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The chiral phase transition of the quark sector of QCD is investigated within the Hamiltonian approach in
Coulomb gauge. Finite temperature T is introduced by compactifying one spatial dimension, whichmakes all
thermodynamical quantities accessible from the ground state on the spatial manifold R2 × S1ð1=TÞ.
Neglecting the coupling between quarks and transversal gluons, the equations of motion of the quark sector
are solved numerically and the chiral quark condensate is evaluated and compared to the results of the usual
canonical approach to finite-temperature Hamiltonian QCD based on the density operator of the grand
canonical ensemble. For zero bare quark masses, we find a second-order chiral phase transition with a critical
temperature of about 92 MeV. If the Coulomb string tension is adjusted to reproduce the phenomenological
value of the quark condensate, the critical temperature increases to 118 MeV.
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I. INTRODUCTION

Understanding the phase diagram of quantum chromo-
dynamics (QCD) is still one of the most challenging
problems in particle physics [1,2]. Lattice calculations
can shed some light on its structure for vanishing baryon
density but still suffer from the so-called sign problem in
the general case of finite densities [1,3]. To overcome this
problem, in the past two decades several nonperturbative
continuum approaches, which do not suffer from the sign
problem, have been developed [4], one of them being the
variational approach to Hamiltonian QCD in Coulomb
gauge [5], see Ref. [6] for a recent review.
In Ref. [7], the dressed Polyakov loop, the order

parameter for confinement, and the chiral quark conden-
sate, the order parameter for the spontaneous breaking of
chiral symmetry, have been evaluated within this approach
for vanishing chemical potential (i.e., baryon density).
Thereby, finite temperatures were introduced by compac-
tifying one spatial dimension using the alternative formu-
lation of finite-temperature Hamiltonian quantum field
theory proposed in Ref. [8]. While the pseudocritical
temperatures of the chiral and, respectively, deconfinement
phase transition were in good agreement with lattice data,
the width of the transition region and the order of the chiral
phase transition turned out to be at odds with the lattice

predictions. This was suspected to be correlated to the
neglect of the temperature dependence of the quark and
gluon propagator, which were replaced by their zero-
temperature limits to avoid the numerically highly expen-
sive solution of the finite-temperature equations of motion.
In the present paper, we solve the quark part of these

equations numerically. Thereby,we ignore the couplingof the
quarks to the (transversal) spatial gluons. This corresponds to
a confining quark model—the so-called Adler–Davis model
[9]—which was considered in Refs. [10–13] in the standard
canonical formulation of finite-temperature quantum field
theories. From our solution, we calculate the chiral conden-
sate and compare it with the result of previous work.
The organization of the rest of this paper is as follows: In

Sec. II, we briefly review the essential ingredients of the
novel approach to finite-temperature Hamiltonian quantum
field theory developed in Ref. [8] and its application to
QCD in Coulomb gauge given in Ref. [7]. The numerical
solution of the quark equations of motion is described in
detail in Sec. III. The results for the mass function and the
chiral condensate are presented in Sec. IV, and we conclude
the manuscript with a brief summary, some comments, and
an outlook on future directions in Sec. V.

II. THE QUARK SECTOR OF
FINITE-TEMPERATURE QCD

Below, we briefly discuss the main ingredients of the
Hamiltonian approach to the quark sector of QCD when
finite temperatures are introduced by compactifying a spatial
dimension, for which we choose without loss of generality
the 3-axis. For a more detailed description and a discussion
of fullQCD, the interested readermay consult Refs. [7,8,14].
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Let H be the QCD Hamiltonian in Coulomb and Weyl
gauge on the compactified spatial manifold R2 × S1ðβÞ,
where β ¼ 1=T denotes the inverse temperature. One can
then show [8] that the grand canonical partition function at
finite temperature T and chemical potential μ is given by

Z ¼ lim
l→∞

expð−lE0ðβ; μÞÞ; ð1Þ

where l → ∞ is the length of the uncompactified spatial
dimensions and E0 is the smallest eigenvalue of the pseudo-
Hamiltonian

H̃ðβ; μÞ≡H þ iμ
Z
β
d3xψm†ðxÞα3ψmðxÞ: ð2Þ

Here, αi denotes the usual Dirac matrices and ψ is the
quark field which has to fulfill the antiperiodic boundary
condition

ψmðx1; x2; x3 ¼ β=2Þ ¼ −ψmðx1; x2; x3 ¼ −β=2Þ ð3Þ

on the compactified manifold, while for the bosonic fields
A the periodic condition

Aaðx1; x2; x3 ¼ β=2Þ ¼ Aaðx1; x2; x3 ¼ −β=2Þ ð4Þ

holds (m and a are color indices in the fundamental and
adjoint, respectively, representation). Furthermore, we have
introduced the short-hand notationZ

β
d3x≡

Z
dx1

Z
dx2

Z
β=2

−β=2
dx3 ð5Þ

for the spatial integration.
Let us stress that the novel finite-temperature Hamiltonian

approach proposed in Ref. [8] and leading to Eq. (1) is
equivalent to the familiar finite-temperature (imaginary-
time) approach for any Oð4Þ (i.e., relativistic) invariant
quantum field theory. It is, however, advantageous in a
Hamiltonian formulation in the sense that it does not require
to explicitly carry out the thermal expectationvalues with the
grand canonical density operator

ϱ ¼ expð−β½H − μN�Þ ð6Þ

(with H being the Hamiltonian on R3 and N being the
fermionic particle-number operator) over the whole Fock
space. Rather the thermal quantities like the partition
function (1) are obtained from the vacuum state on R2 ×
S1ðβÞ alone (see below). Thus, the novel approach avoids
introducing additional approximations to the Hamiltonian in
the grand canonical density operator expð−β½H − μN�Þ,
which is certainly an advantage. The novel approach is
not manifestly spatial Oð3Þ-invariant in the same way as
the standard Hamiltonian approach based on canonical

quantization is not manifestly Lorentz-invariant. However,
theOð3Þ andOð4Þ invariance is hidden and recovered when
the approach is carried out exactly. Let us alsomention that in
the novel approach the T → 0 limit can be easily taken after
Poisson resummation, see Ref. [8] for more details. This fact
will be exploited in the discussion following Eq. (27) below.
The QCDHamiltonianH entering Eq. (2) is given by [15]

H ¼ HD þHYM þHC; ð7Þ

where

HD ¼ H0
D þHA

D; ð8aÞ

H0
D ¼

Z
β
d3xψm†ðxÞ½−iα ·∇þ γ0mQ�ψmðxÞ; ð8bÞ

HA
D ¼ g

Z
β
d3xψm†ðxÞα · AaðxÞtmn

a ψnðxÞ ð8cÞ

is the quark single-particle Dirac Hamiltonian with g being
the strong coupling constant,mQ the bare quark mass, γ0 the
usual Dirac matrix, and ta the color generator in the
fundamental representation. The second term in Eq. (7) is
the gluonic Yang–Mills Hamiltonian

HYM ¼ 1

2

Z
β
d3xJ−1½A�Πa

i ðxÞJ½A�Πa
i ðxÞ

þ 1

2

Z
β
d3xBaðxÞ · BaðxÞ; ð9Þ

where Π ¼ −iδ=δA is the canonical momentum operator
(which agrees with the color electric field),

