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We reassess the B → πlνl differential branching ratio distribution experimental data released by the
BABAR and Belle Collaborations supplemented with all lattice calculations of the B → π form factor shape
available to date obtained by the HPQCD, FNAL/MILC, and RBC/UKQCD Collaborations. Our study is
based on the method of Padé approximants and includes a detailed scrutiny of each individual data set that
allows us to obtain jVubj ¼ 3.51ð8Þstatð7Þsyst × 10−3. The semileptonic Bþ → ηð0Þlþνl decays are also

addressed and the η-η0 mixing discussed.
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I. INTRODUCTION

Quark flavor-changing transitions in the standard model
are described by the Cabibbo-Kobayashi-Maskawa (CKM)
matrix whose elements, Vij, weight the strength of the
interaction. The CKM matrix satisfies unitarity imposingP

i VijV�
ik ¼ δjk and

P
j VijV�

kj ¼ δik. To verify these
relations, a precise determination of the magnitude of
the CKM elements becomes of capital importance since
an eventual deviation of unitarity of the CKM matrix may
be a hint of new physics. The most common (unitarity
triangle) combination to look at is

VudV�
ub þ VcdV�

cb þ VtdV�
tb ¼ 0; ð1Þ

which contains the best-known side quantity VcdV�
cb but

also involves Vub, one of the least-known elements. The
inclusive, B → Xulνl, and exclusive, B → πlνl, semi-
leptonic decays of a B meson represent an advantageous
laboratory to determine the value of jVubj yielding the most
precise value up to date. Inclusive determinations are based,
for example, on the operator product expansion and
perturbative QCD while exclusive determinations require
knowledge of the shape of the participant meson form

factor (FF) as a function of q2, yielding the hadronic
transition. Numerically, the 2015 PDG reported values
showed a 3.1σ deviation between the inclusive, jVubj ¼
ð4.41� 0.15þ0.15

−0.17Þ × 10−3, and the exclusive, jVubj ¼
ð3.28� 0.29Þ × 10−3 [1], determinations with a resulting
average of jVubj ¼ ð4.13� 0.49Þ × 10−3. The updated
2016 PDG version [2] reports, respectively, jVubj ¼
ð4.49� 0.16þ0.16

−0.18Þ × 10−3 and jVubj¼ð3.72�0.19Þ×10−3

[3] for the inclusive and exclusive decays whose deviation,
2.6σ, has slightly been reduced due to the one-σ shift of the
exclusive result. At present, the PDG reports [4], respec-
tively, jVubj ¼ ð4.49� 0.15expþ0.16

−0.17th
� 0.17Þ × 10−3 and

jVubj ¼ ð3.70� 0.10� 0.12Þ × 10−3 [5] for the inclusive
and exclusive determinations. The origin of this long-
standing discrepancy between the inclusive and exclusive
determinations still remains unclear, demanding the result-
ing combined average, jVubj ¼ ð3.94� 0.36Þ × 10−3 [4],
to be borrowed with caution. As pointed out already in
Ref. [6], and recently adopted in Ref. [7], a new physics
explanation of this tension is very unlikely and, therefore, it
might be due to an underestimation of uncertainties in the
experimental and/or theoretical analysis.
In this work, we reexamine the exclusive B → πlνl

decays and extract jVubj following an alternative approach,
regarding the parametrization of the participant vector form
factor, slightly different than the most commonly used
z-expansion and vector meson dominance models, and
profiting from the large set of experimental data and lattice
simulations. A detailed scrutiny of each individual data set,
explored bin by bin, allows us to identify agreements and

*sgonzalez@itp.ac.cn
†masjuan@ifae.es

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 98, 034027 (2018)

2470-0010=2018=98(3)=034027(18) 034027-1 Published by the American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.98.034027&domain=pdf&date_stamp=2018-08-29
https://doi.org/10.1103/PhysRevD.98.034027
https://doi.org/10.1103/PhysRevD.98.034027
https://doi.org/10.1103/PhysRevD.98.034027
https://doi.org/10.1103/PhysRevD.98.034027
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


tensions among them and propose a path towards further
determinations.
The hadronic matrix current for the B → πlνl decay can

be written as

hπðpπÞjVμjBðpBÞi ¼ fþðq2Þ
�
pB þ pπ − q

m2
B −m2

π

q2

�
μ

þ f0ðq2Þ
m2

B −m2
π

q2
qμ; ð2Þ

where q ¼ pB − pπ ¼ pl þ pνl is the transferred momen-
tum to the dilepton pair while fþðq2Þ and f0ðq2Þ are,
respectively, the participant vector and scalar form factors
encoding the dynamics of the strong interactions occurring
in the heavy-to-light B → π hadronic transition.
For light leptons (e and μ), one can safely take the

ml → 0 limit so that only the fþðq2Þ is relevant and the
corresponding partial decay width distribution is given by1

dΓðB → πlνlÞ
dq2

¼ G2
FjVubj2

192π3m3
B
jpπj3jfþðq2Þj2; ð3Þ

where pπ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2

B þm2
π − q2Þ2 − 4m2

Bm
2
π

p
is a kinematical

factor accounting for the momentum of the pion in the B
meson rest frame. The main source of uncertainty in the
extraction of jVubj lies on the vector form factor which, in
turn, requires a reliable parametrization in terms of q2.
From the experimental side, the CLEO Collaboration

reported the first measurement of the B → πlνl branching
fraction in 1996 [9], later updated in 2003 [10], and
released the partial branching ratio distribution measured
in 4 q2 bins in 2007 [11]. More recently, the q2 decay
spectra have been measured, respectively, in 6 and 12 bins
of q2 by BABAR in 2011 [12] and 2012 [13], and by Belle
in 13 bins in 2011 [14] and in 13 and 7 bins for the B0 and
B− mode, respectively, in 2013 [15].
On the lattice QCD side, results on the form factor shape

at large q2 were obtained by the HPQCD Collaboration in
2007 [16] and by the Fermilab Lattice and MILC (FNAL/
MILC) Collaborations in 2008 [17] in 5 and 12 bins of q2,
respectively. In 2015, the RBC and UKQCD (RBC/
UKQCD) Collaborations released new results in 3 bins
of q2 [18] and the FNAL/MILC Coll. presented an updated
analysis [3].
In total, we have a set of five experimental measurements

of the B → πlνl decay spectra driving the form factor
shape at small q2 and a set of four lattice QCD simulations
for the form factor dominating the large q2 region. In order
to determine jVubj with good precision (beyond 10%), it is
desirable to have a suitable parametrization of the inter-
mediate energy region (15− 20 GeV2) connecting both the

small- and large-q2 regions in a continuous and derivable
way, under the constraints of unitary and analyticity.
The aim of this work is to consider the theory of Padé

approximants (PAs in what follows) to describe the
required form factor fþðq2Þ and provide the aforemen-
tioned parametrization to interpolate between small-and
large-q2 regions. In turn, as we will show below, this
method can be used to examine whether experimental and
lattice data are consistent with the unitary constraints
imposed by the form factor or not, with the corresponding
implications when extracting the jVubj.
The key point to realize is that the form factor fþðq2Þ is a

Stieltjes function, which is a function that can be repre-
sented by an integral form defined as [19]

fþðq2Þ ¼
Z

1=R

0

dϕðuÞ
1 − uq2

; ð4Þ

where ϕðuÞ is any bounded and nondecreasing function.
By defining R ¼ sth ¼ ðmB þmπÞ2 GeV2, identifying

dϕðuÞ ¼ 1
π
Imfþð1=uÞ

u du, and making the change of variables
u ¼ 1=s, Eq. (4) returns the dispersive representation of the
form factor

fþðq2Þ ¼
1

π

Z
∞

sth

ds0
Imfþðs0Þ
s0 − q2 − iε

; ð5Þ

where q2 is the invariant mass of the lepton pair. Since the
FF, and its imaginary part, is created by the vector current,
ImfþðsÞ is a positive function (ImfþðsÞ ¼ πρðsÞ, and ρðsÞ
the spectral function), the requirement of ϕðuÞ to be
nondecreasing is fulfilled and the convergence of PAs to
the FF is guaranteed.
Padé theory not only provides a convergence theorem for a

sequence of PAs to Stieltjes (or Stieltjes-type) functions, i.e.,
limN;M→∞PN

Mðq2Þ − fþðq2Þ ¼ 0, but also its rate of con-
vergence [19,20], given by the difference of two consecutive
elements in the PA sequence. As we will see later, this error
prescription will return very small theoretical uncertainties.
To be more conservative, in Refs. [21–24] we designed a
different method to extract such uncertainty which yields
errors at the level of the statistical ones.
Let us remind that a PA to a Stieltjes function is also a

Stieltjes function as well [19]. As such, it must have an
imaginary part positive defined. All zeros and poles of our
approximants must lie along the unitary branch cut in order
to fulfill the unitary requirements that the FF imposes. If a
particular PA does not show this feature, it means the data
set fitted is not fulfilling the unitary requirements that must
have. Thus, both defects (poles cancelled by a close-by
zero in the numerator, also called “Froissart doublet”) and
the appearance of poles and zeros outside the unitary
branch cut are indications of a violation of unitary to a
certain degree. We shall come back to this point later (see
Sec. IVA).

