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The light-front quark model analysis of the meson-photon transition form factor FPγðQ2Þ amenable both
to the spacelike region (Q2 > 0) and the timelike region (Q2 < 0) provides a systematic twist expansion of
Q2FPγðQ2Þ for the high jQ2j region. Investigating FPγðQ2ÞðP ¼ ηc; ηbÞ for the entire kinematic regions of

Q2, we examine the twist-2 and twist-3 distribution amplitudes of ðηc; ηbÞ mesons in the light-front quark
model and quantify their contributions to Q2Fðηc;ηbÞγðQ2Þ. Our numerical results for the normalized

transition form factor Fðηc;ηbÞγðQ2Þ=Fðηc;ηbÞγð0Þ and the decay width Γðηc;ηbÞ→γγ are compared with the
available data, checking the sensitivity of our model to the variation of the constituent quark masses.
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I. INTRODUCTION

The pseudoscalar meson (P) production processes via
the two-photon collision, γ�γ → P, involve only one
transition form factor (TFF) FPγðQ2Þ, where q2 ¼ −Q2

is the squared momentum transfer of the virtual photon.
This meson-photon transition is well known to be the
simplest exclusive process in testing the quantum chromo-
dynamics (QCD) and understanding the structure of the
meson.
For the pseudoscalar mesons composed of the light

ðu; d; sÞ quarks such as ðπ0; η; η0Þ, there have been many
experimental data for spacelike regions (Q2 > 0) up to
Q2 ∼ 40 GeV2 [1–6]. In particular, for the high Q2, the
TFFs can be calculated asymptotically at leading twist
as a convolution of the perturbative hard scattering
amplitude and the nonperturbative meson distribution
amplitude (DA) [7–9]. One of the prominent features
of the perturbative QCD (pQCD) is that the TFFs show
the asymptotic behaviors, Q2Fðπ;η;η0ÞγðQ2Þ → constant as
Q2 → ∞. However, the results Q2FπγðQ2Þ from the
BABAR Collaboration [5] are not only inconsistent with
pQCD prediction but also show the rapid growth of
Q2FπγðQ2Þ for Q2 > 15 GeV2 while the measurement
from Belle Collaboration [4] are consistent with the
asymptotic limit of QCD for Q2 > 15 GeV2. On the other
hand, the subsequent BABAR data [6] for Q2Fðη;η0ÞγðQ2Þ
provided a consistency with the pQCD prediction unlike
the case of Q2FπγðQ2Þ. These discrepancies for the results

of Q2FπγðQ2Þ between the BABAR and the Belle data as
well as for the different behaviors of the results between
Q2FπγðQ2Þ and Q2Fðη;η0ÞγðQ2Þ for the high Q2 region have
motivated many theoretical studies [10–22] to investigate
the key issues for the resolution of discrepancies.
To examine the issue of the scaling behavior of

Q2FPγðQ2Þ in the large Q2, it may be necessary to analyze
the corresponding form factor not only in the spacelike
region but also in the timelike region. While there have
been some theoretical analysis [23,24] for the timelike
region below the resonance value q2 ¼ m2

P of meson Pwith
the physical mass mP, we could not find any theoretical
studies in timelike region for q2 > m2

P. The reason for the
difficulty of analyzing the timelike region maybe due to
the singular nature and the complexity of the timelike
form factor beyond the resonance region. Nevertheless, in
our recent work of the ðπ0; η; η0Þ → γ�γ TFFs [25], we have
developed the new method to explore the timelike region
without resorting to mere analytic continuation from the
spacelike region to the timelike region and analyzed the
entire kinematic region (both for the timelike region and
the spacelike region) using the light-front quark model
(LFQM) [26–30]. Our direct calculation in timelike region
shows the complete agreement not only with the analytic
continuation result from the spacelike region but also with
the result from the dispersion relation between the real
and imaginary parts of the form factor. Our results of
Q2Fðπ;η;η0ÞγðQ2Þ were in good agreement with the available
experimental data for low jQ2j region and also consistent
with the pQCD prediction for the high jQ2j region.
In this work, we explore the heavy quarkonia ðηc; ηbÞ →

