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The time-dependent CP asymmetries in B0 → πþπ− and B0
s → KþK− decays are measured using a

data sample of p p collisions corresponding to an integrated luminosity of 3.0 fb−1, collected with
the LHCb detector at center-of-mass energies of 7 and 8 TeV. The same data sample is used
to measure the time-integrated CP asymmetries in B0 → Kþπ− and B0

s → πþK− decays. The
results are Cπþπ− ¼ −0.34� 0.06� 0.01, Sπþπ− ¼ −0.63� 0.05� 0.01, CKþK− ¼ 0.20� 0.06� 0.02,

SKþK− ¼ 0.18� 0.06� 0.02, AΔΓ
KþK− ¼ −0.79� 0.07� 0.10, AB0

CP ¼ −0.084� 0.004� 0.003, and

AB0
s

CP ¼ 0.213� 0.015� 0.007, where the first uncertainties are statistical and the second systematic.
Evidence for CP violation is found in the B0

s → KþK− decay for the first time.

DOI: 10.1103/PhysRevD.98.032004

I. INTRODUCTION

The study of CP violation in charmless decays of B0
ðsÞ

mesons to charged two-body final states represents a
powerful tool to test the Cabibbo-Kobayashi-Maskawa
(CKM) picture [1,2] of the quark-flavor mixing in the
Standard Model (SM) and to investigate the presence of
physics lying beyond [3–9]. As discussed in Refs. [5,8,9],
the hadronic parameters entering the B0 → πþπ− and
B0
s → KþK− decay amplitudes are related by U-spin

symmetry, i.e., by the exchange of d and s quarks in the
decay diagrams.1 It has been shown that a combined
analysis of the branching fractions and CP asymmetries
in two-body B-meson decays, accounting for U-spin
breaking effects, allows stringent constraints on the
CKM angle γ and on the CP-violating phase −2βs to be
set [10,11]. More recently, it has been proposed to combine
the CP asymmetries of the B0 → πþπ− and B0

s → KþK−

decays with information provided by the semileptonic
decays B0 → π−lþν and B0

s → K−lþν, in order to achieve
a substantial reduction of the theoretical uncertainty on the
determination of −2βs [12,13]. The CP asymmetry in the
B0 → πþπ− decay is also a relevant input to the determi-
nation of the CKM angle α, when combined with other

measurements from the isospin-related decays B0 → π0π0

and Bþ → πþπ0 [14–16].
In this paper, measurements of the time-dependent CP

asymmetries in B0 → πþπ− and B0
s → KþK− decays and

of the time-integrated CP asymmetries in B0 → Kþπ− and
B0
s → πþK− decays are presented. The analysis is based on

a data sample of p p collisions corresponding to an
integrated luminosity of 3.0 fb−1, collected with the
LHCb detector at center-of-mass energies of 7 and
8 TeV. The results supersede those from previous analyses
performed with 1.0 fb−1 of integrated luminosity at
LHCb [17,18].
Assuming CPT invariance, the CP asymmetry as a

function of decay time for B0
ðsÞ mesons decaying to a CP

eigenstate f is given by

ACPðtÞ ¼
ΓB0

ðsÞ→fðtÞ − ΓB0
ðsÞ→fðtÞ

ΓB0
ðsÞ→fðtÞ þ ΓB0

ðsÞ→fðtÞ

¼ −Cf cosðΔmd;stÞ þ Sf sinðΔmd;stÞ
coshðΔΓd;s

2
tÞ þ AΔΓ

f sinhðΔΓd;s

2
tÞ

; ð1Þ

where Δmd;s and ΔΓd;s are the mass and width differences
of the mass eigenstates in the B0

ðsÞ − B0
ðsÞ system. The

quantities Cf, Sf and AΔΓ
f are defined as

Cf ≡ 1− jλfj2
1þ jλfj2

; Sf ≡ 2Imλf
1þ jλfj2

; AΔΓ
f ≡−

2Reλf
1þ jλfj2

;

ð2Þ

where λf is given by
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λf ≡ q
p

Āf

Af
: ð3Þ

The two mass eigenstates of the effective Hamiltonian in
the B0

ðsÞ − B0
ðsÞ system are pjB0

ðsÞi � qjB0
ðsÞi, where p and q

are complex parameters. The parameter λf is thus related to
B0
ðsÞ − B0

ðsÞ mixing (via q=p) and to the decay amplitudes of

the B0
ðsÞ → f decay (Af) and of the B0

ðsÞ → f decay (Āf).