1The interested reader is referred to Ref. [8] for a recent
parametrization of the scalar form factor f0ðq2Þ based on
dispersion relations.
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Padé approximants to a given function are ratios of two
polynomials (with degree M and N, respectively),2

PM
N ðq2Þ ¼

P
M
j¼0 ajðq2ÞjP
N
k¼0 bkðq2Þk

¼ a0 þ a1q2 þ…þ aMðq2ÞM
1þ b1q2 þ…þ bMðq2ÞN

;

ð6Þ

with coefficients determined after imposing a set of a
accuracy-through-order conditions with the function one
wants to approximate:

fþðq2Þ − PM
N ðq2Þ ¼ Oðq2ÞMþNþ1: ð7Þ

Besides ordinary sequences of PAs we will also consider
Padé Type approximants TM

N ðq2Þ and Partial Padé approx-
imants PM

Q;N−Qðq2Þ in our study. TM
N ðq2Þ have the denom-

inator fixed in advanced (by imposing the location of the
zeros of it), while PM

Q;N−Qðq2Þ only Q zeros of the
denominator are fixed in advanced while the rest are left
free. The main advantage of fixing a pole is that the number
of parameters to fit decreases by one and typically allows to
reach higher elements of the sequence [21]. If the sequence
is large enough and the position of the first singularity is
accurately known, the convergence of the TM

N ðq2Þ is faster
than the convergence of ordinary PAs for Stieltjes functions
[19,25,26].
From a theoretical perspective, parametrizations based

on resonance-exchange ideas [27–30] have been widely
used so far to describe the B → π FF shape. The para-
metrizations proposed by Bećirevic-Kaidalov [31] and
Ball-Zwicky [32,33], incorporating some properties of the
FF such the value of the kinematical constraint at q2 ¼ 0
and the position of the B� pole in the old-times spirit
[27–30], became rather popular in the first decennial of this
century. Both descriptions contain free parameters, such
additional poles that pick up effects of multi-particle states,
to be fixed from fits to experimental data. However, the
election of these ansätze induces a source of theoretical (or
systematic) uncertainty difficult to quantify. Moreover, as
argued in Ref. [17], if the reconstruction of the FF obtained
only from fits to experimental data is seen as inconsistent
with the shape derived by the Lattice collaborations, one
would not unveil whether experiment and theory disagree
or simple parametrizations are insufficient. To improve on
that, the so-called z-parametrization was proposed [34–36].
This is based on a conformal transformation expansion
which guarantees unitary constraints on its coefficients,
even though in practice the constraints are rather weak.
We would like to remark at this point that all the

aforementioned descriptions of the FF are in a form or
another a certain kind of Padé approximant.

Lets us return to the 2015 and 2016 PDG editions
reported values for jVubj from exclusive processes, ð3.28�
0.29Þ × 10−3 and ð3.72� 0.19Þ × 10−3, respectively. They
were obtained from simultaneous fits to the four most
precise measurements of BABAR [12,13] and Belle [14,15]
together with the 2008 and 2015 FNAL/MILC Collabora-
tions lattice simulations on the FF, respectively. While the
2015 PDG value corresponded to the determination pro-
vided by the HFAG as of summer 2014 [1], the updated
2016 PDG version reports the value obtained by the FNAL/
MILC Collaborations in 2015 [3]. These two values
have been determined by using a z-parametrization as fit
function and show a sizable deviation of 1.3σ whose origin
stems mainly from the following fact. While the lattice FF
simulations from the FNAL/MILC Collaborations in 2008
[17] were included into the fit in the HFAG analysis of
2014, and on top of that only 4 of the 12 points were used to
avoid correlations between neighboring points, the result
obtained by FNAL/MILC in 2015 considers their updated
FF simulation ones [3]. Moreover, while the 7 bins of the
B− decay mode measurement reported by Belle in 2013
were not included into the HFAG 2014 fit, the FNAL/
MILC 2015 include them into their analysis.
Previous PDG reported values, e.g. jVubj ¼ ð3.23�

0.30Þ × 10−3 in PDG 2012, showed the corresponding
HFAG fit results obtained from simultaneous fits to the
existent experimental measurements at the time together
with the FNAL/MILC form factor predictions of 2008
using 6 of the 12 points instead of 4 of 12 as in the HFAG
result of 2014. Both the choice of the FNAL/MILC 2008
number and bin-points to fit and the omission of the
HPQCD form factor lattice simulations of 2007 is rather
unclear to us. Accepting the FNAL/MILC lattice form
factor calculation of 2015 presents several improvements
with respect to their 2008 predictions,3 still the theoretical
error associated to the FF represents the largest uncertainty
in jVubj. In this respect, the lattice simulation provided by
the RBC/UKQCD Collaboration [18] has been welcomed,
obtaining jVubj ¼ ð3.61� 0.32statþsystÞ × 10−3 from a
combined fit to their results for the form factor together
with BABAR and Belle experimental data.
More recently, Ref. [37] obtained jVubj ¼ ð3.59�

0.12statÞ × 10−3 from a combined fit to BABAR and Belle
data and the FNAL/MILC form factor simulations of 2015
supplemented by the light-cone sum rule (LCSR) result at
q2 ¼ 0 GeV2 [38], while the HFAG update for the summer
2016 consists in employing an average q2 in experimental
and lattice data (including this time themeasuredq2 spectra of
the B− decay mode of Belle 2013) with the LCSR prediction
at q2 ¼ 0 GeV2 [38] obtaining jVubj ¼ ð3.65 � 0.09exp �
0.11thÞ × 10−3 [39].

2With any loss of generality, we take b0 ¼ 1 for definiteness.

3The 2015 updated analysis shifted downward the central
values of the FF and reduced the error by almost a factor of three
with respect to the study of 2008.
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In 2016, the FLAG working group reported jVubj ¼
ð3.62� 0.14Þ × 10−3 from a fit to lattice and BABAR and
Belle experimental data [40], while the current PDG edition
reports the HFLAV value of 2017 jVubj ¼ ð3.70� 0.10�
0.12Þ × 10−3 [4,5] obtained from an averaged q2 spectrum
of all BABAR and Belle data sets constraining the χ2

minimization by averaged values for the coefficients of the
form factor parametrization derived by the lattice groups
and by the LCSR prediction at q2 ¼ 0.
Finally, a closer look to the plots of the corresponding fit

results of the different analyses reveals a discrepancy
between HFAG 2014 and Ref. [37], and lattice groups
[3,18] on the position of the last experimental datum of
both BABAR 2011 and BABAR 2012 measurements.4

Although the different jVubj determinations are consis-
tent with each other, we find the situation slightly unclear
and without consensus among different groups regarding
the use of experimental and theoretical data to fit.
The main purpose of this work is to reanalyze the B →

πlνl experimental data and discuss the impact of including
into the fit each of the lattice-QCD simulations on the FF
shape. We use the method of Padé approximants to para-
metrize the B → π transition. These provide for a model-
independent method, simple and user-friendly, with the
important advantage of incorporating FF’s unitary and
analyticity constraints by construction, thus providing a
systematic error.
We have discussed the Padé method in Refs. [21,22,25]

and illustrated its usefulness as fitting functions in
Refs. [23,24,41,42] applied to the description of the π0, η
and η0 transition form factors. In these cases, the approx-
imants showed an interesting ability to connect the low-and
high-energy realms while improving the description of part
of the intermediate-energy regime. The method allows us
here to obtain a value for jVubj, including both statistical and
systematic uncertainties coming from the fit function, with a
stamp of model independence. Constraints from unitary of
the form factor will show up naturally and will provide for a
roadmap towards next steps to follow both for theoretical as
well as experimental studies.
Although being the most precise, B → πlνl only

amounts to ∼7% of the B → Xulνl decays. Measure-
ments of the branching fractions distributions of Bþ →
ωlþνl and of Bþ → ηlþνl in 5 bins of q2 were released in
2012, and the branching ratio of Bþ → η0lþνl reported, by
the semileptonic charmless program of BABAR [13].
In the second part of this work, we will tackle the Bþ →
ηð0Þlþνl decays, predicting the differential branching ratio
distributions and extracting the η-η0 mixing angle taking

advantage of the B → π form factor parametrizations
obtained in the first part of this work.
As a final introductory remark, we shall mention that a

method based on dispersion theory to extract jVubj from the
Bl4 decay has been proposed in Ref. [43].
This article is structured then as follows: In Sec. II, we

address the analytical structure of the participant B → π
form factor and discuss the most common theoretical
descriptions that have been considered in literature so
far. In this section, we also present our proposal, a para-
metrization based on the unitary and analyticity of the FF
which allows us to use a sequence of PAs. In Sec. III, we
show our fit results to the BABAR, Belle, and CLEO
differential branching ratio distribution experimental data,
which enables us to determine the product jVubfþð0Þj and
extract, subsequently, jVubj by using the LCSR prediction
of fþð0Þ given in Ref. [38]. In Sec. IV, we discuss the
impact of including the different lattice QCD predictions on
the FF shape into the analysis and determine jVubj directly
from a simultaneous fit. In this section, we present our
central fit results, evaluate the role of introducing the value
of fþð0Þ as an additional restriction in the χ2 minimization,
and perform fits to the lattice data alone. Unitary constraints
on the Padé approximants are discussed in Sec. IVA. In
Sec. V, we predict the Bþ → ηð0Þlþνl differential branching
fractions distributions and determine the η-η0 mixing.
Finally, our conclusions are devoted to Sec. VI.
Preliminary results of this studywere presented in [44,45].

