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Within the framework of the Uð3Þ chiral perturbation theory, we revisit the masses, decay constants, and
the mixing parameters of the light pseudoscalar mesons π, K, η, and η0. The low energy constants up to
next-to-next-to-leading order are determined by including the light-quark mass dependences of the various
quantities from different lattice QCD simulations and relevant phenomenological inputs. Then we study the
finite-temperature behaviors of the masses of the light pseudoscalar mesons. The thermal behaviors of the
η-η0 mixing angles in singlet-octet and quark-flavor bases are also explored. While the masses of the π, K,
and η are increased when increasing the temperatures, the mass of the η0 turns out to be slightly decreased in
the low-temperature region.
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I. INTRODUCTION

Spontaneous breaking of chiral symmetry and the UAð1Þ
anomaly are two characteristic features of QCD in vacuum.
The former gives the octet of the pseudo-Nambu-Goldstone
bosons (pNGBs), i.e., π, K, η, while the latter provides an
explanation to the large mass of the η0. The study of these
features in hot medium is important to advance the knowl-
edge of the QCD phase diagrams, which play crucial roles
in understanding the intricate phenomena of heavy ion
collisions, conducted e.g., at RHIC and LHC (ALICE).
Chiral symmetry restoration above the critical temper-

ature (Tc) is one of the compelling signals expected at these
large experimental facilities. Although at sufficiently high
temperatures it is well established that the anomalous
breaking of the UAð1Þ symmetry will be restored [1–4],
the situation around the Tc region is yet unclear and needs
to be further clarified. The influence of the chiral symmetry
restoration on the recovery of broken UAð1Þ symmetry is
also of great interest and has been the focus of many recent
works [5–21].
The thermal behaviors of the topological and chiral

susceptibilities serve as useful theoretical objects to dis-
criminate different patterns of the UAð1Þ and chiral sym-
metry restoration and have been extensively investigated by

many lattice simulations [18–21] and effective theory
studies [8–17]. The masses of the light flavor pseudoscalar
mesons π, K, η and η0 will be definitely affected by the
restoration of the UAð1Þ and chiral symmetries. Therefore
to study the temperature dependences of the masses of π,K,
η, and η0 constitutes an important approach to reveal the
interplay of the UAð1Þ and chiral symmetry restoration. We
mention that the conclusions on the thermal behaviors of
the light pseudoscalar masses are still controversial,
specially for η and η0. For example, in order to explain
the increased abundance of the η0 in hot medium, it is
concluded that the mass of the η0 needs to be reduced
around 200 MeV in Ref. [22], which is also supported by
the phenomenological study in Ref. [12]. In contrast, some
results from the lattice simulations and effective field
theories in Refs. [7,10,19] show that there is no obvious
drop of the η0 mass even in the relatively high temperature
region above Tc. The puzzling problem has intrigued many
studies in both lattice simulations and phenomenological
discussions [5–21].
In this work we proceed the study within the Uð3Þ chiral

perturbation theory ( χPT), with π, K, η, and η0 as its active
degrees of freedom. Uð3Þ χPT provides a unified theo-
retical framework to simultaneously incorporate the QCD
UAð1Þ anomaly, spontaneous and explicit chiral symmetry
breaking. The finite-temperature effects enter χPT through
the chiral loops and the low energy constants (LECs) of the
local operators are independent of the temperatures [23,24].
Therefore the unknown LECs can be determined by using
the experimental data and lattice simulations at zero
temperature. The thermal behaviors of the light pseudo-
scalar mesons will be then the pure predictions of χPT.
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We mention that one should not expect to obtain precise
descriptions of the physical quantities up to sufficiently
high temperature region within χPT. The reason is that at
high enough temperature above Tc quarks and gluons are
the relevant degrees of freedom, which are not explicitly
included in χPT. Nevertheless, there is strong evidence that
hadronic states still play quite important roles around and
below Tc [25]. We focus on the thermal properties of the π,
K, η, and η0 at low temperatures in this work.
In Ref. [26], one of the authors performed a complete

next-to-next-to-leading-order (NNLO) calculation of the
masses and decay constants of the light pseudoscalar
mesons within Uð3Þ χPT. In the present work we first
update the previous study by taking into account several
independent lattice simulation results, especially the
sophisticated lattice simulations in Ref. [27], where the
corrections of the unphysical strange quark mass and
finite lattice spacing for the η-η0 mixing parameters are
performed. New lattice results, including the pion-mass
dependences of the mixing angles and decay constants in
the quark-flavor basis, are considered, comparing with the
study in Ref. [26]. After the determination of theUð3Þ χPT
LECs, we extend the discussions at zero temperature to the
thermal medium with finite temperatures. The thermal
properties of the light pseudoscalar mesons will be studied.
The article is organized as follows. The relevant chiral

Lagrangians and the NNLO calculations of the masses,
decay constants and mixing parameters of the pNGBs π, K,
η and η0 are briefly discussed in Sec. II, where we also
determine the χPT LECs by taking into account the various
lattice simulation results and phenomenological inputs. The
temperature behaviors of the pNGBs will be discussed in
Sec. III. A short summary and conclusions shall be given
in Sec. IV.

