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We investigate the OðαsÞ correction to eþe− → J=ψ þ ηc2 in the NRQCD factorization approach.
A detailed comparative study between eþe− → J=ψ þ ηc2 and eþe− → J=ψ þ χ0c1 at the B factory energy
is also carried out. After incorporating the OðαsÞ correction, we predict the cross section for the former
process to be around 0.3 fb, while that of the latter is about 6 times greater. The outgoing J=ψ is found to be
dominantly transversely polarized in the former process, while longitudinally polarized in the latter. These
features may provide valuable guidance for the Belle 2 experiment to establish the χ0c1 or ηc2 states. In the
Appendix, we also identify the coefficients of the double logarithms of form ln2ðs=m2

cÞ associated with all
the relevant next-to-leading-order Feynman diagrams, for the helicity-suppressed double-charmonium
production channels eþe− → J=ψ þ ηc2 and eþe− → J=ψ þ χc0;1;2.
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I. INTRODUCTION

Since a number of double charmonium production
processes were first discovered at B factory more than a
decade ago [1–3], this topic has spurred a widespread
interest [4]. Firstly, this production environment provides a
unique and powerful means to search for the new C-even
charmonium states, especially those X, Y, Z states, by
fitting the recoil mass spectrum against the J=ψ (ψ 0). The
most famous examples are the discovery of the Xð3940Þ [5]
and the Xð4160Þ [6] by this way.
Another appealing reason to study double charmonium

production is that it provides a new stage to sharpen our
understanding toward perturbative QCD, especially toward
the application of the light-cone approach [7,8] and the
nonrelativistic QCD (NRQCD) factorization approach [9]
to hard exclusive reactions involving heavy quarkonium.
The most famous double-charmonium production proc-

ess is perhaps eþe− → J=ψ þ ηc. The original lowest-order
(LO) NRQCD predictions to this process [10,11] is about 1
order of magnitude smaller than the measurement [1]. This

alarming discrepancy has triggered a great amount of
theoretical investigations in both NRQCD and light-cone
approaches [12–22]. One crucial element in alleviating the
discrepancy between the NRQCD prediction and the data is
the substantial and positive next-to-leading-order (NLO)
perturbative corrections [16,17]. By contrast, owing to
some long-standing theoretical obstacles, the NLO correc-
tion to this helicity-suppressed process in the light-cone
approach has never been successfully worked out [7,8]. As a
consequence, despite some shortcomings, the NRQCD
approach seems to be the only viable method which is based
on the first principle and also systematically improvable.
Some time ago, the OðαsÞ corrections to the double-

charmonium production processes which involves J=ψ
plus a P-wave charmonium, e.g., eþe− → J=ψ þ χc0;1;2
have also been investigated in the NRQCD approach
[23,24]. For some production channels, the effect of the
NLO perturbative corrections can be important.
In this work, we aim to carry out a comprehensive study

of the NLO perturbative corrections to the processes
eþe− → J=ψ þ ηc2 and eþe− → J=ψ þ χ0c1, again in the
NRQCD factorization framework. The calculation for the
former process, which involves associated production of
J=ψ plus a D-wave charmonium, is new, while that for the
latter can be readily adapted from Ref. [24]. This work
should be considered as a sequel of Refs. [21,24].
Our interest in conducting such a comparative study

was originally motivated by the controversy raised for
the quantum number of the Xð3872Þ meson, whether it
being 1þþ or 2−þ, originally trigged by a BABAR paper in
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2010 [25].1 Consequently, the canonical charmonium
options for the Xð3872Þ would be the χ0c1 and ηc2,
respectively. After the unexpected BABAR results [25],
there had arose a flurry of studies about critically distin-
guishing the properties of χ0c1 and ηc2, such as the radiative
transitions ηc2ðχ0c1Þ → J=ψðψ 0Þγ [28–30], the ηc2ðχ0c1Þ
hadroproduction rates [31], or ηc2ðχ0c1Þ production rates
in B decay [32]. By confronting the established properties
of Xð3872Þ, all these studies tend to disfavor the 1D2

assignment of the Xð3872Þ meson. Our hope was that
double-charmonium production can also be added to the
above list as a valuable means to help clarify the situation.
Nevertheless, through a key analysis of angular distribu-
tions of dipions in Xð3872Þ → J=ψπþπ− at LHCb in 2013
[27], the 2−þ assignment has been safely excluded, and the
1þþ quantum number has been firmed established for the
Xð3872Þ particle.
Although our original incentive now looks somewhat

obsolete, it is still beneficial to carefully study the pro-
duction rate of J=ψ þ χ0c1 and J=ψ þ ηc2. Firstly, due to the
cleanness and efficiency of reconstructing J=ψ via its
leptonic decay channel, the double charmonium production
process at B factory remains to serve a competitive and
appealing environment to establish the χ0c1 and ηc2 states. It
turns out that the production rate of eþe− → J=ψ þ χ0c1 is
about 6–7 times greater than that of eþe− → J=ψ þ ηc2.
Based on the 1 ab−1 data currently accumulated at the
BELLE experiment, it looks promising to observe the former
process, if the χ0c1 can indeed be regarded as the Xð3872Þ
particle with very narrow width. Also, this production
channel may also provide a clean way to search for the not-
yet-observed ηc2 state. These phenomenological consider-
ations seem to constitute strong enough motivation for
experimentalists to continue to serach the double charmo-
nium production in the forthcoming Belle 2 experiments.
The rest of the paper is organized as follows. In Sec. II,

we specify the helicity selection rule suited for the hard
exclusive reaction eþe− → J=ψ þ ηc2, and give the defi-
nition for the dimensionless, reduced helicity amplitudes.
In Sec. III, we present the leading-order expressions for all
the independent helicity amplitudes in the NRQCD fac-
torization framework. In Sec. IV, we first review some key
technical issues about the OðαsÞ calculation, then present
the asymptotic expressions for the NLO perturbative
corrections to all the encountered helicity amplitudes.
The pattern of the double-logarithmic scaling violation is
confirmed once again. In Sec. V, a comparative study is
performed for both unpolarized and polarized cross sec-
tions between the processes e−eþ → J=ψ þ ηc2 and

e−eþ → J=ψ þ χ0c1. This study may shed some light on
unveiling the quantum number of the Xð3872Þmeson in the
future double-charmonium production experiments.
Finally, we summarize in Sec. VI. In the Appendix, we
tabulate the coefficients of the double logarithms ln2ðs=m2

cÞ
associated with all the relevant NLO Feynman diagrams,
for all the double-charmonium production channels we
have studied so far, i.e., eþe− → J=ψ þ ηc2ðηc; χc0;1;2Þ.

