L - o),X) = aj(z,X).  (110)
To show this, we first apply the change of variables in (107)
and (108) with A replaced by B. This turns the boundary
conditions of all fields into periodic ones, while changing
the background from A to A+ B and multiplying all
correlation functions by appropriate phase factors:
Lol (x,y: A) = e DBGLIR (r y A B). (1)
Next, one applies a background gauge transformations to
obtain

ngcl(x y; A) — pi(mt72)-gB’ ngcz(x y,A —|—B/) (112)

"Under an infinitesimal transformation we have day, =
9,0° — igf ™16 aj,. If 0% obeys the boundary conditions (109),
then, using that £~ is color conserving, one finds that 5a} also
obeys the boundary conditions (109).
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with B’ = B — na/(gL), for any & that maintains the 1/L
periodicity of the fields and for any n € Z. Taking the zero-
temperature limit as L = n/(ug) with u any real number
and n — oo, we arrive at

gfjj’b“(x,y;A) _ €_i<TK+T%)'gB/gf:Z'b02(x,y;A + B/)’ (113)

with B’ = B — ua. Since the @’s form a basis of the Cartan
subalgebra, repeated use of the previous formula leads to

G (x, 33 A) = G50 (x, 33 A). (114)
As announced, the zero-temperature correlations functions
in the Faddeev-Popov gauge fixing are the same for the two
sets of boundary conditions.

It is, however, not clear how these remarks extend to the
Gribov gauge-fixing. In particular, we should notice that in
the above derivation, the use of shifted momenta in (95)
implicitly restricts the search for eigenstates of the
Faddeev-Popov operator to eigenstates with certain boun-
dary conditions, those that are precisely mapped to the
periodic eigenstates in the Landau gauge. It is not clear to
us whether this is what should be done or how taking into
account other boundary conditions would affect the result.

C. Extension to finite temperature?

The problem with the boundary conditions is even more
visible at finite temperature. First of all, in this case, there is
no change of variable that allows us to get rid of the
background, since the allowed transformations are con-
strained by the periodicity of the fields. Moreover, as it has
been discussed in Refs. [48,49], the periodic boundary
conditions directly affect the implementation of the Gribov
gauge fixing via the Gribov-Zwanziger construction."” Let
us here summarize the argument in the case of the Landau
gauge and then briefly speculate on the consequences for
the Landau-DeWitt gauge. A more detailed discussion is
postponed to a future investigation.

The Gribov-Zwanziger construction is based on the
perturbative evaluation of the lowest nonzero eigenvalues
of the Faddeev-Popov operator, starting from the lowest
nonzero (degenerate) eigenvalue of the free Faddeev-Popov
operator. At zero temperature, working in a box of volume
L* with periodic boundary conditions, the eigenstates
of the free Faddeev-Popov operator are of the form
exp(i(2z/L)(ngr +1-X)), with n, € Z, Vu, and the
corresponding  eigenvalues are  (2z/L)*(n3 + |7i|]?).
Therefore, the lowest nonzero eigenvalue corresponds
to states with n + ||7i||*> = 1. In contrast, at finite temper-
ature, where the system is in a box of size L3, the periodic
eigenstates are rather exp(i(2z/f)nyr + (2z/Li) - X)

"We shall not discuss it here but the implementation of the
Gribov no-pole condition is also substantially modified.

and the corresponding eigenvalues are (27/f)*nd+
(27/L)?||7i||*. Therefore, in this case, the smallest, nonzero
eigenvalue corresponds to states with ny = 0 and ||72||> = 1.
This has a direct imprint on the Gribov-Zwanziger con-
struction and leads to an action that is not simply the zero-
temperature Gribov-Zwanziger action taken over a compact
time interval; see Refs. [48,49] for more details.

