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The one-loop effective action of quantum electrodynamics in four dimensions is shown to be controlled
by the Euclidean Dirac propagatorG in a background potential. After separating the photon self-energy and
photon-photon scattering graphs from the effective action the remainder is known to be the logarithm of an
entire function of the electric charge of order 4 under mild regularity assumptions on the potential. This
input together with quantum electrodynamics’ (QED) lack of an ultrastable vacuum constrain the strong
field behavior of G. It is shown that G vanishes in the strong field limit. The relevance of this result to the
decoupling of QED from the remainder of the electroweak model for large amplitude variations of the
Maxwell field is discussed.
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It may seem surprising that anything more remains to be
said about the quantized Euclidean Dirac field propagator
G in four dimensions in a background potential Aμ, where

Gðx; yÞ ¼ ½−ðp − eAÞ þm�

×
Z

∞

0

dte−tm
2hxje−t½ðp−eAÞ2þeσF=2�jyi; ð1Þ

p − eA is the Euclidean Dirac operator D with anti-
Hermitian γ-matrices, γ†μ ¼ −γμ, with fγμ; γνg ¼ −2δμν
and σμν ¼ ½γμ; γν�=ð2iÞ. Excepting the general result (2)
below there are still no results for the asymptotic behavior
of G for strong fields on R4, including random ones.
Intuition is helped by viewing Fμν in Euclidean space
as a time-independent four-dimensional magnetic field.
Competition between the diamagnetic ðp − eAÞ2 and para-
magnetic eσF=2 terms in the exponentiated Hamiltonian in
(1) remains an obstruction to the strong field analysis of G.
It is the aim of this paper to demonstrate that G vanishes in
the strong field limit for a broad class of potentials. It will
be explained below why this is of physical interest.
The term strong field in this paper refers to the large

amplitude variation of a random potential that occurs
in a Euclidean functional integral over Aμ. G’s strong-field
behavior has no immediate connection with the Minkowski
Dirac propagator. For example, the continuation of the
four-dimensional magnetic field in G to the Minkowski

metric can result in imaginary time electric and magnetic
fields. When the continuation results in physical fields then
a subset of them may simulate laser pulses. Then G
becomes the propagator of a charged particle in such a
background that can be relevant to current experiments with
extremely high-intensity lasers [1]. A theorem is needed
that ensures the continued G also vanishes in the
strong-field limit. This would be a nontrivial result, con-
sidering how difficult it is to calculate the Euclidean G’s
strong field limit as discussed in comment 4 below.
The most restrictive bound on G known to the author is

that of Vafa and Witten [2]:

jhαjGjβij ≤ e−mR

m

ffiffiffiffiffiffiffiffiffiffiffi
hαjαi

p ffiffiffiffiffiffiffiffiffiffi
hβjβi

p
: ð2Þ

Here jαi and jβi are any two states of disjoint support,
separated by a minimum distance R. The bound is
remarkable for its generality: Aμ can be a random potential
with no particular symmetry subject to the constraint that it
is regular enough for iD to be self-adjoint on a suitable
function space. It establishes that G cannot have
unbounded growth in a strong magnetic field.
The strong-field asymptotic behavior of G is relevant to

the extraction of nonperturbative information from the
electroweak model. This renormalizable model with its
17þ 7 adjustable parameters, including three massive
Dirac neutrinos and their mixing, is a complete theory
of the electroweak interaction. Perturbation expansions are
reliable as long as the coupling constants remain small.
Pertinent to this, is there a Landau pole [3] when all charged
fermions and bosons are included in the effective QED
coupling constant at large scales? How does the renorm-
alization group equation for the Higgs coupling behave
when summed [4]? These are some of the questions

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 98, 033002 (2018)

