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Relativistic light-front bound-state equations for double-heavy mesons, baryons and tetraquarks are
constructed in the framework of supersymmetric light front holographic QCD. Although heavy quark
masses strongly break conformal symmetry, supersymmetry and the holographic embedding of semi-
classical light-front dynamics still holds. The theory, derived from five-dimensional anti–de Sitter space,
predicts that the form of the confining potential in the light-front Hamiltonian is harmonic even for heavy
quarks. Therefore, the basic underlying supersymmetric mechanism, which transforms meson-baryon and
baryon-tetraquark wave functions into each other, can also be applied to the double-heavy sector; one can
then successfully relate the masses of the double-heavy mesons to double-heavy baryons and tetraquarks.
The dependence of the confining potential on the hadron mass scale agrees completely with the one derived
in heavy light systems from heavy quark symmetry. We also make predictions for higher excitations of the
charmonium and bottomonium states. In particular, the remarkable equality of the Regge slopes in the
orbital angular momentum, L, and the principal quantum number, n, is predicted to remain valid.
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I. INTRODUCTION

Light front holographic QCD (LFHQCD) leads to a
remarkable semiclassical approximation to QCD [1–3].
The basis of LFHQCD is the Maldacena conjecture (or the

“holographic principle”) [4], which states the equivalence
of a five-dimensional classical gravity theory with a four-
dimensional quantum field theory. The five-dimensional
classical theory has a non-Euclidean geometry, the so
called anti–de Sitter (AdS) metric. The resulting four-
dimensional quantum field theory is a quantum gauge
theory, like QCD, but instead of having Nc ¼ 3 colors, it
has Nc → ∞. It has also conformal symmetry and it is
supersymmetric. This means that to each fermion field
there exists also a bosonic field with properties governed
by a supersymmetry.
This superconformal quantum gauge theory with infi-

nitely many colors is not QCD. To consider QCD in
LFHQCD one chooses a bottom-up approach: one modi-
fies the five dimensional classical theory in such a way to
obtain, from this modified theory and the holographic
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embedding, realistic features of hadron physics which are
not apparent in the QCD Lagrangian, such as confine-
ment and the appearance of a mass scale. In a series of
articles [5–7], it was shown how the implementation of
superconformal symmetry [8–11] of the semiclassical
theory, as expressed by holographic light front bound-
state equations, completely fixes the necessary modifi-
cations of the AdS5 Lagrangian for mesons and baryons.
Although heavy quark masses break conformal sym-
metry, the presence of a heavy mass does not need to
also break supersymmetry, since it can stem from the
dynamics of color confinement. Indeed, as was shown in
Refs. [12,13], supersymmetric relations between the
meson and baryon masses still hold to a good approxi-
mation even for heavy-light, i.e., charm and bottom,
hadrons. In the limit of massless quarks one has an
universal scale (fixed for instance by one hadronic mass)
and for massive quarks, one has also the quark masses
as parameters. This SuSyLFHQCD leads to remarkable
relations which connect meson, baryon and tetraquark
spectroscopy [7,14,15].
In this work, we will show that supersymmetric

relations between double-heavy mesons, baryons, and
tetraquarks can still be derived from the supersymmetric
algebra even though conformal invariance is explicitly
broken by the heavy quark masses. We emphasize that
the supersymmetric relations which are derived from
supersymmetric quantum mechanics are not based on
supersymmetric Quantum Field Theory in which QCD is
embedded; instead, they are based on the fact that the
supercharges of the supersymmetric algebra relate the
eigenstates of mesons, baryons and tetraquarks in a
Hilbert space in which the light-front (LF) Hamiltonian
acts. This could be considered as a realization of super-
symmetric quantum mechanics [16]. These relations are
possible since in the light-front holographic approach
the baryon must be described by the wave function of a
quark and a diquark-cluster, and the tetraquark must be
described by the wave function of a diquark-cluster and a
antidiquark-cluster. This clustering is purely kinematical,
it does not imply that the diquark cluster forms a tightly
bound system; on the contrary, the results of the form

factor analysis [17] show that the cluster is of the usual
hadronic size and must be resolved [18]. The properties
of the supercharges predict specific constraints between
mesons and baryons, and between baryons and tetra-
quarks superpartners, in agreement with measurements
across the entire hadronic spectrum, including the double-
heavy sector [14].
This paper is organized as follows: In Sec. II, we give a

brief review of the LF Hamiltonian from supersymmetric
quantum mechanics. In Sec. III, we extend our approach to
systems containing double-heavy, charm or bottom, quarks.
We compare our predictions with experiment in Sec. IV,
and in Sec. V we present our conclusions.