II. CHIRAL LAGRANGIANS AND THE
DETERMINATION OF THE LECs

The massive singlet state η0, mostly responsible for the
physical η0 meson, can be systematically included in χPT
within the framework of large NC QCD. Based on its
argument, the quark loop induced UAð1Þ anomaly effect is
1=NC suppressed, indicating that themass squaredM2

0 of the
singlet η0 also behaves as 1=NC in the largeNC limit [28]. As
a result, the joint expansions of momentum squared (p2),
light quark masses (mq) and 1=NC provide the consistent
power counting scheme for Uð3Þ χPT [29,30]. For later
convenience, the joint expansion scheme shall be denoted as
δ expansion, being OðδÞ ∼Oðp2Þ ∼OðmqÞ ∼Oð1=NCÞ.
The relevant chiral Lagrangians and calculations of the
masses, decay constants and the η-η0 mixing up to NNLO
in the δ expansion have been discussed in detail in Ref. [26].
In order to setup the notations, we simply recapitulate the
main results here.
The Uð3Þ χPT Lagrangian at leading order (LO) in the δ

expansion, i.e., Oðδ0Þ, reads

Lðδ0Þ ¼ F2

4
huμuμi þ

F2

4
h χþi þ

F2

12
M2

0X
2; ð1Þ

with the basic chiral building tensors

U ¼ u2 ¼ ei
ffiffi
2

p
Φ

F ; χ ¼ 2Bðsþ ipÞ;
χ� ¼ u† χu† � u χ†u; X ¼ log ðdetUÞ;
uμ ¼ iu†DμUu†;

DμU ¼ ∂μU − iðvμ þ aμÞU þ iUðvμ − aμÞ; ð2Þ

and the Uð3Þ matrix of the pNGBs

Φ ¼

0
BBB@

1ffiffi
2

p π0 þ 1ffiffi
6

p η8 þ 1ffiffi
3

p η0 πþ Kþ

π− −1ffiffi
2

p π0 þ 1ffiffi
6

p η8 þ 1ffiffi
3

p η0 K0

K− K̄0 −2ffiffi
6

p η8 þ 1ffiffi
3

p η0

1
CCCA: ð3Þ

F stands for the pion decay constant at LO in the δ
counting. The last operator in Eq. (1) parameterizes the
QCD UAð1Þ anomaly effect and gives the singlet η0 the LO
mass M0.
The relevant Uð3Þ χPT Lagrangians to the present study

at NLO and NNLO are [29–31]

LðδÞ ¼L5huμuμ χþiþ
L8

2
hχþ χþþ χ− χ−iþ

F2Λ1

12
DμXDμX

−
F2Λ2

12
Xhχ−i; ð4Þ

and

Lðδ2Þ ¼ L4huμuμih χþi þ L6h χþih χþi þ L7h χ−ih χ−i

þ L18huμihuμ χþi þ L25Xh χþ χ−i þ
F2vð2Þ2

4
X2h χþi

þC12hhμνhμν χþi þC14huμuμ χþ χþi
þC17huμ χþuμ χþi þC19h χþ χþ χþi
þC31h χ− χ− χþi: ð5Þ

We refer to Ref. [26] for detailed discussions of the
previous Lagrangians.
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The chiral loops start to contribute at NNLO in the δ
expansion. When restricting to the masses, decay constants
and the η-η0 mixing, the only relevant chiral loops, shown in
Fig. 1, are the tadpole functions A0ðm2

i Þ with different
massesmi running in the loops. Following the conventional
MS − 1 dimensional regularization scheme in χPT [32],
the expression for A0ðm2Þ reads

A0ðm2Þ ¼ −m2 ln
m2

μ2
: ð6Þ

It is noted that the coefficient of 1=16π2 has been factored
out in order to match the convention of Ref. [26].
The calculations of the η-η0 mixing, the masses and

decay constants of the π, K mesons resemble the dis-
cussions in Ref. [26]. As mentioned in Ref. [33], it is
convenient to use the LO diagonalized fields η̄ and η̄0,
instead of the octet η8 and singlet η0, when calculating the
chiral loops involving η and η0 mesons. This is due to the
fact that the mixing strength between η8 and η0 starts from
the leading order in the δ counting. For η̄ and η̄0, which are
already diagonalized at LO, their mixing only get contri-
butions from higher order effects that at least belong to
NLO. In order to obtain the physical η and η0 states, it is
easy to work in the η̄ and η̄0 bases. Their general bilinear
terms up to NNLO can be written as