2470-0010=2018=98(3)=033002(5) 033002-1 Published by the American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.98.033002&domain=pdf&date_stamp=2018-08-13
https://doi.org/10.1103/PhysRevD.98.033002
https://doi.org/10.1103/PhysRevD.98.033002
https://doi.org/10.1103/PhysRevD.98.033002
https://doi.org/10.1103/PhysRevD.98.033002
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


perturbation theory cannot answer. The reader who wishes
to avoid further discussion of the electroweak model may
proceed to the paragraph beginning above Eq. (9).
Whether it can be nonperturbatively quantized depends

on the convergence of the unexpanded Euclidean functional
integrals over all classical field configurations for the
vacuum expectation value of its field operators.
Integrating out the fermion degrees of freedom results in
an effective action depending on 6 lepton and 3 × 6 quark
determinants from the neutral weak-current and 3þ 3 × 3
determinants from the charged weak-current, including
color, that are functionals of the Higgs, Maxwell, Z and
W fields [5]. Sense can be made of these ill-defined
determinants by regularization, renormalization, and the
cancellation of their embedded chiral anomalies. When this
is done there remain the functional integrals over the Higgs
and gauge fields. The question has been asked whether any
of these integrals converge [5]. Assuming that the order of
doing the integrals is arbitrary it was decided to integrate
over the Maxwell field first. Convergence hinges on the
growth of the QED one-loop effective action for large
amplitude variations of Fμν and hence Aμ provided QED
decouples from the remainder of the electroweak model in
this limit [5]. Faster than quadratic growth in Fμν would
place in doubt whether any process can be calculated
nonperturbatively in the electroweak model that includes
dynamical fermions. Decoupling happens when the
remainder of the electroweak model’s effective action
grows no faster than quadratically with Fμν.
To see how decoupling can occur consider the determi-

nants contributed by the neutral weak-current

lndet

�
pþmi −QieA−

g
2cosθW

ðgV − gAγ5Þ=Zþ gmi

2MW
H

�

− lndetðpþmiÞ
¼ lndetð1−QieSAÞ

þ lndet

�
1þG

�
−

g
2cosθW

ðgV − gAγ5Þ=Zþ gmi

2MW
H

��
;

ð3Þ

where G ¼ ðp −QieAþmiÞ−1, S ¼ ðpþmiÞ−1, giV ¼
t3LðiÞ − 2Qi sin2 θW , giA ¼ t3LðiÞ, t3LðiÞ is the weak isospin
of fermion i, and Qi is its charge in units of the positron
electric charge, e; θW is the weak angle; g ¼ e= sin θW ; mi
and MW are the fermion and W mass, respectively. The
conventions and notation of [6] are followed here.
The determinants contributed by the charged weak-

current are, for quarks,

lndet

�
1−

1

8g2
Gt3LðiÞ¼−1=2W−ð1−γ5ÞGt3LðiÞ¼1=2Wþð1−γ5Þ

�
;

ð4Þ

and for leptons

lndet

�
1−

1

8g2
Gt3LðiÞ¼1=2Wþð1−γ5ÞGt3LðiÞ¼−1=2W−ð1−γ5Þ

�
;

ð5Þ

where

Gt3LðiÞ ¼ G − G

�
−

g
2 cos θW

ðgiV − giAγ5Þ=Z þ gmi

2MW

�
Gt3LðiÞ:

ð6Þ

Each determinant in (4) and (5) is for a quark pair or
lepton pair belonging to the same family such as ðu; dÞ,
ðνe; eÞ, etc. Note the all-pervasive presence of G in (3)–(6).
This has its origin in the factorization of the QED effective
action from the electroweak model’s that occurs in (3). It is
assumed that quark mixing and neutrino mixing are
irrelevant to the behavior of the effective action for the
large amplitude variations of the Maxwell field.
The first term on the right-hand side of (3) contributes to

the QED effective action considered below. The second
term in (3) and the determinants in (4) and (5) must be
renormalized and their triangle graphs’ chiral anomalies
cancelled by summation over fermion families, including
color. An example of the cancellation of an anomaly in a
triangle graph is given in [5] for γ → WþW−, including
quark mixing. Potential chiral anomalies from box graphs
such as AAAγ5Z and Aγ5Zγ5Zγ5Z are removed by
Euclidean C-invariance. By this we mean there exists a
matrix C such that CγμC−1 ¼ γTμ . In the representation of
the γ-matrices used in [5], Eq. (D7), C ¼ γ3γ1. These
operations are done by expanding in e and g through fourth
order giving a residue of terms of not more than OððeFÞ2Þ.
The remaining terms are ultraviolet finite andG-dependent,
and so a necessary condition for decoupling is thatG vanish
for large amplitude variations of Aμ. Therefore, information
beyond the Vafa-Witten result (2) is required and is the aim
of this paper.
Equation (9) and the result (15) below indicate that G