II. SUPERSYMMETRIC LIGHT FRONT
HAMILTONIAN

In the framework of supersymmetric quantummechanics
[16], the LF Hamiltonian [6,7,12,13] can be written in
terms of two fermionic generators, the supercharges,Q and
Q†, which satisfy anticommutations relations:

fQ;Qg ¼ fQ†; Q†g ¼ 0: ð1Þ

The Hamiltonian

H ¼ fQ;Q†g; ð2Þ

commutes with these fermionic generators: ½Q;H� ¼
½Q†; H� ¼ 0. Its minimal realization in matrix notation is

Q ¼
�
0 q

0 0

�
; Q† ¼

�
0 0

q† 0

�
; ð3Þ

with

q ¼ −
d
dζ

þ f
ζ
þ VðζÞ; q† ¼ d

dζ
þ f

ζ
þ VðζÞ; ð4Þ

where ζ has dimension of length. The resulting
Hamiltonian

H ¼ fQ;Q†g ¼
 
− d2

dζ2 þ
4ðfþ1=2Þ2−1

4ζ2
þ U1ðζÞ 0

0 − d2

dζ2 þ
4ðf−1=2Þ2−1

4ζ2
þU2ðζÞ

!
; ð5Þ

where

U1ðζÞ ¼ V2ðζÞ − V 0ðζÞ þ 2f
ζ
VðζÞ; ð6Þ

U2ðζÞ ¼ V2ðζÞ þ V 0ðζÞ þ 2f
ζ
VðζÞ; ð7Þ

can be identified with a semiclassical approximation to the
QCD LF Hamiltonian of mesons, HM ¼ H11, and baryons,
HB ¼ H22.
In the LFHQCD approach, the LF potential is derived

from the AdS5 action from the mapping of the AdS
equations to the light front for arbitrary spin [2,3,15].
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As has been shown in [13], the form of the LF potential (6)
is only compatible with the one derived from an arbitrary
dilaton profile in the meson Lagrangian, if

VðζÞ ¼ λQζ: ð8Þ
This signifies that, even in the absence of conformal
symmetry, the special form of the light front potential
for massless quarks persists, provided that the holographic
embedding is possible; namely, that the separation of the
dynamical and kinematical variables also persist, at least
to a good approximation, in the presence of heavy quark
masses [13]. This can be understood if, to first order, the
transverse dynamics is unchanged, and consequently the
transverse LF wave function (LFWF) is also unchanged to
first order [19]. In this case, the confinement scale λQ takes
the place of the confinement scale of massless quarks,
λ ¼ κ2, but depends, however, on the mass of the heavy
quark as expected from heavy quark effective theory
(HQET) [20]. The LF potentials, UMðζÞ and UBðζÞ, are
derived from (6) and (7), respectively,

UMðζÞ ¼ λ2Qζ
2 þ 2λQðf − 1=2Þ; ð9Þ

UBðζÞ ¼ λ2Qζ
2 þ 2λQðf þ 1=2Þ; ð10Þ

with the light-front orbital angular momentum, L, for
baryons and mesons related by LB þ 1

2
¼ LM − 1

2
¼ f.

The addition of a constant term to the Hamiltonian (5)
does not violate supersymmetry and, in the following, we
will use the Hamiltonian [7]

HS;mq
¼ fQ;Q†g þ ð2λQSþ ΔM2½m1;…; mN �ÞI; ð11Þ

where S depends on the internal quark spin and the term
ΔM2½m1;…; mN � is the correction for the quark masses
given by Eq. (31) in the next section. This term differs by
the additional light quark mass present in baryons or
tetraquarks and, therefore, slightly breaks supersymmetry.
The Hamiltonian (11) acts on the 4-plet [7,14,15]

jϕLFi ¼
�
ϕMðLM ¼ LB þ 1Þ ψ−ðLB þ 1Þ

ψþðLBÞ ϕTðLT ¼ LBÞ

�
; ð12Þ

with HS;mq
jϕLFi ¼ M2

S;mq
jϕLFi. The resulting expressions

for the squared masses of the mesons, baryons and
tetraquarks are [7,14]:

Mesons∶ M2
M ¼ 4λQ

�
nþ LM þ SM

2

�
þ ΔM2½m1; m2�;

ð13Þ

Baryons∶ M2
B ¼ 4λQ

�
nþ LB þ SD

2
þ 1

�

þ ΔM2½m1; m2; m3�; ð14Þ

Tetraquarks∶ M2
T ¼ 4λQ

�
nþ LT þ ST

2
þ 1

�

þ ΔM2½m1; m2; m3; m4�; ð15Þ

where SM is the meson spin, SD is the lowest possible value
of the diquark cluster spin of the baryons, while ST is the
total tetraquark spin. The different values of the mass
corrections, ΔM2, on the supermultiplet break supersym-
metry explicitly to order m2

q=m2
Q, where we label, respec-

tively, by q and Q the light and heavy quark masses. These
equations show that the excitation spectra of meson, baryon
and tetraquark bound states lie on linear Regge trajectories
with identical slopes in the radial, n, and orbital, L, quantum
numbers. Mesons with LM and SM are the superpartners
of baryons with LB ¼ LM − 1 and whose diquark has
SD ¼ SM. Analogously, baryons with LB and diquark with
SD are the superpartners of tetraquarks with LT ¼ LB, and
ST ¼ SD. The relation ST ¼ SD implies that one of the
diquarks in the tetraquark always has spin zero [14].