II. B → π FORM FACTOR

A form factor is an analytic function everywhere in the
complex plane except for isolated poles and branch cuts.
Poles correspond to single particle intermediate states while
branch cuts originate when the energy reaches a threshold
for producing multi-particle intermediate states. For the
B → πlνl decay concerning us, the lightest production
threshold is located at sth ¼ ðmB þmπÞ2 GeV2, lying
slightly above the available kinematical energy range of
the decay, 0<q2<ðmB−mπÞ2GeV2. A first approximation
to the form factor suggests a single pole description driven
by the exchange of a ūb intermediate state, the B� meson
with mass mB� ¼ 5.325 GeV (with very small width) and
quantum numbers JP ¼ 1−.
This single pole description would correspond in

Eq. (5) to using for the spectral function ρðsÞ ¼
fþð0Þm2

B�δðs −m2
B� Þ. This gives rise to the vector meson

dominance model (VMD) with a B� pole appearing
between the available phase space and the lowest produc-
tion threshold, ðmB −mπÞ2 < sp < ðmB þmπÞ2 GeV2,

fþðq2Þ ¼
fþð0Þ

1 − q2=m2
B�
; ð8Þ

where fþð0Þ is a normalization constant.

4This point has the smaller error out of the 6 (12) BABAR
2011(12) data points. The q2 average of experimental data of
HFAG 2016, however, places this point in the middle of each bin
as in Refs. [3,18].
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However, this model obviates effects of heavier
vector states. Bećirević and Kaidalov (BK) [31] proposed
a modification of the VMD via including, above q2 ¼
ðmB þmπÞ2 GeV2, a heavier narrow-width resonance,
a B�0, through adding ImfþðsÞ ¼ πρðsÞ ∝ δðs −m2

B�0 Þ in
Eq. (5), leading to

fþðq2Þ ¼
r1

1 − q2=m2
B�

þ r2
1 − q2=m2

B�0
: ð9Þ

Implementing that the form factor behaves as 1=q4 at large
q2 together with fþð0Þ ¼ r1 þ r2, the standard expression
for the BK form factor reads

fþðq2Þ ¼
fþð0Þ

ð1 − q2=m2
B� Þð1 − αq2=m2

B� Þ ; ð10Þ

where α fixes the position of the second fitted effective pole.
Later on, Ball and Zwicky (BZ) [32,33] proposed a similar

expression in terms of three parameters ffþð0Þ; r; αg by
imposing the form factor to fall-off as ∼1=q2 at large q2

instead. The matching fþð0Þ ¼ r1 þ r2 and r ¼ r2ðα − 1Þ
leads

fþðq2Þ ¼
fþð0Þ

1 − q2=m2
B�

þ rq2=m2
B�

ð1 − q2=m2
B� Þð1 − αq2=m2

B� Þ ;

ð11Þ
where r may be understood as a parameter which encodes
the relative weight of the second effective resonance with
respect to the first one.
The above two parametrizations fix the position of the B�

pole to its mass, mB� ¼ 5.325 GeV, while the rest of the
free parameters, ffþð0Þ;αg and ffþð0Þ; r; αg in Eqs. (10)
and (11), respectively, are inferred from fits to experimen-
tal data.
Exploiting the analyticity and positivity properties of the

vacuum polarization functions, Okubo and collaborators
proposed the method of unitary bounds [34] in the context
of kaon decays, which later on was applied for semileptonic
B decays [36,46]. This method, called z-parametrization
and reviewed in Refs. [35,47], parametrizes fþðq2Þ as a
Taylor expansion in terms of a conformal complex variable
z as follows:

fþðq2Þ ¼
1

Pðq2Þϕðq2; q20Þ
X∞
n¼0

anðq20Þ½zðq2; q20Þ�n; ð12Þ

where

zðq2; q20Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − q2=tþ

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − q20=tþ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − q2=tþ

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − q20=tþ

p ; ð13Þ

with tþ ¼ ðmB þmπÞ2 GeV2 and ϕðq2; q20Þ a function
given in Ref. [35]. The function Pðq2Þ ¼ zðq2; m2

B�Þ is

the Blaschke factor which accounts for the pole at
q2 ¼ m2

B�. The free parameter q20 is chosen to optimize
the fit. Assuming the spectral function driving the FF to be
saturated by Bπ vector intermediate states, unitary and
crossing symmetry guarantee the coefficients anðq20Þ to
satisfy

P∞
n¼0 a

2
nðq20Þ ≤ 1.

In practice, Eq. (12) is truncated at a finite order
(typically up to first or second order) which implies the
FF to behave as ∼1=q4 at large jq2j due to ϕðq2; q20Þ, in
contradiction with perturbative QCD scaling [29,30].
Beyond, as discussed in [36], the outer function has an
unphysical singularity at the Bπ production threshold tþ.
This unphysical singularity may distort the behavior
near the upper end of the physical region, where the FF
is poorly known. These considerations triggered an alter-
native z-parametrization proposed in [36] by Bourrely-
Caprini-Lellouch (BCL):

fþðq2Þ ¼
1

1 − q2=m2
B�

XN−1

n¼0

bðnÞþ

×

�
zðq2; q20Þn − ð−1Þn−N n

N
zðq2; q20ÞN

�
; ð14Þ

where the pole included by hand ensures the correct
analytic structure in the complex plane and the proper
scaling, fþðq2Þ ∼ 1=q2 at large q2.
Let us comment that the z-parametrization is not a zero-

preserving transformation with respect of q2 unless the
particular choice q20 ¼ 0 is made, which implies z → 0 does
not come from q2 → 0, but rather from a large q2 value. This
poses a word of caution when using the z-parametrization to
determine the behavior of the FF at low q2. Wewould like to
add here that the definition of zðq2; q20Þ corresponds formally
with a Quadratic approximant (QA), a well-defined exten-
sion of a PA that includes square-root terms [44,48,49].
These are built in the same spirit than Padé approximants and
arise by squaring Eq. (7) yielding the quadratic equation
[44,48,49]

QðzÞf2þðzÞ þ 2RðzÞfþðzÞ þ SðzÞ ¼ Oðzqþrþsþ2Þ; ð15Þ

whereQðzÞ, RðzÞ and SðzÞ are polynomials of order q, r, s,
respectively. The solution of Eq. (15) leads to

QAr;s
q ðzÞ ¼ −RðzÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2ðzÞ −QðzÞSðzÞ

p
QðzÞ ; ð16Þ

with the special feature of generating a branch cut thanks
to the square root. In particular, we thus have zðq2; 0Þ ¼
QA1;1

1 ðq2Þ, with coefficients R0¼−1, S0 ¼ Q0 ¼ 0, R1 ¼
S1 ¼ Q1 ¼ 1=2. As such, it is formally a PA of order given
by the truncated series, either in Eq. (12) or (14), for which
the PA convergence constraints must be applied.
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A description of the form factor based on effective
Lagrangian ideas is recently proposed in [50].
To complete the overview, the AFHNVapproach [51,52]

is based on the Omnès representation which expresses the
analytic function in terms of its phase along the boundary
of the analyticity domain. If one takes into account the pole
q2 ¼ m2

B�, assumes that the FF have no zeros in the
complex plane, and by Watson’s theorem that the phase
δðtÞ is equal, below the first inelastic threshold, to the phase
of the P- wave with I ¼ 1=2 of the πB → πB elastic
scattering, the representation reads (assuming n ≫ 1 which
implies a multiply-subtracted dispersion relation-and
neglects altogether the dispersive integral):

fþðq2Þ ¼
1

m2
B� − q2

Yn
j¼1

½fþðq2jÞðm2
B� − q2jÞ�αjðq2Þ; ð17Þ

where αjðq2Þ ¼
Q

i¼0;i≠j
q2−q2i
q2j−q

2
i
. Notice that after the multi-

ply-subtracted dispersion relation the exponential behavior
at large q2 does not corresponds to the one from QCD and,
due to the lack of the dispersive integral, the original branch
cut q2 ≤ tþ.
To conclude, as we mentioned at the Introduction,

Eqs. (8), (10), (11), and (12) can be seen as particular
elements of the general sequence of PAs given in Eq. (6).
Strictly speaking then VMD, BK and BZ correspond,
respectively, to the T0

1ðq2Þ, P0
1;1ðq2Þ and P1

1;1ðq2Þ elements
while the z-parametrization is related to a quadratic
approximant.