II. HELICITY SELECTION RULE AND
REDUCED HELICITY AMPLITUDES

It is often desirable to glean more information than
simply present the unpolarized cross section for a hard
exclusive reaction, especially for the double-charmonium
production process considered in this work. It is of
particular advantage to making explicit predictions to
various J=ψ þ ηc2 production rates for different helicity
configurations. The underlying reasons of carrying out such
detailed studies are two-fold. On the experimental ground,
once the sufficient statistics is achieved, the helicity
amplitudes themselves in principle can be measured by
studying the angular distributions of these charmonia and
their decay products; from the theoretical perspective, it is
also instructive to stay with the helicity amplitudes. The
reason is that, for a hard exclusive reaction, the relative
importance of the polarized cross section in a given helicity
channel is dictated by the celebrated helicity selection rule
(HSR) [33].
We are interested in the hard-scattering limit

ffiffiffi
s

p
≫

mc ≫ ΛQCD, where
ffiffiffi
s

p
stands for the center-of-mass

energy of the eþe− collider, mc for the charm quark mass,
and ΛQCD for the intrinsic QCD scale. In this limit, the
asymptotic behavior of the production rate for J=ψ þ ηc2 in
a definite helicity configuration follows from the HSR [10]:

σ½eþe− → J=ψðλ1Þ þ ηc2ðλ2Þ�
σ½eþe− → μþμ−� ∼ v10

�
m2

c

s

�
2þjλ1þλ2j

; ð1Þ

where λ1, λ2 represent the helicities carried by the J=ψ , ηc2,
respectively. v denotes the characteristic velocity of charm
quark inside a charmonium. Equation (1) implies that the
helicity state which exhibits the slowest asymptotic
decrease, thus constitutes the “leading-twist” contribution,
i.e., σ ∼ 1=s3, is ðλ1; λ2Þ ¼ ð0; 0Þ.
We have chosen, by default, to work in the eþe− center-

of-mass frame. Let jPj signify the magnitude of the
momentum carried by the J=ψ (ηc2) and θ denote the
angle between the moving directions of the J=ψ and the
e− beam. Following the steps elaborated in [24], the
differential rate for polarized J=ψ þ ηc2 production in
eþe− annihilation can be expressed as

1Note the first version of this work was finished in January
2013 [26]. By that time, the ηc2 option of the Xð3872Þ was still
not yet fully excluded from experimental angle. The situation
then drastically changed after the release of a LHCb paper in
February 2013 [27].
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dσ½eþe− → J=ψðλ1Þþ ηc2ðλ2Þ�
dcosθ

¼ α

8s2

�jPjffiffiffi
s

p
�
jAλ1;λ2 j2×

(
1þcos2θ

2
ðλ1− λ2 ¼�1Þ

sin2θ ðλ1− λ2 ¼ 0Þ;
ð2Þ

where Aλ1;λ2 is the helicity amplitude associated with the
virtual photon decay into J=ψ þ ηc2 carrying the helicity
component ðλ1; λ2Þ.
Parity invariance can be invoked to reduce the number of

independent helicity amplitudes,

Aλ1;λ2 ¼ −A−λ1;−λ2 ; ð3Þ

hence, the two helicity amplitudes related by flipping the
helicities of two chamonia bear the equal magnitude. An
immediate consequence of (3) is that the virtual photon
decay into the longitudinally polarized J=ψ and ηc2 is
strictly forbidden by parity invariance.
Integrating (2) over the polar angle θ and including all

the allowed helicity states, it is then straightforward to
obtain the unpolarized cross section,

σ½eþe− → J=ψ þ ηc2�

¼ α
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1− 4r

p

12s2
ð2jA0;1j2 þ 2jA1;0j2 þ 2jA1;1j2 þ 2jA1;2j2Þ:

ð4Þ

In conformity with the constraint jλ1 − λ2j ≤ 1, as
demanded by angular momentum conservation, there are
totally 4 independent helicity amplitudes for γ� → J=ψ þ
ηc2 (Recall that A0;0 ¼ 0 owing to parity invariance). In
Eq. (4), we have also retained a factor of 2 explicitly to
account for the contributions from those helicity-flipped
states. We have also adopted the approximation 2jPjffiffi

s
p ≈ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 4r
p

by assuming MJ=ψ ≈Mηc2 ≈ 2mc.
In the NRQCD factorization framework, the product

of two nonperturbative factors, i.e., the (second deriva-
tive of) wave functions at the origin for the charmonia
J=ψ , and ηc2 [RJ=ψð0Þ, and R00

ηc2ð0Þ] ubiquitously enter
every helicity amplitude, thereby it appears convenient
to define a reduced dimensionless helicity amplitude,
from which these nonperturbative factors are pulled
out. We introduce the reduced helicity amplitude, aλ1;λ2 ,
which is related to the standard helicity amplitude Aλ1;λ2
as follows:

Aλ1;λ2¼
28

ffiffiffi
5

p
eceαsRJ=ψ ð0ÞR00

ηc2ð0Þ
3sm2

c
r
1
2
ðjλ1þλ2j−1Þaλ1;λ2ðrÞ; ð5Þ

where ece ¼ 2
3
e is the electric charge of the charm

quark, r≡ 4m2
c=s signifies a dimensionless mass ratio.