L ¼ δ1
2
∂μ∂νη̄∂μ∂νη̄þ δ2

2
∂μ∂νη̄

0∂μ∂νη̄0 þ δ3∂μ∂νη̄∂μ∂νη̄0

þ 1þ δη̄
2

∂μη̄∂μη̄þ 1þ δη̄0

2
∂μη̄

0∂μη̄0 þ δk∂μη̄∂μη̄0

−
m2

η̄ þ δm2
η̄

2
η̄ η̄−

m2
η̄0 þ δm2

η̄0

2
η̄0η̄0 − δm2 η̄η̄0; ð7Þ

where the coefficients δ0is only receive contributions from
NLO and NNLO. Through the field redefinition, one can
eliminate the higher derivative terms in Eq. (7). Next the
physical η and η0 states can be obtained by first diagonal-
izing and normalizing the kinematical terms and then
diagonalizing the mass terms. The relations between the
physical states and the singlet-octet basis can be written in
the popular two-mixing-angle form

�
η

η0

�
¼ 1

F

�
F8 cos θ8 −F0 sin θ0
F8 sin θ8 F0 cos θ0

��
η8

η0

�
: ð8Þ

Alternatively, one can also relate the physical η, η0 states
with the quark-flavor basis ηq, ηs,

�
η

η0

�
¼ 1

F

�
Fq cos θq −Fs sin θs
Fq sin θq Fs cos θs

��
ηq

ηs

�
; ð9Þ

where the quark-flavor basis is related to the singlet-octet
one through

�
ηq

ηs

�
¼

0
B@

ffiffi
1
3

q ffiffi
2
3

q

−
ffiffi
2
3

q ffiffi
1
3

q
1
CA
�
η8

η0

�
: ð10Þ

Since the quark-flavor and singlet-octet bases relate each
other through an orthogonal transformation, the descrip-
tions in the two bases give equivalent results to the η-η0
mixing. However it was noticed that the two different
mixing angles θq and θs in the quark-flavor basis are quite
similar and hence assumed to be equal in the so-called
Feldmann-Kroll-Stech (FKS) formalism [34]. Another way
to further understand the FKS assumption has been given in
Ref. [26], where it is pointed out that the FKS assumption is
in accord with neglecting of the kinematic mixing terms of
the ηq and ηs states. The FKS assumption seems supported
by many phenomenological studies and lattice simulations
[27,35–38]. The mixing parameters F0, F8, θ0, θ8 in Eq. (8)
or Fq, Fs, θq, θs in Eq. (9) and other quantities, such as the
masses of the pNGBs and the π, K decay constants, are
given by the Uð3Þ χPT LECs and the tadpole functions.
The final results are rather lengthy and have been given in
detail in Ref. [26].
In this work we shall first make an update determination of

the LECs by taking into account the recent lattice simulation
results fromETMC[27],where theη andη0mixingparameters
and their masses have been determined by considering the
corrections of the strange quark mass ms and also the finite
lattice space a. To be more specific, we include the corrected
data for themasses of η and η0, themixing angles in the quark-
flavor basis and the ratios of Fq=Fπ and Fs=FK from
Ref. [27]. In addition, we also consider in the fits the lattice
simulations of mK , Fπ and FK from RBC/UKQCD [39,40],
and the ratios of FK=Fπ from BMW [41]. For the mixing
angles in the quark-flavor basis, θq ¼ θs is assumed in the
lattice simulation [27]. Within reasonable ranges of the LECs,
our generalmixing formalism indeed gives quite similar results
for θq and θs. In order to incorporate the lattice data in our
study, we simply use the averages of θq and θs to fit themixing
angles in the quark-flavor basis from Ref. [27]. Other lattice
results of the η; η0 masses from Ref. [42] (UKQCD), Ref. [43]
(RBC/UKQCD), Ref. [44] (HSC) are also used in the fits.
In the LO Lagrangian (1), there are two unknown

parameters F and M0. At LO, the decay constants of the
pion and kaon are degenerate and equal to F. As noticed in
Ref. [26], the LO fit already leads to reasonable descriptions
of the masses of η and η0 with just one free parameter M0.

FIG. 1. Tadpole Feynman diagram for self energies of the light
pNGBs.
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We closely follow the former reference to perform the LO fit,
by using the masses of the η and η0 from the revised lattice
simulations in Ref. [27]. We shall take the same inputs for
the physical masses as those in Ref. [26]. The LO mass for
the singlet η0 is

M0 ¼ 820.0� 7.6 MeV; ð11Þ
which is close to the value M0 ¼ 835.7� 7.5 in Ref. [26].