also controls QED’s one-loop effective action. There are
3 × 2þ 3 G s corresponding to the three families of quarks
and charged leptons, neglecting color. We now turn to the
effective action of QED and its relation to G.
As the potentials support a gauge-fixed Gaussian mea-

sure μðAÞ on S0ðR4Þ, the space of tempered distributions,
they are neither differentiable nor locally square-integrable.
They will be smoothed by convoluting them with functions
fΛ belonging to SðR4Þ, the space of functions of rapid
decrease:

AΛ
μ ðxÞ ¼

Z
d4yfΛðx − yÞAμðyÞ: ð7Þ
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Then AΛ
μ ∈ C∞ and hence is infinitely differentiable. This

smoothing process has the beneficial effect of introducing a
gauge invariance preserving ultraviolet cutoff required to
regulate QED. Thus, from the covariance of μðAÞ,R
dμðAÞAμðxÞAνðyÞ ¼ Dμνðx − yÞ, where Dμνðx − yÞ is

the free photon propagator in a fixed gauge, obtain

Z
dμðAÞAΛ

μ ðxÞAΛ
ν ðyÞ ¼ DΛ

μνðx − yÞ; ð8Þ

where the regularizing photon propagator DΛ
μν has the

Fourier transform D̂μνðkÞjf̂ΛðkÞj2 with f̂Λ ∈ C∞
0 , the space

of C∞ functions with compact support such as f̂ΛðkÞ ¼ 1,
k2 ≤ Λ2 and f̂ΛðkÞ ¼ 0, k2 ≥ nΛ2, n > 1 [5]. The AΛ

μ

replace Aμ everywhere in the functional integrals over Aμ

except in the measure μðAÞ. In the following the superscript
Λ will be omitted with the understanding that Aμ is now a
C∞ function. Only when it encounters the measure does Λ
reappear. We will deal with the falloff at infinity of the
potentials supported by μðAÞ below.
Consider any of QED’s renormalized fermion determi-

nants contributing to its effective action corresponding to a
specific quark or charged lepton. They can be defined
as [7,8,9]

ln detren ¼ Π2 þ Π4 þ ln det5ð1 − eSAÞ; ð9Þ

where S is the free fermion propagator, e is its electric
charge, and Π2 and Π4 contain the renormalized photon
self-energy and γγ-scattering graphs, respectively. The
determinant det5 is defined by [10,11,12,13]

ln det5ð1 − eSAÞ ¼ Tr

�
lnð1 − eSAÞ þ

X4
n¼1

ðeSAÞn
n

�
: ð10Þ

The four subtractions in the brackets in (10) remove from
det5Π2 and Π4 as well as the tadpole and triangle graphs
that are set equal to zero as demanded by C-invariance. The
remaining n-point graphs, n ≥ 5, contributing to ln det5 can
be obtained by expanding ln det5 in powers of e. The gauge
invariance of det5 requires that it depends on Fμν only.
The representation (10) for det5 is defined only if SA is a

compact operator belonging to Ir, r > 4. The trace ideal I r
(1 ≤ r < ∞) is defined for those compact operators T with
TrðT†TÞr2 < ∞. This means that the eigenstates of T are
complete and square-integrable and that the eigenvalues λn
are discrete and satisfy

P
nð1=jλnjrÞ < ∞. General proper-

ties of Ir spaces and the properties of determinants of
operators belonging to these spaces may be found in
[10,11,12,13]. By a theorem of Seiler and Simon
[7,8,9,10,14] SA ∈ Ir, r > 4 provided Aμ ∈ ∩r>4LrðR4Þ,
m ≠ 0, thereby validating (10) for this class of potentials.
This restriction on Aμ means that it has no branch points or

poles for finite x, such as jx − x0j−β, β > 0. It also means
that Aμ falls off at least as fast as 1=jxj for jxj → ∞ and that
Aμ is finite at x ¼ 0.
Since SA also belongs to I5, det5 may be represented as

det5 ¼
Y∞
n¼1

��
1 −

e
en

�
exp

�X4
k¼1

ðe=enÞk
k

��
; ð11Þ

where the feng are the discrete, complex eigenvalues of SA
[11,13]. Euclidean C-invariance and the reality of det5 for
real e require that these appear as quartets �en, �ēn or as
complex conjugate pairs. Hence det5 is an even function
of e. None of the en are on the real axis when m ≠ 0. Since
det5ð0Þ ¼ 1, det5 > 0 for real e ≠ 0. Because SA ∈ I r,
r > 4,