Ba ¼ ∇ × Aa −
1

2
gfabcAb × Ac ð10Þ

is the color magnetic field, and

J½A� ¼ detðĜ−1Þ;
ðĜ−1Þabðx; yÞ≡ ð−∇ · D̂Þabðx; yÞ ð11Þ

denotes the Faddeev–Popov determinant with

D̂abðxÞ ¼ δab∇ − gfacbAcðxÞ ð12Þ

being the covariant derivative in the adjoint representation.
Finally,

HC¼
g2

2

Z
β
d3x

Z
β
d3yJ−1½A�ρaðxÞJ½A�F̂abðx;yÞρbðyÞ ð13Þ

is the so-called color Coulomb interaction which contains,
besides the color density
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ρaðxÞ ¼ ρaQðxÞ þ ρaYMðxÞ
¼ ψ†ðxÞtaψðxÞ þ fabcAbðxÞ ·ΠcðxÞ ð14Þ

of quarks and gluons, the non-Abelian Coulomb kernel

F̂abðx; yÞ ¼
Z
β
d3zĜacðx; zÞð−ΔzÞĜcbðz; yÞ: ð15Þ

From Eq. (1) it follows that all thermodynamical
quantities can be obtained from the ground state jϕi of
the pseudo-Hamiltonian H̃ which fulfills the functional
Schrödinger equation H̃jϕi ¼ E0jϕi [8]. Solving the func-
tional Schrödinger equation is, thus, the aim of the
Hamiltonian approach. On the compactified manifold
R2 × S1ðβÞ, this has been first tackled in Ref. [16] for
the Yang–Mills sector and was recently extended to full
QCD in Ref. [7]. Thereby, the ground state was calculated
in an approximative way by using the variational principle:
Using Gaussian type Ansätze for both the bosonic and
fermionic1 parts of the vacuum wave functional jϕi, the
expectation value hϕjH̃jϕi was calculated on two-loop
level. From its minimization, a set of coupled integral
equations for the variational kernels contained in the Ansatz
for the wave functional jϕi was obtained. While the so-
called gap equation for the Yang–Mills sector was solved
numerically in Ref. [16], the full coupled equations were
left unsolved in Ref. [7] due to the high numerical expense.
Instead, the zero-temperature propagators obtained in
Ref. [17] were used to calculate the dressed Polyakov loop
and the temperature dependence of the chiral quark con-
densate for μ ¼ 0. Remarkably, within these approxima-
tions the inclusion of the coupling of the quarks to the
transverse spatial gluons showed only a negligible effect on
the pseudocritical temperatures of the deconfinement and
chiral phase transitions.
In the present paper, we will give the numerical solution

of the finite-temperature variational equations of motion for
the quark sector and calculate the chiral condensate from it.
Since the numerical cost is substantially higher for solving
the full coupled equations, we will thereby neglect the
coupling between quarks and transversal gluons.2 Although
it is not clear whether the effect of the coupling of the
quarks to the transversal spatial gluons is still subleading at
finite-temperature, this will enable us to study the effects of
the temperature dependence of the solution on the order and
width of the chiral phase transition. Furthermore, it also
allows for comparison between the compactified theory and

the usual grand canonical approach to finite temperatures in
Hamiltonian QCD considered in Refs. [10–13].
Neglecting the coupling between quarks and transverse

gluons, the fermionic part of the QCD Hamiltonian3

reduces to

HQ ¼ H0
D þHQQ

C ; ð16Þ

where H0
D [Eq. (8)] is the free Dirac Hamiltonian and HQQ

C
follows from the Coulomb term (13) after substituting
ρ → ρQ [Eq. (14)]. Note that this implies the cancellation of
the Faddeev–Popov determinant in Eq. (13). Furthermore,
on the two-loop level the non-Abelian Coulomb kernel can
be replaced by its (Yang–Mills) vacuum expectation value,

g2hF̂abðx; yÞiYM ≈ δabVCðjx − yjÞ; ð17Þ

which plays the role of a confining quark potential,
VCðjx − yjÞ ¼ σCjx − yj at jx − yj → ∞, where σC is the
Coulomb string tension [18].
Neglecting the coupling between quarks and transversal

gluons, the Ansatz for the fermionic part of the vacuum
wave functional from Ref. [7] reduces to the BCS-type
functional

jϕi ¼ exp

�
−
Z
β
d3x

Z
β
d3yψmþ†ðxÞγ0Sðx − yÞψm

−ðyÞ
�
j0i;

ð18Þ

where S is a scalar variational kernel, ψ� denotes the
positive/negative spectral projection of the quark field ψ ,
and j0i is the bare vacuum of the Dirac sea, fulfilling
ψþj0i ¼ ψ†

−j0i ¼ 0. This type of Ansatz together with the
Hamiltonian (16) corresponds to the confining quark model
(Adler–Davis model) considered, e.g., in Refs. [9,19–21] at
zero temperature and in Refs. [10–13,22] in the usual
canonical approach to finite temperatures and densities. For
explicit calculations, it is convenient to switch to the
momentum space representation using

SðxÞ ¼
Z
β
đ3p expðiðp⊥ þΩnê3Þ · xÞSðp⊥;ΩnÞ; ð19Þ

where p⊥ ¼ p1ê1 þ p2ê2 is the planar momentum and

Ωn ¼ 2nþ 1

β
π; n ∈ Z ð20Þ

are the fermionic Matsubara frequencies resulting from the
Fourier transformation of the (compactified) spatial com-
ponent x3. Furthermore, we have introduced the short-hand
notation [đ ¼ d=ð2πÞ]

1The fermionic part of the vacuum wave functional in Ref. [7]
includes also the coupling of the quarks to the transversal gluons
and is hence not strictly Gaussian.

2In Ref. [7], this case was labeled as g ¼ 0 limit, although the
coupling of the quarks to the temporal vector field A0, and hence
the Coulomb interaction, is retained. 3For a discussion of the Yang–Mills part see Ref. [16].
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Z
β
đ3p≡

Z
đ2p⊥

1

β

X∞
n¼−∞

: ð21Þ

In the following, we focus on the limit of vanishing chemical potential (μ ¼ 0) and chiral quarks (mQ ¼ 0). From the
variational principle hϕjHQjϕi → min one finds then the following integral equation for the variational kernel Sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2⊥ þ Ω2
l

q
Sðk⊥;ΩlÞ ¼

CF

2

Z
β
đ3pVCðp⊥ − k⊥ þ ðΩn −ΩlÞê3Þ

1

1þ S2ðp⊥;ΩnÞ

×

"
Sðp⊥;ΩnÞð1 − S2ðk⊥;ΩlÞÞ − Sðk⊥;ΩlÞð1 − S2ðp⊥;ΩnÞÞ

p⊥ þ Ωnê3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2⊥ þ Ω2

n

p ·
k⊥ þ Ωlê3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2⊥ þ Ω2

l

q
#
; ð22Þ

where CF ¼ N2
C−1
2NC

is the value of the quadratic Casimir of the color group SUðNCÞ [7] and p⊥ ¼ jp⊥j. For the numerical
solution it is, however, more convenient to rewrite the scalar kernel S in terms of the effective quark mass function

Mðp⊥;ΩnÞ ¼
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2⊥ þΩ2

n

p
Sðp⊥;ΩnÞ

1 − S2ðp⊥;ΩnÞ
; ð23Þ

which transforms the gap equation (22) to

Mðk⊥;ΩlÞ ¼
CF

2

Z
β
đ3pVCðp⊥ − k⊥ þ ðΩn −ΩlÞê3Þ

Mðp⊥;ΩnÞ −Mðk⊥;ΩlÞ p⊥·k⊥þΩnΩl

k2⊥þΩ2
lffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2⊥ þΩ2
n þM2ðp⊥;ΩnÞ

p : ð24Þ

Assuming the linearly rising form4 VCðxÞ ¼ σCjxj for the
non-Abelian Coulomb potential (17), its Fourier transform
in the gap equation is given by