Assuming negligible CP violation in the mixing
(jq=pj ¼ 1), as expected in the SM and confirmed by
current experimental determinations [19–21], the terms Cf

and Sf parametrize CP violation in the decay and in
the interference between mixing and decay, respectively.
The quantities Cf, Sf, and AΔΓ

f must satisfy the condition
ðCfÞ2þðSfÞ2þðAΔΓ

f Þ2¼1. This constraint is not imposed
in this analysis, but its validity is verified a posteriori
as a cross-check. In this paper a negligible value of
ΔΓd is assumed, as supported by current experimental
knowledge [19]. Hence the expression of the time-dependent
CP asymmetry for the B0 → πþπ− decay simplifies to
ACPðtÞ¼−Cπþπ− cosðΔmdtÞþSπþπ− sinðΔmdtÞ. The time-
integratedCP asymmetry for aB0

ðsÞ decay to a flavor-specific
final state f, such as B0 → Kþπ− and B0

s → πþK−, is
defined as

ACP ¼ jĀfj2 − jAfj2
jĀfj2 þ jAfj2

; ð4Þ

where Af (Āf) is the decay amplitude of the B0
ðsÞ → f

(B0
ðsÞ → f) transition. The current experimental knowledge

on Cf and Sf for the B0 → πþπ− and B0
s → KþK− decays,

and on ACP for the B0 → Kþπ− (AB0

CP) and B0
s → πþK−

(AB0
s

CP) decays, is summarized in Tables I and II, respectively.
Only LHCb measured CKþK− and SKþK− , while no previous
measurement of AΔΓ

KþK− is available to date.
This paper is organized as follows. After a brief

introduction to the LHCb detector, trigger and simulation
in Sec. II, the event selection is described in Sec. III. The
CP asymmetries are determined by means of a simulta-
neous unbinned maximum likelihood fit to the distributions
of candidates reconstructed in the πþ π−, KþK−, and
Kþ π− final-state hypotheses, with the fit model described
in Sec. IV. The measurement of time-dependent CP
asymmetries with B0

ðsÞ mesons requires that the flavor of

the decaying meson at the time of production is identified
(flavor tagging), as discussed in Sec. V. In Sec. VI, the
procedure to calibrate the per-event decay-time uncertainty
is presented. The determination of the detection asymmetry
between the Kþπ− and K−πþ final states, necessary to
measure ACP, is discussed in Sec. VII. The results of the fits
are given in Sec. VIII and the assessment of systematic
uncertainties in Sec. IX. Finally, conclusions are drawn
in Sec. X.

II. DETECTOR, TRIGGER, AND SIMULATION

The LHCb detector [26,27] is a single-arm forward
spectrometer covering the pseudorapidity range 2 < η < 5,
designed for the study of particles containing b or c quarks.
The detector includes a high-precision tracking system
consisting of a silicon-strip vertex detector surrounding the
pp interaction region, a large-area silicon-strip detector
located upstream of a dipole magnet with a bending
power of about 4 Tm, and three stations of silicon-strip
detectors and straw drift tubes placed downstream of the

TABLE I. Current experimental knowledge on Cπþπ− , Sπþπ− , CKþK− and SKþK− . For the experimental
measurements, the first uncertainties are statistical and the second systematic, whereas for the averages the
uncertainties include both contributions. The correlation factors, denoted as ρ, are also reported.

Reference Cπþπ− Sπþπ− ρðCπþπ− ; Sπþπ−Þ
BABAR [22] −0.25� 0.08� 0.02 −0.68� 0.10� 0.03 −0.06
Belle [23] −0.33� 0.06� 0.03 −0.64� 0.08� 0.03 −0.10
LHCb [17] −0.38� 0.15� 0.02 −0.71� 0.13� 0.02 0.38

HFLAV average [19] −0.31� 0.05 −0.66� 0.06 0.00
CKþK− SKþK− ρðCKþK− ; SKþK−Þ

LHCb [17] 0.14� 0.11� 0.03 0.30� 0.12� 0.04 0.02

TABLE II. Current experimental knowledge on ACP for
B0 → Kþπ− and B0

s → πþK− decays. For the experimental
measurements, the first uncertainties are statistical and the second
systematic, whereas for the averages the uncertainties include
both contributions.