γγ� transitions in both spacelike and timelike regions*homyoung@knu.ac.kr
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expanding our previous work of the ðπ0; η; η0Þ → γ�γ TFFs
[25]. For the charmonium case, the form factor FηcγðQ2Þ
was measured from the BABAR Collaboration [31] only in
the spacelike region of 2 GeV2 < Q2 < 50 GeV2. There
have been several theoretical studies on the TFF FηcγðQ2Þ
in the spacelike region using various theoretical approaches
and phenomenological models such as pQCD [32,33],
lattice QCD [34,35], nonrelativistic QCD (NRQCD)
[36,37], QCD sum rules [38], LFQM [39], and covariant
approach based on Dyson-Schwinger and Bethe-Salpeter
(BS) equations [40]. In particular, a strong discrepancy
between the NRQCD prediction [36] and the BABAR
measurements has been recently resolved by applying
the Principle of Maximum Conformality to the renormal-
ization scale [37]. Also, to overcome the weakness of the
Dyson-Schwinger approach caused by a series of complex-
valued singularities with increasing photon-momentum
square in the numerical Euclidean momentum integration,
a novel method using the perturbation theory integral
representations of the quark propagator, meson amplitude
and quark-photon vertex has been implemented to calculate
the FηcγðQ2Þ for any spacelike momenta [40]. In contrast to
these and other available theoretical approaches and phe-
nomenological models, the salient feature of our LFQM
analysis is to explore the timelike region as well as the
spacelike region within the same theoretical framework.
As we discuss in this work, the LFQM analysis of the TFF
FPγðQ2Þ amenable both for the spacelike region (Q2 > 0)
and the timelike region (Q2 < 0) provides a systematic
twist expansion of Q2FPγðQ2Þ for the high jQ2j region.
The paper is organized as follows. In Sec. II, we briefly

discuss the TFFs obtained from the qþð¼ q0 þ q3Þ ≠ 0
frame in our LFQM starting from an exactly solvable
covariant BS model of (3þ 1)-dimensional fermion field
theory. The self-consistent correspondence relations
between the covariant BS model and our LFQM are also
discussed and the explicit form of Fðηc;ηbÞγðQ2Þ in our
LFQM is presented. In particular, a systematic twist
expansion of Q2Fðηc;ηbÞγðq2Þ is provided explicitly and
the leading- and higher-twist effects in the calculations of
Q2Fðηc;ηbÞγðq2Þ are discussed in this section. In Sec. III, we
present our numerical results for the transverse momentum
dependent distribution amplitude (TMDA), which is a

three-dimensional generalization of the DA, as well as
its longitudinal and transverse moments. The ðηc; ηbÞ →
γ�γ TFFs for both spacelike and timelike regions are
obtained and compared with the available experimental
data. In order to check the validity of our LFQM calcu-
lations in the timelike regions, we verify the exact agree-
ment of our direct LFQM calculation in the timelike region
with the results obtained from the dispersion relation
between the real and imaginary parts of the form factors.
Conclusions follow in Sec. IV.

II. LIGHT-FRONT QUARK
MODEL DESCRIPTION

The transition form factor FPγ for the P → γ�γ (P ¼ π0,
η, η0, ηc, ηb) transition is defined from the matrix element of
the electromagnetic current Γμ ¼ hγðP − qÞjJμjPðPÞi as
follows,

Γμ ¼ ie2FPγðQ2ÞεμνρσPνερqσ; ð1Þ

where Pμ and qμ are the four momenta of the incident
pseudoscalar meson and virtual photon, respectively, and ε
is the transverse polarization vector of the final (on-shell)
photon. This process is illustrated by the Feynman diagram
in Fig. 1(a). In the exactly solvable manifestly covariant
BS model, the covariant amplitude Γμ is obtained by the
following momentum integral

Γμ ¼ ieQeQ̄Nc

Z
d4k
ð2πÞ4

×
Tr½γ5ð=p1 þmQÞγμð=p2 þmQÞ=εð−=kþmQÞ�

Np1
NkNp2

H0; ð2Þ

where Nc is the number of colors and eQðQ̄Þ is the quark
(antiquark) electric charge. The denominators Npj