VCðpÞ ¼
8πσC
jpj4 : ð25Þ

The Coulomb string tension σC entering this expression
sets the overall scale in the present model. Lattice and
continuum calculations [24–28] favor values σC=σ ≈ 2…4
in terms of the Wilson string tension σ, with the rather large
uncertainties coming from the extrapolation of the lattice
Coulomb potential in the deep infrared. With the standard
value σ ¼ ð440 MeVÞ2 for the Wilson string tension, this
puts

ffiffiffiffiffiffi
σC

p
in the range 650 MeV…880 MeV. In the present

work, we will use a standard value of
ffiffiffiffiffiffi
σC

p ≈ 700 MeV
corresponding to σC=σ ≈ 2.5, but we should be aware that
this stipulation easily has uncertainties of up to 20%.
For a numerical evaluation, Eq. (24) is not directly

useful, since the entire calculation is dominated by the pole
of the Coulomb potential for the single frequency Ωn ¼ Ωl
which—in contrast to the T ¼ 0 equation discussed
below—is not lifted by the integration measure. We thus
have to introduce a small mass parameter μ (not to be
confused with the chemical potential) to regularize the

potential, and the entire calculation becomes very sensitive
to the actual value of μ and the number of Matsubara
frequencies included in the numerical code. We will present
more details on the Matsubara type of gap equation (24) in
Sec. IV, but, for the main part of this paper, we follow a
different route which also brings the underlying physics to
the fore, viz. we Poisson resum the Matsubara series. For
fermions, this is based on the simple distributional identity

1

β

X
n∈Z

f

�
2nþ1

β
π

�
¼

X
m∈Z

Z
∞

−∞
đpzfðpzÞð−1Þm expðimβpzÞ

ð26Þ

valid for a suitable test function f. If we use this equation to
replace the Matsubara sum, we find, after combining terms,
shifting the loop momentum p → q≡ p − k, and moving
the Poisson sum outermost:

MðkÞ ¼ CF

2

X∞
m¼−∞

ð−1Þm
Z

đ3q cosðβmðqz þ kzÞÞVCðjqjÞ

×
Mðqþ kÞ − ½1þ k·q

k2 �MðkÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðqþ kÞ2 þMðqþ kÞ2

p : ð27Þ

For any indexm, the integral under the sum is bound by the
m ¼ 0 contribution, i.e., the T ¼ 0 limit. The zero temper-
ature equation is, however, known to be both ultraviolet and
infrared finite [7,17] and the same must hence hold for
each integral in the Poisson sum (27) separately. (We will
corroborate this assertion further below.) The infrared

4In a dynamical calculation [18], one finds a potential VCðjxjÞ
which can be nicely fitted by a linearly rising term ∼jxj plus an
ordinary Coulomb term ∼1=jxj. The latter is also found in
perturbation theory [23], but neglected in the present paper since
it is infrared suppressed.
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singularity of the Matsubara formulation now reappears as a
convergence issue of the Poisson sum, but, as we will
demonstrate below, this issue can be handled analytically.
To close this section, we note that the Ansatz (18) leads

to the following expression for the chiral quark condensate:

hψ̄ψi ¼ hϕjψ†ðxÞγ0ψðxÞjϕi

¼ −2NC

Z
β
đ3p

Mðp⊥;ΩnÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2⊥ þΩ2

n þM2ðp⊥;ΩnÞ
p

¼ −2NC

X∞
m¼−∞

ð−1Þm

×
Z

d3p
ð2πÞ3 cosðmβpzÞ

MðpÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þMðpÞ2

p : ð28Þ

III. NUMERICAL METHOD

In this section, we sketch the numerical techniques
necessary to solve Eq. (27). To fix our notation and discuss
some numerical optimization, we briefly revisit the
T ¼ 0 case.

A. The zero-temperature case revisited

The zero-temperature gap equation is simply the m ¼ 0
contribution from Eq. (27). To study it numerically, we
measure all dimensionful quantities in units of the mass
scale

m2
0 ¼ CF σC ≈ ð800 MeVÞ2 for G ¼ SUð3Þ: ð29Þ

As explained earlier, this stipulation has rather large
uncertainties from the lattice calculations of σC so will
have all absolute numbers quoted in the present work. In
the discussion, we will also present results for the quark
condensate and the critical temperature, when m0 is
adjusted to match the lattice findings for the condensate
at T ¼ 0.
Next, we introduce spherical coordinates and exploit the

rotational symmetry of the T ¼ 0 system to eliminate the
azimuthal angle. This gives

MðkÞ ¼ 1

π

Z
∞

0

dq
Z

1

−1
dξ q2UðqÞMðQÞ − ½1þ qξ=k�MðkÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Q2 þMðQÞ2
p ;

ð30Þ

where

Q≡ jkþ qj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ q2 þ 2kqξ

q
; ð31aÞ

ξ≡ cos∢ðk; qÞ; ð31bÞ

and we have indicated that the scalar mass function can
only depend on k ¼ jkj due to spherical symmetry. The
prefactors in the mass scale Eq. (29) were chosen such that
all clutter is removed from the Coulomb potential, which
now simply reads

UðqÞ ¼ 1

q4
: ð32Þ

It is easy to see that the momentum integral in Eq. (30) is
ultraviolet convergent as long as MðkÞ is bounded at
k → ∞. In the infrared, the superficial 1=q pole in the
integrand disappears after integration over ξ, and the
equation is infrared finite as well. However, solving
Eq. (30) by iteration is very unstable and requires sub-
stantial under-relaxation for convergence. As a conse-
quence, a huge number of iterations (up to 20 000) is
necessary to find the solution with high accuracy. To better
understand this behavior, it is convenient to rewrite Eq. (30)
in quotient form by collecting all pieces that contain the
mass as a function of the external momentum,

MðkÞ ¼
1
π

R
∞
0 dq

R
1
−1 dξ q

2UðqÞ MðQÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2þMðQÞ2

p

1þ 1
π

R
∞
0 dq

R
1
−1 dξ q

2UðqÞ 1þqξ=kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2þMðQÞ2

p : ð33Þ

At first sight, this seems like a very bad way to rewrite the
equation, since both the numerator and denominator are
now infrared divergent. If we regularize the divergence by a
lower cutoff μ to the momentum integral, it is easy to see
that the leading μ → 0 contributions in the numerator and
denominator differ only by a factor MðkÞ. Thus, the rhs of
Eq. (33) reads, at small regulators,

MðkÞ þ μ

�
2

π

MðkÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þMðkÞ2

p þ nonlocal

�
þOðμ2Þ: ð34Þ

Iterating Eq. (33) therefore produces changes to the mass
function which are of order OðμÞ; i.e., the small infrared
regulator also limits the speed at which the iteration
progresses. This is what gives Eq. (33) its inherent stability:
any form of the gap equation in which the integrals are
infrared finite will produce iteration changes of order Oð1Þ
which are way too large and must hence be substantially
under-relaxed. By contrast, Eq. (33) can be over-relaxed
without loosing stability.
As often, stability does not automatically imply effi-

ciency: since Eq. (33) makes very small progress in each
step, a large number of more than 7000 iterations is still
necessary to solve it. This can, however, be cured by using
sequence accelerators for the iteration, which improve
convergence speed without sacrificing stability. In the
present case, we have tested both a variant of Aitken’s
Δ2-process [29] and Anderson’s higher degree secant
method [30]. Both algorithms must be vectorized, i.e.,
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their transformation must affect the entire solution at all
momenta k uniformly, because the convergence speed
would otherwise differ at different k and the solution
MðkÞ would become progressively distorted by the
acceleration.
The accelerators generally buffer a certain number of