To make the HSR manifest, we have explicitly stripped
off a factor r

1
2
ðjλ1þλ2j−1Þ in (5), so that the dimensionless

helicity amplitude aλ1;λ2 is expected to scale as Oðr0Þ.
Plugging (5) back into (4), we obtain the NRQCD

predictions to the polarized production rate for the
J=ψðλ1Þ þ ηc2ðλ2Þ state:

σ½eþe− → J=ψðλ1Þþηc2ðλ2Þ�

¼ 5×216πe2cα2α2s
27s4m4

c
R2
J=ψ ð0ÞR002

ηc2ð0Þrjλ1þλ2j−1ð1−4rÞ12jaλ1;λ2 j2:

ð6Þ
III. LO PREDICTIONS FOR THE

HELICITY AMPLITUDES

The reduced helicity amplitude aλ1;λ2 can be viewed as
the NRQCD short-distance coefficient, which encodes the
contribution solely stemming from the momentum region
between mc and

ffiffiffi
s

p
, so can be computed reliably in

perturbation theory. It is convenient to parametrize it as

aλ1;λ2 ¼ að0Þλ1;λ2
þ αs

π
að1Þλ1;λ2

: ð7Þ

Our central task in this work is to decipher the OðαsÞ
correction to the reduced amplitude, að1Þλ1;λ2

.
First, we recapitulate the LO calculation. To proceed, it

most convenient to consider the quark amplitude γ� →
cc̄ð3Sð1Þ1 Þ þ cc̄ð1Dð1Þ

2 Þ using the covariant projection tech-
nique [10,34]. At LO in αs, there are only four Feynman
diagrams that contribute, one ofwhich is depicted in Fig. 1(a)
(For simplicity, we have neglected the QED fragmentation
diagrams, whose effect appears to be modest).

(a) (b) (c)

(d) (e) (f)

FIG. 1. One sample LO diagram and five sample NLO
diagrams that contribute to γ� → J=ψ þ ηc2.
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It is straightforward to project out four corresponding
helicity amplitudes from the decay amplitude for
γ� → J=ψ þ ηc2. One then follows Eq. (5) to read off each
of the LO reduced helicity amplitudes:

að0Þλ1;λ2
¼

��ð1 − 4rÞ32 ðλ1; λ2Þ ¼ ð�1; 0Þ
0 ðλ1; λ2Þ ¼ others:

ð8Þ

For some accidental reason, only the J=ψð�1Þ þ ηc2ð0Þ
channel has the nonvanishing cross section at LO in αs.
Substituting (8) into (6), we find agreement with the QCD
part of the LO prediction for the unpolarized cross section
first given in Ref. [10].

IV. NLO PERTURBATIVE CORRECTIONS
TO THE HELICITY AMPLITUDES

We start this section by first sketching some technical
issues about the NLO perturbative calculations, followed
by presenting the asymptotic expressions of the OðαsÞ
corrections to all the reduced helicity amplitudes.

A. Outline of the calculation

At NLO in αs, there are 20 two-point, 20 three-point, 18
four-point, and 6 five-point one-loop diagrams for the

process γ� → cc̄ð3Sð1Þ1 Þ þ cc̄ð1Dð1Þ
2 Þ, some of which have

been illustrated in Fig. 1. The calculation is quite similar to
our preceding works on double charmonium exclusive
production, i.e., eþe− → J=ψ þ χc0;1;2 [24] and the
eþe− → J=ψ þ ηc [21], so here we will only present a
very brief description.
We adopt dimensional regularization to regularize both

UV and IR singularities. We follow the ’t Hooft-Veltman
prescription for γ5, as detailed in Ref. [35]. In projecting
out the D-wave orbital angular momentum state, one
needs expand the relative quark momentum q to the
quadratic order. Our strategy is to follow the method
of region [36] via directly deducing the NRQCD
short-distance coefficients, rather than resorting to the
much more expensive matching calculation, through
making the expansion in q before carrying out the loop
integration.
The only nontrivial technical problem is that one may

encounter some unusual one-loop integrals which gen-
erally contain the propagators of cubic power, as a
consequence of taking the derivative over q twice. The
MATHEMATICA package FIRE [37] and the code APART

[38] are utilized to reduce these unconventional higher-
point one-loop tensor integrals into a set of masters
integrals. With the aid of the integration-by-part algo-
rithm and partial fractioning technique, it turns out that

all the encountered master integrals are nothing but the
standard 2-point and 3-point one-loop scalar integrals,
whose analytic expressions have already been tabulated
in Ref. [17].
When adding the contributions of all the diagrams, and

after renormalizing the charm quark mass and the QCD
coupling constant, we finally end up with both UV
and IR finite NLO expressions for the decay amplitude

γ� → cc̄ð3Sð1Þ1 Þ þ cc̄ð1Dð1Þ
2 Þ. Since everything becomes

finite, we can safely return to the four spacetime dimen-
sions and readily project out all the required helicity
amplitudes.
In Ref. [39], an all-order-in-αs proof for exclusive

quarkonium production has been outlined in the
NRQCD factorization context. It argues that at lowest
order in v and to all orders in αs, NRQCD factorization
holds for the exclusive production of a S-wave quarko-
nium plus any higher-orbital-angular-momentum quarko-
nium in eþe− annihilation. Our explicit calculation
confirms that the NRQCD short-distance coefficients
affiliated with S-wave plus D-wave charmonia production
are indeed IR finite at NLO in αs, which is compatible
with what is asserted in [39].