III. QUARKONIUM AS A RELATIVISTIC BOUND
STATE ON THE LIGHT FRONT

A system consisting of two light quarks, or one light
and one heavy quark, is relativistic. On the other hand, a
system consisting of two heavy quarks is close to the
nonrelativistic case. However, the front form (FF) formu-
lation (light front dynamics) of the theory of interacting
particles is applicable to nonrelativistic as well as rela-
tivistic constituents. Therefore, quarkonia can be naturally
treated as a relativistic bound state in the LF formulation,
as done for instance in [21,22]. In Refs. [21,22], a one
gluon exchange interaction, in addition to a hyperfine-
splitting contribution [21], or to a longitudinal confining
potential [22], was added to the holographic potential to
describe the double-heavy mesonic states. Since it was
shown in Ref. [23] that a linear confining potential in the
instant form of dynamics agrees with a quadratic confin-
ing potential in the FF of dynamics, it seems natural to
extend the formulation developed in [3,5–7] to a system
with two heavy constituents.
In the LF form, the mass for a meson with two massive

constituents in momentum space is given by [1,3,15]:

M2 ¼
Z

1

0

dx
Z

d2k⊥
�

1

xð1 − xÞ k⃗⊥
2 þm2

1

x
þ m2

2

1 − x

�

× jψ̃ðx; k⃗⊥Þj2 þ interactions; ð16Þ

where ψ̃ðx; k⃗⊥Þ is the LFWF of two constituents with

relative momentum k⃗⊥ and longitudinal momentum frac-
tions x1 ¼ x, x2 ¼ ð1 − xÞ. For a system with two heavy
quarks, m1 ¼ m2 ¼ mQ, Eq. (16) can be written as
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M2 ¼
Z

1

0

dx
Z

d2k⊥
16π3

�
k⃗⊥

2 þm2
Q

xð1 − xÞ
�
jψ̃ðx; k⃗⊥Þj2

þ interactions: ð17Þ

By using the Fourier transform of ψðx; b⃗⊥Þ,

ψ̃ðx; k⃗⊥Þ ¼
ffiffiffiffiffiffi
4π

p Z
d2b⊥e−ik⃗⊥·b⃗⊥ψðx; b⃗⊥Þ; ð18Þ

in Eq. (17), we obtain

M2 ¼
Z

1

0

dx
Z

d2b⊥ψ�ðx; b⃗⊥Þ
�−∂⃗2

b⊥ þm2
Q

xð1 − xÞ
�
ψðx; b⃗⊥Þ

þ interactions; ð19Þ

with normalization

Z
1

0

dx
Z

d2b⃗⊥jψðx; b⃗⊥Þj2

¼
Z

1

0

dx
Z

d2k⃗⊥
16π3

jψ̃ðx; k⃗⊥Þj2 ¼ 1: ð20Þ

We introduce the invariant impact variable ζ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1 − xÞp jb⃗⊥j, which is precisely mapped to the coor-

dinate z of AdS space [1] by the relation ζ ¼ z. In terms of
ζ, we write the LFWF ψ as

ψðx; ζ;φÞ ¼ eiLφχðxÞ ϕðζÞffiffiffiffiffiffiffiffi
2πζ

p ; ð21Þ

where we have factored out the longitudinal and orbital
dependence from the LFWF ψ. From (20) the normaliza-
tion of the transverse and longitudinal modes is given by

hϕjϕi ¼
Z

∞

0

dζϕ2ðζÞ ¼ 1; ð22Þ

hχjχi ¼
Z

1

0

dx
χ2ðxÞ

xð1 − xÞ ¼ 1: ð23Þ

Using (21), we obtain

M2 ¼
Z

dζϕ�ðζÞ
ffiffiffi
ζ

p �
−

d2

dζ2
−
1

ζ

d
dζ

þ L2

ζ2

�
ϕðζÞffiffiffi

ζ
p

þ
Z

dζϕ�ðζÞUðζÞϕðζÞ þ ΔM2
Q; ð24Þ

where

ΔM2
Q ¼ m2

Q

Z
1

0

dx
x2ð1 − xÞ2 χ

2ðxÞ: ð25Þ

The longitudinal function χðxÞ → ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1 − xÞp

in the limit of
zero quark masses [3,24].
In deriving (24), we have assumed that separation of

transverse and longitudinal dynamics is a good approxi-
mation, even in the presence of heavy quark masses, and
that the effective potential, U, only depends on the trans-
verse invariant variable ζ.
Therefore, also in the case of double-heavy quarks and

strongly broken conformal invariance, the confinement
potential U has the same quadratic form as the one dictated
by the conformal algebra. The LF effective transverse
potential can still be obtained from holography and is
given by Eq. (9), at the scale λQ, namely UðζÞ ¼ λ2Qζ