iteration elements, and predict an improved estimator for
the next iteration based on its history. Anderson’s method,
in particular, comes with a level k ≥ 1 that describes the
dimension of the subspace in which the univariate secant
method is applied. It requires to store (kþ 1) previous
iterations, both accelerated and unaccelerated, and must
solve a k × k linear system for each iteration. Usually,
k ¼ 2 and k ¼ 3 give the best results, while levels k ≥ 6
rarely show any improvement. The Adler-Davis equation is
different, however: Since it converges extremely slowly, the
iteration can benefit from a much larger level k, combined
with a moderate over-relaxation. We found that k ¼ 18
with an over-relaxation α ¼ 1.5 give the best results. The
outcome is pretty impressive: The unaccelerated iteration
requires more than 7000 iterations to reduce the residual
(the distance of the lhs and rhs of the integral equation)5

below a threshold of 10−6, even when using over-
relaxation. If we combine it with Aitken’s method, the
overall iteration count is reduced to about 400 at the same

accuracy, while Anderson’s method requires only 66
iterations to reach a residual of 10−9. The sequence
accelerator thus gives a higher final accuracy and easily
saves us a factor 100 of CPU time in the present case. We
have plotted this situation again in the left panel of Fig. 1,
where we show the iteration history, i.e., the distance of the
intermediate result at iteration #n to the final solution,
kMðnÞ −M∞k. As can be seen from the double logarithmic
plot, the convergence of the accelerated sequences is less
smooth but much faster than the standard iteration, and
Anderson’s method is clearly superior.
The resulting solution to the T ¼ 0 equation is shown in

the right panel of Fig. 1. As mentioned in the introduction,
this mass function originates from the instantaneous part of
the quark propagator in Coulomb gauge. It cannot be
compared directly to the constituent mass function in
Landau gauge, and attempts to match the two definitions
reveal that the infrared limit Mð0Þ ≈ 133 MeV observed
here could still be compatible with the standard findings in
Landau gauge [31]. The mass function computed here gives
rise to a chiral condensate [7]

hψ̄ψi0 ¼ −
NC

π2

Z∞
0

dpp2
MðpÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2 þMðpÞ2
p

¼ −ð0.66 ffiffiffiffiffiffi
σC

p Þ3 ≈ −ð185 MeVÞ3; ð36Þ
if the standard scale Eq. (29) corresponding to σC=σ ¼ 2.5
is used.

B. The finite-temperature case:
Poisson resummation

At nonzero temperatures, the presence of the heat bath
singles out a rest frame and the original spatial Oð3Þ
symmetry is broken to Oð2Þ. As explained earlier, we
have put the heat bath in the spatial 3-direction and
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FIG. 1. Left: Convergence history of the standard and accelerated iteration method. Right: Solution of the gap equation for the mass
function MðkÞ at T ¼ 0.

5Here and in the following, we are measuring the distance of
solutions by the normalized L2 metric,

kM − Xk2 ≡ 1

N

XN−1

i¼0

½MðkiÞ − XðkiÞ�2; ð35Þ

where fkig are the grid positions on which the solutions are
defined, and N is the number of grid points. (This formula can be
extended to 2D grids for mass functions Mðk; ξkÞ at finite
temperature in an obvious manner.) The L2 norm is a good
compromise which measures convergence on average while still
giving each individual grid position enough weight so that
outliers will not go by unnoticed.
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compactified this dimension. The use of polar coordinates
k ¼ ðkz; k⊥;φkÞ is, however, discouraged since the mass
function would then depend on two noncompact coordi-
nates kz and k⊥, which complicates the UV and, in par-
ticular, the IR limit considerably. A better strategy is to
keep the spherical coordinates ðk;ϑk;φkÞ. The remaining
axial Oð2Þ symmetry of rotations about the 3-axis entails
that we can place the external momentum into the 1,3-plane
and set the azimuthal angle φk ¼ 0. Also, the mass function
must be invariant under the reflection kz → ð−kzÞ, as a
remainder of the original Oð3Þ symmetry6 and we can take
ξk≡cosϑk≥0 without loss of generality. The mass function
is hence

M¼Mðk;ξkÞ; k≥ 0; ξk ¼ cosϑk ∈ ½0;1�: ð37Þ
For the loop integration, we also adopt spherical coordi-
nates ðq; ϑ;φÞ. The angles only enter through their cosine
via the scalar product

q · k ¼ qzkz þ q⊥ · k⊥ ¼ qzkz þ q⊥k⊥ cosφ

¼ qk
h
cosϑ cosϑk þ cosφ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − cos2 ϑ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − cos2 ϑk

q i
¼ qk½ξξk þ η�; ð38Þ

where we have introduced the cosines

ξk ¼ cosϑk ∈ ½0; 1�;
ξ ¼ cosϑ ∈ ½−1; 1�;
γ ¼ cosφ ∈ ½−1; 1� ð39Þ

and defined the useful abbreviation

η≡ γ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − ξ2kÞð1 − ξ2Þ

q
: ð40Þ

In these coordinates, the Poisson resummed gap equa-
tion (27) in quotient form becomes

Mðk; ξkÞ ¼
1
π2
P∞

m¼−∞ð−1Þm
R
1
−1 dξ

R
∞
0 dqq2UðqÞ cos½βmðkξk þ qξÞ� R 1

−1
dγffiffiffiffiffiffiffi
1−γ2

p MðQ;ξQÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2þMðQ;ξQÞ2

p

1þ 1
π2
P∞

m¼−∞ð−1Þm
R
1
−1 dξ

R∞
0 dqq2UðqÞ cos½βmðkξk þ qξÞ� R 1

−1
dγffiffiffiffiffiffiffi
1−γ2

p 1þq=kðξξkþηÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2þMðQ;ξQÞ2

p ; ð41Þ

with the shifted momentum

Q2 ¼ q2 þ k2 þ 2kqðξξk þ ηÞ; ð42aÞ

ξQ ¼ jkξk þ qξj=Q: ð42bÞ
If we compare this to the T ¼ 0 version in Eq. (30), it is
evident that them ¼ 0 term in the Poisson sums reproduces
the T → 0 limit, if we assume that the mass function does
not depend on ξk because of the restored Oð3Þ symmetry.
Also, the shifted momentum Eq. (42) agrees with the T ¼ 0
limit in the equation below (30) when ξk ¼ 1, i.e., when the
external momentum points into the direction of the heat
bath. This direction of the external momentum therefore
gives the closest analogue of the T ¼ 0 mass function, and
we will therefore compare Mðk; ξk ¼ 1Þ to the T ¼ 0 limit
in Sec. IV below.
Eq. (41) is not yet suited for numerical investigation. As

we have explained in the previous section, a small regulator

μ for the infrared divergence of the quotient form is
required and provides for a stable iteration,

UðqÞ ¼ 1

ðq2 þ μ2Þ2 : ð43Þ

At finite temperatures, however, the infrared divergence
also leads to a poor behavior of the Poisson series, whose
terms typically decay very slowly when μ ≪ 1. It is
therefore convenient to subtract an analytic helper function
in the integrands of Eq. (41), which will render the
q-integral IR finite at q → 0. Of course, we have to add
back in what we subtracted, and this extra term will now
carry the infrared divergence and the poor Poisson sum.
The advantage of this procedure is that the part of the
calculation which depends on the (numerically expensive)
mass function is finite and quickly converging, while the
problematic terms can be handled analytically. The gap
equation now takes the form