In the NLO Lagrangian (4), four unknown LECs appear:
L5, L8, Λ1, and Λ2, which will be fitted to several
independent sets of lattice simulation data. In the mean-
time, one can also determine F at NLO, by taking into
account the lattice simulations of the π, K decay constants.
It will be shown later that the NLO fits reasonably
reproduce the lattice data related to the η-η0 mixing,
including the masses, the mixing angles and the ratios of
Fq=Fπ and Fs=FK from Ref. [27]. However, the fit quality
of the π, K decay constants is still poor at NLO, as shown
later. In order to simultaneously analyze the lattice simu-
lations of the light pseudoscalar mesons, we need to
introduce the NNLO contributions to improve the fits.
For the NNLO Lagrangian (5), eleven additional free

LECs enter. It is not possible to obtain stable fits with so
many free parameters by only including the η-η0 mixing and
the decay constants of pion and kaon. For the five Oðp6Þ
LECsCi¼12;14;17;19;31 in Eq. (5), we shall take the theoretical

TABLE I. The values of the LECs from the NLO fits.

NLO Fit (F) NLO Fit (Fπ)

χ2=ðd:o:fÞ 471.6=ð137 − 5Þ 328.9=ð137 − 5Þ
FðMeVÞ 91.97� 0.42 91.43� 0.40
103 × L5 1.46� 0.04 1.73� 0.05
103 × L8 0.76� 0.04 0.94� 0.06
Λ1 −0.18� 0.05 −0.17� 0.05
Λ2 −0.02� 0.09 0.02� 0.09

TABLE II. The values of the LECs from the nine-parameter NNLO fits. The values of the pure Uð3Þ LECs vð2Þ2 ,
L18 and L25 are fixed at zero. The results are quite similar with those in Ref. [26], where the same fit strategies are
used. For Fit A, the values of theOðp6Þ LECs Ci are taken from Ref. [45]. For Fit B the Ci values are from Ref. [46].
The symbols F or Fπ accompanying Fit A and Fit B correspond to the fits using the LO F or the renormalized Fπ to
express the physical quantities. See the text for details.

Fit A (F) Fit B (F) Fit A (Fπ) Fit B (Fπ)

χ2=ðd:o:fÞ 254.0=ð137 − 9Þ 288.0=ð137 − 9Þ 292.2=ð137 − 9Þ 310.7=ð137 − 9Þ
FðMeVÞ 84.15� 3.25 82.79� 3.58 92.50� 2.74 92.33� 2.28
103 × L5 0.62� 0.23 0.48� 0.26 1.23� 0.26 1.33� 0.28
103 × L8 0.38� 0.17 0.39� 0.13 0.65� 0.16 0.72� 0.15
Λ1 0.17� 0.14 0.12� 0.13 0.24� 0.21 0.29� 0.24
Λ2 0.19� 0.19 0.22� 0.18 −0.26� 0.47 −0.50� 0.67
103 × L4 −0.22� 0.13 −0.16� 0.14 −0.60� 0.13 −0.60� 0.10
103 × L6 −0.20� 0.07 −0.08� 0.06 −0.33� 0.08 −0.25� 0.08
103 × L7 0.33� 0.08 0.49� 0.09 0.16� 0.15 0.20� 0.27
α −0.72� 0.12 −0.84� 0.14 −0.49� 0.22 −0.44� 0.24

TABLE III. The values of the LECs from the twelve-parameter NNLO fits. The Uð3Þ LECs vð2Þ2 , L18 and L25 are
fitted. For other notations, see Table II for details.

Fit A (F) 12P Fit B (F) 12P Fit A (Fπ) 12P Fit B (Fπ) 12P

χ2 246.7=ð137 − 12Þ 286.8=ð137 − 12Þ 269.4=ð137 − 12Þ 276.5=ð137 − 12Þ
FðMeVÞ 81.35� 6.84 81.79� 6.35 92.01� 4.57 92.47� 4.80
103 × L5 0.45� 0.51 0.42� 0.49 1.31� 0.53 1.46� 0.60
103 × L8 0.27� 0.28 0.34� 0.21 0.67� 0.30 0.75� 0.32
Λ1 0.38� 0.75 0.19� 0.36 0.19� 0.24 0.15� 0.24
Λ2 −0.42� 1.40 −0.27� 1.46 −1.68� 1.18 −1.78� 1.32
103 × L4 −0.11� 0.25 −0.12� 0.24 −0.58� 0.22 −0.61� 0.23
103 × L6 −0.15� 0.13 −0.05� 0.10 −0.26� 0.12 −0.19� 0.11
103 × L7 0.18� 0.29 0.30� 0.27 −0.17� 0.39 −0.12� 0.42
α −0.76� 0.29 −0.84� 0.29 −0.41� 0.48 −0.27� 0.55

vð2Þ2
0.02� 0.05 0.04� 0.05 0.04� 0.04 0.04� 0.04

103 × L18 −0.15� 0.63 −0.05� 0.41 0.17� 0.57 0.34� 0.60
103 × L25 −0.16� 0.51 −0.14� 0.50 −0.68� 0.42 −0.70� 0.49
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estimation from Refs. [45,46]. In order to account the
uncertainties of the Oðp6Þ LECs, we introduce a common
free coefficient α for the Ci terms. The coefficient α will be
fitted. For the remaining six LECs L4, L6, L7, L18, L25,

vð2Þ2 , we shall take two strategies to estimate their values.
In one case, L4, L6, and L7, which exist in theOðp4Þ SUð3Þ
χPT Lagrangian, will be fitted. While for L18, L25, v