We mention here that, even though this asymmetrical
treatment of the temporal and spatial components is to be
expected at finite temperature, it leads to some unex-
pected features. In particular, in the zero-temperature
limit, one does not recover the usual Gribov-Zwanziger
action but rather an action that explicitly breaks the
Euclidean O(4) invariance of the vacuum theory. This
raises some conceptual issues, in particular, concerning
the renormalizability of the action or the potential
contamination of the zero-temperature observables by
these O(4)-breaking terms. Of course, if the Gribov-
Zwanziger construction corresponds to a bona fide gauge
fixing, we expect the O(4)-breaking terms to be restricted
to the gauge-fixing sector and not to affect the O(4)
invariance or the UV finiteness of the zero-temperature
observables. However, since the Gribov restriction is
never implemented exactly in practice,18 these issues
deserve a careful investigation.

We leave these interesting questions for a future work
and end this section by speculating on the implications of
the previous remarks for the Landau-DeWitt gauge. In the
Landau-DeWitt gauge at finite temperature, the role of the
free Faddeev-Popov operator is played by D? but the fields
remain periodic. Therefore, the eigenstates are still of the
form exp(i(2z/B)ngr + (2z/L)ii - X) but the eigenvalues
become (2zny + r - k)? /B + (2=/L)?||7i||%. It follows that,
for generic backgrounds such that r - x is not a multiple of
27, the lowest nonzero eigenvalues correspond to x = 0,
ny =0, and |[|7i|> = 1. So not only would the Gribov-
Zwanziger procedure affect only the spatial components
of the gauge field but only those color components that
are aligned with the background. In this case the order
parameter for the deconfinement transition—the Polyakov
loop or the background A at the minimum of the back-
ground effective potential—would not interact with the
Gribov region at one-loop order, in contrast to what
happens in the present work or in [18]; the search for
possible effects on the deconfinement transition would
necessarily start at two-loop order.

"®In the case of the Gribov-Zwanziger approach, even though
the true condition should be that the smallest value of the
Faddeev-Popov operator remains positive, in practice, one
imposes the sum of the smallest eigenvalues (as described above)
to remain positive, which obviously does not imply that the
smallest one is positive. In fact, in our view this is the reason why
the Gribov-Zwanziger approach and the zero-temperature limit
do not seem to commute.
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VI. CONCLUSIONS AND OUTLOOK

We have put forward a Gribov-Zwanziger type action
for the Landau-DeWitt gauge that remains invariant under
background gauge transformations. At zero-temperature
and to one-loop accuracy, our model can be related to
the Gribov no-pole condition applied to the Landau-
DeWitt gauge. Moreover, in contrast to other recent
proposals, our model does not require the introduction
of a Stueckelberg field.

Without spoiling the background gauge invariance, our
approach allows for color-dependent Gribov parameters, a
possibility which we have investigated together with its
impact on the deconfinement transition. We have observed
variations of the transition temperature up to 20%. We have
also observed that certain Gribov parameters can become
negative while maintaining a real effective potential. In fact,
in some cases, the transition is only properly accounted for
if m* is allowed to become negative. We mention that, in a
recent study, the three scenarios proposed here have been
tested against lattice simulations [57]. The degenerate
scenario seems to be favored.

Our model allows for the evaluation of higher
corrections in a manifestly background gauge invariant
way. We are currently evaluating the two-loop back-
ground effective potential and the corresponding finite
temperature two-loop gap equations for the Gribov
parameters.

Finally, it is important to mention that, at finite temper-
ature, none of the existing proposals, including ours, can be
understood so far as faithful implementations of the
Gribov-Zwanziger restriction for the Landau-DeWitt
gauge. In this respect, it would be important to generalize
the considerations of Refs. [48,49] to the Landau-DeWitt
gauge, along the lines of the discussion that we have
initiated in Sec. V C.
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APPENDIX A: PATH (IN-)DEPENDENCE

Even though we did not make it explicit in our
notation, for general backgrounds (such that F,, # 0)
the redefinitions ¢,(x) and @,(x) of the fields ¢,(x) and
w,(x) through the Wilson line (11) are not true functions
of x, since they also depend on the path C used to define
the Wilson line. Therefore, we need to be more specific
about what is meant by “covariant derivatives” acting on
these types of objects in Eq. (10). We write our action
proposal as

Fa,Fg, + ih*Dital + c*DgP Dl ¢

B —

Snew _/{

_ (é)y)eaﬁszZchge + (@Z)ea&szﬁc(ﬁEe

— gr'2fereat (b + phe) - Vddc}, (A1)
and define
Aﬂ@b (X) = (Dﬂ(pl/ (x))LA,C(x7 )C())
+ igg, ()AL (X)T“Ly c(x, x0),  (A2)

and similarly for Aﬂ. These definitions coincide with the
usual covariant derivatives in the case where F,, = 0.
Moreover, by noticing that the rhs of (A2) is a linear
combination of true functions multiplied by the Wilson
line, the repeated action of such operators can be simply
defined by assuming that A, acts linearly on these types
of linear combinations.