Mðk; ξkÞ ¼
gðk; ξkÞ þ 1

π2
P∞

m¼−∞ð−1Þm
R
1
−1 dξ

R
∞
0 dq q2UðqÞ cos½βmðkξk þ qξÞ� R 1

−1
dγffiffiffiffiffiffiffi
1−γ2

p uðq; ξ; γ; k; ξkÞ
hðk; ξkÞ þ 1

π2
P∞

m¼−∞ð−1Þm
R
1
−1 dξ

R∞
0 dq q2UðqÞ cos½βmðkξk þ qξÞ� R 1

−1
dγffiffiffiffiffiffiffi
1−γ2

p vðq; ξ; γ; k; ξkÞ
; ð44Þ

6This corresponds to the reflection n → −ðnþ 1Þ of the Matsubara indices which flips the sign of the Matsubara frequency.
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where the integrands read

uðq; ξ; γ; k; ξkÞ ¼
MðQ; ξQÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Q2 þMðQ; ξQÞ2
q − Δuðq; ξ; γ; k; ξkÞ;

ð45aÞ

vðq; ξ; γ; k; ξkÞ ¼
1þ q=kðξξk þ ηÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2 þMðQ; ξQÞ2

q − Δvðq; ξ; γ; k; ξkÞ;

ð45bÞ
and the subtractions are compensated by the inhomogene-
ities g and h. An obvious choice for the subtractions is the
q ¼ 0 limit of the integrands,

Δuðq; ξ; γ; k; ξkÞ ¼
Mðk; ξkÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 þMðk; ξkÞ2
p ð46aÞ

Δvðq; ξ; γ; k; ξkÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 þMðk; ξkÞ2
p : ð46bÞ

With this subtraction, the integrands u and v behave as
OðqÞ at small momenta, but the leadingOðqÞ term is linear
in γ and thus γ-integrates to zero. The result of the γ-
integration is hence Oðq2Þ which, together with the factor
q2UðqÞ ∼ q−2, yields a finite loop integral at q → 0, even in
the absence of a cutoff. The infrared divergence now
reappears in the inhomogeneities

gðk; ξkÞ ¼
1

π2
X∞

m¼−∞
ð−1Þm

Z1
−1

dξ
Z∞
0

dq q2UðqÞ cosðβmðkξk þ qξÞÞ
Z1
−1

dγffiffiffiffiffiffiffiffiffiffiffiffi
1 − γ2

p Δuðq; ξ; γ; k; ξkÞ ð47aÞ

hðk; ξkÞ ¼ 1þ 1

π2
X∞

m¼−∞
ð−1Þm

Z1
−1

dξ
Z∞
0

dq q2UðqÞ cosðβmðkξk þ qξÞÞ
Z1
−1

dγffiffiffiffiffiffiffiffiffiffiffiffi
1 − γ2

p Δvðq; ξ; γ; k; ξkÞ; ð47bÞ

where it can be handled analytically: after performing the integrations with a small infrared regulator μ > 0 in the potential
UðqÞ as in Eq. (43), we obtain

gðk; ξkÞ ¼
Mðk; ξkÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 þMðk; ξkÞ2
p X∞

m¼−∞
ð−1Þm cosðβmkξkÞ

2μ
expð−mβμÞ

¼ Mðk; ξkÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þMðk; ξkÞ2

p ·
1

2μ

sinhðβμÞ
coshðβμÞ þ cosðβkξkÞ

: ð48Þ

The calculation for h is identical, without the overall factor Mðk; ξkÞ in the numerator,

hðk; ξkÞ ¼ 1þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þMðk; ξkÞ2

p X∞
m¼−∞

ð−1Þm cosðβmkξkÞ
2μ

expð−mβμÞ

¼ 1þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þMðk; ξkÞ2

p ·
1

2μ

sinhðβμÞ
coshðβμÞ þ cosðβkξkÞ

: ð49Þ

Note that the full Poisson sum appears to be finitewhen the
regulator is removed, while the m ¼ 0 term is 1=ð2μÞ and
thus really diverges in the infrared. As explained in the
previous section, both the numerator and denominator of
the gap equation in quotient form should be infrared
divergent at T ¼ 0 and this property should also persist
at T > 0. This apparent contradiction comes from an order
of limits issue: since the relevant terms in Eq. (48) have the
argument βμ, the limit μ → 0 at finite β gives a finite result,
while the limit β → ∞ at finite μ yields the expected T ¼ 0
divergence 1=ð2μÞ. This indicates that the correct formu-
lation (the one which is continuously connected to the T¼0
case) must retain a small but finite IR cutoff μ > 0. Taking
μ → 0 too early will lead to a different (finite) formulation

in which the T → 0 limit disagrees with the well-known
T ¼ 0 result. We will thus always keep a small but nonzero
IR cutoff μ > 0 which ensures a smooth limit T → 0 and
also stabilizes the iteration as explained in the previous
section.
With the Fourier integrand going as Oðq0Þ at q → ∞,

simple dimensional analysis suggests that the terms in the
Poisson sum decay as ðβmÞ−1 which, together with the
alternating sign, amounts to a poorly converging series.7

7Even with a regulator, the damping factor e−βjmjμ indicates
that of the order 1=ðβμÞ ≈ 105 terms would have to be summed if
done naively.
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This type of slowly converging alternating series can,
however, be handled quite efficiently using the ϵ-algorithm
[32,33]. The alternative would be to attempt one more
subtraction of the Oðq2Þ behavior under the integrands u
and v. This leads, however, to a rather formidable expression
involving up to second order derivatives of themass function.
Since the latter is only known numerically on a rather coarse
momentumgrid, the second subtraction cannot be carried out
with sufficient accuracy and we stick to Eq. (46).
Eq. (44) is the final form of the gap equation which we

solve iteratively: we start with an arbitrary functionM0ðkÞ,
either the T ¼ 0 solution or a constant,

Mðk; ξkÞ ¼ M0ðkÞ ∀ ξk ∈ ½0; 1�; ð50Þ

and use Anderson’s algorithm as a sequence accelerator as
in the T ¼ 0 case, cf. Fig. 1. Once the system has been
iterated to convergence, we can extract the chiral con-
densate from

hψ̄ψi ¼−
NC

π2
X∞

m¼−∞
ð−1Þm

×
Z1
0

dξ
Z∞
0

dqq2 cosðmβqξÞ Mðq;ξÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2þMðq;ξÞ2

p ; ð51Þ

which is the finite-temperature extension of Eq. (36).

C. The finite-temperature case:
Matsubara formulation

The poisson resummation technique described in the last
section is convenient at low temperatures where only a few
terms are required. In addition, the T ¼ 0 limit is recovered
from the lowest term of the series. As the temperature
increases, more and more terms of the Poisson series
have to be included. At very high temperatures, we may
thus reach a point where the original Matsubara formu-
lation is more convenient, as the relevant sums are saturated
by the first few Matsubara frequencies. In particular, only
the lowest Matsubara frequency survives in the high-
temperature limit T → ∞.
Though our numerical procedure mainly relies on the

Poisson technique, we have also solved the quark gap
equation (24) in the Matsubara representation and com-
pared it with the results of the Poisson formulation. This
will provide an independent test for the accuracy of our
numerics.
For the Matsubara formulation, we employ the residual

Oð2Þ symmetry of rotations about the 3-axis to let the
external momentum component in the plane perpendicular
to the heat bath point into 1-direction, k⊥ ¼ k⊥e1. For the
loop integration, we use polar coordinates q⊥ and
ξ ¼ cos∢ðq⊥; e1Þ. We can then express Eq. (24) in these
coordinates, scale all dimensionful quantities in the units of
Eq. (29) and finally go over to the more stable quotient
form. This gives