ð2Þ
2 , that

only appear in Uð3Þ χPT and affect exclusively the
quantities involving η and η0 mesons, we fix them at
vanishing values, as done in Ref. [26]. This strategy is
well motivated because the NLO fits are found to be able to
qualitatively reproduce the lattice data of the η-η0 mixing. In
this case we have nine free parameters to fit the 137 data
points from several independent lattice simulations and
phenomenological inputs. In the other strategy, we try to

free all of the six LECs L4, L6, L7, L18, L25, v
ð2Þ
2 and fit

them to the same data sets as the former case. The inclusion
of the additional lattice data related to the η-η0 mixing from
Ref. [27], which are absent in Ref. [26], helps to stabilize
the fits with many parameters. The conservative bounds
for Λ1 and Λ2 estimated in Ref. [26] and the positive
conditions for L5 and L8 from resonance saturations [47]
also provide useful criteria to obtain meaningful fits.
When truncating the χPT calculation up to a specific

finite order, there are always ambiguities to express the
physical quantities. For example, one could use the LO F
elsewhere in a physical quantity, or replace F by the
renormalized pion decay constant Fπ. In the ideal case
when the chiral or δ expansion works perfectly, one should
not expect significant deviations from the two different
formalisms, since the differences at least belong to the one
order higher effects than the truncated one. In practice, the
chiral series may converge slowly, especially for the cases
including the strange quark and the UAð1Þ anomaly effects.
The situations when confronting the lattice simulations
with the unphysically large quark masses could become
even less clear. For example, it is mentioned in Ref. [48]
that noticeable deviations can appear by expressing the
physical quantities with F and Fπ . In Ref. [26] the
differences between the two schemes are treated as sys-
tematical uncertainties, most of which are clearly larger

TABLE IV. Phenomenological results obtained at physical meson masses using the nine-parameter fits in Table II.
The phenomenological inputs ofF0,F8, θ0, and η8 are taken fromRef. [52], as done inRef. [26]. Themixing parameters
in thequark-flavor basisFq,Fs, θq, and θs are not phenomenological inputs in the fits, as indicatedby the asterisks, since
they can be determined by F0, F8, θ0, and θ8. The input ratio of the strange quark mass and the up/down-quark mass
ms=m̂ is taken from the FLAG working group in Ref. [53] and a 10% error bar is introduced as done in Refs. [26,54].

Parameters Inputs Fit A (F) Fit B (F) Fit A (Fπ) Fit B (Fπ)

F0ðMeVÞ 118.1� 16.5 104.1� 4.3 103.2� 3.5 106.0� 4.4 106.8� 4.0
F8ðMeVÞ 133.8� 11.1 112.7� 1.3 112.3� 1.2 113.1� 2.1 111.7� 1.9
θ0ðDegÞ −11.0� 3.0 −3.7� 2.4 −3.3� 4.4 −7.0� 2.1 −7.4� 2.1
θ8ðDegÞ −26.7� 5.4 −24.2� 2.1 −24.4� 4.8 −26.1� 2.5 −25.2� 2.7
ms=m̂ 27.5� 3.0 25.1� 1.7 28.3� 0.9 26.6� 1.0 28.9� 0.6
FqðMeVÞ 106.0� 11.1� 87.1� 3.5 85.9� 2.9 89.8� 4.7 91.3� 4.5
FsðMeVÞ 143.8� 16.5� 126.3� 2.0 126.1� 1.9 126.3� 2.9 124.7� 2.5
θqðDegÞ 34.5� 5.4� 41.9� 2.7 41.9� 5.3 39.6� 2.6 40.3� 2.7
θsðDegÞ 36.0� 4.2� 39.3� 2.3 39.5� 4.3 36.7� 2.3 36.7� 2.3