Experiment AB0

CP AB0
s

CP

BABAR [22] −0.107� 0.016þ0.006
−0.004 � � �

Belle [24] −0.069� 0.014� 0.007 � � �
CDF [25] −0.083� 0.013� 0.004 0.22� 0.07� 0.02
LHCb [18] −0.080� 0.007� 0.003 0.27� 0.04� 0.01

HFLAV
average [19]

−0.082� 0.006 0.26� 0.04
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magnet. The tracking system provides a measurement of
momentum, p, of charged particles with a relative uncer-
tainty that varies from 0.5% at low momentum to 1.0% at
200 GeV=c. The minimum distance of a track to a primary
vertex (PV), the impact parameter (IP), is measured with a
resolution of ð15þ 29=pTÞ μm, where pT is the compo-
nent of the momentum transverse to the beam, in GeV=c.
Different types of charged hadrons are distinguished using
information from two ring-imaging Cherenkov (RICH)
detectors. Photons, electrons, and hadrons are identified
by a calorimeter system consisting of scintillating-pad and
preshower detectors, an electromagnetic calorimeter and a
hadronic calorimeter. Muons are identified by a system
composed of alternating layers of iron and multiwire
proportional chambers. The online event selection is
performed by a trigger [28], which consists of a hardware
stage, based on information from the calorimeter and muon
systems, followed by a software stage, which applies a full
event reconstruction.
At the hardware trigger stage, events are required to have

a muon with high pT or a hadron, photon or electron with
high transverse energy in the calorimeters. For hadrons, the
transverse energy threshold is 3.5 GeV=c. The software
trigger requires a two-track secondary vertex with a
significant displacement from the PVs. At least one charged
particle must have a transverse momentum pT >
1.7 GeV=c in the 7 TeV or pT > 1.6 GeV=c in the
8 TeV data, and be inconsistent with originating from a
PV. A multivariate algorithm [29] is used for the identi-
fication of secondary vertices consistent with the decay of a
b hadron. In order to improve the efficiency on signal, a
dedicated trigger selection for two-body b-hadron decays is
implemented, imposing requirements on the quality of the
reconstructed tracks, their pT and IP, the distance of closest
approach between the decay products, and the pT, IP and
proper decay time of the b-hadron candidate.
Simulation is used to study the discrimination between

signal and background events, and to assess the small
differences between signal and calibration decays. The pp
collisions are generated using PYTHIA [30,31] with a
specific LHCb configuration [32]. Decays of hadronic
particles are described by EVTGEN [33], in which final-
state radiation is generated using PHOTOS [34]. The
interaction of the generated particles with the detector,
and its response, are implemented using the GEANT4 toolkit
[35] as described in Ref. [36].

III. EVENT SELECTION

The candidates selected online by the trigger are filtered
offline to reduce the amount of combinatorial background
by means of a loose preselection. In addition, the decay
products of the candidates, generically called B, are
required either to be responsible for the positive decision
of the hadronic hardware trigger, or to be unnecessary for
an affirmative decision of any of the hardware trigger

requirements. Candidates that pass the preselection are then
classified into mutually exclusive samples of different final
states (πþπ−, KþK−, Kþπ− and K−πþ) by means of the
particle identification (PID) capabilities of the LHCb
detector. Finally, a boosted decision tree (BDT) algorithm
[37,38] is used to separate signal from combinatorial
background.
Three types of backgrounds are considered: other two-

body b-hadron decays with misidentified pions, kaons or
protons in the final state (cross-feed background); pairs of
randomly associated, oppositely charged tracks (combina-
torial background); and pairs of oppositely charged tracks
from partially reconstructed three-body decays of b
hadrons (three-body background). Since the three-body
background gives rise to candidates with invariant-mass
values well separated from the signal mass peak, the event
selection is customized to reject mainly the cross-feed and
combinatorial backgrounds, which affect the invariant mass
region around the B0 and B0

s masses.
The main cross-feed background in the πþ π− (KþK−)

spectrum is the B0 → Kþπ− decay, where a kaon (pion) is
misidentified as a pion (kaon). The PID requirements are
optimized in order to reduce the amount of this cross-feed
background to approximately 10% of the B0 → πþπ− and
B0
s → KþK− signals, respectively. The same strategy is

adopted to optimize the PID requirements for the Kþπ−

final state, reducing the amount of the B0 → πþπ− and
B0
s → KþK− cross-feed backgrounds to approximately

