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Stress testing the vector-boson-fusion approximation in multijet final states

Francisco Campanario

Theory Division, IFIC, University of Valencia-CSIC, E-46980 Paterna, Valencia, Spain
and Institute for Theoretical Physics, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany

Terrance M. Figy

Department of Mathematics, Statistics, and Physics, Wichita State University,
Wichita, Kansas 67260, USA

Simon Plitzer
Particle Physics, Faculty of Physics, University of Vienna, 1090 Vienna, Austria

Michael Rauch
Institute for Theoretical Physics, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany

Peter Schichtel

German Research Center for Artificial Intelligence (DFKI), D-67663 Kaiserslautern, Germany
and IAV Automotive Engineering, D-67663 Kaiserslautern, Germany

Malin Sjodahl
Department of Astronomy and Theoretical Physics, Lund University, 22100 Lund, Sweden

® (Received 7 March 2018; published 22 August 2018)

We consider electroweak Higgs plus three jets production at NLO QCD beyond strict VBF acceptance
cuts. We investigate, for the first time, how accurate the VBF approximation is in these regions and within
perturbative uncertainties by a detailed comparison of full and approximate calculations. We find that a
rapidity gap between the tagging jets guarantees a good approximation, while an invariant mass cut alone is
not sufficient, which needs to be confronted with experimental choices. We also find that a significant part
of the QCD corrections can be attributed to Higgs-Strahlungs-type topologies.
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I. INTRODUCTION

In 2012, both the ATLAS [1] and CMS [2]
Collaborations announced the discovery of a new boson
in the mass range of 125-126 GeV [3,4]. There were
indications that this new particle behaved very similarly to
the Higgs boson of the standard model [5-12] and recently,
the ATLAS and CMS Collaborations reported the standard
model hypothesis to be consistent with data in a combined
analysis of LHC proton-proton collision data at /s =7
and 8 TeV [13]. The vector-boson fusion (VBF) signature
[14-29] is among the most important production channels
of the Higgs boson in the ongoing run of the Large Hadron
Collider (LHC). For a Higgs boson accompanied by at least
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two jets in the final state, the underlying production
processes allow for both spacelike, 7-channel, exchange
of weak gauge bosons producing a Higgs boson, as well as
timelike Higgs-Strahlung type topologies of associated
production with a vector boson which decays into a
quark—antiquark pair, cf. Fig 1. All of the contributing
diagrams do interfere, and the VBF region is usually
referred to as a phase space region in which one expects
the #-channel diagrams to dominate, with timelike
s-channel and interference effects broadly suppressed.
In the VBF region, one requires two highly energetic jets,
well separated in rapidity and with the Higgs boson decay
products located in the central detector region and possibly
in between the two jets. Additionally, a veto on central
QCD activity is sometimes applied to enrich the contribu-
tion of the color singlet vector boson exchange [30-35].

Theoretical predictions in this region often employ the
so-called VBF approximation, where only the 7-channel
topology is kept and s-channel contributions as well as
interference effects between different topologies are
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FIG. 1. Inthe VBF region, interferences among certain 7-channel
topologies (top diagram) as well as #/s-channel (lower diagram,
and 7/u-channel, not depicted) interferences are neglected.

neglected. Figure 1 gives an example of some of
the contributions which are typically not considered.
Formally, this corresponds to the approximation that the
constituents of the two incoming protons belong to two
different, but otherwise identical, copies of the color gauge
group SU(3). Recent experimental analyses do not imple-
ment selection criteria for the VBF region as tight as
originally envisaged [14-20], and rely on a multitude of
multivariate analysis techniques instead [36]. While for the
Higgs plus two jet case the validity of the VBF approxi-
mation has been confirmed within a tight selection [21,22],
essentially nothing is known quantitatively for additional
radiation as relevant to the veto on central jets (CJV), or
virtually any observable exploiting properties of the radi-
ation pattern of the underlying electroweak production
process.