FIG. 2. The pion-mass dependences of the masses of the η and
η0. The lattice data are taken from Ref. [27] (ETMC), Ref. [42]
(UKQCD), Ref. [43] (RBC/UKQCD), and Ref. [44] (HSC). For
the data from ETMC, including those in Figs. 3 and 4, we have
used the results after the corrections of the unphysical strange
quark mass and finite lattice spacing. The black long dashed lines
and green short dashed lines correspond to the results from NLO
Fit (F) and NLO Fit (Fπ), respectively. The red solid lines and the
surrounding shaded areas denote the central results and 1-σ error
bars from the NNLO nine-parameter Fit A (F). The blue dashed-
dotted-dotted lines stand for the results from the NNLO nine-
parameter Fit A (Fπ). The results from the NNLO Fit B are
similar to those of Fit A and we do not explicitly show them here.
As discussed in the text, the twelve-parameter NNLO fits
resemble the nine-parameter case. In order not to overload the
figure, we only show the representative results from the Fit A (F)
12P for the NNLO twelve-parameter fits. Similar rules also apply
for the curves in Figs. 3–6.
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than the statistical ones. In this work we perform different
fits by using either F or Fπ in the expressions of various
physical quantities, which are explicitly given in Ref. [26].
Regarding the situation of using Fπ in the final expressions,
we employ a slightly different form for the renormalized
Fπ , comparing with that in Ref. [26]. In the former
reference, the NLO formula of Fπ was used in the NNLO
expressions of the physical quantities, while in this work
we use the NNLO formula for Fπ. The difference of the
two approaches belongs to a NNNLO effect, which is
beyond the accuracy of our current discussion up to NNLO.
In Table I, we give the values of the LECs from the

NLO fits, which turn out to be compatible with those in
Ref. [26] within uncertainties. The parameters from
the NNLO fits are summarized in Tables II and III.

Since mη and m0
η are reasonably described at LO, we fix

M0 ¼ 820.0 MeV determined from the LO fit in the NLO
and NNLO discussions. In Table II we show the results by

fixing L18, L25, v
ð2Þ
2 at vanishing values and in Table III

we give the results by freeing their values in the fits. For
the fits labeled by Fit A, the values of the Oðp6Þ LECs
Ci¼12;14;17;19;31 are taken from Ref. [45]. For Fit B, we take
the Ci values from Ref. [46]. The symbols F or Fπ

accompanying Fit A and Fit B correspond to using the LO
F or the renormalized Fπ in the expressions of physical
quantities.
The first lesson we learn from Table II is that the fits by

taking different Ci¼12;14;17;19;31 values from Refs. [45,46]
lead to quite comparable results. By contrast, obvious
changes of the fitted parameters result from different fits
by using F and Fπ to express the physical quantities. In fact
similar problems have been noticed in previous works
[26,48], specially when the lattice data with unphysically
large quark masses are considered. In order to further
discriminate the two fit strategies, one possible way is to
includemore types of data, such as the scattering phase shifts
and inelasticities, which is however beyond the scope of
present study. In Ref. [26] the differences between the two
fit strategies using F and Fπ in the expressions of physical
quantities are treated as the systematical uncertainties, which
dominate the large error bars ofmany LECs in that reference.
Within uncertainties the values of the χPT LECs in Table II
are compatiblewith the previous determinations in Ref. [26],
i.e., the numbers in Table 5 of the former reference. In this
work we explicitly give the values resulting from the two fit
strategies. As a result, the present uncertainties shown in all
the tables and figures correspond to the statistical ones at
1-σ level. Due to the reshuffle of the LECs in the δ counting
in Uð3Þ χPT, it does not allow us to perform a direct
comparison of the values of the SUð3Þ LECs [49,50].
Nevertheless both the phenomenological and lattice deter-
minations prefer small values in magnitudes forL4 andL6 in

FIG. 3. The pion-mass dependences of the ratios of Fq=Fπ and Fs=FK , where Fq and Fs are the decay constants defined in the quark-
flavor basis in Eq. (9). The lattice data are taken from Ref. [27]. See Fig. 2 for the meaning of the plots.

FIG. 4. The pion-mass dependences of the averages of the
mixing angles θq and θs are shown, where θq and θs are mixing
angles defined in the quark-flavor basis in Eq. (9). The lattice data
are taken from Ref. [27]. See Fig. 2 for the meaning of the plots.
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Refs. [49,50], which are in accord with the large NC
expectation. From this point of view, it seems that the results
from the Fit (F) strategies in Tables II and III are slightly
preferred over those from the Fit (Fπ) cases.
Regarding the differences between the results in Tables II

and III, we do not observe significant improvements by
releasing the three LECs L18, L25, v

ð2Þ
2 in the fits. The fits in

Table III are labeled by Fit (F) 12P and Fit (Fπ) 12P, in
order to distinguish the nine-parameter fits in Table II and
to highlight the facts that there are twelve free parameters.
Though the χ2 from the twelve-parameter fits are slightly
decreased, the resulting values of Λ1 and Λ2 are mostly
incompatible with the conservative estimates in Ref. [26],
especially for the cases of Fit AðFπÞ 12P and Fit BðFπÞ
12P. It is verified that the resulting plots from the twelve-
parameter fits are quite similar with the nine-parameter
cases. In order not to overload the figures, we shall show

the representative results of Fit AðFÞ 12P for the twelve-
parameter fits in the following discussions.
The phenomenological quantities and the corresponding