ð¼ p2
j −

m2
Q þ iεÞðj ¼ 1; 2Þ and Nkð¼ k2 −m2

Q̄ þ iεÞ come from

the intermediate quark and antiquark propagators of mass
mQ ¼ mQ̄ carrying the internal four-momenta p1 ¼ P − k,
p2 ¼ P − q − k, and k, respectively. The q̄q bound-state
vertex function of the meson is denoted by H0.
It is well known that the single covariant Feynman

diagram Fig. 1(a) is in general equal to the sum of the two

FIG. 1. One-loop Feynman diagrams that contribute to P → γ�γ. The single covariant Feynman diagram (a) is in principle the same as
the sum of the two LF time-ordered diagrams (b) and (c), respectively.
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LF time-ordered diagrams Figs. 1(b) and 1(c) if the qþ ≠ 0
frame is taken. However, if the qþ ¼ 0 frame (but q⊥ ≠ 0

so that q2 ¼ qþq− − q2⊥ ¼ −q2⊥ ¼ −Q2) is chosen, the LF
diagram 1(c) does not contribute but only the diagram 1(b)
gives exactly the same result as the covariant diagram 1(a).
This has been known to be the virtue of taking the qþ ¼ 0
frame in the LF calculation and many previous LF
calculations have adopted this qþ ¼ 0 frame in the analysis
of meson-photon TFFs [7,21,27,33]. However, the analysis
in the timelike region using the qþ ¼ 0 frame has been
challenging since the qþ ¼ 0 frame is defined only in the
spacelike region (Q2 > 0) and the analytic continuation
from spacelike region to timelike (q2 ¼ −Q2 > 0) region
is not quite straightforward due to the complication of
mixture between the external momentum q⊥ and the
internal momentum k⊥ included in the term showing the
singularity in the timelike region as discussed in [25].
To overcome this difficulty in the analysis of the meson-

photon TFFs in the timelike region, we recently explored in
[25] the qþ ≠ 0 frames (but with q⊥ ¼ 0) defined in the
timelike region, i.e., α ¼ qþ=Pþ ¼ 1 − P0þ=Pþ frames
with (1) 0 < α < 1 and (2) α ¼ 1. For the 0 < α < 1 case,
the covariant diagram in Fig. 1(a) is shown to be equivalent
to the sum of two LF diagrams Figs. 1(b) and 1(c).
However, for the case of α ¼ 1, we find that Fig. 1(b)
does not contribute but only Fig. 1(c) contributes to the
total transition amplitude and coincides with the covariant
result of Fig. 1(a). The salient feature of the α ¼ 1 frame is
that it provides not only the boost invariant result but also
much more effective computation of the timelike form
factor over the commonly used qþ ¼ 0 (i.e., α ¼ 0) frame
calculation [25]. By applying the self-consistent correspon-
dence relations (see, e.g., Eq. (35) in [41]) between the
covariant BS model and our LFQM found in the analysis of
the twist-2 and twist-3 DAs of pseudoscalar and vector
mesons [41–43] and the pion electromagnetic form factor
[41], we were able to obtain the meson-photon TFFs [25]
using the α ¼ 1 frame with the more phenomenologically
accessible Gaussian wave functions backed by the LFQM
analysis of meson mass spectra [26–30].
Since the TFFs for the heavy quarkonina ðηc; ηbÞ → γ�γ

transitions have the same form as the Fπγ in [25] apart from
the charge factor, we do not duplicate the same analysis
here but display only the final form of FηcðηbÞγ obtained
from the α ¼ 1 frame in our LFQM:

FηcðηbÞγðq2Þ ¼ e2cðbÞ

ffiffiffiffiffiffiffiffi
2Nc

p
4π3

Z
1

0

dx
ð1 − xÞ

Z
d2k⊥

1

M2
0 − q2

×Ψ↑↓−↓↑ffiffi
2

p ðx;k⊥Þ; ð3Þ

where M2
0 ¼

k2⊥þm2
Q

xð1−xÞ is the invariant mass and the LF wave

function of a pseudoscalar meson with the constituent
quark and antiquark mass mQ ¼ mQ̄ is given by