B. Analytic expressions of NLO helicity amplitudes

The að1Þλ1;λ2
are complex-valued, whose analytic expres-

sions are in general quite lengthy. Rather than reproducing
their cumbersome-looking expressions here, we are content
with presenting their numerical values over a wide range of
r, as shown in Fig. 2.
As a matter of fact, it seems much more illuminating to

know the asymptotic behaviors of the helicity amplitudes
in the limit

ffiffiffi
s

p
≫ mc. At NLO in αs, one anticipates to see

the logarithmic scaling violation to the naive power-law
HSR as indicated in (1). Furthermore, conducting the
asymptotic expansion in NRQCD short-distance coeffi-
cients is theoretically appealing, since it is equivalent to
disentangling the contributions occurring at the “hard”
scale (virtuality ∼s) from the “lower-energy” collinear/
soft sectors (virtuality ∼m2

c), by which one can intimately
link the NRQCD factorization approach and the light-
cone approach [40–44]. Such an asymptotic expansion on
the NRQCD hard coefficients has been carried out for a
number of exclusive double-quarkonium production
processes, either in eþe− annihilation [21,24,44], or from
bottomonium decay [44–47], and some general pattern
about logarithmic scaling violation has been recog-
nized [24,44].
According to the definition in (6), we find the asymptotic

expressions of four reduced NLO helicity amplitudes for
γ� → J=ψ þ ηc2 to be
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að1Þ0;1

���
asym

¼ −
ffiffiffi
3

p

96

�
7ln2r − 2ð22 − 43 ln 2Þ ln r − 286

3
− 12π2 þ 1024

3
ln 2 − 41ln22þ 2iπð7 ln r − 22þ 43 ln 2Þ

�
; ð9aÞ

að1Þ1;0

���
asym

¼ 1

48

�
19ln2rþ 19ð1þ 2 ln 2Þ ln rþ 12β0

�
ln
4μ2

s
þ 8

3

�
−
478

3
þ 244

3
ln 2 − 129ln22

þ iπð38 ln rþ 12β0 þ 19þ 38 ln 2Þ
�
; ð9bÞ

að1Þ1;1

���
asym

¼ −
ffiffiffi
3

p

24

�
2ln2rþ ð19 − 23 ln 2Þ ln r − 16

3
þ 9π2

2
−
143

3
ln 2 −

41

2
ln22þ iπð4 ln rþ 19 − 23 ln 2Þ

�
; ð9cÞ

að1Þ1;2

���
asym

¼ −
ffiffiffi
6

p

24

�
ln2r − 7ð2 − 3 ln 2Þ ln r − 15

2
−
19π2

6
þ 51 ln 2 −

17

2
ln22þ iπð2 ln r − 14þ 21 ln 2Þ

�
; ð9dÞ

where μ is the renormalization scale, and β0 ¼ 11
3
CA − 2

3
nf

is the one-loop coefficient of the QCD β function, and
nf ¼ 4 denotes the number of active quark flavors. In
contrast with (8), all four reduced helicity amplitudes
receive nonvanishing OðαsÞ corrections.
Note that the β0 lnð4μ2=sÞ term only resides in the

ð�1; 0Þ channel, since this is the only channel that

has a nonvanishing tree-level amplitude. For the sake
of comparison, all these asymptotic results of the reduced
helicity amplitudes are also shown in Fig. 2, in juxtapose
with the corresponding exact NLO results. These asymp-
totic results appear to converge with the exact ones
decently well even at relatively lower

ffiffiffi
s

p
, say, at B

factory energy.
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,21
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FIG. 2. Variation of the OðαsÞ reduced helicity amplitudes að1Þλ1;λ2
with

ffiffiffi
s

p
. We take μ ¼

ffiffi
s

p
2
and mc ¼ 1.4 GeV. The solid curves

correspond to the exact NLO results, and the dashed curves represent the asymptotic ones as given in (9). The vertical mark is placed at
the B factory energy

ffiffiffi
s

p ¼ 10.58 GeV.
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From Eq. (9), one sees that the leading scaling violation is
due to the double logarithm ln2 r. This constitutes another
example to further corroborate the earlier conjecture: the
occurrence of ln2 r in the one-loop NRQCD short-distance
coefficients is always affiliated with the helicity-suppressed
channels in exclusive double charmonium production
processes [24,44].

V. PHENOMENOLOGY

Aside from a comprehensive analysis on the process
eþe− → J=ψ þ ηc2 at the B factory, in this section we also
target at a detailed investigation on the process
eþe− → J=ψ þ χ0c1, where the essential elements have
already been set up in [24]. This study is largely motivated
by the recent concern about the nature of the Xð3872Þ
meson, whether its quantum number is 1þþ or 2−þ.
The canonical charmonium options for the Xð3872Þ are
the χ0c1 and ηc2, respectively. With this consideration in
mind, our study may provide some useful guidance on
unveiling the quantum number of the Xð3872Þ through the
dedicated double-charmonium experiment at the future B
factory.
Beforemaking concrete predictions to the production rates

for eþe− → J=ψ þ ηc2, we first address a subtlety about
utilizing (6). For the J=ψð�1Þ þ ηc2ð0Þ helicity
state, the canonic way of identifying the OðαsÞ correction
is by replacing ja�1;0j2 with 2 αs

π ℜ½að0Þ�1;0a
ð1Þ
�1;0�. Because of

the null tree-level amplitudes for the remaining helicity
configurations, theOðαsÞ correction to the total cross section
is solely from the ð�1; 0Þ channels. On the other hand, the
polarized cross section for each helicity state is also a
physical observable by itself. Since the nonvanishing ampli-
tudes are first generated at OðαsÞ for the remaining helicity

states, it is thereby also sensible to interpret jaλ1;λ2 j2 ¼
ðαsπ Þ2jað1Þλ1;λ2

j2 for ðλ1; λ2Þ ≠ ð�1; 0Þ. Though formally of

order α2s, these new pieces do constitute the leading con-
tributions to the respective polarized cross sections, thereby

still being consistent.2 We will follow this viewpoint in
presenting our NLO predictions.
In the numerical analysis, we take

ffiffiffi
s

p ¼ 10.58 GeV, and
the charm quark pole mass mc ¼ 1.4� 0.2 GeV. The fine
structure constant is chosen as αð ffiffiffi

s
p Þ ¼ 1=130.9 [19]. The

runningQCD strong coupling constant is evaluated by using

the two-loop formula with Λð4Þ
M̄S

¼ 0.338 GeV [16,17]. The
nonpertubative input parameters, i.e., (the derivatives of) the
wave function at the origin for J=ψ, χ0c1, and ηc2, also suffer
from a large amount of uncertainty. Their values have been
compiled in Ref. [48], which were deduced from several
different potential models. We choose to use those given by
the Buchmüller-Tye potential model [49]: jRJ=ψð0Þj2 ¼
0.81GeV3, jR0