The definition (A2) is similar in spirit to the so-called
Mandelstam derivative of the Wilson line [58]. We stress,
however, that because it does not apply to functions (unless
F w = 0), this is not a true derivative and thus it should not
be used as such (a similar word of caution applies to the
Mandelstam derivative). To make this point clear, we use
the notation A, for the rest of this section. In the
manipulations to be discussed now, we shall always rely
on the above definition and will not assume without proof
that A, shares the same properties as a derivative operator.
For instance, it will be convenient to show that given two
objects ¢ and yr of the form “function times Wilson line,”
the following formula of integration by parts holds:

/ AP =— / (A7) . (A3)

X X

To this purpose, we write

tr(wLic) Au(@Lic) +tr (A, (wLlic)) oLic
=L} W' (Dyg)Lic+uLl (Dy )oLse
+ige L} wipAST Ly o —igw LY AT oLs

ACH
=0, (') — gy ) f ALY — gf ALy )P
=u aﬂ (U/Tgo)‘

(A4)

In the last step, we have used that the fields ¢ and y“® are
antisymmetric. An integration over x leads finally to (A3).

We are now ready to check the background gauge
invariance of (Al) in a more rigorous way. To that aim,
we first use the integration by parts formula (A3) to rewrite
the action as
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1
Snew_/{ F +lh“D“bab+c”D’”’Dch +tr(A

4 mom

— gy 2febeal(phe + pbe) — J/ddc}-

Then, we evaluate

A () (X)Lav ¢ (x. x0)) = (Do) (x))Lav ¢(x.%0) + ig @] (x) (A7) () TLiav ¢ (x, X0)
= Dy (U(x)g, (x))La ¢ (x. x0)U" (x0) + Ux)ep, (x)O,U" (x)U(x) L5 (6. 0 )U" (x0)

+ igU(x)ep, (x)Aj
U(x)(D,p,(x))Lv
= U(x)[A, (@, (x)L3,

The background gauge invariance of (AS5) and therefore
of (A1) follows immediately.

We can also check the independence of our procedure
with respect to the chosen path. Indeed, if we consider a
second path C’, we have

A

@' (x) = p(x)Lj o (%, %)

= @)Ly (x. %0)Lac(x.%0). (A7)
By definition
8,9 (x) = (Dugp(x))Lj ¢ (¥, Xo)
+igp(x)AG ()T L o (x, x0).  (A8)
Using (A2), it is trivially seen that
A, (x) = (8, (x))L7 o (x. X0) La o (x. %).  (A9)

Therefore, the second line of (AS5) can be reexpressed
identically in terms of ¢’ and &'. This completes the proof
that our procedure is independent of the chosen path C, as
announced above.

APPENDIX B: CHANGE TO
A CARTAN-WEYL BASIS

The change from a Cartesian basis {i#*} to a Cartan-
Weyl basis {i#*} is a change of basis in the complexified
version of the Lie algebra. Therefore, in what follows, it
will be convenient to introduce a formal complex con-
jugation to distinguish the elements of the original (real)
Lie algebra, such that X = X, from those in the purely
imaginary component of the complexified algebra, such
that X = —X. In the case of SU(N), where the elements of
the original Lie algebra are anti-Hermitian matrices, this

(X)T“Lj ¢ (x, x0)U (x0)
(X x0) UM (x0) + igU (x)gp
clx, xo))]uf(x())

)T(Ay@u) - tr(A(i)u)T(Au@u)
(A5)
= U(x)g, (x)0,U" (x)U (x) Lz (x, x0)U (x0)
L (%) A5 ()T L ¢ (x, x0)U (x0)
(A6)

|

complex conjugation can be represented as X = ~x"" n
particular, we have it = it“. The Cartan-Weyl basis can
always be chosen such that it = it™*. In particular, if

X = X,it, = Xyit,. (B1)

then

X = (X, it, = (X_,)*it,. (B2)
This is exactly as with the Fourier transformation, for
which X(Q) = (X(=Q))*. If the field is real (meaning
X = X), we find of course (X,)* = X, and (X_,)* = X,.