Mðk⊥;ΩlÞ ¼
2
πβ

P∞
n¼0

R
∞
0 dq⊥

R
1
−1 dξ

q⊥ffiffiffiffiffiffiffi
1−ξ2

p P
�Uð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2⊥ þ ðΩl �ΩnÞ

p
Þ MðQ⊥;ΩnÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Q2⊥þΩ2
nþMðQ⊥;ΩnÞ2

p

1þ 2
πβ

P∞
n¼0

R∞
0 dq⊥

R
1
−1 dξ

q⊥ffiffiffiffiffiffiffi
1−ξ2

p P
�Uð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2⊥ þ ðΩl � ΩnÞ

p
Þ

1þk⊥q⊥ξþΩlð�Ωn−ΩlÞ
k2⊥þΩ2

lffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2⊥þΩ2

nþMðQ⊥;ΩnÞ2
p

; ð52Þ

where Q⊥ ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2⊥ þ q2⊥ þ 2k⊥q⊥ξ

p
. Because of the sym-

metryMðk⊥;ΩlÞ ¼ Mðk⊥;−ΩlÞ ¼ Mðk⊥;Ω−l−1Þ, we can
restrict the external Matsubara index to l ≥ 0. On the rhs of
Eq. (52), we have also combined the terms with index n and
−ðnþ 1Þ, since they only differ in the sign of the frequency
Ωn. This ensures that only mass functions with a Matsubara
indexn ≥ 0 appear on both sides of Eq. (52) and the coupled
integral equation systemcloses. The chiral condensate can be
expressed in the Matsubara formulation as

hψ̄ψi¼−
2NC

πβ

X∞
n¼0

Z
∞

0

dq⊥q⊥
Mðq⊥;ΩnÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q2⊥þΩ2
nþMðq⊥;ΩnÞ2

p :

ð53Þ

For a numerical evaluation, the potential UðqÞ must be
infrared regularized as in Eq. (43), and the number of
Matsubara frequencies included in the system must be
restricted to n < N. The system (52) then resembles the

T ¼ 0 equation, however, with an N-component solution
Mlðk⊥Þ≡Mðk⊥;ΩlÞ and a different integrationmeasure. It
is the latter propertywhichmakes theMatsubara formulation
less convenient: for small regulators μ ≪ 1, the potential U
has a strong singularity at q⊥ ¼ 0 if the external and loop
frequencymatch,Ωl ¼ Ωn. This singularity is only partially
canceled by the integration measure and the n ¼ l term
dominates the entireMatsubara sumby a relative factor1=μ2.
As before, this singular factor is canceled between the
numerator and denominator, and the remaining Oðμ2Þ
contributions from the other terms n ≠ l in the Matsubara
sum carry the actual corrections to the mass functions. This
means that the iteration progresses much slower than at
T ¼ 0, and, more problematic, the n ≠ l terms from the
Matsubara sums must be computed to a very high accuracy.
In addition to the high accuracy demand, the Matsubara

formulation has the property that all components
Mðk⊥;ΩlÞ are coupled by the system (52), so that the
index cutoff N must be fixed once and for all and cannot
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be adjusted dynamically.8 If the external index l
approaches the cutoff N, there are only a few frequencies
larger than the dominating contribution n ¼ l; i.e., the
Matsubara sum is truncated unsymmetrically and the
higher frequencies l ≈ N thus have a systematic bias.
The only solution is to include a very large number of
frequencies N, so that the inaccurate modes near the
cutoff give such a small contribution that their combined
error does not matter. Unfortunately, the computational
effort of the system (52) scales strictly as OðN2Þ, so that
the inclusion of higher frequencies is limited by practical
considerations. In our studies, we were able to push the
Matsubara mode count to N ¼ 100 for the lower temper-
atures, which means that we have 10 000 times the
numerical effort of the T ¼ 0 solution per iteration, plus a
much larger iteration count due to the slow convergence
of Eq. (52) and an increased accuracy demand. Even with
this considerable effort, the frequency count was just
enough to map the transition region, but temperatures
below T ¼ 50 MeV give incorrect results and require a
different (massively parallel) strategy, cf. Fig. 7. By
contrast, the Poisson formulation—though much more
costly per iteration—scales better with increasing temper-
ature as it can adjust its mode count dynamically and
hence will always give a correct result, albeit with a
(moderately) increased effort at higher temperatures.
Finally, it should also be mentioned that the convergence

of the Matsubara system (52) is nonuniform in the
frequency index; i.e., the lowest frequencies are stable
after a relatively small iteration count, while the highest
frequencies (which contribute the least) are the slowest to
converge. In practice, we have to stop the iteration at some
point where the highest frequencies may not have fully
converged. Since we relax from above, this means that the
highest frequency mass functions are systematically too
large, and, although each frequency contributes very little,
their combined effect may lead to overestimate the con-
densate Eq. (53). We will see this effect in Fig. 7 below,
where the Matsubara values for the condensate in the
transition region are all slightly larger than the correspond-
ing Poisson results.

IV. RESULTS

We split our result section in two parts: first, we consider
numerical details on the individual parts of our calculation

to demonstrate that the fairly complicated process actually
works as intended. In the second part, we discuss the final
results for the mass function and the chiral condensate at
different temperatures.

A. Details on the numerical method

In the following, we present some typical results of
intermediate steps in the calculation. Numerical issues
appear predominantly in the earlier steps of the iteration,
and the eventual mass function has a similar shape to the
initial zero-temperature solution, cf. below. For simplicity,
we can therefore assume the zero-temperature mass func-
tion for the qualitative arguments in this subsection.
Furthermore, we fix the external momentum to a typical
value k ¼ 200 MeV and ξk ¼ 0.5, which is in the region
where the mass function changes most quickly.
It should also be noted that we generally combine terms

with both signs �ξ in all internal calculations; i.e., we
symmetrize the ξ-integrand

Z1
−1

dξ fðξÞ ¼
Z1
0

dξ½fðξÞ þ fð−ξÞ�: ð54Þ

To keep the formulas simple, we will not always indicate
this symmetrization, which is implicitly understood.
We begin with the integrand of the momentum integral

omitting the Fourier cosine factor for clarity and combining
terms from ξ and ð−ξÞ,

q ↦ q2UðqÞ
Z1
−1

dγffiffiffiffiffiffiffiffiffiffiffiffi
1 − γ2

p X
�
uðq;�ξ; γ; k; ξkÞ: ð55Þ

The integration here can be done very efficiently using
Gauss-Chebychev integration, which automatically takes
care of the square root factor in the denominator. In Fig. 2,
we have plotted Eq. (55) for two values of ξ close to the
boundary, for both the numerator (left panel) and the
denominator (right panel) of the gap equation (44). The
shape of the functions is quite similar in all cases: for small
momenta q, the functions approach a constant, which is
maintained for about two to three orders of magnitude,
before the influence of the regulator μ ¼ 0.1 MeV sets in
and the functions quickly vanish for q < μ. For the
numerator, the function with the large ξ lies above the
one with the smaller ξ, while this order is reversed in
the denominator. The general shape of all these functions is
in agreement with our discussion of the subtraction above.
The actual integrand of the momentum integral still has the
Fourier cosine factor, which leads to the oscillating
functions depicted in Fig. 3.
Next, we consider the integrand of the ξ-integral after

performing the Fourier momentum integration,

8It is possible to increase the number of frequencies included
in the sum by assuming that the Oð3Þ invariance is restored
for large frequencies. This allows to approximate Mðk⊥;ΩlÞ ≈
Mðk̄⊥;ΩN−1Þ for large frequencies l ≥ N, where k̄⊥ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2⊥ þ Ω2
l − Ω2