Ψ↑↓−↓↑ffiffi
2

p ðx;k⊥Þ ¼
1ffiffiffi
2

p ðR00
↑↓ −R00

↓↑Þϕ1Sðx;k⊥Þ

¼ mQffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2⊥ þm2

Q

q ϕ1Sðx;k⊥Þ; ð4Þ

with the spin-orbit wave function RJJz
λQλQ̄

obtained by the

interaction independent Melosh transformation from the
ordinary equal-time static spin-orbit wave function
assigned by the quantum number JPC. Explicit form of
R00

λQλQ̄
for mQ ¼ mQ̄ case is given by

R00
λQλQ̄

¼ 1ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2⊥ þm2

Q

q
�−kx þ iky mQ

−mQ −kx − iky

�
; ð5Þ

which satisfies
P

λQλQ̄
R00†

λQλQ̄
R00

λQλQ̄
¼ 1. For the radial wave

function, we use in this work the 1S state harmonic
oscillator wave function

ϕ1Sðx;k⊥Þ ¼
4π3=4

β3=2

ffiffiffiffiffiffiffi∂kz
∂x

r
e
− k⃗2

2β2 ; ð6Þ

where ∂kz=∂x ¼ M0=4xð1 − xÞ is the Jacobian of the
variable transformation fx;k⊥g → k⃗ ¼ ðk⊥; kzÞ and β is
the variational parameter fixed by our previous analysis of
meson mass spectra [26,28–30]. In particular, k⃗2 is given by
k⃗2 ¼ k2⊥ þ k2z where kz ¼ ðx − 1=2ÞM0. The normaliza-
tion of ϕ1S is thus given by

Z
1

0

dx
Z

d2k⊥
16π3

jϕ1Sðx;k⊥Þj2 ¼ 1: ð7Þ

We should note that the TFF in the qþ ¼ 0 frame is
obtained by the following replacement of the denominator
factor, ðM2

0 − q2Þ−1 → ½M02
0�−1 in Eq. (3), where M0

0 ¼
M0ðk⊥ → k⊥ þ ð1 − xÞq⊥Þ (see [25] for more detailed
derivation). Compared to the pole structure ½M02

0�−1 in the
timelike region of the qþ ¼ 0 frame, the internal transverse
momentum k⊥ for the corresponding pole structure ðM2

0 −
q2Þ−1 in the α ¼ 1 frame as shown in Eq. (3) does not mix
with the external virtual photon momentum q. Because of
this salient feature for the α ¼ 1 frame, the direct timelike
TFF calculation can be done most effectively in contrast to
the computation in the qþ ¼ 0 frame. We have already
explicitly shown in our numerical calculations [25] for the
ðπ0; η; η0Þ → γ�γ TFFs that our direct results of the timelike
form factors given by Eq. (3) satisfy the following
dispersion relations (DR),

SYSTEMATIC TWIST EXPANSION OF … PHYS. REV. D 98, 034018 (2018)

034018-3



ReFðq2Þ ¼ 1

π
P
Z

∞

−∞

ImFðq02Þ
q02 − q2

dq02;

ImFðq2Þ ¼ −
1

π
P
Z

∞

−∞

ReFðq02Þ
q02 − q2

dq02; ð8Þ

where P indicates the Cauchy principal value.
Moreover, a systematic twist expansion of FηcðηbÞγðq2Þ

is straightforwardly attained as discussed below by expand-
ing the factor 1=ðM2

0 − q2Þ in geometric sum for high
Q2 ¼ −q2,

1

M2
0 − q2

¼ 1

M2
0 þQ2

¼ 1

Q2
�
1þ M2

0

Q2

� ¼ 1

Q2
−
M2

0

Q4
þ � � � :

ð9Þ

With the expansion of the geometric sum given by Eq. (9),
we can easily expand Q2FηcðbÞγðQ2Þ in Eq. (3) in terms of
the twist-2, twist-3 DAs, etc., as follows,

Q2FηcðηbÞγðq2Þ ¼ e2cðbÞfM

Z
1

0

dx
1 − x

�
2ϕ2;MðxÞ

− 4
mQ

Q2
μMϕ3;MðxÞ þO

�
1

Q2n

��
; ð10Þ

with n ≥ 2. The normalized twist-2 DA ϕ2;MðxÞ and twist-3
DA ϕ3;MðxÞ for the meson Mð¼ ηc; ηbÞ obtained from our
LFQM are given by [41]