III. FITS TO THE B → πlνl BABAR
AND BELLE DATA

Our first analysis consists of fitting the most recent B →
πlνl branching ratio distribution experimental data
released by BABAR in 2011 [12] and 2012 [13] and by
Belle in 2011 [14] and 2013 [15]. We will also briefly
discuss the effect of including CLEO 2007 results [11] into
the fit, which are usually neglected. In order to facilitate the
reproduction of our results, we include here the tables from
which we pull the experimental data. For CLEO 2007, we
use the results reported in Table I of Ref. [11].5 For BABAR
2011, we employ the data collected in Tables X and
XXVIII of Ref. [12], while for BABAR 2012, we use
Tables XXIII, XXVIII, and XXXI of Ref. [13].6 Regarding
Belle 2011, we employ the data gathered in Tables III, IV,
and Vof Ref. [14], respectively. Finally, for Belle 2013, we

employ the data given, respectively, in Tables XVII, XVIII,
XIX, and XX of Ref. [15]. To this later data, we have
added, as suggested in Table XII of [15], a systematic
uncertainty of 5.0% and 5.1% of the q2 bin value for the Bþ

and B0 mode, respectively, and assumed a systematic
correlation of the 49% between the two modes as written
in the paper below that Table. For our study, we assume, for
convenience, isospin symmetry to translate the Belle 2013
data on the B− mode to the B0 ones through

ΔðB0 → πþl−νlÞ ¼ 2
τB0

τB−
ΔðB− → π0l−νlÞ; ð18Þ

where τB0¼ð1.520�0.004Þ×10−12 s and τB− ¼ ð1.638�
0.004Þ × 10−12 s, are, respectively, the mean life time of the
neutral and charged B mesons [2]. In all, we will treat the
five experimental data sets as independent measurements,
i.e., no statistical either systematic correlations between the
five different analyses is considered [3,18].
The χ2 function minimized in our first fit is defined as

χ2data ¼
X6
i;j¼1

ΔBABAR11
i ðCovBABAR11ij Þ−1ΔBABAR11

j

þ
X12
i;j¼1

ΔBABAR12
i ðCovBABAR12ij Þ−1ΔBABAR12

j

þ
X13
i;j¼1

ΔBelle11
i ðCovBelle11ij Þ−1ΔBelle11

j

þ
X20
i;j¼1

ΔBelle13
i ðCovBelle13ij Þ−1ΔBelle13

j ; ð19Þ

where

——
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FIG. 1. Simultaneous fit to BABAR [12,13] and Belle [14,15]
B → πlνl experimental data as obtained from the χ2data mini-
mization of Eq. (19) with a P2

1ðq2Þ approximant (black solid line).
CLEO data [11] are not included from the fit and rather shown for
comparison.

5CLEO 2007 result consists in measurements of partial branch-
ing fractions in only 4 unequal q2 subregions and no bin-to-bin
correlation matrix is reported. For our analysis, we have placed
each experimental datumat themiddle of each of the corresponding
subregions and scaled the bin values accordingly.

6For BABAR 2012, we use the combined analysis of both B0

and B− modes assuming isospin symmetry.
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Δdata
k ¼

�
ΔB
Δq2

�
data

−
1

ΓB

G2
F

192π3m3
B

× jVubfþð0Þj2jpπj3=2jP̃M
N ðq2Þj2; ð20Þ

with ΓB the full width of the B meson, Covij denotes
the corresponding covariance matrix and P̃M

N ðq2Þ ¼
PM
N ðq2Þ=PM

N ð0Þ the PA normalized to unity at the origin
of energies whose coefficients will be determined by
the fit.
Notice that we do not access jVubj but rather the product

jVubfþð0Þj that factors out in Eq. (20). However, we can
still extract jVubj by invoking external information on the
fþð0Þ. In this work, we use fþð0Þ ¼ 0.261þ0.020

−0.023

determined in a light-cone sum rules calculation [38].7

Other possible choices would be fþð0Þ ¼ 0.26þ0.04
−0.03 [53],

fþð0Þ ¼ 0.281� 0.033 [54], fþð0Þ ¼ 0.31� 0.02 [55] or
the recent fþð0Þ ¼ 0.208� 0.007� 0.015� 0.030 [8].
We start fitting with ordinary PAs of the type PM

1 ðq2Þ and
PM
2 ðq2Þ where the poles are left free to be fitted and we

reachM ¼ 2 andM ¼ 0, respectively. Then, we proceed to
fit with sequences of the type TM

1 ðq2Þ and PM
1;1ðq2Þ by

fixing the B� pole to mB� ¼ 5.325 GeV reaching, respec-
tively,M ¼ 2 andM ¼ 1. In Fig. 1, we provide a graphical

TABLE I. The product jVubfþð0Þj as obtained from fits to B → πlνl data depending if the B� pole is
let as a free parameter to fit or fixed at mB� ¼ 5.325 GeV. The corresponding jVubj value extracted using
fþð0Þ ¼ 0.261þ0.020

−0.023 [38], the pole(s) of the approximants and the χ2dof are also shown. Poles placed far away from
the origin and Froissart doublet are denoted by † and ††, respectively. Errors are only statistical and symmetrized in
the last column.

Fit Approximant χ2dof Poles (GeV) jVubfþð0Þj × 104 jVubj × 103

BABAR+Belle [12–15] Free B� P2
1

1.70 5.32 9.27(37) 3.57(33)

P1
2

1.71 5.31; 15.53† 9.24þ0.29
−0.34 3.56(35)

Fixed B� T2
1

1.70 � � � 9.28(31) 3.57(33)

P2
1;1 1.57 9.83 9.26þ0.34

−0.30 3.56(35)

BABAR+Belle +CLEO [11–15] Free B� P2
1

1.63 5.32 9.25(37) 3.56(33)

P1
2

1.63 5.32; 13.86† 9.21þ0.29
−0.33 3.54(34)

Fixed B� T2
1

1.74 � � � 9.25(31) 3.56(32)

P2
1;1 1.64 8.30 9.33þ0.25

−0.45 3.55(36)

CLEO 07 [11] Fixed B� P0
1;1 0.94 6.66 8.44(96) 3.25(27)

BABAR 11 [12] Free B� P1
1

2.94 5.36 10.49(50) 4.03(40)

P0
2

2.81 5.43,8.81 10.46(51) 4.02(39)
Fixed B� T2

1
2.93 � � � 10.74(69) 4.13(44)

P1
1;1 2.94 10.37† 10.67þ0.49

−0.69 4.11(48)

BABAR 11 reported value 10.80(56)
BABAR 12 [13] Free B� P2

1
0.70 5.36 8.58(59) 3.30(36)

P2
2

0.81 5.35; 15.12† 8.59þ0.62
−0.47 3.30(41)

Fixed B� T3
1

0.70 � � � 8.62þ0.73
−0.76 3.32(49)

P2
1;1 0.70 13.87† 8.54þ0.56

−0.54 3.29(41)

BABAR 12 reported value 8.7(3)
Belle 11 [14] Free B� P2

1
1.32 5.25 8.91þ0.60

−0.61 3.43(27)

P3
2

1.68 5.25†† 9.05(70) 3.48(48)
Fixed B� T2

1
1.34 � � � 9.19(57) 3.53(37)

P2
1;1 1.31 5.35†† 9.02þ0.46

−0.44 3.47(38)

Belle 11 reported value 9.23ð18Þstatð21Þsyst
Belle 13 [15] Free B� P1

1
1.43 5.19 9.13þ0.58

−0.62 3.51(44)

P0
2

1.34 5.26,7.38 9.19(53) 3.54(36)
Fixed B� T1

1
1.51 � � � 8.68þ0.59

−0.61 3.34(43)

P1
1;1 1.31 5.96 9.44þ0.53

−0.59 3.63(43)

7Actually, for this quantity we use fþð0Þ ¼ 0.2595� 0.0215,
where we have symmetrized the errors.
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account of the fit as obtained with P2
1ðq2Þ compared to data,

while our fit results are collected in the first row of Table I.
From the plot we observe that the uncertainty associated to
the fit, given by the gray error band, is slightly larger in the
low-q2 energy region while from the Table we read that the
values for jVubj determined with approximants with two
poles i.e. P1

2ðq2Þ and P1
1;1ðq2Þ, give identical results than

the single pole ones, P2
1ðq2Þ and T2

1ðq2Þ.
Then, we add CLEO 2007 experimental data into the χ2

minimization of Eq. (19) and report the corresponding fit
results in the second row of Table I; upon comparison with
the results shown in the first row, we conclude that the
effect of including this data into the fit is tiny.
In order to further improve on what can be learned from

experimental data, we have also fitted experimental data of
each collaboration separately, an exercise that will be very
illustrative in order to determine jVubj.
The individual fits are displayed in Fig. 2 and the

corresponding results shown, respectively, in the third
(CLEO07), fourth (BABAR11), fifth (BABAR12), sixth
(Belle11), and seventh (Belle13) rows of Table I. From
our set of fits collected in this Table, the diagonal and near
diagonal P2

2ðq2Þ, P1
1;ð1Þðq2Þ, and P2

1;ð1Þðq2Þ approximants
deserve special attention. For these approximants, we find
some extraneous poles placed either far away from the origin
(markedwith † in the Table) or pair upwith a close-by zero in
the numerator becoming a defect (marked with †† in the

Table), in accordance with the Nuttall-Pommerenke’s con-
vergence theorem [19,25]. We would like to point out that
the zeros of the numeratorwhen individual fits to theBABAR
2012 data are performed tend to lie within the radius of
convergence in the region of negative q2, a region we
expected out of zeros. This feature may explain why the
corresponding distribution is more rounded and with a
sizable negative fall off at the origin in comparison with
the other three individual fits. We also note that a Froissart
doublet appears at q2 ¼ −1 GeV for the P3