10% of the B0
s → πþK− yield. The PID efficiencies and

misidentification probabilities for kaons and pions are
determined using samples of D�þ → D0ð→ K−πþÞπþ
decays [39].
The BDT exploits the following properties of the decay

products: the pT of the two tracks; the minimum and
maximum χ2IP of the two tracks with respect to all primary
vertices, where χ2IP is defined as the difference in vertex-fit
χ2 of a given PV reconstructed with and without the
considered particle; the distance of closest approach
between the two tracks and the quality of their common
vertex fit. The BDT also uses properties of the recon-
structed B candidate, namely the pT, the χ2IP with respect to
the associated PV,2 and the χ2 of the distance of flight with
respect to the associated PV, for a total of 9 variables. A
single BDT is used to select the four signal decay modes.
This is trained with B0 → πþπ− simulated events to model
the signal, and data in the high-mass sideband (from 5.6 to
5.8 GeV=c2) of the πþ π− sample to model the combina-
torial background. The possibility to use a different BDT
selection for each signal has been investigated, finding no
sizeable differences in the sensitivities on the CP-violating
quantities under study. The optimal threshold on the BDT

2The associated PV is that with the smallest χ2IP with respect to
the B candidate.
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response is chosen to maximize S=
ffiffiffiffiffiffiffiffiffiffiffiffi
Sþ B

p
, where S and B

represent the estimated numbers of B0 → πþπ− signal and
combinatorial background events, respectively, within
�60 MeV=c2 (corresponding to about �3 times the
invariant mass resolution) around the B0 mass. Multiple
candidates are present in less than 0.05% of the events
in the final sample. Only one candidate is accepted for
each event on the basis of a reproducible pseudorandom
sequence.

IV. FIT MODEL

For each signal and relevant background component, the
distributions of invariant mass, decay time, flavor-tagging
assignment with the associated mistag probability, and per-
event decay-time uncertainty are modeled. The flavor-
tagging assignment and its associated mistag probability
are provided by two classes of algorithms, so-called
opposite-side (OS) and same-side (SS) tagging, as dis-
cussed in Sec. V. Hence for each component it is necessary
to model two flavor-tagging decisions and the associated
mistag probabilities.
Signals are the B0 → Kþπ− and B0

s → πþK− decays in
the Kþπ− sample, the B0 → πþπ− decay in the πþ π−

sample, and the B0
s → KþK− decay in the KþK− sample.

In the πþπ− and KþK− samples, small but non-
negligible components of B0

s → πþπ− and B0 → KþK−

decays, respectively, are present and must be taken into
account. Apart from the cross-feed backgrounds from
B-meson decays considered in the optimization of the
event selection, the only other relevant source of cross-feed
background is the Λ0

b → pK− decay with the proton mis-
identified as a kaon in the KþK− sample. Considering the
PID efficiencies, the branching fractions and the relative
hadronization probabilities [19], this background is
expected to give a contribution of about 2.5% relative to
the B0

s → KþK− decay. This component is also modeled in
the fit. Two components of three-body backgrounds need to
be modeled in the Kþπ− sample: one due to B0 and Bþ

decays, and one due to B0
s decays. The only relevant

contributions of three-body backgrounds to the πþ π− and
KþK− samples are found to be B0 and Bþ decays, and B0

s
decays, respectively. Components describing the combina-
torial background are necessary in all of the three final
states.