2þ
2λQðLM − 1Þ. Since the eigenvalues of the LF Hamiltonian

H ¼
�
−

d2

dζ2
−
1

ζ

d
dζ

þ L2
M

ζ2
þ λ2Qζ

2 þ 2λQðLM − 1Þ
�
;

ð26Þ

are 4λ2Qðnþ LMÞ, we obtain from (24)

M2
M ¼ 4λ2Qðnþ LMÞ þ ΔM2

Q: ð27Þ

for a spinless double-heavy meson. Extension of this result
to mesons with internal spin and to baryons and tetraquarks
is carried out using the procedures described in Sec. II, if
the supersymmetric connection between mesons, baryons
and tetraquark bound states holds also for double-heavy
quarks. The masses of the double-heavy states are thus
given by Eqs. (13), (14), (15).
To actually compute ΔM in (24), we need to know the

longitudinal component of the LFWF χðxÞ, which is
determined by the holographic mapping only for massless
quarks [24]. To this end, we follow the procedure
introduced in [25], in the framework of the holographic
soft-wall model [26], for the LFWF of a meson bound
state with massive constituents. This procedure amounts
to the change

k⃗⊥
2

xð1 − xÞ →
k⃗⊥

2 þm2
Q

xð1 − xÞ ; ð28Þ

in the exponential factor in the LFWF in momentum
space; the LFWF in impact space then follows from the
Fourier transform (18). In particular, for the n ¼ L ¼ S ¼
0 meson bound states one obtains for (21) [3,15]

ψðx; b⃗⊥Þ ¼ Nm

ffiffiffiffiffi
λQ
π

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1 − xÞ

p
e−

λQ
2
xð1−xÞb2⊥e−m

2
Q=ð2λQxð1−xÞÞ;

ð29Þ
with

N2
m ¼ 1R

1
0 dxe

−m2
Q=ðλQxð1−xÞÞ

; ð30Þ
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The mass correction, ΔM2, in (13) or (24) is given by

ΔM2½mQ;mQ� ¼ m2
QN

2
m

Z
1

0

dx
e−m

2
Q=ðλQxð1−xÞÞ

xð1 − xÞ : ð31Þ

Since we are also interested in baryons and tetraquarks,
which have more than two constituents, one has to form
two clusters with Na constituents each and to introduce the
effective x values and transverse separations [15]:

xeffa ¼
XNa

i¼1

xi; b⃗eff⊥;a ¼
1

xa

XNa

i¼1

xib⃗⊥;i; a ¼ 1; 2:

ð32Þ
The resulting light front variable ζ occurring in the wave
function is

ζ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
xeff1 xeff2

q
jb⃗eff⊥;1 − b⃗eff⊥;2j: ð33Þ

For n constituents the mass correction is then given by [7]:

ΔM2½m1;…; mn� ¼
λ2Q
F

dF½λQ�
dλQ

ð34Þ

with F½λQ� ¼
R
1
0 …

R
1
0 e

− 1
λQ

P
n
i¼1

m2
i =xi .

IV. COMPARISON WITH EXPERIMENT

A. Mass spectrum

In Fig. 1, we show data [27] for double-charm mesons,
baryons and tetraquark superpatners. The squared masses
are plotted against LM ¼ LB þ 1; mesons, baryons and
tetraquarks with the same abscissa are then predicted to
have the same mass. The lightest meson has angular

momentum zero and, therefore, does not have a super-
symmetric baryon partner [12]. The solid lines in these
figures are the trajectories fit from (13). The LM ¼ 1 state
in the ηcð2984Þ family is the hcð3525Þ and the LM ¼ 1 state
in the J=ψð3096Þ family is the χc2ð3556Þ. The baryonic
superpartner of the meson hcð3525Þ is the Ξcc state with
quantum numbers JP ¼ 1

2
þ. There are two candidates for

this state: the ΞLHCb
cc ð3620Þ observed in 2017 by the LHCb

collaboration [28] and the ΞSELEX
cc ð3520Þ state reported by

the SELEX collaboration in 2002 [29,30]; both masses are
well within the uncertainties of our model in the hcð3525Þ
and χc2ð3556Þ mass range. For additional interpretation
concerning the Ξcc states see Ref. [31]. The ΞSELEX

cc and
ΞLHCb
cc are the baryonic superpartners of the hcð3525Þ and

χc2ð3556Þ mesonic states. The tetraquark candidates for
the superpartners of the baryonic states ΞSELEX

cc ð3520Þ and
ΞLHCb
cc ð3620Þ are the scalar, JPC ¼ 0þþ, χc0ð3415Þ, and the

axial, JPC ¼ 1þþ, χc1ð3510Þ, states, respectively, as dis-
cussed in [14]. As tetraquark states, χc0ð3415Þ has LT ¼
ST ¼ 0 and χc1ð3510Þ has LT ¼ 0 and ST ¼ 1. As pointed
out in Sec. II, one of the diquarks in the tetraquark has
always spin zero. See Ref. [14] for more details.
In Fig. 2, we show data [27] for double-beauty mesons

and tetraquark candidates [14]. The LM ¼ 1 state in the
ηbð9400Þ family is the hbð9900Þ and the LM ¼ 1 state in
the ϒð9460Þ family is the χb2ð9910Þ. There is still no
experimental observation of double beauty baryons. The
predictedmass forΞbb from this supersymmetric approach is
MΞbb