ϕ2;MðxÞ ¼
ffiffiffiffiffiffiffiffi
2Nc

p
fM8π3

Z
d2k⊥Ψ↑↓−↓↑ffiffi

2
p ðx;k⊥Þ; ð11Þ

and

ϕ3;MðxÞ ¼
ffiffiffiffiffiffiffiffi
2Nc

p
fMμM16π3

Z
d2k⊥

�
M2

0

mQ

�
Ψ↑↓−↓↑ffiffi

2
p ðx;k⊥Þ; ð12Þ

where fM is the decay constant and the normalization
parameter μM in Eq. (12) results from quark condensate and
can be fixed from the normalization of the DAs viaR
1
0 dxϕ2ð3Þ;MðxÞ ¼ 1. We should note that the twist-2 and
twist-3 DAs ϕ2;M and ϕ3;M correspond to the axial-vector
and pseudoscalar channels of a meson M, respectively, as
discussed in [41]. The TFF for π0 → γγ� can be obtained
by replacing the charge factor e2cðbÞ in Eq. (10) with

ðe2u − e2dÞ=
ffiffiffi
2

p
. The form factor at zero momentum transfer

is related with the decay width for P → γγ via

ΓP→γγ ¼
π

4
α2M3

PjFPγð0Þj2; ð13Þ

where α is the fine structure constant andMP is the physical
meson mass.

III. NUMERICAL RESULTS

In our numerical calculations, we use the two sets of
model parameters for ηc and ηb as shown in Table I. While
set I was obtained from the variational principle for the
QCD-motivated effective Hamiltonian including the linear
confining potential and the hyperfine interaction [26–30],
set II provides the parameter sensitivity check of our LFQM
to the constituent quark masses and at the same time the
better fit to the experimental data for fηc [44] and Γηc→γγ

[45]. We should note that the TFFs are much more sensitive
to the variation of the quark masses than to the variation of
the β parameters.
Defining the transverse momentum dependent DA

(TMDA) ψ2ð3Þ;Mðx;k⊥Þ that is a three-dimensional gener-
alization of the twist-2 (-3) DA ϕ2ð3Þ;MðxÞ as

ϕ2ð3Þ;MðxÞ ¼
Z

∞

0

d2k⊥ψ2ð3Þ;Mðx;k⊥Þ

¼
Z

1

0

dyψ2ð3Þ;Mðx; yÞ; ð14Þ

the nth transverse moment is obtained by

hkn⊥i2ð3Þ;M ¼
Z

1

0

dx
Z

∞

0

d2k⊥ψ2ð3Þ;Mðx;k⊥Þkn⊥; ð15Þ

where ψ2ð3Þ;Mðx; yÞ in Eq. (14) is obtained by changing
the variable k2⊥ ¼ y=ð1 − yÞ. One can also define the
expectation value of the longitudinal momentum, so-called
ξð¼ 2x − 1Þ-moments, as follows:

hξn⊥i2ð3Þ;M ¼
Z

1

0

dx;ϕ2ð3Þ;MðxÞξn: ð16Þ

Our results for the second transverse moment corre-
sponding to the ψ2;Mðx;k⊥Þ and ψ3;Mðx;k⊥Þ wave func-
tions obtained from set I [set II] are hk2⊥i2;ηc ¼
ð866 MeVÞ2 ½ð840 MeVÞ2� and hk2⊥i3;ηc ¼ ð940 MeVÞ2
[ð950 MeVÞ2] for the ηc meson and hk2⊥i2;ηb ¼
ð1.573GeVÞ2 [ð1.561GeVÞ2] and hk2⊥i3;ηb ¼ð1.636GeVÞ2
[ð1.640 GeVÞ2] for the ηb meson, respectively. The
second ξ-moments of the twist-2 and twist-3 DAs obtained
from set I [set II] are hξ2i2;ηc ¼ 0.0766½0.111� and
hξ2i3;ηc ¼0.0859½0.128� for the ηc meson and hξ2i2;ηb ¼
0.0377½0.0471� and hξ2i3;ηb ¼ 0.0402½0.0510� for the ηb
meson, respectively.

TABLE I. Model parameters ðmQ; βQQ̄ÞðQ ¼ c; bÞ (in GeV).