The change to a Cartan-Weyl basis is in fact an
orthonormal change of basis if we equip the complexified
algebra with the Hermitian product

(X;Y) =2uX'Y = —2uXY. (B3)
It follows that
(Xa)" Yo = (X) Yo (B4)
which also rewrites
XY, =X_Y (B5)

This is similar to the Parseval-Plancherel identity. This
identity has been extensively used in deriving Eq. (21).
We mention finally that in Eq. (21), the components 5
or (ﬁﬁf are tensor components whereas in Eq. (20) the same
notation stands for matrix components. The reason why we
use tensor components in Eq. (21) is that the derivation is

"This formal complex conjugation should not be mistaken,
however, with the standard complex conjugation of matrices,
which we denote by X*.
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simpler for it relies directly on the identities given above.
The matrix notation was useful in Sec. II B to identify
invariant terms in the action. Changing from the matrix
components to the tensor components simply amounts to
changing the sign of &. To see this let us write the unitary
change from Cartesian to Cartan-Weyl coordinates as

X = M Xas <B6)
with MT = M~'. Since this change of variables applies to
any element of the complexified algebra, in particular, to
those in the real part, we have

X—K = MzaXa! (B7)

from which we deduce that My, = M), and then
My} = M, = MY, = M(_;),. Let us now write the matrix
and tensor components of ¢ in the Cartan-Weyl basis,
respectively, as

(Z)Ké = MKa(pale;gl ’ (BS)
(pkf = MKabe(pab' (B9)

It follows that
@Kf = MKaM(—é)bgoab = Pr(-¢)» (BIO)

as announced.

APPENDIX C: GAUSSIAN INTEGRALS

In some cases, we need to evaluate Gaussian integrals
that mix real and complex variables. Consider for instance
the integral

] — / d'x d'zd"z" s X'MX-Z'NZ-X'PIZ-7' PX (C1)
i" '

with M real and symmetric and N Hermitian so that the

“action” is real. We can integrate over the complex

variables first. Using the change of variables

Z - Z-N"'PX, (C2)
7" — 7" — (N*)' P*X, (C3)
we find
dzd"z* . B
I:/d”x Zi 2 X (M=2P'N'P)X-ZINZ (C4)

After symmetrization of the newly obtained real quadratic
form, we find

. (2ﬁ)3n/2
det N+/det(M — PPN-TP — (PTNTP))

(C5)

A mnemonic way to recall this result is to rewrite the
original integral as

1= / g N, (C6)
with
X
x=\z (C7)
Z*
and
M Pt P
N=|P N 0 (C8)
Pt 0 N

A simple calculation, using Schur decomposition leads to

M= P(NY)-'P* P
det NV = detN x det( (V) )

P N
= (detN)? x det(M — PIN"'P = (P'N"'P)).
(C9)

Therefore, we can rewrite the result (C5) as

(27[)3'1/2
Videt N

=

(C10)

that is, as it would result from (C6) by considering the
integral as a purely real one (i.e., disregarding the presence
of the dagger and the fact that some of the components of y
are complex).