¼ ð9.90� 0.05Þ GeV for both JP assignments [14].
The tetraquark candidates for the JP ¼ 1

2
þ and 3

2
þ baryonic

states are the scalar, JPC ¼ 0þþ, χb0ð9860Þ, and the axial,
JPC ¼ 1þþ, χb1ð9893Þ, states, respectively.
Unfortunately the data for double-heavy hadrons are

sparse and one cannot really test the predicted linear

0 1 2 3
L

M
 = L

B
 + 1

8

10

12

14

16

18

20

M
2 (G

eV
2 )

ηc

h
c

χc0

Ξcc

n=0

n=1

ηc(2S)

X(3915)

n=2

0 1 2 3
L

M
 = L

B
 + 1

8

10

12

14

16

18

20

M
2 (G

eV
2 )

J/Ψ

χc1

χc2

Ξcc

Ψ(2S)

n=0

n=1

χc2(2S)
Z

c
(3900)

X(3872)

n=2

Ψ(3S)

FIG. 1. Double charm mesons (shown as green squares) baryons (shown as blue triangles) and tetraquarks (shown as red circles) with
different values of angular momentum L and radial excitation n. The solid lines are the trajectories fit from (13). Hadron masses are
taken from PDG [27]. In the left-hand-side figure, we show states with SM ¼ SD ¼ ST ¼ 0 and we have used λQ ¼ 0.785 GeV2 and
ΔM2 ¼ 8.898 GeV2 for the values of the parameters in Eq. (13). In the right-hand-side figure, we show states with SM ¼ SD ¼ ST ¼ 1

and we have used λQ ¼ 0.782 GeV2 and ΔM2 ¼ 8.027 GeV2 for the values of the parameters in Eq. (13).
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trajectories. However, the excellent agreement between the
masses of the superpartners in the double-heavy-quark
sector supports this attempt. From the fits for the different
trajectories we arrive at the values for

ffiffiffiffiffi
λQ

p
shown in

Table I. In this table, we also include the values for
ffiffiffiffiffi
λQ

p
obtained for light [6], light-strange [12], one-charm and
one-beauty [13] states.
To test the predicted identical linear slopes in the Regee

trajectories in the radial, n, and orbital, L, quantum
numbers (see Eqs. (13), (14) and (15)), we also show in
Figs. 1 and 2 the n ¼ 1 observed states and the predicted
Regge trajectories. As one can see from these figures, the
agreement is quite good. As discussed in [14], we can
assign the new charmonium states Xð3872Þ and Zþ

c ð3900Þ
as natural candidates to the tetraquark superpartners of the
χc2ð2PÞ state with an impressive agreement. In the case of
the hcð2PÞ state, although this state has not been observed
yet, the prediction for its mass [32], is in excellent agree-
ment with the mass of the new charmonium state Xð3915Þ,
candidate for its tetraquark superpartner. For completeness,
we also include in these figures the observed states ψð3SÞ
and ϒð3SÞ and the predicted Regee trajectory for n ¼ 2.

In [13], it was shown that for heavy-light mesons
consistency with HQET [20] requires that the confining
scale, λQ, has for heavy quark masses, to be proportional to
the mass of the heavy meson:

ffiffiffiffiffi
λQ

p ¼ C
ffiffiffiffiffiffiffiffi
MM

p
; ð35Þ

where C is a constant with dimension [mass1=2].
In Fig. 3, we show the values of λQ for the π, K,D, ηc, B,

and ηb meson families as a function of the meson massMM.
For the light quarks we are far away from the heavy quark
limit result (35). It is remarkable that the simple functional
dependence (35) derived in the heavy quark limit works
very well for all heavy states, including double-heavy
states. This shows universal behavior for all heavy states,
including the double-heavy and the heavy-light states. In
contrast, HQET is applicable only for states with only one
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FIG. 2. Same as in Fig. 1 for double beauty hadrons. In the left-hand-side figure, we show states with SM ¼ SD ¼ ST ¼ 0 and we have
used λQ ¼ 2.312 GeV2 and ΔM2 ¼ 88.34 GeV2 for the values of the parameters in Eq. (13). In the right-hand-side figure, we show
states with SM ¼ SD ¼ ST ¼ 1, and we have used λQ ¼ 2.142 GeV2 and ΔM2 ¼ 85.01 GeV2 for the values of the parameters in
Eq. (13).

TABLE I. The fitted value of
ffiffiffiffiffi
λQ

p
for different meson

trajectories as a function of the mass of the lowest meson state
on the trajectory.

Meson MM (GeV)
ffiffiffiffiffi
λQ

p
(GeV) Ref.