χ0c1
ð0Þj2¼ 0.102GeV5, and jR00

ηc2ð0Þj2 ¼
0.015GeV7.
Another important source of uncertainty for the NLO

predictions stems from the scale affiliated with the strong
coupling constant. As is well known, the scale ambiguity is
a typical nuisance of NRQCD factorization approach,
reflecting the fact that two disparate hard scales,

ffiffiffi
s

p
and

mc, are entangled together in NRQCD short-distance
coefficients. In fact, the lesson gained from the light-cone
approach strongly suggests that it is rather implausible to
set the scales entering all αs in NLO short-distance
coefficient to be unanimously around

ffiffiffi
s

p
[44]. Although

we are unable to circumvent the scale ambiguity problem in
the confine of NRQCD approach, we may allow the μ to
float in the range between 2mc and

ffiffiffi
s

p
, hoping that the

most trustworthy prediction may interpolate in between.
In Fig. 3, we show the total cross sections both for

eþe− → J=ψ þ ηc2 and eþe− → J=ψ þ χ0c1 as a function
of μ, which also take into account the error due to the

3 4 5 6 7 8 9 10

GeV

fb

e e J c2

LO

NLO

3 4 5 6 7 8 9 10

GeV

fb

e e J c1

LO

NLO

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0

1

2

3

4

5

6

FIG. 3. The renormalization scale dependence of the LO and NLO cross sections for eþe− → J=ψ þ ηc2 (left panel) and eþe− →
J=ψ þ χ0c1 (right panel) at

ffiffiffi
s

p ¼ 10.58 GeV. The band is obtained by varying the charm quark mass in the range mc ¼ 1.4� 0.2 GeV.

2The uncalculated order-v2 corrections to eþe− → J=ψ þ ηc2
generally also lead to nonvanishing amplitudes for those helicity
states other than ð�1; 0Þ, which are potentially as important as
the OðαsÞ corrections. For the leading contributions to the
corresponding polarized cross sections, one needs also include
the interference effect between the radiative and relativistic
corrections.

HAI-RONG DONG, FENG FENG, and YU JIA PHYS. REV. D 98, 034005 (2018)

034005-6



uncertainty ofmc. One sees clearly that, after incorporating
the NLO perturbative correction, the scale dependence of
the cross section has been reduced. In Fig. 4, we also plot
the LO and NLO total cross sections for eþe− → J=ψ þ
ηc2 as a function of

ffiffiffi
s

p
. Since the leading-twist (0, 0)

channel is absent in both of the processes, the cross sections
drop very rapidly (∝ 1=s4) as

ffiffiffi
s

p
increases.

In Tables I and II, we also list the predictions for the
polarized cross sections from each individual helicity
channel as well as the total cross sections for eþe− →
J=ψ þ ηc2 and eþe− → J=ψ þ χ0c1, with mc fixed at
1.4 GeV but with the renormalization scale chosen at three
different points. The impact of the OðαsÞ corrections to the
total cross sections is surprisingly alike for both double-
charmonium production processes: incorporating the NLO

pertubative correction decreases the LO cross sections by
about 6% for μ ¼ 2mc, or increases the LO result by
roughly 30% for μ ¼ ffiffiffi

s
p

=2, or enhances the LO result
by about 60% for μ ¼ ffiffiffi

s
p

. Hence, the relative importance
of theOðαsÞ correction increases as μ increases. Taking the
medium value μ ¼ ffiffiffi

s
p

=2, our NLO predictions for the
cross sections of eþe− → J=ψ þ ηc2 and eþe− → J=ψ þ
χ0c1 at

ffiffiffi
s

p ¼ 10.58 GeV reach about 0.3 fb and 1.9 fb,
respectively. The production rate of the latter process is
about 6 times more copious than that of the former.
Inspecting Tables I and II, one observes an interest-

ing hierarchy of the polarized cross sections for the
above processes. The overwhelming contribution for the
J=ψ þ ηc2 production comes solely from the ð�1; 0Þ state,
with J=ψ transversely polarized, while the dominant

6 8 10 12 14 16 18 20

s GeV

fb

e e J c2

LO
NLO

6 8 10 12 14 16 18 20

s GeV

fb

e e J c1

LO
NLO
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1.2
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15
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FIG. 4. Variation of the LO and NLO cross sections for eþe− → J=ψ þ ηc2 (left panel) and eþe− → J=ψ þ χ0c1 (right panel) with
ffiffiffi
s

p
.

mc is fixed as 1.4 GeV and the renormalization scale is taken as μ ¼
ffiffi
s

p
2
.

TABLE I. Polarized and total cross sections (in unit of fb) for eþe− → J=ψ þ ηc2. We have taken mc ¼ 1.4 GeV.
In the rightmost column, we also give the K factor for the unpolarized cross sections.

σð1;0Þ σð0;1Þ σð1;1Þ σð1;2Þ σtot K

μ ¼ 2mc LO 0.18 … … … 0.35
0.94NLO 0.17 3.4 × 10−3 5.5 × 10−4 3.7 × 10−5 0.33

μ ¼
ffiffi
s

p
2

LO 0.11 … … … 0.22
1.30NLO 0.14 1.5 × 10−3 2.4 × 10−4 1.6 × 10−5 0.29

μ ¼ ffiffiffi
s

p
LO 7.4 × 10−2 … … … 0.15

1.57
NLO 0.12 6.8 × 10−4 1.1 × 10−4 7.5 × 10−6 0.23

TABLE II. Polarized and total cross sections (in unit of fb) for eþe− → J=ψ þ χ0c1. We have takenmc ¼ 1.4 GeV.
In the rightmost column, we also list the K factor for the unpolarized cross sections.