N−1

p
> k⊥. For small N, this approximation is

not applicable, and for largeN it is unnecessary since the sum will
converge without it. The extrapolation is hence most useful in the
intermediate region N ≈ 40 where it can save a factor of 2–4 in
computation time.
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ξ ↦
Z∞
0

dq q2UðqÞ cosðβmðkξk þ qξÞÞ

×
Z1
−1

dγffiffiffiffiffiffiffiffiffiffiffiffi
1 − γ2

p X
�
uðq;�ξ; γ; k; ξkÞ: ð56Þ

Note that the argument ξ in this function can be restricted to
ξ ∈ ½0; 1� due to the symmetrization of �ξ. Besides the
external momentum (which we have fixed to the same
standard value as in the previous figures), this function now
depends on both the temperature and the Poisson summa-
tion index. In the left panel of Fig. 4, we have plotted
Eq. (56) for a fixed temperature T ¼ 50 MeV and two
Poisson indices m ¼ 1 and m ¼ 10. As can be seen, the
function Eq. (56) is nonoscillating and rather smooth,

except for a steep drop in the vicinity of ξ ¼ 0. This is
the region where the Fourier momentum integral has a low
frequency, and thus the cancellations due to rapid oscil-
lations are absent. Numerically, an accurate integration of
Eq. (56) requires a large number of sampling points if a
uniform ξ-sampling is adopted. Alternatively, it is more
efficient to spread out the low ξ-behavior by a change of
variables ξ ¼ tn with n > 1,

Z1
0

dξ fðξÞ ¼
Z1
0

dt ntn−1fðtnÞ≡
Z1
0

dt f̄ðtÞ: ð57Þ

In the right panel of Fig. 4, we show the n ¼ 4 trans-
formation Eq. (57) of the plots in the left panel. The
detailed structure at low ξ is now spread out and the
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FIG. 2. Integrand of the momentum integral of Eq. (44) without the Fourier cosine factor, cf. Eq. (55). The two panels show the
numerator (left) and denominator (right) of the gap equation (44), respectively. Parameters are ξ ¼ 0.05 and ξ ¼ 0.95 for the loop angle,
and k ¼ 200 MeV and ξk ¼ 0.5 for the external momentum.
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FIG. 3. Full integrand of the momentum integral in the numerator of the gap equation (44) for a temperature of T ¼ 50 MeV and
Poisson index m ¼ 1 (left) and m ¼ 10 (right).
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resulting function can be accurately integrated using Gauss-
Legendre with about 30 sampling points. (By contrast,
more than 1,200 uniformly distributed sampling points
were used for the left panel of Fig. 4). The absolute value of
the ξ-integrals in the left panel of Fig. 4 are 1.933 for
m ¼ 1 and 0.221 for m ¼ 10, respectively. This demon-
strates the relatively slow 1=m decay of the Poisson sum,
even at a small temperature of T ¼ 50 MeV. The integral
of the transformed function in the right panel of Fig. 4
agrees, of course, with the corresponding integral in the left
panel. The integrands in the denominator of the gap
equation show a qualitatively similar behavior and are
not plotted here for brevity.
Finally, we check the convergence of the Poisson sums in

the gap equation (44). We fix the external momentum again

at our preferred value k ¼ 200 MeV and ξk ¼ 0.5, and plot
the partial Poisson sums in Eq. (44), including the prefactor
1=π2. The sums are even in m, i.e., we can combine terms
with �m,

X∞
m¼−∞

am ¼
X∞
m¼0

ð2 − δm0Þam ≡ X∞
m¼0

bm: ð58Þ

Figure 5 presents the partial sums in the gap equation (44)
as a function of the upper summation bound, for our
preferred external momentum setup. The left panel shows
the situation for T ¼ 50 MeV, while the right panel dis-
plays T ¼ 150 MeV. The m ¼ 0 term dominates in all
cases, while the m > 0 terms contribute with alternating
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FIG. 4. Left: Integrand of the ξ-integral in the numerator of the gap equation gap equation (44),) for a temperature of T ¼ 50 MeV and
two Poisson indices m ¼ 1 and m ¼ 10. Right: The same functions after applying the change of variables t ¼ ξ4.
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value k ¼ 200 MeV and ξk ¼ 0.5.
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signs, giving rise to oscillations in the partial sum which
decay rather slowly (∼m−1). These oscillations are much
more pronounced for the higher temperature in the right
panel of Fig. 5. Numerically, we have found that up to
10 000 terms would have to be summed in this case in order
to suppress the oscillations and predict the value of the
infinite series to a relative accuracy of 10−4. By contrast,
the ϵ-algorithm is able to reach the same accuracy from
only the first 25 terms in the series.

B. Results

In the left panel of Fig. 6, we show the mass function
Mðk; ξkÞ for the two extreme directions ξk of the external
momentum (longitudinal and perpendicular to the heat
bath). As explained earlier, the closest analog of the T ¼ 0
mass function M0ðkÞ in our finite-temperature formulation
isMðk; ξk ¼ 1Þ, when the external momentum points in the
direction of the heat bath. This curve has indeed a very
similar form to the T ¼ 0 solution plotted for comparison,
while the ξ ¼ 0 curve shows some deviations. Also, the
mass function is already considerably smaller than at
T ¼ 0, even though the temperature T ¼ 80 MeV in this
plot is still in the confined phase. In order to recover the
T → 0 limit, we would thus have to go to very small
temperatures. This is shown in the right panel of
Fig. 6, where we compare the mass function for small
temperatures with the T ¼ 0 limit. As can be seen, the
mass function starts to drop already at temperatures
below 10 MeV. From Eq. (51), this does not directly
translate into a drop of the condensate, since the mass
function appears in the numerator and denominator of
the integrand, which is thus less sensitive to the mass
function at small momenta. (The temperature also appears
through the Fourier sum which gives the main temperature
sensitivity.)

For these reasons, the intercept Mð0; 1Þ of the mass
function is not a good indicator for the phase transition, in
particular since it is also gauge dependent. This is also the
reason why it cannot be directly compared to the constitu-
ent mass in conventional covariant gauges; instead, it
represents a gauge-dependent mass parameter from the
instantaneous part of the quark propagator in Coulomb
gauge. In Ref. [31] it was demonstrated that such a mass
parameter in Coulomb gauge could be as low as Mð0Þ ≈
100 MeV and still be compatible with the (much larger)
constituent masses in Landau gauge.
The gauge-invariant order parameter for the phase

transition is the chiral condensate plotted in Fig. 7. This
shows the expected behavior; i.e., it is roughly constant for
small temperatures and drops quickly to very small values
at a characteristic transition temperature T�. For higher
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FIG. 6. Left: Mass function Mðk; ξkÞ at T ¼ 80 MeV with the momentum k pointing in various directions relative to the heat bath.
Right: Mass function Mðk; 1Þ for small temperatures compared to the T ¼ 0 limit.
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temperatures, it is practically zero within our numerical
precision.9 The exact location of the phase transition
temperature T� depends on the order of the transition: If
it is a strong crossover, one usually defines T� from the
inflexion point, while a second order transition would have
a jump discontinuity in the derivative at the temperature
where a nonvanishing condensate appears for the first time
as we cool from the deconfined phase. This value of the
transition temperature is always larger than the inflexion
point. Our data indeed indicates at a (weak) second order
transition with a critical temperature of

T� ¼ 92 MeV: ð59Þ

Both the order and the critical temperature differ from the
result of our previous investigation in Ref. [7], where a
broad crossover phase transition with pseudocritical tem-
perature 165 MeV was obtained in the limit of a vanishing
quark-gluon coupling. It should, however, be mentioned
that the solution of the zero temperature gap equation was
used at all temperatures in Ref. [7], which is certainly a
quite crude approximation.
In Fig. 7, we have also included data from a direct

summation of the original Matsubara series (24) with the
same cutoff μ ¼ 0.1 MeV to take care of the infrared
singularity and the transformation to quotient form for
better stability. This system scales quadratically with the
number of included Matsubara frequencies, and up to 100
frequencies (i.e., 10 000 times the effort as compared to
T ¼ 0) were necessary to even reach the transition region.10