Model mc mb βcc̄ βbb̄ fηc fηb

Set I 1.80 5.20 0.6509 1.1452 0.326 0.507
Set II 1.30 4.50 0.6509 1.1452 0.335 0.530
Exp. [44] � � � � � � � � � � � � 0.335(75) � � �

RYU, CHOI, and JI PHYS. REV. D 98, 034018 (2018)

034018-4



Figure 2 shows the TMDAs of ηcðbÞ related with the
twist-2 and -3 DAs compared with those of the π meson
obtained in our previous work [41], i.e., ψ2;πðx; yÞ (left
panel) and ψ3;πðx; yÞ (right panel) for the π meson
(upper panel), ψ2;ηcðx; yÞ (left panel) and ψ3;ηcðx; yÞ (right
panel) for the ηc meson (middle panel), and ψ2;ηbðx; yÞ (left
panel) and ψ3;ηbðx; yÞ (right panel) for the ηb meson (lower
panel) obtained from set II, respectively. Comparing the
TMDAs ψ2;Mðx; yÞ related with the twist-2 DAs and
ψ3;Mðx; yÞ related with the twist-3 DAs, we find that
ψ3;Mðx; yÞ shows in general broader shape and receives
higher k⊥-contributions than ψ2;Mðx; yÞ regardless of the
kinds of mesonsMð¼ π; ηc; ηbÞ. We note the reason why ηb
twist-2 and -3 contributions look so similar is due to such a
large b-quark mass. On the other hand, as one can see from
Fig. 2, ψ2ð3Þ;πðx; yÞ receives contributions from the end

points of x for small k⊥ regions more than the heavy
quarkonia case. We also note that ψ2ð3Þ;ηbðx; yÞ not only
show much narrower shapes but also receive higher k⊥-
contributions than ψ2ð3Þ;ηcðx; yÞ and ψ2ð3Þ;πðx; yÞ. For the
case of heavy quarkonia TMDAs, the results from set I are
qualitatively very similar to those from set II but show
slightly narrower shape than those from set II due to the
heavier quark masses. As was discussed in [25], we can
associate the scale μ, which separates nonperturbative and
perturbative regimes, with the transverse integration cutoff
via jk⊥j ≤ μ. Since the twist-2 and twist-3 TMDAs for
heavy quarkonia show the higher k⊥ contributions than
those for the pion, one can easily see the scale gets larger
for the heavier quark. For the case of twist-2 TMDAs
shown in Fig. 2, we find that the integrations up to y ≃
ð0.5; 0.8; 0.93Þ of ψ2;ðπ;ηc;ηbÞðx; yÞ make up 99% of the full

FIG. 2. Transverse momentum dependent distribution amplitudes (TMDAs) ψ2;πðx; yÞ (left panel) and ψ3;πðx; yÞ (right panel) for the
π meson (upper panel), ψ2;ηcðx; yÞ (left panel) and ψ3;ηcðx; yÞ (right panel) for the ηc meson (middle panel), and ψ2;ηbðx; yÞ (left panel)
and ψ3;ηbðx; yÞ (right panel) for the ηb meson (lower panel) obtained from set II, respectively.
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results for ϕ2;ðπ;ηc;ηbÞðxÞ, respectively. This implies that our
cutoff scales correspond to μ ≃ jk⊥j ≃ ð1; 2; 3.6Þ GeV for
the calculations of the twist-2 ϕ2;ðπ;ηc;ηbÞðxÞ, respectively.
The TFFs at Q2 ¼ 0 are obtained as Fηcγð0Þ ¼ 0.0374 ×

½0.0664� GeV−1 and Fηbγð0Þ¼0.0019½0.0026�GeV−1 for
set I [set II], respectively. Using the following experimental
values of ðMηc ;MηbÞ ¼ ð2.98; 9.40Þ GeV [45], we obtain
Γηc→γγ ¼ 1.55½4.88� keV and Γηb→γγ ¼ 0.128½0.239� keV
for set I [set II], respectively. The experimental value of
Fηcγð0Þ may be obtained from the experimental data
Γexp
ηcγγ ¼ 5.1� 0.4 keV [45], which yields Fexp