2 approximant
reached for individual fits to the Belle data of 2011.
We would like to note that individual fits to CLEO data

lead unrealistic results but for P0
1;1ðq2Þ. Also notice that the

fits to BABAR11 experimental data lead the worst χ2=dof,
in agreement with Ref. [3], and the largest values for jVubj,
in line with Ref. [38] but in contradiction with Refs. [3,18].
These two features are somehow reflected in the left-top
panel of Fig. 2 both in the error band and in the value of the
branching ratio distribution at q2 ¼ 0 which are, respec-
tively, wider and larger than in the other three panels of the
figure. On the contrary, the fits to the BABAR12 data give
the best χ2=dof and tends to give smaller jVubj values.
From each of the individual fits shown in Table I, we can

order the experimental collaborations according to their
bottom-up jVubj values as: BABAR12, Belle11, Belle13,
and BABAR11. This ordering is in line with the corre-
sponding jVubj values reported by the experimental groups
from fits to their own experimental data.
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FIG. 2. Individual fits to BABAR11 [12] (left-top panel), BABAR12 [13] (right-top panel), Belle11 [14] (left-down panel) and Belle13
[15] (right-down panel) experimental data sets on the B → πlνl differential branching ratio distribution.
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The neat effect of fitting all experimental data sets
together with respect to fitting data of each Collaboration
separately can be seen in Fig. 3, where we represent the
number of σ deviations of each experimental datum with
respect the corresponding fits. In this figure, markers given
by solid geometric figures accounts for the fit as given in
Fig. 1 while empty geometric figures stand for the fits as
shown in Fig. 2. This allows us to order the four exper-
imental data sets according to their increasing degree of
soundness with respect to the common fit i.e., BABAR11,
Belle13, Belle11, and BABAR12. Clearly, BABAR11 data
points suffer the largest deviation when including the other
sets of data into the fit (see left-top panel in Fig. 3) while, on
the contrary, BABAR12 and Belle11 data points seem to
drive the χ2 minimization dominating the fit (see right-top
and left-down panels, respectively, in Fig. 3). Regarding
Belle13 experimental data points, they show some oscil-
latory scatter lying in between BABAR11 and BABAR12/
Belle11 cases. This classification is further illustrated in
Fig. 4, where we show the Padé behavior extracted from the
corresponding individual fits compared to the Lattice form
factor predictions [16] (HPQCD), [17] (FNAL/MILC
2008), [18] (RBC/UKQCD) and [3] (FNAL/MILC 2015).
We would like to note that while the Padé as extracted from

fits to the individual BABAR 2012 data set accommodates
Lattice data rather well, the ones extracted from the
BABAR11 data set show the largest discrepancy which,
in turn, is enhanced at high-q2.
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FIG. 3. Deviation, in σ, of each experimental datum with respect to our combined and individual fits. Solid and empty geometric
markers account, respectively, for the fits as given in Figs. 1 and 2.
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FIG. 4. Padé behavior extracted from the corresponding indi-
vidual fits of Fig. 2 compared to the form factor predictions
obtained by different Lattice Collaborations: HPQCD [16],
FNAL/MILC 2008 [17], RBC/UKQCD [18] and FNAL/MILC
2015 [3].
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IV. INCORPORATION OF THE FORM FACTOR
LATTICE CALCULATIONS

In the previous section, we have not accessed the
description of the form factor but rather its normalized
version to unity at q2 ¼ 0. In order to achieve a para-
metrization of the form factor, we include the form factor
shape predictions at large q2 obtained on the lattice as new
data sets to be fitted. In particular, we consider Table V of
the HPQCD Collaboration results [16] (consider the
erratum version of it), Tables II and V of the 2008
FNAL/MILC Collaborations predictions [17], Tables VI
and VIII of the RBC/UKQCD Collaborations calculation
[18] and, finally, the updated analysis of the FNAL/MILC
Collaborations of 2015 [3]. The latter provides its results as

a formula [56] rather than as synthetic data. For our
analysis, we have generated synthetic data at three repre-
sentative q2 values that are gathered in Table II. In this
respect, it would be more beneficial if the result for the
form factor would be made available by the lattice-QCD
group at some representative q2 values, together with the
corresponding bin-to-bin correlation matrices.
The main advantage of performing a simultaneous

fit to all measured q2 spectra experimental data supple-
mented by lattice QCD results on the FF shape is that
not only jVubj but also fþð0Þ can be determined directly
from the fit since lattice data drive the height of the curve
of the decay spectra. The χ2 function to be minimized
reads

χ2 ¼ χ2data þ
X5
i¼1

�
fHPQCD07þ ðq2Þi − PM

N ðq2Þi
σHPQCD07i

�2

þ
X12
i;j¼1

ðfFNAL=MILC08
þ ðq2Þi − PM

N ðq2ÞiÞðCovFNAL=MILC08
ij Þ−1ðfFNAL=MILC08

þ ðq2Þj − PM
N ðq2ÞjÞ

þ
X3
i;j¼1

ðfRBC=UKQCD15þ ðq2Þi − PM
N ðq2ÞiÞðCovRBC=UKQCD15ij Þ−1ðfRBC=UKQCD15þ ðq2Þj − PM

N ðq2ÞjÞ

þ
X3
i;j¼1

ðfFNAL=MILC15
þ ðq2Þi − PM

N ðq2ÞiÞðCovFNAL=MILC15
ij Þ−1ðfFNAL=MILC15

þ ðq2Þj − PM
N ðq2ÞjÞ; ð21Þ

where χ2data corresponds to Eq. (19).
The results derived from the minimization of Eq. (21) are

collected in Table III. In contrast to Table I, Table III
collects the results as obtained with each element of the
corresponding sequences going up to P2

1, P
2
2, T

2
1 and P2

1;1,
respectively. The final results, given in the last column,
include both statistical, from the fit, and systematic
uncertainties from the truncated PA sequence as the differ-
ence of central values of the element we have stopped the
sequence and the preceding one. Notice that the systematic
uncertainty increases when the B� pole is fixed.
The impact of including lattice data into the fit is evident

and allow us to determine jVubj with improved precision

reducing the associated statistical uncertainty by ∼80%
with respect to the case when only the decay spectra is fitted
(cf. Table I). Again, we find some extraneous poles for the
diagonal P2

2 and P
2
1;1 elements. We find that one pole tends

to pair up with a close-by zero in the numerator becoming
Froissart doublet poles (see the dedicated discussion in
Sec. IVA).
As a matter of example, we gather the coefficients of the

Padé approximant P2
1ðq2Þ in Table IV. In this Table we also

provide the series coefficients bðnÞþ corresponding to the
BCL parametrization (cf. Eq. (14)) that are obtained by
matching the Taylor series expansion of P2

1ðq2Þ with the
power series expansion of the BCL parametrization at
Oðq4Þ. The coefficients thus obtained are not directly fitted
to data but rather reconstructed from our rational function.
These lie in the ballpark of the most recent RBC/UKQCD
and FNAL/MILC lattice determinations [3,18] shown,
respectively, in the fifth and sixth columns of the Table
and are seen in nice agreement with the HFLAV fit values
[5] given in the last column. A graphical account of the
corresponding P2

1ðq2Þ combined fit result is depicted in
Figs. 5 and 6 as compared to the decay spectra and FF
lattice data, respectively. In the latter, our prediction for the
BCL parametrization is also shown (purple dashed curve),

TABLE II. Central values, errors and correlation matrix for the
fþðq2Þ form factor provided by the FNAL/MILC 2015 Collab-
orations formula (Table XIVof Ref. [3]) at three representative q2

values.

q2½GeV2� 21 23 25

fþðq2Þ 1.65(4) 2.39(6) 4.04(15)
21 1 0.78 0.32
23 0.78 1 0.83
25 0.32 0.83 1
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accommodating pretty well all lattice data but the last
datum and seen in nice agreement with the P2

1ðq2Þ (black
solid curve) element it is reconstructed from. A closer look
to the FF shape displayed in Fig. 6 reveals that the lattice
simulations derived by the FNAL/MILC Collaboration in
2015 seem to dominate the large q2 region (cf. Table VI).
Our preferred values for jVubj and fþð0Þ after the

simultaneous fit results shown in Table III are

jVubj ¼ 3.51ð8Þstatð3Þsyst × 10−3;

fþð0Þ ¼ 0.265ð10Þstatð3Þsyst; ð22Þ

corresponding to P2
1ðq2Þ when the pole is let as a free

parameter to fit. This choice is based on the fact that the

second pole of the sequence of the type PM
2 is rare

indicating that the single pole behavior for the form factor
seems favored.
To compare on the same footing regarding the number of

free parameters we choose

jVubj ¼ 3.51ð7Þstatð3Þsyst × 10−3;

fþð0Þ ¼ 0.263ð8Þstatð2Þsyst; ð23Þ

corresponding to the partial Padé P2
1;1 when the B� pole is

fixed. Notice that the corresponding systematic uncertain-
ties are large enough to cover the difference with P2

2 and T
2
1,

respectively.

TABLE IV. Coefficients of the Padé approximant P2
1ðq2Þ, with the pole let as a free parameter, and of the reconstructed BCL

parametrization, where the pole is fixed to the B�. The latter are compared with the fitted coefficients determined by the RBC/UKQCD
and FNAL/MILC lattice groups [3,18] and with the HFLAV results [5].