P
nð1=jenjÞ4þϵ < ∞, ϵ > 0 so that det5 is an

entire function of e of order 4 [15]. That is, det5 is analytic
in e in the entire complex e-plane with j det5 j <
AðδÞ expðKðδÞjej4þϵÞ for any δ > 0 and A, K positive
constants.
We now relate det5 to G. Since SA ∈ I r>4, TrðSAÞm ¼P
nð1=enÞm for m ≥ 5. It is evident from (11) that ln det5

has branch points beginning at jej ¼ je1j≡minfjenjg.
Therefore, for jej < je1j the series for ln det5 obtained
from (11) can be rearranged to give

ln det5 ¼ −
1

5

X
n

�
e
en

�
5

−
1

6

X
n

�
e
en

�
6

− � � �

¼ −
1

5
TrðeSAÞ5 − 1

6
TrðeSAÞ6 − � � � : ð12Þ

Within its radius of convergence, jej < je1j, this series can
be differentiated term-by-term to give

e
∂
∂e ln det5 ¼ −Tr½ðeSAÞ5 þ ðeSAÞ6 þ � � ��: ð13Þ

We can now analytically continue ln det5 to all e by
summing the series:

e
∂
∂e ln det5 ¼ −e5Tr

�
SASASASA

1

p − eAþm
A

�
: ð14Þ

Using G ¼ Sþ eSAG and TrðSAÞ5 ¼ 0 gives the final
result

e
∂
∂e ln det5 ¼ −e6Tr½ASASASASASAG�: ð15Þ

Thus G is an integral part of det5, and accordingly det5 will
constrain it.
Let Aμ be scaled by L. Suppose for L → ∞Gðx; yÞ ≠ 0,

except for sets of x, y of measure zero, and finite for x ≠ y.
From (15) j ln det5ðeLFÞj ¼ OððeLFÞ6Þ. If ln det5 > 0 for
L → ∞ then such growth on the real e-axis is impossible
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for an entire function of e of order 4 [15]. The only
possibility is ln det5 < 0 for L → ∞. Then the effective
action (9) would decrease as ln detrenðeLFÞ ∼

L→∞
− ΓðeLÞ6,

where Γ > 0 is a homogeneous function of F of degree 6,
thereby establishing the absolute stability of QED. Such an
ultrastable QED vacuum is unknown in the literature and
contradicts the maximal Oð−ðeLÞ2 lnðeLÞÞ decrease of
ln detren: when the L2ðR4Þ zero modes of D dominate
the effective action [5]. The calculation in [5] does not rely
on representation (9). Therefore, we conclude for the broad
class of potentials for which det5 is defined that G satisfies
for x ≠ y

lim
L→∞

Gðx; yjLAÞ ¼ 0: ð16Þ

Some comments on (16):
(1) Gauge invariance of (15): G in (15), (16) is

gauge-dependent: Gðx; yjAþ ∂λÞ ¼ exp½ieðλðxÞ−
λðyÞÞ�Gðx; yjAÞ. Thus, it appears that (15) cannot
be gauge-invariant. However, by rederiving (15)
when A → Aþ ∂λG can be expanded in powers
of A if S ¼ 1=ðpþmÞ is replaced with
1=ðp − e=∂λþmÞ. Then Sðx − yÞ → exp ½ieðλðxÞ−
λðyÞÞ�Sðx − yÞ. Combining the five phase factors
induced by the change in gauge, Gðx; yjAþ ∂λÞ is
multiplied by exp ½−ieðλðxÞ − λðyÞÞ� so that the
phase factor of G is cancelled. The first A in (15)
when shifted contributes a remainder depending on
∂λ that must vanish due to the gauge invariance
of det5.