A. Mass model

The signal component for each two-body decay is
modeled by the probability density function (PDF) for
the candidate mass m

PsigðmÞ ¼ ð1 − ftailÞGðm; μ; σ1; σ2; fgÞ
þ ftailJðm; μ; σ1; α1; α2Þ; ð5Þ

where Gðm; μ; σ1; σ2; fgÞ is the sum of two Gaussian
functions with common mean μ and widths σ1 and σ2,
respectively; fg is the relative fraction between the two
Gaussian functions; ftail is the relative fraction of the
Johnson function Jðm; μ; σ1; α1; α2Þ, defined as [40]

Jðm; μ; σ1; α1; α2Þ

¼ α2

σ1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πð1þ z2Þ

p exp

�
−
1

2
ðα1 þ α2sinh−1zÞ2

�
; ð6Þ

where z≡ ½m−μ
σ1

�, μ and σ1 are in common with the dominant
Gaussian function in Eq. (5), and α1 and α2 are two
parameters governing the left- and right-hand side tails. In
the fit to data, the parameters α1, α2, and ftail are fixed to the
values determined by fitting the model to samples of
simulated decays, whereas the other parameters are left
free to be adjusted by the fit.
The invariant-mass model of the cross-feed backgrounds

is based on a kernel estimation method [41] applied to
simulated decays. The amount of each cross-feed back-
ground component is determined by rescaling the yields of
the decay in the correct spectrum by the ratio of PID
efficiencies for the correct and wrong mass hypotheses. For
example, the yields of the B0 → Kþπ− decay in the πþπ−
spectrum are determined through the equation

Nπþπ−ðB0→Kþπ−Þ¼NðB0→Kþπ−Þ επþπ−ðB
0→Kþπ−Þ

εKþπ−ðB0→Kþπ−Þ ;

ð7Þ
where Nπþπ−ðB0 → Kþπ−Þ is the number of B0 → Kþπ−

decays present in the πþ π− sample, NðB0 → Kþπ−Þ is the
number of B0 → Kþπ− decays identified in the Kþπ−

sample, επþπ−ðB0 → Kþπ−Þ is the probability to assign
the πþπ− hypothesis to a B0 → Kþπ− decay, and
εKþπ−ðB0 → Kþπ−Þ is the probability to assign the correct
hypothesis to a B0 → Kþπ− decay.
The components due to three-body B decays are

described by convolving a sum of two Gaussian functions,
defined using the same parameters as those used in the
signal model, with ARGUS functions [42]. For the Kþ π−

sample two three-body background components are used:
one describing three-body B0 and Bþ decays and one
describing three-body B0

s decays. For the πþπ− and KþK−

samples a single ARGUS component is found to be
sufficient to describe the invariant-mass shape in the
low-mass region. The combinatorial background is mod-
eled by exponential functions with an independent slope for
each final-state hypothesis.

B. Decay-time model

The time-dependent decay rate of a flavor-specificB → f
decay and of its CP conjugate B → f, as for the cases of
B0 → Kþπ− and B0

s → πþK− decays, is given by the PDF

R. AAIJ et al. PHYS. REV. D 98, 032004 (2018)
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fFSðt;δt;ψ ; ξ⃗; η⃗Þ
¼KFSð1−ψACPÞð1−ψAFÞ

×f½ð1−APÞΩsigðξ⃗; η⃗Þþð1þAPÞΩ̄sigðξ⃗; η⃗Þ�Hþðt;δtÞ
þψ ½ð1−APÞΩsigðξ⃗; η⃗Þ−ð1þAPÞΩ̄sigðξ⃗; η⃗Þ�H−ðt;δtÞg;

ð8Þ

whereKFS is a normalization factor and the discrete variable
ψ assumes the value þ1 for the final state f and −1 for the
final state f. The direct CP asymmetry, ACP, is defined in
Eq. (4), while the final-state detection asymmetry, AF, and
the B0

ðsÞ-meson production asymmetry, AP, are defined as

AF ¼
εtotðfÞ − εtotðfÞ
εtotðfÞ þ εtotðfÞ

; AP ¼
σB0

ðsÞ
− σB0

ðsÞ

σB0
ðsÞ
þ σB0

ðsÞ

; ð9Þ

where εtot is the time-integrated efficiency in reconstructing
and selecting the final state f or f, and σB0