Padé P2
1ðq2Þ BCL our prediction RBC/UKQCD [18] FNAL/MILC [3] HFLAV [5]

a0 0.265(10) bð0Þþ 0.418(80) 0.412(39) 0.419(13) 0.418(12)

a1 0.006(2) bð1Þþ −0.341ð199Þ −0.511ð184Þ −0.495ð55Þ −0.399ð33Þ
a2 0.00005(8) bð2Þþ −0.668ð368Þ −0.524ð612Þ −0.43ð14Þ −0.578ð130Þ
b1 −0.0354ð1Þ

TABLE III. jVubj and fþð0Þ values as obtained from a simultaneous fit to B → πlνl decay data and lattice QCD form factor
simulations. The pole(s) of the approximants and the χ2dof are also shown. Poles placed far away from the origin and Froissart doublet are
denoted by † and ††, respectively. The results in the last column include a systematic error coming from the difference of central values of
the last two elements of the corresponding PA sequences. The errors are symmetrized.

Fits to BABAR and Belle data [12–15]+Lattice FF predictions [3,16–18]
Parameter Elements of the PA sequence

Free B� pole P0
1 P1

1 P2
1

Final result
jVubj × 103 2.70ð4Þstat 3.49ð7Þstat 3.51ð8Þstat 3.51ð8Þstatð3Þsyst
fþð0Þ 0.408ð4Þstat 0.262ð9Þstat 0.265ð10Þstat 0.265ð10Þstatð3Þsyst
Pole (GeV) 5.27 5.31 5.31
χ2dof 3.51 1.22 1.19

Free B� pole P0
2 P1

2 P2
2

Final result
jVubj × 103 3.54ð8Þstat 3.51ð8Þstat 3.50ð9Þstat 3.50ð9Þstatð1Þsyst
fþð0Þ 0.272ð8Þstat 0.264ð10Þstat 0.259ð9Þstat 0.259ð9Þstatð5Þsyst
Poles (GeV) 5.33 & 7.55 5.31 & 12.77† 5.31 & 2.03††

χ2dof 1.25 1.19 1.13

Fixed B� pole T0
1 T1

1 T2
1

Final result
jVubj × 103 2.47ð4Þstat 3.47ð7Þstat 3.54ð7Þstat 3.54ð7Þstatð7Þsyst
fþð0Þ 0.449ð6Þstat 0.259ð9Þstat 0.266ð9Þstat 0.266ð9Þstatð7Þsyst
χ2dof 4.84 1.31 1.23

Fixed B� pole P0
1;1 P1

1;1 P2
1;1 Final result

jVubj × 103 3.53ð7Þstat 3.54ð7Þstat 3.51ð7Þstat 3.51ð7Þstatð3Þsyst
fþð0Þ 0.274ð7Þstat 0.265ð7Þstat 0.263ð8Þstat 0.263ð8Þstatð2Þsyst
Pole (GeV) 7.65 9.15 6.03††

χ2dof 1.27 1.22 1.20
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The impact of including the value of the FF at q2 ¼ 0,
fþð0Þ ¼ 0.261þ0.020

−0.023 [38], as an external restriction in the
χ2, Eq. (21), is probed through the fits displayed in Table V
for our best-fit sequences discussed previously when fþð0Þ
was not included in the minimization (cf. Table III), and
repeated in this Table V, second column, for ease of
comparison. The corresponding fits are almost identical,
which guarantees the independency of our results with
respect of the model calculation of fþð0Þ.
We have also performed fits including CLEO 2007

data [11] in the χ2, and found that their impact in the
global fit is marginal and we hence refrain to show them,
and explored the effect of fitting all experimental data
together with certain groups of lattice FF simulations. We

have considered three groups, HPQCD+RBC/UKQCD,
HPQCD+RBC/UKQCD+FNAL/MILC08 and HPQCD+
RBC/UKQCD+FNAL/MILC2015, and collected the
results, respectively, in the second, third and fourth col-
umns of Table VI for the P2

1ðq2Þ (the other sequences yield
almost identical results). When the updated FNAL/MILC
form factor simulation of 2015 is included into the fit, the
jVubjðfþð0ÞÞ is shifted upwards(downwards) yielding
smaller statistical uncertainties and slightly enlarging the
χ2dof . Upon comparison with last column, we conclude that
FNAL/MILC simulations of 2015 drives the form factor.
This fact explains why the 2016 PDG reported value has
been shifted with respect to the earlier edition by þ1σ.
We close this section by performing fits to the lattice FF

predictions alone and extract fþð0Þ. This kind of exercise is

TABLE V. Comparison between the jVubj and fþð0Þ values as obtained from a simultaneous fit to B → πlνl experimental
data and lattice predictions on the FF shape with (second multicolumn) and without (first multicolumn) the LCSR prediction
fþð0Þ ¼ 0.261þ0.020

−0.023 [38] as external restriction into the fit. In the upper part of the Table, the B� pole is left free to fit while in
the lower ones the pole is fixed. The pole(s) of the approximants and the χ2dof are also shown. The Froissart doublets are denoted
by ††. The first and second parentheses refer, respectively, to the statistical and systematic uncertainties. The errors are
symmetrized.

Table III Constraining fþð0Þ
Free B� pole P2

1 P2
2 P2

1 P2
2

jVubj × 103 3.51(8)(3) 3.50(9)(1) 3.52(8)(4) 3.48(9)(1)
fþð0Þ 0.265(10)(3) 0.259(9)(5) 0.264(8)(3) 0.259(8)(2)
Pole(s) (GeV) 5.31 5.31 & 2.03†† 5.31 5.31 & 2.43††

χ2dof 1.19 1.13 1.19 1.10

T2
1 P2

1;1 T2
1 P2

1;1

jVubj × 103 3.54(7)(7) 3.51(7)(3) 3.55(7)(7) 3.52(8)(2)
fþð0Þ 0.266(9)(7) 0.263(8)(2) 0.265(8)(7) 0.267(7)(2)
Pole (GeV) � � � 6.03 � � � 6.51
χ2dof 1.23 1.20 1.23 1.21
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FIG. 5. Differential branching ratio distribution for B → πlνl
decays as obtained from a combined fit to experimental data and
lattice predictions on the form factor shape with a P2

1ðq2Þ (black
solid curve). CLEO data [11] is excluded from the fit but rather
shown for comparison.
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FIG. 6. B → π form factor as obtained from a combined fit to
experimental data and lattice predictions on the form factor shape
with the approximant P2

1ðq2Þ (black solid curve). Our prediction
for the BCL parametrization is also shown (purple dashed curve).
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new and, as a byproduct, allows us to determine jVubj by
equating the corresponding expression for the branching
ratio ðBRÞ to the measured ones, BRðB0 → π−lþνlÞ ¼
ð1.45� 0.05Þ × 10−4 [4]. We only obtain reliable results
when, at least, the HPQCD 2007 and FNAL/MILC 2015
predictions are included into the data sets to be fitted and
for approximants with two poles. The corresponding fit
results are gathered in Table VII.

A. Unitary constraints on Padé approximants fits

All zeros and poles of the approximants must lie along
the unitary branch cut in order to fulfill the unitary
requirements that the FF imposes [19]. If a particular PA
does not show this feature indicates the set of data fitted
may not be fulfilling the unitary requirements that shall
have. Thus, both defects and the appearance of poles and
zeros outside the unitary branch cut are indications of a
violation of unitarity to a certain degree. Since we have
performed a dedicated analysis collaboration by collabo-
ration, bin by bin, and since we have found some cases
which slightly violate these two statements, mostly happen-
ing when the BABAR 2012 data is involved, we are able to
identify the source of the unitary deviation and explore its
consequences. Of course, such deviations are consistent
with zero within errors, but they still have an impact on the
error assessment that we would like to estimate.
We find either complex-conjugate poles with an small

imaginary part or a zero(s) within the radius of convergence
for the P0

2ðq2Þ and P1;2
1 ðq2Þ elements when fitting indi-

vidually the BABAR 2012 data set, respectively. In

particular, the complex-conjugate pole of P0
2ðq2Þ is found

to be at 5.72� i0.53 GeV while the zeros of the numerator
are placed at −4.88 and −4.40 GeV for the P1

1ðq2Þ and
P2
1ðq2Þ elements, respectively (the second zero of P2

1ðq2Þ is
placed at 12.97 GeV, far away from the origin). A pole
cancelled by a close-by zero in the numerator within the
available phase space shows up in the P2

2ðq2Þ element when
performing the joint fit to data and lattice.
In order to further explore on the origin of these

extraneous poles and zeros we have also performed fits
removing one experimental datum of each collaboration,
e.g., those with more tension according to our Figs. 2 and 3,
and see what can we learn. In particular, we remove the fifth
datum of BABAR 2011, the tenth of BABAR 2012 and Belle
2011 and the bin located at 9 GeV2 of Belle 2013. By
doing this, we find that the zeros tend to move away from
the radius of convergence while the complex-conjugate
poles become Froissart poles.
For illustrative purposes, let us consider the P2

2ðq2Þ
approximant mentioned above. The Froissart doublet dis-
appears from the phase space region and the P2

2ðq2Þ
becomes effectively a P1

1ðq2Þ after removing these four
points,8 and the fit to the rest of experimental data and
lattice simulations yields jVubj ¼ 3.56ð9Þ × 10−3, fþð0Þ ¼
0.263ð9Þ with one pole located at 5.31 GeV and
χ2dof ¼ 1.08, while the fit with a P2

2ðq2Þ to all experimental

TABLE VII. Results for jVubj and fþð0Þ obtained from fits to lattice FF simulations alone: HPQCD [16], FNAL/
MILC 2008 [17], RBC/UKQCD [18] and FNAL/MILC 2015 [3]. The first and second errors in jVubj correspond to
the uncertainty associated to fþð0Þ and to the measured branching ratio, respectively.