ηcγγ ¼ 0.067�
0.0028 GeV−1. Although our LFQM result for Fηcγð0Þ
obtained from set II rather than set I shows a good
agreement with the experimental value, we should note
that a recent lattice QCD result [35] of Fηcγð0Þ ¼ 0.0318ð2Þ
corresponding to Γηc→γγ ¼ 1.122ð14Þ keV is similar to ours
obtained from set I.
In Fig. 3, we show the normalized ηc → γγ� transition

form factor FηcγðQ2Þ=Fηcγð0Þ obtained from set II for both
timelike (q2 ¼ −Q2 > 0) spacelike (q2 ¼ −Q2 < 0)
momentum transfer regions up to jQ2j ¼ 70 GeV2 and
compare them with the available experimental data [31] for
the spacelike region as well as the results obtained from
the dispersion relation (DR). The dotted, dashed and
solid lines in Fig. 3 represent our LFQM predictions of
Re½Fηcγðq2Þ=Fηcγð0Þ�, Im½Fηcγðq2Þ=Fηcγð0Þ� and jFηcγðq2Þ=
Fηcγð0Þj, respectively. We note that the spacelike region can
be easily obtained by analytically continuing the momen-
tum transfer q2 → −q2 in the integrand of Eq. (3). As one
can see from Fig. 3, our result for the spacelike Q2 region
shows a good agreement with the data. For the analysis of
the timelike form factor near the resonance region in Fig. 3,
the maximum value of Fηcγðq2Þ occurs at q2 ≃ 4m2

c due to
the virtual photon wave function term 1=ðM2

0 − q2Þ in

Eq. (3). The imaginary part of the form factor also starts to
appear at q2 ¼ 4m2

c. As a consistency check of our LFQM
calculations for the timelike region, we also include the real
(imaginary) part of the form factor obtained from the DR
(denoted byþð×Þ data points) given by Eq. (8). As one can
see, our direct results for the real and imaginary parts are in
perfect agreement with the results obtained from the DR.
This assures the validity of our numerical calculation in the
timelike region.
In Fig. 4, we show the normalized TFFs FηcγðQ2Þ=

Fηcγð0Þ (left panel) for the spacelike (q2 ¼ −Q2 < 0)
momentum transfer region up to Q2 ¼ 100 GeV2 and
jQ2FηcγðQ2Þj (right panel) for both timelike (q2 > 0)
and spacelike momentum transfer regions (−500 ≤ Q2 ≤
500 GeV2) and compare them with the available exper-
imental data [31] for the spacelike region. The dashed
and solid lines represent our results obtained from set I and
II, respectively. We note that the spacelike region can be
easily obtained by analytically continuing the momentum
transfer q2 → Q2ð¼ −q2Þ in the integrand of Eq. (3). Our

FIG. 3. The normalized ηc → γγ� transition form factor
FηcγðQ2Þ=Fηcγð0Þ obtained from set II for both timelike
(q2 ¼ −Q2 > 0) spacelike (q2 ¼ −Q2 < 0) momentum transfer
regions compared with the results obtained from the dispersion
relation (DR). The data are taken from [31].

FIG. 4. The normalized ηc → γγ� transition form factor
FηcγðQ2Þ=Fηcγð0Þ in the spacelike (q2 ¼ −Q2 < 0) momentum
transfer region (left panel), and the jQ2FηcγðQ2Þj for both
timelike (q2 > 0) and spacelike momentum transfer regions
(right panel). The data are taken from [31].

FIG. 5. The normalized ηb → γγ� transition form factor
FηbγðQ2Þ=Fηbγð0Þ in the spacelike momentum transfer region
(left panel), and the jQ2FηbγðQ2Þj for both timelike and spacelike
momentum transfer regions (right panel).
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results from set II are in good agreement with the available
data not only for the normalized TFF FηcγðQ2Þ=Fηcγð0Þ but
also for the form factor Fηcγð0Þ atQ2 ¼ 0. We note that our
LFQM result for jQ2FηcγðQ2Þj shows the asymptotic
behavior for high jQ2j values, but the result in the spacelike
region reaches the asymptotic value faster than that in the
timelike region.
In Fig. 5, we show the normalized TFFs FηbγðQ2Þ=