This is the reason why we have written the quadratic part
of the action (26) in the A — ¢ — ¢ sector as

1

3 | 7 WM =202) )

with y(x) = (a5(x), h*(x), @ (x), 1% (x))*. This vector
contains real components @)’ (x) and A%’ (x), as well as
complex conjugated components aj;(x) and a,“(x), h*(x)
and h~*(x), ¢/*(x) and 35" (x), and finally g’og‘f(x)

and (p/(-)_ﬁ)(_g) (x).
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APPENDIX D: FORMULAS

In what follows, we derive various formulas used in
the main text. It will be important to allow for negative
values of the Gribov parameter m* in those sum
integrals where the frequency is shifted by r-x. In fact
the parameter m* can take values down to —M?%._ with
M? . =min,c;(2zn + r- k)T

1. Sum integral entering the gap equation

The gap equation involves the sum integral

e [T

At zero temperature, it does not depend on the background
since the latter can be shifted away by a change of
variables. In that case, the Gribov parameter m* should
be taken positive (without loss of generality, we can assume
that m? > 0). We can then use

(D1)

1 1 1

S N . D2
0 + m* 2 O+ im? (D2)

together with the formula

A

ij(m4; méao) = K(m4) - jT:O(méac)

1 m‘v‘ac 1

1 M? 1 T
0O+ M 162 cingEtif (©3)

valid for any non-negative (possibly complex) M?, to
arrive at

R S A
Qm:@{;ﬁlw“} (B4)

We can proceed similarly at finite temperature, but
this time we need to distinguish the cases m* > 0 and
M4, <m* <0. If m* > 0, we use again (D2) and the
usual formula for the tadpole sum integral at finite temper-
ature. We find

—L/Im |:1 +n\/q2+im2 iTrK \/q +im?+iTrx
m? 2/ q* +im?
(D5)

where n,=1/(e?T — 1) denotes the Bose-Einstein dis-
tribution function. Because m? is real, the contribution 1 in
the numerator leads to the zero-temperature limit (D4).
Rewriting also the finite temperature contribution in a
simpler way, we arrive at

eV /T cos(r - k) — 1

, (D6)

which we also rewrite for later convenience as

1
=——In ——/Im
3272 m* m> q \/q2 + im? 62\/q2+im2/T _ 2ey/q2+im2/T COS(}" . K‘) +1

1 cos(r- k) — emVatim/T

R 1 me 1
4.4 N\
ATy mee) = 35z In= &+ 2im2/

g 27/ q* + im? cos(r - k) — cosh(\/g* + im*/T)
cos(r- k) — e Va=im/T

1 / 1
2im* Jq 21/ q* — im? cos(r - k) — cosh(v/q* — im?/T)

If =M%, < m* < 0, we write m> =
\/ —g*—iTrk

+n
i/ M?—q*+iTrx n

(D7)

iM? (we can assume that M? > 0) and use again (D2) but rather as a difference. We find

1+n n
1 + w/qz—MZ—iTr«_‘_ N =M +iTrk

Jo(m*)
“me e

\/ G +M*+iTrx

3 1 /1+n~/42+M2 e T
2M2 2 /q _|_M2

2M2 q>M 2\/6]2—M2

(D8)

where we have conveniently separated the first two integrals. We note that the integrands are regular when g — M.
Moreover, the first integrand does not have singularities arising from the Bose-Einstein distributions because, by
assumption, 0 < M < M, and we have M, . < zT. We also note that all the integrals that enter the above formula are real.
For the first integral this is shown using
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e—ib

_ eia

sin((a + b)/2)

1—|—nl~a—|—n,-b:n,-a—

i = (e 1) (e® — 1) 2isin(a/2) sin(b/2)

sin((a+b)/2)

BV 1
T 20 (tan(a/Z) + tan(b/2)

1
) - icos((a—b)/2) —cos((a+b)/2)

(D9)

Contrary to the previous case, not all the 1’s in (D8) lead to the zero-temperature contribution, so we cannot use the same

trick as above to compute AJ, (m*, m?

3d cutoff, we have

:.c)- However, since the latter is finite, we can compute it using any regulator. With a