Lattice data sets Approximant χ2dof Poles (GeV) fþð0Þ jVubj × 103

All Free B� P0
2

0.54 5.32,8.17 0.292(21) 3.44(25)(6)
[3,16–18] Fixed B� P0

1;1 0.56 7.87 0.284(15) 3.50(19)(6)
Refs. [3,16] Free B� P0

2
0.48 5.32,8.34 0.297(21) 3.41(24)(6)

TABLE VI. Results for jVubj and fþð0Þ as obtained with a P2
1ðq2Þ approximant from simultaneous fits to B → πlνl partial branching

ratio experimental data [12–15] and FF simulations obtained by different lattice Col.: HPQCD [16], FNAL/MILC 2008 [17], RBC/
UKQCD [18] and FNAL/MILC 2015 [3]. Last column corresponds to our final results given in Table III collected here for ease of
comparison. The first and second parentheses refer, respectively, to the statistical and systematic uncertainties. The errors are
symmetrized.

HPQCD HPQCD
HPQCD þRBC=UKQCD þRBC=UKQCD
þRBC=UKQCD þFNAL=MILC 2008 þFNAL=MILC 2015 All (Table III)

jVubj × 103 3.40(12)(0) 3.36(12)(2) 3.52(9)(2) 3.51(8)(3)
fþð0Þ 0.274(14)(1) 0.275(13)(4) 0.264(10)(1) 0.265(10)(3)
Pole (GeV) 5.35 5.29 5.31 5.31
χ2dof 1.33 1.16 1.32 1.19

8The Froissart doublet it is moved to the negative real axis and
the nonphysical pole tends to be cancelled by a complex-
conjugate zero with an small imaginary part in the numerator.
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points yielded, as collected in Table III, jVubj ¼
3.50ð9Þ × 10−3, fþð0Þ ¼ 0.259ð9Þ with a pole at
5.31 GeV and χ2dof ¼ 1.13. The impact of these four points
is remarkable, inducing a positive shift on the jVubj after
removing them by about ΔjVubj ¼ 0.06 × 10−3, a 0.5σ
deviation.
Breaking of unitary is then reducing the value of jVubj an

enlarging the discrepancy between inclusive and exclusive
determinations. In view of this fact and the difficulty on
deciding the best strategy to take this unitary violation into
account when dealing with experimental data (other strat-
egies beyond removing bins could be envisaged), we have
decided to add in quadrature the difference ΔjVubj as an
extra conservative source of error in our final determination
of the CKM parameter and Eq. (22) should be sound
jVubj ¼ 3.51ð8Þstatð7Þsyst × 10−3. This error could be
removed as soon as the experimental collaborations could
take our observation into account and explore systematically
the potential unitary violation within their data sets.

V. B+ → ηð0Þl+ νl DECAYS AND η-η0 MIXING

In the previous section, the B → π form factor fþðq2Þ
has been parametrized using PAs to fit experimental data on
the B → πlνl differential branching ratio distribution w/o
lattice FF simulations. In this section, we would like to take
advantage of these parametrizations to describe the Bþ →
ηð0Þlþνl decays as discussed in the following.
The expression for the differential Bþ → ηð0Þlþνl decay

width is given by the same expression as for the B → πlνl
decay mode in Eq. (3) by replacing the final state pion
by ηð0Þ

dΓðBþ → ηð0ÞlþνlÞ
dq2

¼G2
FjVubj2

192π3m3
B
jpηð0Þ j3jfB

þηð0Þ
þ ðq2Þj2; ð24Þ

where now fB
þηð0Þ

þ ðq2Þ represents the hadronic Bþ → ηð0Þ

transition. What the Bþ → ηð0Þ transition is probing is the
light-quark content of the ηð0Þ mesons since the ss̄ compo-
nent can only be accessed via a Bs meson decay. This is so
because from the quark-flavor perspective, the η and η0

mesons are made of admixtures of uū, dd̄ and ss̄ compo-
nents. Defining jηqi ¼ 1ffiffi

2
p juūþ dd̄i and jηsi ¼ jss̄i in this

quark-flavor basis, one can relate the mathematical jηq;si
states with the physical jηð0Þi ones through the following
matrix rotation

�
η

η0

�
¼

�
cosϕ − sinϕ

sinϕ cosϕ

��
ηq

ηs

�
; ð25Þ

where ϕ gives the degree of admixture.
Contrary to fBπþ ðq2Þ, there are no, to the best of our

knowledge, simulations of the fB
þηð0Þ

þ ðq2Þ form factors on

the lattice. For our purpose, we will therefore relate the

fB
þηð0Þ

þ ðq2Þ form factor with the fBπþ ðq2Þ ones using the
quark-flavor basis through [57] (assuming isospin sym-
metry between the u and d quarks)

fB
þη

þ ðq2Þ ¼ cosϕfB
þηuūþ ðq2Þ ≃ cosϕfB

þπ0þ ðq2Þ;
fB

þη0
þ ðq2Þ ¼ sinϕfB

þηuūþ ðq2Þ ≃ sinϕfB
þπ0þ ðq2Þ: ð26Þ

taking ηuū ≃ π0 as in Refs. [24,58].
For our study, we set the numerical value of the η-η0

mixing angle to ϕ ¼ 38.3ð1.6Þ° [24] which, in turn, allow
us to provide an estimate for the B → ηð0Þ form factors at
q2 ¼ 0. Using fBπþ ð0Þ from Eq. (22) we obtain

fB
þη0

þ ð0Þ ¼ 0.208ð4Þð8Þð1Þ;
fB

þη0
þ ð0Þ ¼ 0.164ð5Þð6Þð1Þ; ð27Þ

where the first error corresponds to the uncertainty asso-
ciated to ϕ while the second and third error to the statistical
and systematic uncertainties ascribed to fBπþ ð0Þ, respec-
tively. The values for fB

þηð0Þ
þ ð0Þ presented in Eq. (27)

can be compared with other theoretical predictions existent

in the literature: fB
þη

þ ð0Þ ¼ 0.275ð36Þ [32], fB
þη

þ ð0Þ ¼
0.229ð24Þð11Þ and fB

þη0
þ ð0Þ ¼ 0.188ð19Þð9Þ [59], and

fB
þη

þ ð0Þ ¼ 0.168þ0.042
−0.047 and fB

þη0
þ ð0Þ ¼ 0.130þ0.036

−0.032 [60].
From Eqs. (24) and (26), and taking fBπþ ðq2Þ from any of

the descriptions given in Table III together with the
corresponding values for jVubj, we can describe the differ-
ential branching ratio distribution of the Bþ → ηð0Þlþνl
decays. Our prediction for the Bþ → ηlþνl differential
branching fraction distribution is shown and compared with
BABAR 2012 measurements in 5 bins of q2 in Fig. 7 for
P2
1ðq2Þ (black solid curve). The description of experimental

data is quite competent although the second experimental
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FIG. 7. Predictions for the Bþ → ηlþνl (black) and Bþ →
η0lþνl (blue) differential branching ratio distribution. The
BABAR 2012 experimental data is taken from [13].
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datum seems to be slightly in tension. In Fig. 7 we also
show our prediction for the Bþ → η0lþνl branching ratio
distribution (blue solid curve), in this case without any
experimental data to compare with.
One interesting information we can extract from the

curves displayed in Fig. 7 is the corresponding integrated
branching ratios. We obtain

BRðBþ → ηlþνlÞ ¼ 0.34ð2Þð1Þ × 10−4;

BRðBþ → η0lþνlÞ ¼ 0.15ð1Þð1Þ × 10−4; ð28Þ
where the first and second errors correspond, respectively,
to the uncertainty associated to jVubj (cf. Table III) and
to the form factor. These values are 0.5σ and 1σ away
from the branching ratio measurements BRðBþ →
ηlþνlÞ ¼ 0.38ð5Þð5Þ × 10−4 and BRðBþ → η0lþνlÞ ¼
0.24ð8Þð3Þ × 10−4 reported by BABAR in 2012 [13],
respectively. In light of these results, we conclude that
the simple mixing scheme assumed in Eq. (26) works quite
well for Bþ → ηlþνl decay while for Bþ → η0lþνl is not
conclusive due to the large uncertainty on the experimental
measurement. In order to go beyond the simple quark-flavor
basis decomposition, we would like to encourage the
experimental groups to measure again these channels with
improved precision.
We can also perform the exercise of letting the mixing

angle ϕ to float and determine its value by equating the
branching ratios as obtained in Eq. (28) to their corre-
sponding experimental values. In the spirit of Ref. [61],
we equate ratios of branching ratios in order to eliminate
the uncertainties associated to jVubj. Similarly, we could
also compare with the B → πlν BABAR measurement,
BRðBþ → π0lþνÞ ¼ 0.77ð4Þð4Þ × 10−4 [13]. The corre-
sponding ratios of branching ratios, after symmetrizing
errors, read