σð1;0Þ σð0;1Þ σð1;1Þ σtot K

μ ¼ 2mc LO 2.3 × 10−3 1.07 0.082 2.30
0.94

NLO −0.026 1.08 0.033 2.16

μ ¼
ffiffi
s

p
2

LO 1.4 × 10−3 0.67 0.051 1.44
1.31

NLO −0.012 0.91 0.045 1.89

μ ¼ ffiffiffi
s

p
LO 9.7 × 10−4 0.45 0.035 0.98

1.57
NLO −0.0063 0.73 0.042 1.53
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helicity channel for producing J=ψ þ χ0c1 is instead the
ð0;�1Þ state, with J=ψ longitudinally polarized. This
characteristic of J=ψ polarization may serve as a bench-
mark for the future double-charmonium production experi-
ment to unveil the nature of the Xð3872Þ, provided that the
prospective Super B factory can observe sufficient number
of Xð3872Þ events recoiling against J=ψ . From Table II,
one also notes that the NLO corrections to the cross
sections in the (1,0) channel become negative. This signals
substantial negative OðαsÞ corrections associated with this
channel, which also implies that even higher-order radiative
corrections might also be important.
We can ascertain the observation potential of these

two exclusive double charmonium production processes.
Thus far, BELLE experiment has accumulated about
1000 fb−1 data. Taking σ½eþe−→ J=ψþηc2�≈0.23–0.33
and σ½eþe− → J=ψ þ χ0c1� ≈ 1.53–2.16 fb from Tables I
and II, we estimate that roughly 230–330 J=ψ þ ηc2 events,
and 1500–2200 J=ψ þ χ0c1 events have been produced at
BELLE at around

ffiffiffi
s

p ¼ 10.58 GeV.
Since neither of the masses and decay patterns of ηc2 and

χ0c1 is known, it seems experimentally impossible to
simultaneously reconstruct the J=ψ and the ηc2ðχ0c1Þ
signals. The viable experimental way is to only reconstruct
the J=ψ → lþl− event, and fit the recoil mass spectrum
against the J=ψ to estimate the number of ηc2ðχ0c1Þ peak
events. This method does not depend on the concrete decay
modes of ηc2ðχ0c1Þ, and is particularly suitable for the
limited statistics of signal events like in our case. In fact,
this method has already been used routinely by the BELLE

Collaboration to search for the double charmonium pro-
duction processes eþe− → J=ψ þ C-even charmonium.
In fitting the recoil mass spectrum, the net detection

efficiency for eþe− → J=ψ þ ηc2ðχ0c1Þ may reach around
4% (Similar for ηc2 and χ0c1, with the reconstruction
efficiency for J=ψ → lþl− included [50]). As a very crude
estimate, the number of observed eþe− → J=ψ þ ηc2ðχ0c1Þ
events are expected to reach ð230 − 330Þ × 4% ¼ 9 − 13,
and ð1500 − 2200Þ × 4% ¼ 60 − 90, respectively. Since
only the J=ψ is reconstructed, the background level can
be a little higher. With only around 9–13 observed J=ψ þ
ηc2 events, it appears difficult to observe a significant signal
with current 1 ab−1 BELLE data. If χ0c1 is indeed the
Xð3872Þ meson, thanks to the very narrow width of the
Xð3872Þ, it seems possible to observe the 60–90 J=ψ þ χ0c1
signal events with the current BELLE full data sample,
which may provide a strong incentive for updating their
earlier eþe− → J=ψþ charmonium analysis with only
673 fb−1 data [5,51]. This study may hopefully help one
to better understand the mechanism about the Xð3872Þ
production. On the other hand, in case that χ0c1 is not
Xð3872Þ and its width is no longer narrow, it may be
difficult to observe a significant signal at the moment.
In any event, a much larger data samples seem to be

called for to arrive at some definite conclusion. In the

prospective Super B factory, which may reach an integrated
luminosity of 50 ab−1 by 2022, it seems feasible that the
processes eþe− → J=ψ þ ηc2ðχ0c1Þ will eventually be
observed, and the quantum number of Xð3872Þ also
hopefully be nailed down.

VI. SUMMARY

In this work, we have calculated the complete NLO
perturbative corrections to eþe− → J=ψ þ ηc2 within the
NRQCD factorization framework, and found that theOðαsÞ
correction can be sizable for a larger value of the renorm-
alization scale. Our calculation indicates that the dominate
contribution to the total cross section comes from the
helicity states ð�1; 0Þ.
We have also carried out a comparative study for

eþe− → J=ψ þ ηc2 and eþe− → J=ψ þ χ0c1 at B factory
energy, with the specific motivation that these double
charmonium production processes may provide useful
means to unveil the quantum number of the Xð3872Þ
meson in the future B factories. It turns out that the
production rate of the latter process is about 6–7 times
greater than the former; therefore, it is possible to observe
the J=ψ þ χ0c1 signals based on the current 1 ab−1 BELLE

data sample, if the χ0c1 is indeed the very narrow Xð3872Þ
particle. The dominantly transverse polarization of the J=ψ
is also a useful indicator for identifying the Xð3872Þ
with χ0c1.
A necessary extension of our current work is to further

incorporate the leading relativistic correction to the above
double-charmonium production processes, whose effects
might be as important as the radiative corrections. The
study along this direction is of some theoretical interest,
especially regarding that, until today the Oðv2Þ calculation
hardly exists for the production processes involving the P,
D-wave quarkonium.
It has been recently realized that theOðαsÞNRQCD short-

distance coefficients for the helicity-suppressed double
charmonium-production processes are often plagued with
the double logarithm of form ln2ðs=m2

cÞ [44]. This symptom
is likely intertwined with some long-standing failure of
applying the light-cone approach to the “higher-twist” hard
exclusive reactions beyond tree level, such as γ�ρπ transition
form factor [8]. To expedite a better understanding and
controlling of these double logarithms, we have scrutinized
all the NLO diagrams for the various exclusive double-
charmonium processes that have been studied so far, e.g.,
eþe− → J=ψ þ ηc2ðηc; χc0;1;2Þ, and singled out those that
contain double logarithms, and enumerate their coefficients
for each individual helicity states. No simple and general
pattern has been recognized yet.
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APPENDIX: ANATOMY OF THE NLO
DIAGRAMS CONTAINING DOUBLE