Fηbγð0Þ (left panel) for the spacelike momentum transfer
region up to Q2 ¼ 100 GeV2 and jQ2FηbγðQ2Þj (right
panel) for both timelike and spacelike momentum transfer
regions (−500 ≤ Q2 ≤ 500 GeV2). The line codes are
same as in Fig. 4. While the qualitative behavior of the
Fηbγ is the same as that of Fηcγ , their quantitative behaviors
such as the slope of the form factor at Q2 ¼ 0 are quite
different due to the b quark being much heavier than the c
quark. Our LFQM result for jQ2FηbγðQ2Þj shows the
asymptotic behavior for high jQ2j values, but again the
result in the spacelike region reaches the asymptotic value
faster than that in the timelike region.
In Fig. 6, we show the contributions of the leading-

and higher-twist DAs to the transition form factors
Q2Fðπ;ηc;ηbÞγðQ2Þ in the spacelike momentum transfer
region (0 < Q2 < 100 GeV2). The dotted, dashed, and
dot-dashed lines represent the contributions from the
twist-2 DAs ϕ2;MðxÞ, the twist-3 DAs ϕ3;MðxÞ, and the
sum of the twist-2 and twist-3 DAs [see Eq. (10)],

respectively. The solid line represents the full results of
Q2Fðπ;ηc;ηbÞγðQ2Þ given by Eq. (3). The results for the heavy
quarkonia are obtained from set II parameters. As one can
see, most of the contributions to Q2FπγðQ2Þ for Q2 ≥
10 GeV2 come from the pion DAs up to twist-3 and the
contributions from the twist-4 DAs and above are negli-
gible for Q2 ≥ 10 GeV2 region. On the other hand, for the
Q2FηcγðQ2Þ case, the contributions from the twist-2 and
twist-3 DAs are dominant only after Q2 > 60 GeV2. This
indicates that the higher twist contributions beyond the
twist-3 contribution are not negligible to fit the currently
available experimental data for Q2FηcγðQ2Þ. For the
Q2FηbγðQ2Þ case, our LFQM shows the necessity of the
higher twist contributions beyond the twist-3 contribution
even for Q2 > 100 GeV2.

IV. CONCLUSIONS

We studied the ðηc; ηbÞ → γ�γ transitions for the entire
kinematic regions analyzing both spacelike and timelike
TFFs in our LFQM. In particular, the calculations of Fηcγ

and Fηbγ have been performed by our newly developed
method using the qþ ≠ 0 frame with qþ ¼ Pþ [25], which
is found to be most effective for the analysis of the timelike
region due to the absence of mixing between the internal
transverse momentum and the external virtual photon
momentum. This leads to the very simple pole structure

FIG. 6. The contributions of the leading- and higher-twist DAs to the transition form factors Q2Fðπ;ηc;ηbÞγðQ2Þ in the spacelike
momentum transfer region (0 < Q2 < 100 GeV2).
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1=ðq2 −M2
0Þ in the form factor, which not only leads to

the emergence of the imaginary part of the form factor
starting at q2 ¼ 4m2

QðQ ¼ c; bÞ but also provides a
straightforward systematic twist expansion of TFFs. We
obtained the twist-2 and twist-3 TMDAs as well as the
corresponding twist-2 and twist-3 DAs in this work using
our LFQM framework. As a consistency check for our
numerical calculations in timelike region, we have con-
firmed that our direct LFQM results of FηcðηbÞγðQ2Þ are in
excellent agreement with those obtained from the
dispersion relations.
In our numerical calculation of the normalized TFF

FηcγðQ2Þ=Fηcγð0Þ and the decay width Γηc→γγ , our LFQM
results from mc ¼ 1.3 GeV are more consistent with
the data [31,45] than the results from mc ¼ 1.8 GeV.
Compared to the light pseudoscalar meson TFFs such as
ðπ0; η; η0Þ → γγ� transitions analyzed in [25], the com-
pletely symmetric asymptotic behaviors for the heavy

jQ2Fðηc;ηbÞγðQ2Þj TFFs independent of the timelike and
spacelike regions are not reached within a few hundred
GeV2 values of jQ2j. This may be due to the resonance
structure occurring at large q2 ≃ 4m2

QðQ ¼ c; bÞ in the
timelike region. More elaborate LFQM calculation
deserves further study including more trial wave functions
such as 2S state and even higher excited radial state
harmonic oscillator wave functions.
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