Rη0=η ≡ BRðB → η0lνlÞ
BRðB → ηlνlÞ

¼ 0.63ð25Þ;

Rη0=π ≡ BRðB → ηlνlÞ
BRðB → πlνlÞ

¼ 0.49ð10Þ;

Rη=π ≡ BRðB → η0lνlÞ
BRðB → πlνlÞ

¼ 0.31ð11Þ; ð29Þ

that we equate to (cf. Eq. (26))

Rη0=η ¼ j tanϕj2
R ðmB−mη0 Þ2
0 dq2jpη0 j3jFBþπ0þ ðq2Þj2R ðmB−mηÞ2
0 dq2jpηj3jFBþπ0þ ðq2Þj2

;

Rη0=π ¼ j sinϕj2
R ðmB−mη0 Þ2
0 dq2jpη0 j3jFBþπ0þ ðq2Þj2R ðmB−mπÞ2
0 dq2jpπj3jFBþπ0þ ðq2Þj2

;

Rη=π ¼ j cosϕj2
R ðmB−mηÞ2
0 dq2jpηj3jFBþπ0þ ðq2Þj2R ðmB−mπÞ2
0 dq2jpπj3jFBþπ0þ ðq2Þj2

: ð30Þ

The corresponding results are collected in Table VIII. We
observe that the central values show some scatter though
they all agree within errors due to the large uncertainties in
Eq. (29). In order to extract the mixing angle ϕ from B →
ηð0Þ transitions with more precision, measurements of these
decays with higher precision are required.
As a final exercise, we would also liked to fit either the

individual BABAR 2012 Bþ → ηlþνl decay experimental
data or perform a combined fit to Bþ → πlþνl and Bþ →
ηlþνl decays with the goal to provide an alternative
semileptonic charmless B decay determination of jVubj.
However, due to the poor experimental situation in the
case of Bþ → ηlþνl, we decide to postpone this analysis
for the future.

VI. CONCLUSIONS

In this paper we have reexamined the B → πlνl decays
to extract the CKM parameter jVubj based on experimental
data, lattice calculations and unitary constraints of the
participant form factor. Contrary to the most commonly
used z-expansion and vector meson dominance models, we
perform our analysis based on the method of Padé
approximants after realizing that most of the recent
previous analyses belong to the Padé theory, even though
no one mention it. Thus, the rules and constrains imposed
by the convergence theorems for Padé approximants to the
form factor, so far neglected, are fully exploited here,
allowing to ascribe to our final result a new source of
systematic or truncation error.
From our dedicated analysis, we obtain jVubj ¼

3.51ð8Þstatð7Þsyst × 10−3. This quantity includes both stat-
istical, from the fitted data, and systematic, from the
truncation of the Padé sequence and our evaluation of
violation of unitarity combined in quadrature, uncertainties,
and has been obtained guaranteeing the independency with
respect of the model calculation of fþð0Þ as external
constrain.
On a first stage, after a detailed review of the state-of-the-

art experimental data, determinations of jVubj and theo-
retical representations of the analytical structure of the form
factor, we have analyzed the measured q2 differential
branching ratio distribution experimental data released
by the BABAR and Belle Collaborations. Our fitting
strategy started by performing a combined analysis to all
data sets using different types of Padé sequences. We thus
have determined first the product jVubfþð0Þj directly from
the fits and then extracted the CKM element jVubj by

TABLE VIII. Predictions for the η-η0 mixing ðϕÞ as obtained by
equating Eq. (29) to Eq. (30).

Mixing angle Rη0=η Rη=π Rη0=π

ϕð°Þ 43.3� 6.0 37.6� 8.0 48.2� 11.0
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invoking external theoretical information on fþð0Þ. The
resulting fit results are presented in Table I and a graphical
account provided in Fig. 1. We then have carried out a
detailed analysis collaboration by collaboration. The out-
come of the individual fits is displayed in Fig. 2 and the
neat effect on each experimental datum due to fitting all
experimental data together with respect to fitting data of
each collaboration separately is shown in Fig. 3. This
exercise allows us to classify the four differential exper-
imental data sets according to their increasing degree of
robustness: BABAR 2011, Belle 2013, Belle 2011 and
BABAR 2012.
On a second stage, we have included into the analysis the

four available lattice QCD predictions on the form factor
shape. These data dominate the large-q2 region, and it is
essential for a precise determination of jVubj. The corre-
sponding fit results are collected in Table III indicating that
the statistical uncertainty associated to jVubj is reduced by
∼80% after the inclusion of lattice data. We have also found
that, out of the four lattice form factor simulations, the
predictions released by the FNAL/MILC Collaboration in
2015 tends to drive the form factor (see Table VI) but
slightly enlarging the χ2dof . As a byproduct of our analysis,
we have predicted the BCL form factor series coefficients
that are obtained by matching the corresponding Taylor
series expansion. The coefficients thus obtained are shown
and compared with the determinations given by lattice
groups in Table IV while the q2 shape of the reconstructed
BCL parametrization is displayed in Fig. 6 proving the
ability of the Padé approximants in this transition.
On a third stage, motivated by the impact of the lattice

data, we have also explored fits to the lattice predictions
alone. The fit results are shown in Table VII reflecting that
only those approximants with two poles have the ability to
extract first fþð0Þ and then determine jVubj by equating the
theoretical expression for the branching ratio to the
corresponding experimental measurement.
Our central result, jVubj ¼ 3.51ð8Þstatð7Þsyst × 10−3, is

presented and compared with other determinations using
other methods and fitted data sets in Fig. 8. We would like
to remark two features concerning this value that are related
to the use of Padé approximants. The first one, is that the
central value tends to fall slightly downwards with respect
to the values determined with the z-expansion parametri-
zation in the studies carried out in the recent years. In part,
we attribute this to the synthetic data of the FNAL/MILC
Collaborations form factor simulations of 2015 generated
in this work at three representative q2 points. In this respect,
it would be more beneficial if the result for the form factor
would be made available by the lattice-QCD group at some
q2 values. And the second one, is that the method allow us
to ascribe a systematic uncertainty from the truncated Padé
sequence. In fact, the z-paramaterizations do also allow to
attribute a systematic error following the same reasoning.
However, in practice, it has not so far usually been

considered. For example, based on our criterion, the result
as obtained by the FNAL/MILC Collaboration in 2015
would read jVubj ¼ 3.72ð16Þstatð9Þsyst, where the system-
atic uncertainty stems from the differing results for
N ¼ 3, 4 (cf. Eq. (14)). In our study, the ascribed systematic
uncertainty includes, for the first time, an additional
conservative source of error due to the unitarity constraints
discussed in Sec. IVA. These constraints have to dowith the
appearance of extraneous poles and zeros outside the unitary
branch cut andmight indicate, to a certain degree, violations
of unitarity.
As a final concluding remark for the B → πlνl decays,

we would like to point out that, contrary to the z-expansion
and VMD models where the B� pole position is fixed to
5.325 GeV in advance, a very competitive value for jVubj
can be extracted without imposing any information regard-
ing the position of it as we have shown along the lines of
our detailed analysis.
In the second part of this work, we have addressed the

Bþ → ηð0Þlþνl decays taking advantage of the B → π form
factor parametrizations derived in the first part. In particu-
lar, we relate the participant Bηð0Þ form factor to the Bπ
ones by a single Euler angle rotation assuming that the

FIG. 8. Status of jVubj determinations from the exclusive B →
πlνl decays (red square) including HFLAV 2017 [5], HFAG
2016 [39], Dingfelder 2016 [37], FLAG 2016 [40], FNAL/MILC
2015 [3], RBC/UKQCD 2015 [18], HFAG 2014 [1], Imsong
2014 [55] and this work (black square), from B → ωlνl (upward
blue triangle) and B → ρlνl (downward orange triangle) Bhar-
ucha 2015 [62] and from Λb → pμνμ (gray circle) LHCb [63],
and from indirect fits (green circle) UTFit 2016 [64] and
CKMfitter 2015 [65]. The solid and dashed error bar account,
respectively, for the statistical and systematic uncertainties.
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light-quark component of the ηð0Þ is a qq̄ pion to a large
extent. Under this simple assumption, we estimate the B →
ηð0Þ form factor at q2 ¼ 0 and obtain a reliable prediction
for the differential branching ratio distribution of the Bþ →
ηlþνl decay as shown in Fig. 7 compared to the BABAR
measurement in 5 bin of q2 released in 2012. As a
byproduct of our study, we have also extracted the η-η0
mixing angle. This quantity, however, carries a large
statistical error due to the large uncertainty on the measured
Bþ → ηð0Þlþνl branching ratios. Regarding our prediction
for the Bþ → η0lþνl decay distribution, there is no
experimental data to compare with so far. In order to go
beyond the simple quark-flavor basis decomposition and
extract the η-η0 mixing angle with improved precision we
would like to encourage experimental groups to measure
these semileptonic Bþ → ηð0Þ transitions with improved
precision.

In the same spirit, the PA’s method can be used to
describe the D → fπ; η; η0g form factors together with
effects of symmetry breaking [66] and determine the
jVcsj CKM element.
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