outputs from the fits are given in Table IV. In Figs. 2–6, we
show the fit qualities of the lattice simulation data. In
Figs. 2–4, the reproductions of the lattice simulation data
of the η-η0 mixing are shown. The decay constants of the
pion and kaon are given in Fig. 5, where one can see that the
NNLO fits considerably improve the fit qualities of the NLO
ones. Similar conclusions can be also made for the pion-
mass dependences of the kaon masses in Fig. 6. Taking into
account the large uncertainties from the lattice simulations
on the η-η0 mixing, the improvements of the NNLO fits are
not obvious, comparing with the NLO ones, see Figs. 2
(masses of η and η0), 3 and 4 (mixing parameters of the η and
η0 system). According to these plots in Figs. 2–4, we
conclude that the formalisms in this work well reproduce
the lattice simulation data of the η and η0 mesons. Therefore
it gives us a confident starting point to extend our discussions
to the finite-temperature case.

III. THERMAL BEHAVIORS OF THE LIGHT
PSEUDOSCALAR MESONS

The masses of the π, K, and η8 mesons are related to the
light-flavor quark condensates, which are the order of
parameters of spontaneous chiral symmetry breaking. For
the massive η0, its mass is sensitive to the QCD UAð1Þ
anomaly effect. The physical η and η0 mesons are the
mixture of the η8 and η0 states. Therefore thermal
behaviors of the masses of π, K, η, and η0 are subject
to the restorations of the chiral and UAð1Þ symmetries at
finite temperatures. For a hadron in the hot medium, its
mass is not uniquely defined. The screening mass is
usually focused in thermal lattice simulations. In this work
we study the thermal behavior of the pole mass, which is
extracted from the self-energy of the particle in question
and determines its propagation in hot medium.

FIG. 5. The pion-mass dependences of the decay constants of the pion and kaon are shown in the left panel, where the lattice data are
taken from Refs. [39,40]. The pion-mass dependences of the ratio of FK=Fπ are shown in the right panel and the corresponding lattice
data are taken from Ref. [41]. The experimental data (EXP) are taken from Ref. [51]. See Fig. 2 for the meaning of the plots.

FIG. 6. The pion-mass dependences of the kaon masses. The
lattice data are taken from Refs. [39,40]. See Fig. 2 for the
meaning of the plots.
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Within the framework of χPT, the couplings in front of
the local operators are independent of the temperatures
and the finite-temperature effects enter through the chiral
loops [23,24]. In the imaginary time formalism, the
extension from T ¼ 0 to finite T can be achieved by
replacing the Minkowski time t with the Euclidean one
τ ¼ it and then performing the temporal integration along
the complex contour ½0; iβ�, with β ¼ 1=T. The calculations
of the tree-level Feynman diagrams are the same both for
T ¼ 0 and T ≠ 0. For the loop diagrams, one needs to
substitute the continuous integrationof the zeroth component
p0 of the four momenta by a discrete sum of Matsubara
frequencies iωn ¼ i2πnT, i.e.,

R
dp0 →

P
ni2πT. As men-

tioned before, only the tadpole loop diagrams in Fig. 1 will
enter the present discussions. Following the standard thermal
loop calculation techniques [55], it is straightforward to
obtain the tadpole one-loop function A0ðm2Þ at finite T,

A0ðm2Þ ¼ −m2 ln
m2

μ2
−
Z

∞

0

dp
8p2

Ep

1

e
Ep
T − 1

; ð12Þ

with Ep ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p
. The first term in the right-hand side

of Eq. (12) corresponds to the tadpole function in vacuum
with T ¼ 0 in Eq. (6) and the finite-temperature effects are
introduced via the second term. We mention that at NNLO
in the δ expansion the finite-temperature effects in Eq. (12)
only contribute to the real part of the self energies of the
pNGBs, which will shift the masses from their positions at
T ¼ 0. The imaginary or absorption part starts to appear in
the two-loop diagrams, which is beyond the scope of the
present study. Notice that the integral in Eq. (12) does not
have a simple analytical form, but it is straightforward to
perform the integration numerically. To replace the vacuum
loop functions in Eq. (6) with the finite temperature
corrected ones in Eq. (12), one could study the thermal
behaviors of the π, K, η, and η0 mesons. Apart from the
situation with physical quark masses, we also explore the
interesting scenario by varying the quark masses of differ-
ent flavors at finite temperatures.
The pion decay constant at finite temperature is certainly

a model dependent object [23,24,56–58]. In order not to
muddle the discussions with the model-dependent thermal
pion decay constant, we focus on the situation by express-
ing all the physical quantities in terms of F and refrain from
the discussions with the expressions given in terms of the
renormalized Fπ . The thermal behaviors of the masses of π,
K, η, and η0 are shown in Figs. 7–9. The temperature
dependences of the mixing angles both in the singlet-octet
and quark-flavor bases are given in Fig. 10. We emphasize
that in Uð3Þ χPT the thermal corrections to the masses and
mixing angles are exclusively contributed by the chiral
loops, instead of the chiral LECs. This further implies that
the uncertainties of the finite-temperature effects in χPT

FIG. 7. The temperature dependences of mπ with physical
quark masses. The curve corresponds to the result from Fit A (F).