π 0.14 0.57� 0.03 [6]
K 0.50 0.57� 0.03 [12]
D 1.87 0.71� 0.04 [13]
ηc 2.98 0.90� 0.04 this work
B 5.28 1.1� 0.1 [13]
ηb 9.40 1.49� 0.03 this work
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FIG. 3. Fitted values of
ffiffiffiffiffi
λQ

p
as a function of the mass of the

lowest meson state on the trajectory. The solid line is the fit from
Eq. (35).
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heavy quark. Fitting the results in Table I for MM ≥
1.87 GeV with Eq. (35) one finds

C ¼ ð0.49� 0.02Þ GeV1=2: ð36Þ
This value agrees, within the errors, with the value obtained
in [13] from heavy-light hadrons.

B. Excitation energies of heavy mesons

We can use Eq. (35) with (36) to address a longstanding
puzzle in the quarkonia spectrum [33]: Why are the
excitation energies of the heavy mesons approximately
independent of the heavy quark mass?
From Eq. (13) one sees that ΔM2½m1; m2�≡M2

0 is the
mass of the lowest meson state on the trajectory with
n ¼ LM ¼ SM ¼ 0. Therefore one can write:

M2
M½n; LM; SM� ¼ M2

0

�
1þ 4λQ

M2
0

ðnþ LM þ SM=2Þ
�

¼ M2
0

�
1þ 4C2

M0

ðnþ LM þ SM=2Þ
�
;

ð37Þ
where, from (35) and (36), C2 ¼ λQ

M0
∼ 0.24 GeV. Thus, for

heavy quark masses:

MM½n; LM; SM� ≈M0 þ 2C2ðnþ LM þ SM=2Þ; ð38Þ
which implies

MMð1; LM; SMÞ −MMð0; LM; SMÞ ¼ 2C2 ∼ 480 MeV:

ð39Þ
The prediction in (39) shows that the excitation energies

of the heavy mesons are indeed independent of the heavy

quark mass. The experimental mass differences are con-
sistent within the expected model uncertainties, as a first
order approximation to the QCD theory. As a matter of fact,
one would expect that gluon exchange would play an
important role for small size states.

C. Predictions for higher excitations of
charmonium and bottomonium

The relation in Eq. (35) together with (36) also allows us
to determine the value:

ffiffiffiffiffi
λQ

p ¼ ð1.23� 0.05Þ GeV, for the
Bcð6275Þ, a JP ¼ 0− state. Using this value of

ffiffiffiffiffi
λQ

p
, we

can also predict the masses for the mesons on the Bcð6275Þ
trajectory. The prediction for the Bc1 (JP ¼ 1þ) mass is

MBc1
¼ ð6.75� 0.10Þ GeV: ð40Þ

Therefore, from supersymmetry we predict a similar mass
for its baryonic superpartner, Ξcb, and for the tetraquark
superpartner, Bc0 (JP ¼ 0þ). We show these predictions
in Table II. Our prediction for the Bc1 mass is in excellent
agreement with the recent lattice estimate: MBc1

¼
ð6.726� 0.016Þ GeV [34]. For other model predictions
for the Bc1 mass see, for instance, [35,36].
In Table III, we show other model predictions for the

baryonic superpartner of the Bc1 meson, the Ξcb state.
Comparing the numbers in Table III, we can see that our
predictions are in good agreement with most of the
previous model predictions.
In our approach, the Bc0 state is considered as the

tetraquark superpartner of the baryon Ξcb. Other predic-
tions for the mass of the Bc0 state, also considered as
four-quark state, are shown in the first three columns in
Table IV. In the case of Bc0, our prediction is somewhat

TABLE III. Predictions for the Ξcb mass.

MΞcb
(GeV) 6.86� 0.28 6.933 6.75� 0.05 6.72� 0.20 6.92� 0.13 6.835� 0.015 6.75� 0.10

Ref. [37] [38] [39] [40] [41] [42] this work

TABLE II. Quantum number assignment for the Bc trajectory and baryonic and tetraquark superpartners.

Meson Baryon Tetraquark

q-cont JP Name q-cont JP Name q-cont JP Name

b̄c 0− Bcð6275Þ � � � � � � � � � � � � � � � � � �
b̄c 1þ Bc1ð∼6750Þ ½bq�c ð1=2Þþ Ξcbð∼6750Þ ½bq�½c̄ q̄� 0þ Bc0ð∼6750Þ

TABLE IV. Predictions for the Bc0 mass.

MBc0
(GeV) 7.15� 0.05 6.97� 0.19 6.77� 0.11 6.75� 0.10 6.690� 0.016

Ref. [43] [44] [45] this work [34]
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smaller than most of the previous predictions, but still in
agreement within the errors. There is also a prediction,
from lattice gauge theory, for the Bc0 mass. However, in
the lattice calculation the Bc0 is considered as a cb̄ state.
The predicted mass is included in the last column in
Table IV, and it is still in agreement with our prediction
within the errors.
We can also use the information extracted from the fits in

Figs. 1 and 2 to predict the masses of higher orbital
excitations of the charmonium and bottomonium states.
We show our predictions in Table V, where we also show
predictions based on different models.