Next-to-leading order corrections in quantum chro-
modynamics (QCD) to the three jet process are available
without any approximation [37] as a plugin to the
MAaTcHBOX framework [38] of the HERWIG 7 event generator
[39-41], and can be compared to calculations based on the
VBF approximation [42] as implemented in the VBFNLO
program [43-45]. In this article, we quantify the reliability of
the VBF approximation, i.e., the neglection of the diagrams
which are not of the VBF #-channel topology along with
interference effects with u-channel topologies.

II. OUTLINE OF THE CALCULATION

We use the HERWIG 7 event generator in its recent release
7.1.2 [40,41], together with HJETS++ 1.1 [46] to provide the
amplitudes for electroweak Higgs boson plus jets produc-
tion. The color structure is treated using ColorFull [47] and
the loop integrals are computed following Ref. [48]. For the
VBF approximation we rely on the approximate calculation
provided by VBENLO version 3.0 beta 5. Both calculations

have recently also been interfaced to parton showers using
different matching paradigms, for a dedicated comparison
see [49,50]. The one-loop matrix elements of HIETS++ and
VBFNLO have been cross-checked against those of
MabLoor [51], GoSaM 2.0 [52], and OPENLOOPS [53]
at the level of phase space points.

We have ensured that both programs run with the
same set of electroweak parameters in a G, scheme
with input parameters Gy = 1.16637 x 107> GeV~2,
M7 =91.1876 GeV and My, = 80.403 GeV. The electro-
magnetic coupling constant and the weak-mixing angle are
calculated via tree level relations. We take the Higgs boson
as stable, with a mass fixed to my = 125.7 GeV. The
widths of the bosons are fixed to ', = 2.4952 GeV and
'y, = 2.141 GeV. We consider proton-proton collissions at
13 TeV center of mass energy and employ a four-flavor
scheme with the MMHT 2014 68% C.L. PDF set at NLO
[54] with a two-loop running a; set at (M) = 0.12 with
m. = 1.4 GeV and m;, = 4.75 GeV.

We select jets using the anti-k; algorithm as imple-
mented in the FASTIET library [55,56], with a cone radius of
R = 0.4, and accept jets ordered in transverse momentum,
with a transverse momentum p, ; > 30 GeV inside a
rapidity range of |y;| < 4.4. No restrictions are applied
to the Higgs boson acceptance, nor any other jet kinematic
variable. We then use this baseline acceptance to scan
through possible cuts. Specifically, we consider tagging jet
acceptances in intervals of the leading dijet invariant mass
mpy = +/(p1 + p»)?, and the leading jet pair rapidity
separation Ayi; = [y — y2l,

my, > m$yt € {0, 100,200, 300, 400, 500,600} GeV,
Ay > A%y, €{0,1,2,3}. (1)

The central renormalization, g, and factorization, ug,
scales are chosen to be H | (jets), which we here define as

1
lez Z P (2)

(r1 S15Gev)
where jets are clustered as outlined above, and only subject
to a reduced transverse momentum cut with ¢, = 15 GeV,
which is required to make the scale definition infrared and
collinear safe. Note that the jet cuts in the scale definition
are more inclusive than the analysis jet cuts.

The full calculation contains Higgs-Strahlung (VH)
topologies, which interfere with the possible VBF-type
diagrams, as depicted in Fig. 1. While we expect these
contributions not to be relevant within tight VBF selection
criteria, they might well contribute when relaxing these
constraints and as such yield a biased view on quantifying
the accuracy of the VBF approximation. Simulations
used by experimentalists also use a mix of VH and VBF
processes, but without interferences and without the
pentagon (Fig. 1) and hexagon topologies, implying that
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biased simulations go into experimental decisions and
interpretation.