FIG. 8. The temperature dependences ofmK andmη. Both the results obtained with physical quark masses and in the two-flavor chiral
limit are given. The plots correspond to Fit A (F).
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are tiny. In order to give concise and intuitive thermal
behaviors, we show in Figs. 7–10 the results obtained with
central values of the LECs from Fit A (F) in Table II. The
results from Fit B (F) are found to be quite similar with
those from Fit A (F).

The thermal behavior of the pion masses with physical
quark masses is given in Fig. 7. It is obvious that the pion
masses are slightly increased when increasing the temper-
atures. This behavior is consistent with the findings in
Refs. [23,24]. For the masses of K, η, and η0, we study two
different scenarios. In one case, we take the physical quark
masses and in the other one we take the two-flavor chiral
limit, that is to take vanishing mu=d but to keep the strange
quark massms at its physical value. FormK andmη, we find
that their masses always get increased when including the
finite-temperature contributions in the focused region, no
matter the two-flavor chiral limit is taken or not. In contrast,
we observe that the masses of η0 decrease when the
temperatures are increased, both for physical quark masses
and the two-flavor chiral limit case. This implies that the
meson fluctuation effects in the thermal paths tend to
slightly enhance the restoration of the UAð1Þ symmetry of
QCD, which will also lower the mass of η0. However the
thermal corrections are quite small from the meson fluc-
tuations to the masses. The η-η0 mixing angles θ0, θ8
in the singlet-octet basis and θq, θs in the quark-flavor
basis are all increased when increasing the temperatures.
The conclusion holds both for physical meson masses and
the two-flavor chiral limit case. Similar to the masses, the

FIG. 9. The temperature dependences of mη0 . Both the results
obtained with physical quark masses and in the two-flavor chiral
limit are given. The plots correspond to Fit A (F).

FIG. 10. The temperature dependences of the η-η0 mixing angles in the singlet-octet and quark-flavor bases, see Eqs. (8) and (9). The
results obtained with physical quark masses and in the two-flavor chiral limit are given. The plots correspond to Fit A (F).
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thermal corrections to the mixing angles turn out to be
rather small.

IV. CONCLUSIONS

In this work we update the determinations of the low
energy constants of the Uð3Þ chiral perturbation theory up
to next-to-next-to-leading order, by including phenomeno-
logical inputs and various independent lattice simulation
data on the η-η0 mixing, the kaon masses, the pion and kaon
decay constants. Two fit strategies are used in our study.
In one case, we closely follow Ref. [26] to fix the values of

vð2Þ2 , L18, and L25 at zero and the fit results are compatible
with the previous determinations in the former reference.

In the other case, we try to free the values of vð2Þ2 , L18 and
L25, which turns out to barely improve the fits. The recent
lattice simulation data on the η-η0 mixing parameters [27],
including the masses of η and η0, the decay constants and
the mixing angles in the quark-flavor basis, are well
reproduced in our theoretical formalism with reasonable
values of the χPT low energy constants.
After the successful descriptions of the light pseudo-

Nambu-Goldstone bosons in vacuum with T ¼ 0, we then
extend the discussions to finite temperatures with T ≠ 0.
We focus on the thermal behaviors of the masses of π, K, η,
and η0. Up to the next-to-next-to leading order, the finite-
temperature effects can only enter through the chiral
tadpole loops, which give contributions to the real part
of the self-energies of the light pseudo-Nambu-Goldstone

bosons. It turns out that at low temperatures the effects from
the meson fluctuations slightly increase the masses of π, K,
and η when increasing the temperatures. Interestingly, the
mass of the η0 shows a different behavior from the other
mesons and it decreases when increasing the temperatures.
This behavior is consistent with the restoration of the
UAð1Þ symmetry, which will also deduce the mass of the η0.
It indicates that the chiral loops evaluated at finite temper-
atures slightly enhance the UAð1Þ restoration. However the
shifts of the thermal masses due to the meson fluctuations
turn to be quite small, at most around several percents up to
T ¼ 200 MeV, which cannot account for the mass reduc-
tion around 200 MeV for the η0 meson [22]. Another
important source is the finite-temperature effect from the
QCD UAð1Þ anomaly, which is related to the topological
susceptibility in the gluon sector. Nevertheless the thermal
behavior of the pure QCD UAð1Þ anomaly could not be
accessed in chiral perturbation theory. A future project to
also include this effect together with those from the meson
fluctuations at finite temperatures, may provide a definite
answer to the restoration of the QCD UAð1Þ symmetry.
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