D. Model uncertainties

It should be noted that the errors quoted in our results in
Tables III, IV and V were obtained considering only the
uncertainty in the value of λQ and in the quark masses.
These errors are probably underestimated; therefore, our
uncertainties should be considered as lower limits.
From Table V we can see that our predictions, in the case

of charmonia, are in agreement with most of the other
predictions, considering the errors. It is very interesting to
notice that our prediction for the mass of the Ψ3 state is in
excellent agreement with the mass of the first radial
excitation of the χc2ð3556Þ: the n ¼ 1 χc2ð3927Þ state,
and in a good agreement (within the error) with the n ¼ 2
and LM ¼ 0 ψð4039Þ state. According to Eq. (13), states
with n ¼ 0 and LM ¼ 2 should have the same mass as the
states with n ¼ 1 and LM ¼ 1 or n ¼ 2 and LM ¼ 0, if they
have the same SM, as the case of the ψ3, χc2ð3927Þ and
ψð4039Þ states, respectively.
In the case of bottomonia, our predictions are somewhat

higher than previous model calculations. However, as in the
case of Ψ3 discussed above, our prediction for the mass of
theϒ3 state is in a good agreement with the mass of the first
radial excitation of the χb2ð9910Þ: the n ¼ 1 χb2ð10270Þ
state, and in excellent agreement with the n ¼ 2 and
LM ¼ 0 ϒð10355Þ state. Unfortunately, there are no other
observed radial excited states (n ¼ 1) to be compared with
the other predictions in Table V. We urge the experimen-
talists to make an effort to measure the masses of the
predicted states. The two examples discussed above show

that, even in the case of the double-heavy states, the Regge
slope is the same in both n and L quantum numbers, as
predicted by the SuSyLFHQCD.
Since λQ and ΔM2, in Eq. (13), are determined from the

fits to the Regge trajectories to the different meson families,
we can use these values in (31) to estimate the effective
heavy quark masses. We obtain mc ¼ ð1.52� 0.07Þ GeV
and mb ¼ ð4.63� 0.04Þ GeV. Using the same procedure,
the heavy quark masses obtained from heavy-light systems
in [13] were mc ¼ 1.55 GeV and mb ¼ 4.922 GeV, indi-
cating the inherent uncertainties of the model.

E. Decay constants

The decay constant fM of a pseudoscalar meson is the
coupling of the hadron to its current. In a bound state model
for mesons, it is related to the value of the LF wave function
at the origin [52].

fM ¼
ffiffiffiffiffiffiffiffiffi
2NC

π

r Z
1

0

dxψðx; b⃗⊥ ¼ 0Þ: ð41Þ

Using the result in (29) one has for a meson with two
constituents of equal mass mQ:

fM ¼ Nm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2NCλQ

p
π

Z
1

0

dx
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1 − xÞ

p
e−m

2
Q=ð2λQxð1−xÞÞ;

ð42Þ

with (see (30)):

N2
m ¼ 1R

1
0 dxe

−m2
Q=ðλQxð1−xÞÞ

: ð43Þ

For the particular case of spin projection zero, the radiative
vector meson decay constant is also given by Eq. (42)
[21,53].
The values of the quark masses and λQ determined in the

previous section can be used to evaluate the meson decay
constant in (42). In the limit of very large quark masses, the
integrals in (42) and (43) can also be approximately
evaluated analytically by the saddle point method, since

in the limit mQ → ∞ the function e−m
2
Q=ð2λQxð1−xÞÞ is very

sharply peaked at x ¼ 1
2
. Introducing z2 ¼ m2

Q=λQ, one

obtains: Nm ¼ e2z
2 2
ffiffi
z

p
π1=4

, and

Z
1

0

dx
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1 − xÞ

p
e−z

2=ð2xð1−xÞÞ ¼ e−2z
2

2z

ffiffiffi
π

8

r
: ð44Þ

This leads to the asymptotic value of the decay constant:

fM ¼
ffiffiffi
3

4

r
π−3=4

ffiffiffiffiffi
λQ

p
ffiffiffiffiffiffiffimQ

p λ1=4Q ≈ ð0.178 GeV3=4ÞM1=4
M ; ð45Þ

TABLE V. Mass spectrum of the predicted charmonium and
bottomonium orbital excited states. All mass values are in GeV.