ðsÞ
(σB0

ðsÞ
) is the

production cross section of the given B0
ðsÞ (B

0
ðsÞ) meson. The

asymmetry AP arises because production rates of B0
ðsÞ and

B0
ðsÞmesons are not expected to be identical in proton-proton

collisions. It is measured to be order of percent at LHC
energies [43]. AlthoughACP can be determined from a time-
integrated analysis, its value needs to be disentangled from
the contribution of the production asymmetry. By studying
the more general time-dependent decay rate, the production
asymmetry can be determined simultaneously.
The variable ξ⃗ ¼ ðξOS; ξSSÞ is the pair of flavor-tagging

assignments of the OS and SS algorithms used to identify
the B0

ðsÞ-meson flavor at production, and η⃗ ¼ ðηOS; ηSSÞ is
the pair of associated mistag probabilities defined in Sec. V.
The variables ξOS and ξSS can assume the discrete values
þ1 when the candidate is tagged as B0

ðsÞ, −1 when the

candidate is tagged as B0
ðsÞ, and zero for untagged candi-

dates. The functions Ωsigðξ⃗; η⃗Þ and Ω̄sigðξ⃗; η⃗Þ are the PDFs
of the variables ξ⃗ and η⃗ for a B0

ðsÞ or a B0
ðsÞ meson,

respectively. Their definitions are given in Sec. V. The
functions Hþðt; δtÞ and H−ðt; δtÞ are defined as

Hþðt; δtÞ ¼
�
e−Γd;st0 cosh

�
ΔΓd;s

2
t0
��

⊗ Rðt − t0jδtÞgsigðδtÞεsigðtÞ;
H−ðt; δtÞ ¼ ½e−Γd;st0 cosðΔmd;st0Þ�

⊗ Rðt − t0jδtÞgsigðδtÞεsigðtÞ; ð10Þ

where Rðt − t0jδtÞ and gsigðδtÞ are the decay-time resolution
model and the PDF of the per-event decay-time uncertainty
δt, respectively, discussed in Sec. VI, and εsigðtÞ is the

time-dependent efficiency in reconstructing and selecting
signal decays.
If the final state f is a CP eigenstate, as for the

B0 → πþπ− and B0
s → KþK− decays, the decay-time

PDF is given by

fCPðt; δt; ξ⃗; η⃗Þ ¼ KCPf½ð1 − APÞΩsigðξ⃗; η⃗Þ
þ ð1þ APÞΩ̄sigðξ⃗; η⃗Þ�Iþðt; δtÞ
þ ½ð1 − APÞΩsigðξ⃗; η⃗Þ
− ð1þ APÞΩ̄sigðξ⃗; η⃗Þ�I−ðt; δtÞg; ð11Þ

whereKCP is a normalization factor and the functions IþðtÞ
and I−ðtÞ are

Iþðt; δtÞ ¼
�
e−Γd;st0

�
cosh

�
ΔΓd;s

2
t0
�

þ AΔΓ
f sinh

�
ΔΓd;s

2
t0
���

⊗ Rðt − t0jδtÞgsigðδtÞεsigðtÞ;
I−ðt; δtÞ ¼ fe−Γd;st0 ½Cf cosðΔmd;st0Þ − Sf sinðΔmd;st0Þ�g

⊗ Rðt − t0jδtÞgsigðδtÞεsigðtÞ: ð12Þ

It is instructive to see how the equations above would
become in the absence of experimental effects. The final-
state detection asymmetry AF would have a zero value. In
the limit of perfect flavour tagging, i.e., absence
of untagged candidates and mistag probabilities equal to
zero with full agreement between OS and SS taggers, the
function Ωsigðξ⃗; η⃗Þ (Ω̄sigðξ⃗; η⃗Þ) would become identically
equal to 1 (0) if ξOS;SS ¼ 1, and to 0 (1) if ξOS;SS ¼ −1. The
case of perfect determination of the decay time would be
obtained by replacing the product of functions
Rðt − t0jδtÞgsigðδtÞ with a product of Dirac delta functions,
δðt − t0ÞδðδtÞ. Finally, in the absence of a time dependence
of the efficiency, the function εsigðtÞ would assume con-
stant value.
The expressions for the decay-time PDFs of the cross-

feed background components are determined from Eqs. (8)
and (11), assuming that the decay time calculated under the
wrong mass hypothesis is equal to that calculated using the
correct hypothesis. This assumption is verified using
samples of simulated decays.
The efficiency εsigðtÞ is parametrized using the empirical