To work as closely as possible to the simulations used by
experimentalists we remove the VH contributions by
applying a resonance-veto on any single- and multijet
masses in the neighborhood of the W+ and Z masses, i.e.,

my —émy < miys < my + émy (3)

with V = W*, Z, choosing ém, = dmy =5 GeV. We
stress that such an operational definition of eliminating
those contributions not taken into account in an approximate
setup is required, as neglecting individual diagrams or
interferences in the full calculation will result in a non-
gauge-invariant prediction, unless one imposes the full VBF
approximation. We discuss results both with, and without
such a cut applied. All analyses have been performed using a
dedicated analysis implemented in RIVET [57].

III. IMPACT OF QCD CORRECTIONS

For the inclusive selection, QCD corrections have been
found to be moderate for Higgs kinematics but significant
for third jet properties, specifically in the high-p | 5 regime
[37]. The approximate calculation suggests small correc-
tions with a significant reduction in scale uncertainty. Prior
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FIG. 2. QCD corrections on the third jet transverse momentum
prs spectrum for the full and approximate calculations for
m$y = 0 GeV and several choices of A®y;, (see Eq. (1): the
predictions for the full calculation, the corresponding differential
K-factor and the ratio of the approximated over the full
calculation are plotted in the top, middle and bottom panels,
respectively. We show LO results (dotted lines), NLO results
(solid lines) with scale variations (light bands).

to studying the differences between the exact and the
approximate calculations, we have investigated the effect of
QCD corrections subject to tight VBF cuts, implemented
by requesting a rapidity gap of Ay, > 3 and a invariant
mass of m, > 600 GeV for two tagged jets. We find that
NLO corrections in the VBF region are small, and the full
and approximate calculations are in reasonable agreement
within 3%, with scale variations increasing by 8% upon
vetoing on resonant structures.

Shown in the top panel of Fig. 2 is the NLO (solid) and
LO (dotted) transverse momentum spectrum p, 3 of the
third jet for the full calculation with m%' =0 GeV, no
resonance-veto cut applied and several choices of Ay ,.
The bands represent the NLO scale uncertainty in the
range H | /2 < pup=pur <2H,.

In all of the figures displaying differential cross sections,
the middle panel shows differential K-factors, defined as
donio/doro, where the bands reflect the NLO scale
variations with respect to the leading order calculation
fixed at the central scale. The increased K-factor in the high
transverse momentum region can be traced back to VH + 1
jet type events, and the resonance veto has the effect of
reducing the corrections down to values of 1.4 in the high
transverse momentum region for the inclusive selection
cuts (Ay;, > 0) (not shown). In the lower panel of Fig. 2,
the ratio of the approximate to the full result is plotted.
Differences of order 50% and more are visible when no
rapidity separation is required. However, as the rapidity gap

HJets + Herwig 7 E

do/dy*s [fo]

NLO/LO

VBF/Hjets

FIG. 3. The normalized centralized rapidity y} distribution of
the third jet for various leading jet separation rapidity cuts. The
upper, middle and lower panel show, respectively, the full NLO
and LO calculation (solid and dotted lines), the K-factor and the
ratio of the VBF-approximation to the full NLO result.
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increases, the large K-factor in the transverse momentum
spectrum for the full calculation is reduced (cf. middle
panel), and the full and approximate results display
differences at the 20% level in the bulk of the corrections
for Ay, > 0 (few to ten percent up to pr3 < 100 GeV
with a resonance-cut applied), and increase up to 50%
(30% with a resonance-cut) in the range shown.

In the upper panel in Fig. 3, we consider the normalized
centralized rapidity distribution of the third jet yj =
(y3 =2 (y1 +2))/|y1 — y2| without resonance-veto cut
for the full NLO calculation as solid lines with scale
uncertainty error bands, as well as the LO result (dotted
lines). QCD corrections tend to increase for high rapidity
separations Ay;,. We find a clear improvement of the VBF-
approximation for high rapidity separations, whereas it will
clearly underestimate the full result if no rapidity separation
is required. This observation even holds when resonance-
cuts are applied (not shown) with differences in the central
and extreme regions of the plot of about 40% for the
Ay, > 0 curve.