Charmonium

state 2Sþ1LJ this work [46] [47] [48] [49]
ηc2 1D2 3.90� 0.09 3.662 3.802 3.799 3.796
ψ3

3D3 3.93� 0.11 3.770 3.843 3.806 3.799

Bottomonium
state 2Sþ1LJ this work [46] [47] [50] [51]
ηb2 1D2 10.30� 0.10 10.068 10.166 10.148 10.163
ϒ3

3D3 10.32� 0.09 10.140 10.177 10.155 10.170
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where we have used MM ∼ 2mQ and C ¼
ffiffiffiffi
λQ

pffiffiffiffiffiffi
MM

p ≈
0.49 GeV1=2, see (35) and (36). LFHQCD therefore predicts
an increase in the decay constant with the meson mass.
The radiative decay constants of neutral vector mesons

are, up to the charge factor and radiative corrections, the
general decay constants [54]. In Table VI, we display the
results of (42) together with the observed values, obtained
from the electromagnetic decay constant divided by the
effective quark charge êV . To show the tendency we have
also included the results for the light vector mesons.
As shown in Table VI, the increase of the decay

constant with meson mass is indeed observed, but the
theoretical increase is much too slow. The agreement of
the coupling constants obtained here with the experimen-
tal values is poor, as in other similar approaches [21,53].
This suggests that, despite the fact that the eigenvalues
obtained in this SuSyLFHQCD are in good agreement
with the experimental values, the wave functions are too
simple to convey all the complexity of the quarkonium
states. Even for the light mesons the decay constant comes
out to small, as can be seen in Table VI. The increasing
discrepancy suggests that special effects play a role in
heavy quarkonia. A probable cause is the color-Coulomb
attraction, since its effect increases with increasing mass
and correspondingly smaller radius of the quarkonium.
In [21], the LF wave functions were modifyed by

introducing a phenomenological longitudinal term, with
a new dimensional parameter which scales as ffiffiffiffiffiffiffimQ

p , while
keeping the dilaton parameter fixed. However, such
modification of the wave function did not improve the
agreement of the decay constants with the experimental
values. In [55–57], the wave function proposed in [21]
was modifyed by considering a helicity-dependent holo-
graphic wavefunction. With this modification a better
agreement, of the decay constants with data, is obtained in
the case of light and heavy-light mesons. However, the
authors of [55–57] have not studied heavy-heavy mesons.
Improvement for the predictions of the light vector
mesons decay constants can also be obtained by extending

the model to include dynamical spin effects in the LF
wave functions [58,59]. In [60], the quarkonium decay
constants were evaluated directly from the two point
correlator function, calculated at some finite value,
z ¼ z0, of the radial coordinate of AdS5 space. This
corresponds to introducing a new energy scale: 1=z0, in
the model that leads to a better agreement with data. We
expect to further investigate the origin of this discrepancy.

V. SUMMARY AND CONCLUSIONS

In this paper, we have described the consequences of
extending semiclassical light-front bound-state equations to
double-heavy quark systems. The approach is based on
supersymmetric light front holographic QCD. The super-
symmetry relates wave functions of mesons to baryons and
of baryons to tetraquarks: this approach is not based on a
supersymmetric quantum field theory but on supersym-
metric quantum mechanics [16].
We have shown that the mass spectra of double-charmed

and double-beauty mesons are compatible with the linear
Regge trajectories given in Eq. (13). In particular, the
remarkable equality of the Regge slopes in both, orbital
angular momentum L and principal quantum number n is
predicted to remain valid, even for hadrons containing
double-heavy quarks. From the determination of the Regge
slope from these trajectories, we have shown that this
parameter follows the same relation (35) as obtained in
heavy-light systems from heavy quark symmetry [13]. This
relation also explains an old puzzle in quarkonia physics:
why the excitation energies are approximately independent
of the heavy meson mass [33]. The relation in (35) allowed
us to make predictions for several double-heavy states,
shown in Eq. (40) and in Tables III, IV and V. Our
predictions are in good agreement with other model
predictions in the case of charmonium, and in a fair
agreement in the case of bottomonium.
We have also evaluated the radiative decay constant of

the vector states J=ψ and ϒ. The poor agreement with the
experimental values of the decay constants shows that,
although the eigenvalues obtained in this SuSyLFHQCD
are in good agreement with the experimental values, the
wave functions used are too simple to express all the
complexity of the quarkonium states.
We have shown how supersymmetry, together with light-

front holography, leads to connections between double-
heavy mesons, baryons and tetraquarks, thus providing
new perspectives for hadron spectroscopy and QCD. We
emphasize that measurements of additional states in the
double-heavy quarks sector will test our predictions.

ACKNOWLEDGMENTS

S. J. B. is supported by the Department of Energy,
Contract No. DE–AC02–76SF00515. M. N. is supported
by FAPESP process# 2017/07278-5. SLAC-PUB-17259.

TABLE VI. Decay constants for different vector mesons, The
value fM is determined from (42), the experimental values in the
third column are obtained from the radiative constant by dividing
through the effective quark charge êV .

Meson
fM [MeV]
this work

fðexpÞV =eV [MeV]
Ref. [27] êV

ρ 160 221� 5 1ffiffi
2

p

ω 160 196� 3 1

3
ffiffi
2

p

ϕ 161 229� 4 1
3

J=ψ 228 416� 5 2
3

ϒ 299 715� 5 1
3
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