By contrast, the Poisson formulation, though much more
expensive per iteration, has no infrared singularity and
provides the correct results even at larger temperatures,
where the increase in computational effort as compared to
lower temperatures is still moderate. Combined with the
physical transparency of the method, this warrants the high
numerical effort of the Poisson resummation.
Returning to the results for the chiral phase transition, it

should be emphasized again that the absolute value of T� as
well as the size of the condensate depends on the overall
scale set by the Coulomb string tension, cf. Eq. (29). The
cited values are for the preferred value σC ¼ 2.5σ. In view
of the uncertainties about the fundamental scale, it is better
to cite our findings for the critical temperature as

T�=
ffiffiffiffiffiffi
σC

p ¼ 0.13: ð60Þ

For instance, a somewhat larger value σC=σ ¼ 4.1 would
reproduce the lattice results for the chiral condensate and
push the transition temperature to around T� ≈ 118 MeV.
A second-order chiral phase transition is the expected

result for a system of two chiral quark flavors, as can be seen
from the so-called Columbia diagram [1,2]. This might be
surprising since we consider only one single quark flavor
within ourmodel.One should, however, notice that as long as
the variational kernel S is flavor-diagonal, our results would
not change even if we would take more flavors into account.
Since the neglect of the bare quark masses is the best
approximation for two quark flavors (i.e., up and down), a
second-order phase transition is definitelymeaningful for the
considered model. Especially, it also agrees with the result
found when finite temperatures are introduced within the
grand canonical ensemble, see e.g., Refs. [12,13]. The
introduction of a flavor-dependent variational kernel might
become necessary as soon as finite current quark masses and
unquenching effects are incorporated into the model. This
could yield a dependence of the order of the phase transition
on the number of quark flavors, as one would also expect
from the Columbia diagram.
While the order of the chiral phase transition is the same

in both the canonical and the present approaches to finite
temperatures, the critical temperature T�

can ¼ 0.091
ffiffiffiffiffiffi
σC

p ≈
64 MeV found11 in the numerical calculations of Ref. [13]
for vanishing chemical potential μ ¼ 0 is significantly
smaller than our result. There are several possible reasons
for this discrepancy: On the one hand, the evaluation of the
partition function [see Eq. (6)]

Z ¼ trϱ ¼ tr expð−β½H − μN�Þ; ð61Þ

whereH is the QCD Hamiltonian on R3, necessitates some
approximations in the canonical approach. This concerns
especially the treatment of the density operator ϱ [Eq. (6)]
of the grand canonical ensemble, where a quasiparticle
approximation is required for the Hamiltonian H.12,13 Note
that such an approximation is not required in the present
approach and no equations of motion for the quasiparticle
energies hence emerge. On the other hand, however, the
present approach is based on the finite-temperature for-
malism of Ref. [8], which in turn relies on the Oð4Þ-
invariance of the Lagrangian—this is not entirely fulfilled

9For temperatures T > T�, the nontrivial solution presumably
ceases to exist, and we only have the trivial solution M ¼ 0,
which is always present. The fact that the condensate is not
exactly zero is a numerical artifact: the iterative solution requires
very many iterations to relax to M ¼ 0, and we have simply
stopped the process after about 100þ CPU hours.

10In principle, an infinite number of frequencies would be
necessary to overcome the infrared singularity in the Matsubara
formulation, and including only a finite number results in a
regulator dependency that becomes most pronounced in the deep
infrared, where the condensate for the Matsubara calculation
clearly falls short of the expected value.

11Note that we adjusted the result from Ref. [13] to the value of
the Coulomb string tension used in the present paper.

12Such an approximation can be done by performing a
Bogoliubov transformation of H and keeping only the diagonal
single-particle contributions [9,10].

13The approach of Ref. [12] corresponds—in the standard
Hamiltonian approach—to a quasiparticle Ansatz for the density
operator of the grand canonical ensemble andminimizing the grand
canonical potential with respect to the quasiparticle energies.
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in the Adler–Davis model since it contains the fermionic
parts of the Coulomb interaction (13) (which is related to
the A0 − A0 correlator [34]) but no contribution from the
spatial gluons.
Nevertheless, the value for the critical temperature

Eq. (60) is too small as compared to the one found in
lattice simulations for physical quark masses, T�

lat ≈
155 MeV [35]. Note that also the gauge invariant chiral
quark condensate (Fig. 7) falls behind the value expected
from phenomenology. The fact that the Adler–Davis model
predicts significantly too small results, e.g., for the pion
decay constant, is well known and also obtained in the
canonical approach [36]. In this respect, we should stress
that an increase of the critical temperature, and other
quantities as the condensate, is expected when the coupling
of the quarks to the transverse spatial gluons is included, as
the numerical calculation performed in Ref. [7] shows.
Such a more complete system would also allow for a more
reliable comparison between the results obtained within the
novel and the canonical approach to finite-temperature
Hamiltonian QCD.
Unfortunately, the inclusion of the coupling to the

transversal spatial gluons will drastically increase the
numerical costs, which is already considerable in
the present study. Although the coupling effects turned
out to be small when the solution of the zero-temperature
gap equation is used [7], it is not clear if this is still true in
the full temperature-dependent calculations. In contrast, the
inclusion of finite bare quark masses should only smear out
the phase transition to a crossover without having major
effects on the value of the critical temperature.
Finally, one should emphasize again that the Coulomb

string tension could also be adjusted to σC=σ ≈ 4.1, which
reproduces the phenomenological value of the quark
condensate, hψ̄ψi ¼ −ð236 MeVÞ3, but is somewhat larger
than the lattice prediction. With this arrangement, one
would find a critical temperature of T� ¼ 118 MeV.

V. SUMMARY AND CONCLUSIONS

In the present paper, we have revisited the alternative
Hamiltonian approach to finite-temperature QCD of
Ref. [8] and solved the temperature-dependent equations
of motion of the fermion sector numerically. In a first study,
we have ignored the coupling of quarks and transverse

spatial gluons. The apparent infrared singularity of the
resulting model could be resolved using Poisson resum-
mation of the original Matsubara series, and the resulting
integral equation system was solved using refined numeri-
cal techniques combined with analytical computations.
Even though the iteration is stable and amenable to series
accelerations, the loss ofOð3Þ symmetry requires a Poisson
sum and three nested integrations per temperature, of which
the Fourier quadrature, in particular, is fairly expensive. As
a consequence, the final solution amounts to 100+ CPU
hours per temperature.
For zero bare quarkmasses, the results for the chiral quark

condensate show the expected weak second-order phase
transition with a critical temperature of T� ≈ 92 MeV.
While this value is larger than the one found within
the usual (canonical) approach to finite-temperature
Hamiltonian QCD [13], our findings for the critical temper-
ature are definitely smaller than the result of lattice calcu-
lations using dynamical quarks, T�

lat ≈ 155 MeV [35].
We suspect that the mismatch between our findings and

the lattice results is related to the neglect of the quark-gluon
coupling in the variational Ansatz, which also leads to a
value of the quark condensate which is too small. However,
if the scale is adjusted to reproduce the physical value
of the quark condensate instead of fixing the scale from the
rather poorly determined Coulomb string tension, the
critical temperature increases to about 118 MeV, which
is much closer to the lattice data (while σC=σ is still in the
range supported by lattice calculations). In forthcoming
investigations, we therefore intend to study how this
coupling affects the chiral phase transition. The solution
of the full coupled equations of motion will also allow for
the evaluation of the dressed Polyakov loop as an order
parameter for confinement. Furthermore, we plan to extend
our calculations to the general case of a finite chemical
potential, μ ≠ 0, in order to obtain a description of
the whole QCD phase diagram within the Hamiltonian
approach.
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