R 1 A g
Jm*) =——=Im | dg———= D10
) = 2w /) TP —im (D10)
and then, after some calculation,
AT () 1 ]nm‘v‘ac 1 / 1 sin(y/M? — ¢*/T)
«\m’) = -
3222 MY 2M? Jyem 2/ M2 = P cos(r - k) — cos(/M? — 2/ T)
N 1 1 eV@MIT cog(r . k) — 1
2M? Jgsrt /P = MP 2N/ PMET o/ PME/T cos(r-x) +1
1 / 1 eV@TMIT cog(r - k) — 1 (dI1)
2M* J, V@ + M? NPT _ 9\ ¢+ M2 T cos(r-x) +1
or equivalently
J(m*) 1 md. 1 sin(/M? — q*/T)
(m*) = n -
3272 MY 2M* Jym 2/M? = ¢ cos(r - k) — cos(r/M? — 42/ T)
1 1 cos(r-k) — e Va=M/T
2M? Jg=m 24/ > — M2 cos(r - k) — cosh(\/q> — M2/ T)
N 1 / 1 cos(r- k) — e" Ve M/T (D12)
2M? [ 27/ q* + M cos(r - k) — cosh(\/q? + M?)T)
Finally, we will also need J,c(m“)m4 — 0 (which exists for r -k € 227). Using (D13), we find
2 d1+n—ir~x+n iTrx 1 1+l’l_ir‘,<+l’l iTrx
Je(m* = 0) = - | e T Zatl ——2+/ R (D13)
¢ dq 2q 8x q 4q
|
2. Sum integral entering the potential together with
The same discussion can be applied to the sum integral
. M* 1 i3
R T ln(Q +M):—m _+IHW+§’ (D16)
K (m*) = / In(Q + m*) (D14) ¢ T Le
Q
) ) ) valid for any non-negative M?. We find
that appears in the effective potential. At zero temperature,
the integral is defined only for m* > 0 (again if we restrict mt 113
to real values of m*). We then use K(m* E/l 4 N =—— |-+ -InZ + 2.
) (m*) Qn(Q + m?) 62z T3 ats
In(Q* + m*) = 2ReIn(Q? + im?), (D15) (D17)
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Similarly, at finite temperature, we have
K.(m*) = / 2Re [1 [q? + im? + Tln(e—Z\/q2+im2/T — e~V @ +im*/T cos(r - k) + 1)] , (D18)
q

for m* > 0. In this case the first term inside the bracket corresponds to the zero-temperature contribution and can be
replaced by the explicit formula (D17). Then

AK (m mvac) = Ie 4JT O( vac)
3’2” ; [ln } /ln(e—z./q2+im2/r NP Hn T cos(r - &) + 1)
7 q
+ T/ In e‘2 ¢=im? [T _ 2e=Na=im*/T cos(r - k) + l). (D19)
q
Instead, if —M?*, < m* = —M? < 0, we find

K .(m*) = / ; [i\/M2 -q¢*+ Tln(e‘zj\/"/lz—“f/T —2e~iVM~/T cos(r- k) + 1)]
<
—|—/ . [\/m—i— Tln(e‘z\/m” — e~ VE-MT cos(r- k) + 1)]
@
+ / {\/m+ Tln(e‘z\/m” — e~ VT cos(r-x) + 1)] ) (D20)
q
We have
¢ 2V W= [T _ 0 p=in/ WP~/ T cos(r k) +1= 2e=iVM /T (cos( M? — qz/T) — cos(r - K)) (D21)

Since 0 < M/T < =, we can apply the formula In(ab) = Ina + Inb and then

A

K (m*) = /q<MT1n<2cos< M? - q2/T) —200S<F-K))

+ / [\/ q* — M? + Tln(e‘QV C=MT _ 2=V @~M/T cog(r . ) + 1)}
q>M

+ / [\/qz + M2+ T (e—2\/42+M2/T — 26~V PHMT og(r - ) + 1)} (D22)
q

where each integral is real. Once again, in this case, the zero-temperature contribution is not so easily extracted and we
cannot use the same trick as above to compute A K, (m*, m$,.). However, up to quartic divergence (that does not depend on
T or r), we can compute it using any regulator. We use a 3d cutoff and find

AR (m* mi) = — M 1+1In M +/ Tln(2 cos( M? — qz/T) —2cos(r - K))
3272 Mm* <M
+ / Tln (e‘z\/ C=MT _ 2=V @=M/T cog(r . k) + 1)
q>M

+ / Tln(e‘z\/ CHIT _ 2=V EHMT cog(r - k) + 1). (D23)
q

We check that the derivative with respect to M* gives —AJ, (m*, m2,.), as it should.
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