IV. EFFECTS OF Ay;, AND m,, SELECTIONS

Figure 4 depicts the rapidity separation of the two leading
jets for several choices of m$Y (left) and the dijet invariant
mass of the leading two jets for several choices of Aty ,
(right). The resonance-veto described in Eq. (3) has been
enforced in the event selection contributing to these observ-
ables. We again compare NLO results (solid lines) with scale
uncertainty error bands for the full calculation as well as LO
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results (dotted lines). NLO corrections (K-factors shown in
the middle panels) can reach the 40% level for rapidity
separation values <1 and dijet invariant masses of 100 GeV.
Increasing the invariant mass cut m,, beyond approximately
100 GeV results in smaller NLO corrections for all rapidity
separations (as seen in the right plot of Fig. 4). The quality of
the VBF approximation is shown in the lower ratio plots.
Deviations of the order of several ten per cent are visible for
small rapidity separations and/or small dijet invariant masses.
Increasing values of A®'y,, result in better agreement
between the full and approximate results (left). However,
the full and approximate calculations are not guaranteed to
agree in the presence of a cut on the dijet invariant mass alone
(right plot with Ay > 0).

While we have so far only presented a few observables to
quantify the impact of QCD corrections and the validity of
the VBF approximation, the calculation we performed has
actually involved a large number of observables sensitive to
the kinematic distribution of the third jet as well as
dedicated VBF observables. In order to quantify the quality
of the approximation across the whole set of these
observables, we consider a metric inspired by a statistical
test and calculate

2 _ 1 (Ui.HJets - 0'1',\/131:)2 (4)
Nying &= max (6,67, 6407,

X
uOi>

where we consider the maximum of scale variation §,0; or
statistical deviation Jg,0; per bin to set the scale of
fluctuations within which we want to measure agreement.
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FIG. 4. The rapidity separation Ay, of the leading two jets, for different cuts on their invariant mass (left) and the jet-jet invariant mass
mp, as a function of the rapidity gap requirement (right). We compare NLO QCD predictions in the full calculation (solid) to the

approximate results (dashed).
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Compatibility of the approximate predictions to the full calculation as a function of VBF acceptance cuts without (left) and

with (right) applying vetos on Higgs-Strahlung-type contributions. We calculate goodness-of-fit measures based on the scale variation
uncertainty for a range of observables relevant to the typical VBF kinematics. For the degrees of freedom we count only nonzero bins.

Their number ranges from 101 to 129.

This is important to check the compatibility of both
calculations within their intrinsic uncertainties, or within
statistical uncertainties where not avoidable due to the
presence of a small cross section. The results are presented
in Fig. 5, where we include pr3, y3, ¥;, Ayp12, Ady12, and
myy3 in the goodness-of-fit calculation as a function of
Ay, and m{s' without (left column) and with (right
column) the resonance-veto on the Higgs-Strahlung-type
events Eq. (3). We can clearly observe that the VBF
approximation can be considered valid only for dijet invari-
ant mass cuts above 500 GeV and for rapidity
gaps above 2. It would seem as if the VBF cuts do not
remove the HVj events effectively even in tight VBF
selections. In contrast, for the resonance-veto case agreement
starts near m;, = 500 GeV and a rapidity gap of 0, however
only a rapidity gap cut of at least 2 units guarantees decent
agreement between the full and approximate calculations.

V. CONCLUSIONS AND OUTLOOK

In this article, we have addressed the quality of the
vector boson fusion approximation in three jet events by
comparing full and approximate calculations at NLO QCD.
While moderate rapidity separation cuts guarantee conver-
gence at the percent level, large dijet invariant mass cuts are
not sufficient to achieve the same accuracy. This important
information should be taken into account in experimental
analyses. In addition, we have shown that the NLO QCD
corrections of the full calculation can reach a factor of 3 and
are consistent with Higgs-Strahlung V Hj contributions.
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