LOGARITHMS IN VARIOUS DOUBLE-
CHARMONIUM PRODUCTION PROCESSES

Although the NRQCD factorization approach and the
light-cone approach are based on two completely different
expansion strategies, they can be intimately linked for the
exclusive double charmonium production processes in the
limit s ≫ m2

c. As exemplified by an anatomy of the OðαsÞ
correction to the Bc electromagnetic form factor [44], the
light-cone approach can be efficiently utilized to reproduce
the asymptotic behavior of the OðαsÞ NRQCD short-
distance coefficient through the idea of refactorization
[41–43].
It is worth emphasizing one important limitation of the

refactorization procedure. So far it can only be successfully
applied to the “leading-twist” reactions involving quarko-
nium, that is, with the HSR-favored helicity configurations.
A general characteristic about this class of processes is that,
at the NLO in αs, only the single collinear logarithm of ln s

m2
c

arises in the NRQCD short-distance coefficient, which can
be resummed to all orders in αs with the aid of the Brodsky-
Lepage evolution equation. This feature has been explicitly
verified in several examples, e.g., γ� → ηc þ γ [40,43,54],
γ� þ Bc → Bc [43], γ� → J=ψð0Þ þ χc0;2ð0Þ [24].
However, the majority of phenomenologically relevant

double-charmonia production processes are of “higher-
twist” nature, exemplified by γ� → J=ψ þ ηc2ðηc; χc0;1;2Þ,
for which some of or all possible helicity channels are of
the HSR-suppressed type. Until today, it is still not clear
how to consistently compute the NLO radiative correction
to this type of processes in the light-cone framework, due to
some long-standing problem such as the inevitable emer-
gence of the end-point singularity. By contrast, NRQCD
factorization approach, which is based on the velocity
expansion rather than the twist expansion, serves as the
only viable tool to investigate the OðαsÞ corrections to this
kind of helicity-suppressed hard exclusive reactions.
An abnormal feature about the OðαsÞ NRQCD short-

distance coefficients for the helicity-suppressed double
charmonium production processes seems to be the frequent
emergence of the double logarithm ln2ðs=m2

cÞ, which
seems to seriously deteriorate the convergence of the

perturbative expansion in NRQCD factorization.3 This
double logarithm appears to result from the overlap
between the “collinear” and “soft” regions in the
NRQCD short-distance coefficient and seems deeply
related to the aforementioned end-point singularity prob-
lem. Although it is feasible to reproduce the closed form of
the double logarithms for each concrete process, the lack of
a thorough understanding of their behavior in higher order
in αs prevents one from systematically controlling them,
i.e., resumming them to all orders in αs.
A useful starting point is to anatomize all the double

logarithms of form ln2ðs=m2
cÞ from the existing NLO

calculations for the various exclusive double charmonium
processes. For this purpose, we examine all the NLO
Feynman diagrams for the processes eþe− → J=ψþ
ηc2ðηc; χc0;1;2Þ, sort out those that contain the double loga-
rithm, and enumerate their coefficients.
A careful examination reveals that (almost) all the

relevant NLO diagrams that contribute the double loga-
rithm ln2ðs=m2

cÞ (in Feynman gauge) for the above proc-
esses are included in Fig. 5, which was first identified
in [44].
In Table III, we tabulate the double logarithms that come

from each individual diagram in Fig. 5, with the color-
structure specified, for the processes eþe− → J=ψþηc2ðηcÞ.

(a) (b) (c)

(e) (f) (g)

(d)

(h)

(i) (j)

FIG. 5. The NLO diagrams that contain the double logarithm
ln2ðs=m2

cÞ (in Feynman gauge) for the process γ� → J=ψþ
ηc2ðηc; χc0;1;2Þ. The respective charge-conjugated diagrams have
been suppressed.

3In fact, one will encounter the double logarithm even in the
single-quarkonium exclusive production process such as
γ� → ηc þ γ, once the corresponding OðαsÞ NRQCD short-
distance coefficient is expanded to NLO in m2

c=s. This can be
readily checked by using the analytic OðαsÞ short-distance
coefficient given in [40,54].
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The reaction eþe− → J=ψðλ1Þ þ ηcðλ2Þ only possesses
one independent helicity configuration ð�1; 0Þ. Each dia-
gram contains a nonvanishing double logarithm. Summing
up all their contributions, and multiply by 2 to account for
the contribution from the charge-conjugated diagrams, we
recover the net double logarithm in the NLO short-distance
coefficient: Cð1Þ

Cð0Þ jasym ¼ 13
24
ln2 s

m2
c
, as given in Eq. (37) of

Ref. [44].
All the four polarized production channels eþe− →

J=ψðλ1Þ þ ηc2ðλ2Þ are helicity-suppressed. Adding up
the contributions from all the diagrams in Fig. 5, and
multiplying by 2, we recover the net double logarithm in

the NLO reduced helicity amplitudes að1Þλ1;λ2
jasym, as given in

Eqs. (9). Note that the double logarithms from the ð�1; 0Þ
channel has the similar diagram-by-diagram structure as its
counterpart for eþe− → J=ψ þ ηc. Nevertheless, for the
remaining three helicity channels, a great simplification
arises that many of the diagrams in Fig. 5 do not contain
double logarithm.
Next we examine the double logarithms that are affiliated

with the polarized production processes eþe−→ J=ψðλ1Þþ
χcJðλ2Þ (J ¼ 0, 1, 2). Excluding two helicity-conserved
channels γ� → J=ψð0Þ þ χc0;2ð0Þ, Table IV lists the
structure of double logarithms in the remaining eight

helicity-suppressed channels. A noteworthy thing is that,
for the helicity channel ð�1;�2Þ of γ� → J=ψ þ χc2,
besides the diagrams shown in Fig. 5, one extra NLO
diagram as shown in Fig. 6 also need be included. The color
factor associated with the diagram in Fig. 6 is 1

2
CF, and the

corresponding coefficient is − 9
16
.