(2) The conclusion that G vanishes for strong fields is
based on G being embedded in det5. For potentials
with compact support the loop integral defining det5
is cut off at the boundary. So we can only say that
(16) holds in the compact support region.

(3) Diamagnetism/paramagnetism: G is constructed
from a complete set of eigenstates of the Hamil-
tonian H ¼ ðp − AÞ2 þ σF=2. It is known that the
Oð2Þ ×Oð3Þ symmetric potentials MμνxνaðjxjÞ
(Mνμ ¼ −Mμν, M self- or anti-self dual, a ∼ 1=x2,
jxj → ∞) support an unbounded number of L2ðR4Þ
zero modes on letting Aμ → LAμ, L → ∞ [16].
Hence, scaling Aμ does not necessarily enhance
the kinetic energy ðp − AÞ2 relative to the spin term
σF=2. Instead, the spectrum of H can remain at its
bottom for arbitrarily large fluctuations of Aμ,
thereby putting diamagnetism and paramagnetism
on an equal footing.
Random fields can form deep magnetic wells

where Fμν is near zero and Aμ is large due to its
nonlocality, effectively decoupling the particle’s spin
from Fμν and enhancing diamagnetism. This and the
previous comment on zero modes illustrate the

competition between the two terms of H mentioned
at the beginning of this paper.

(4) Falloff of G: The question arises as to how G decays
for potentials on R4. As stated earlier this is
unknown to the author’s knowledge. For example,
the contribution of the zero modes mentioned above
to G with e ¼ 1 is

Gzero modesðx; yjLAÞ

¼ ð2π2mÞ−1
XJ

j¼0;1=2;1;…

ð2jþ 1Þ

×
Xj

m¼−j
Dj

−jmðψ ; θ;φÞDj�
−jmðψ 0; θ0;φ0Þðrr0Þ2j

× RjðrÞRjðr0ÞK; ð17Þ

where KT ¼ ð0; 1; 0; 0Þ, Dj
mm0 is a spherical har-

monic on the four-dimensional sphere, J is the
largest value of j for which 2jþ 2 < L, and

RiðrÞ¼
�Z

∞

0

drr4jþ3e−2L
R

r

0
ds saðsÞ

�
−1=2

e−L
R

r

0
ds saðsÞ:

ð18Þ

A reliable estimate of G’s falloff for L → ∞
remains.
Continuing with the potentials introduced above,

the scattering states are also known [16]. Their
contribution toG requires summing an infinite series
of angular momentum states with their varying
Clebsch-Gordan coefficients, integrating this sum
over energy and taking the L → ∞ limit. As this has
not been done yet the falloff of G remains unknown
even in this highly symmetric case.

(5) Growth of random potentials: The potentials on
which (15) rests may conflict with the growth of
a typical A at infinity. By ascribing a property to a
typical A we mean all A with the possible exception
of a set μðAÞ-measure zero [see above Eq. (7)]. There
is indirect evidence that a typical potential’s growth
is jxj2ðln jxjÞβ, β > 1=2 for jxj → ∞ [17]. The
evidence is indirect as the analysis in [17] is for a
Gaussian measure whose covariance is that of a free,
massive, spin-0 boson. No further work relevant to
QED is known to the author. Nevertheless we
anticipate that the growth of a typical A will be
jxjαðln jxjÞβ for some α; β > 0.
It is generally accepted that the functional

integrals for the correlation functions of an inter-
acting field theory have to be calculated in finite
volume followed by the removal of the volume
cutoffs in the thermodynamic limit. This applies to
det5 and detren. in particular, in which case the
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growth of a typical potential at infinity will be cut
off, allowing det5 to be defined as above. A possible
gauge invariant way to implement the introduction
of a volume cutoff in ln detren is discussed in
Sec. VII of [5].
The two preceding paragraphs do not invalidate

(15) which continues to hold under the assumptions
required for its derivation.

In conclusion it has been shown that the strong field
behavior of QED’s one-loop effective action and the
possible decoupling of QED from the remainder of the
electroweak model depend on the propagator of a charged
fermion in a strong magnetic field. Its strong-field behavior
is found to be constrained by the effective action’s con-
nection with an entire function of e of order 4 and QED’s
lack of an ultrastable vacuum, leading to (16).
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