Adding up the contributions from all the diagrams in
Fig. 5 for the reactions eþe− → J=ψðλ1Þ þ χc0;1;2ðλ2Þ,
together with that in Fig. 6 for the ð�1;�2Þ state, and
multiplying the results by 2, we then reproduce the net

TABLE III. The coefficients of the double logarithm associated with each diagram in Fig. 5 from the various helicity states ðλ1; λ2Þ in the
processes γ� → J=ψ þ ηc2ðηcÞ. The two types of color factors are denoted byC1 ¼C2

F andC2 ¼CFðCF− 1
2
CAÞ, whereCF ¼ 4

3
andCA ¼ 3.

Diagrams a) b) c) d) e) f) g) h) i) j)
Color Factor C1 C1 C1 C2 C2 C2 C2 C2 C2 C2

ηc2 (1,0) 3
64

9
128

3
256

9
64

3
128

21
128

− 9
128

− 3
128

− 9
128

− 3
128

(0,1) … − 3
ffiffi
3

p
128

… … … − 3
ffiffi
3

p
128

… … … …

(1,1) … − 3
ffiffi
3

p
256

3
ffiffi
3

p
256

… … … … … … …

(1,2) … − 3
ffiffi
6

p
256

… … … … … … … …

ηc (1,0) 3
64

3
32

3
128

3
32

3
64

9
64

− 3
64

− 3
64

− 3
64

− 3
64

TABLE IV. The coefficients of the double logarithm associated with each diagram in Fig. 5 from the various helicity states ðλ1; λ2Þ in
the process γ� → J=ψ þ χc0;1;2. The two types of color factors are represented by C1 ¼ C2

F and C2 ¼ CFðCF − 1
2
CAÞ.

Diagrams a) b) c) d) e) f) g) h) i) j)
Color Factor C1 C1 C1 C2 C2 C2 C2 C2 C2 C2

χc0 (1,0) 7
96

1
48

1
192

1
24

7
96

11
96

− 1
48

− 7
96

− 1
48

− 7
96

χc1 (1,0) … − 3
32

− 3
64

− 3
16

3
32

− 3
32

3
32

− 3
32

3
32

− 3
32

(0,1) 9
128

3
64

9
256

3
128

9
128

9
64

− 3
128

− 9
128

− 3
128

− 9
128

(1,1) 27
256

3
128

− 3
256

− 3
128

15
128

3
32

3
128 − 15

128
3

128 − 15
128

χc2 (0,1) 3
64

3
32

3
128

3
64

3
64

3
16

− 3
64

− 3
64

− 3
64

− 3
64

(1,0) 1
32

1
16

1
64

1
8

3
32

5
32

− 1
16

− 1
32

− 1
16

− 1
32

(1,1) 9
256

9
128

− 9
256

15
128

3
128

15
64

− 9
128

− 3
128

− 9
128

− 3
128

(1,2) … 3
64

3
64

3
32

… 9
32

− 3
32

… − 3
32

…

(k)

FIG. 6. The extra NLO diagram relative to Fig. 5 that also
contributes the double logarithm ln2ðs=m2

cÞ (in Feynman gauge)
to the helicity channel ð�1;�2Þ for γ� → J=ψ þ χc2. The
respective charge-conjugated diagram is not shown.
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double logarithms in the NLO reduced helicity amplitudes,

KJ
λ1;λ2

ðr; μ2s Þasym given in Eqs. (14) through (16) in Ref. [24].
An obvious observation from Tables III and IV is

that the specific structures of the double logarithms are
process-dependent. It seems that no simple, unified pattern
can be readily recognized.
It is worth mentioning that the origin of the double

logarithms for the eþe− → J=ψ þ ηc has recently been
clarified [55]. The authors distinguished two types of
double logarithms which may arise in an individual
NLO diagram, e.g., the Sudakov double logarithm and
the end-point logarithm where a spectator quark line in
loop diagram becomes soft. Upon summing all the NLO
diagrams, it is found that the Sudakov double logarithms
cancel, but the end-point logarithms remain [55].
It is also interesting to conduct an analogous anatomy,

on a diagram-by-diagram basis, for the processes considered
in this work, e.g., J=ψ associated production with a P, D-
wave charmonium. Closely examining the collinear/soft
momentum regions in the one-loop contributions to the
NRQCD short-distance coefficients, one should be able to
identify the origin of double logarithms. We believe that it is
very likely that the pattern observed in Ref. [55] will
reproduce in our processes; i.e., only the end-point double
logarithms survive ultimately.

It is still an open challenge to thoroughly understand these
apparently nonuniversal end-point double logarithms asso-
ciated with the helicity-flipped double-charmonium produc-
tion processes. The goal of resumming such double
logarithms to all orders in αs still looks rather remote.
However, practically speaking, it may turn to be useful to
first deduce the leading logarithms associated with the next-
to-next-to-leading-order radiative corrections to NRQCD
short-distance coefficients, which is possibly of quartic form
ln4 s

mc
. This is undoubtedly a rather difficult task, butmay still

be approachable in view of recent technical advancement in
higher-order perturbative calculation.
Finally, we would like to remark that the occurrence of

double logarithms are not specific to the double-charmonium
production, or helicity-flip process. For a simple example,
consider the helicity-conserving single-charmoniumproduc-
tion process, eþe− → ηc þ γ [40,54]. In this case, the double
logarithm also arises when the corresponding one-loop
NRQCD short-distance coefficients is expanded to the
next-to-leading power in m2

c=s. Therefore, it seems more
correct to state that double logarithms in exclusive charmo-
nium production are always linked with the “higher-twist”
contributions in the context of refactorizing the NRQCD
short-distance coefficients [43].
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