function

εsigðtÞ ∝ ½d0 − erfðd1td2Þ�ð1 − d3tÞ; ð13Þ

where erf denotes the error function and di are parameters
determined using the B0 → Kþπ− decay, whose untagged
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time-dependent decay rate is a pure exponential with
Γd ¼ 0.6588� 0.0017 ps−1 [19]. The yield of the
B0 → Kþπ− decay is determined in bins of decay time,
by means of unbinned maximum likelihood fits to the Kþ
π− invariant-mass spectrum, using the model described in
Sec. IVA. The resulting histogram is then divided by a
histogram built from an exponential function with decay
constant equal to the central value of Γd and arbitrary
normalization. By fitting the function in Eq. (13) to the final
histogram, the parameters di are determined and fixed in
the final fit to the data. The absolute scale of the efficiency
function in Eq. (13) is irrelevant in the likelihood maxi-
mization since its value is absorbed into the global
normalization of the PDFs. For the other two-body decays
under study, the same efficiency histogram is used, but with
a small correction in order to take into account the dif-
ferences between the various decay modes. The correction
consists in multiplying the histogram by the ratio between
the time-dependent efficiencies for the B0 → Kþπ− and the
other modes, as determined from simulated decays. The
final histograms and corresponding time-dependent effi-
ciencies for the B0 → Kþπ−, B0

s → πþK−, B0 → πþπ−,
and B0

s → KþK− decays are reported in Fig. 1.
The parametrization of the decay-time distribution for

combinatorial background in the Kþ π− sample is studied
by using the high-mass sideband from data, defined as
5.6 < m < 5.8 GeV=c2. It is empirically found that the
PDF can be written as

fcombðt; δt;ψ ; ξ⃗; η⃗Þ
¼ Kcombð1 − ψAcombÞΩcombðξ⃗; η⃗ÞgcombðδtÞ

× ½fcombe−Γcombt þ ð1 − fcombÞe−Γ0
combt�εcombðtÞ; ð14Þ

where Kcomb is a normalization factor; Ωcombðξ⃗; η⃗Þ is the
PDF of ξ⃗ and η⃗ for combinatorial-background candidates;
gcombðδtÞ is the distribution of the per-event decay-time
uncertainty δt for combinatorial background, discussed in
Sec. VI; Acomb is the charge asymmetry of the combina-
torial background; and Γcomb, Γ0

comb and fcomb are free
parameters to be determined by the fit. The function
εcombðtÞ is an effective function, analogous to the time-
dependent efficiency for signal decays. The parametrization

εcombðtÞ ∝ 1 − erf

�
acomb − t
acombt

�
; ð15Þ

where acomb is a free parameter, provides a good description
of the data. For the πþ π− and KþK− samples, the same
expression as in Eq. (14) is used, with Acomb set to zero.
The decay-time distribution of the three-body back-

ground component in the Kþ π− sample is described using
the same PDF as in Eq. (8), but with independent parameters
entering the flavor-tagging PDF and an independent effec-
tive oscillation frequency. In addition, the time-dependent
efficiency function in Eq. (10) is parametrized as
εsigðtÞ ¼

P
6
i¼0 cibiðtÞ, following the procedure outlined
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FIG. 1. Efficiencies as a function of decay time for (top left) B0 → Kþπ−, (top right) B0
s → πþK−, (bottom left) B0 → πþπ− and,

(bottom right) B0
s → KþK− decays. The black line is the result of the best fit of Eq. (13) to the histograms, obtained as described in the

text. The dark and bright areas correspond to the 68% and 95% confidence intervals, respectively.
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in Ref. [44], where biðtÞ are cubic spline functions and ci are
coefficients left free to be adjusted during the final fit to data.
For the πþ π− and KþK− samples, the decay-time

distribution of three-body partially reconstructed back-
grounds is parametrized using the PDF

f3-bodyðt; δt; ξ⃗; η⃗Þ
¼ K3-bodyΩ3-bodyðξ⃗; η⃗Þg3-bodyðδtÞe−Γ3-bodytε3-bodyðtÞ; ð16Þ

where K3-body is a normalization factor, and Ω3-bodyðξ⃗; η⃗Þ
and g3-bodyðδtÞ are the analogs of Ωcombðξ⃗; η⃗Þ and gcombðδtÞ
of Eq. (14), respectively. The function ε3-bodyðtÞ is para-
metrized as in Eq. (15), with an independent parameter
a3-body, instead of acomb, left free to be adjusted by the fit.

V. FLAVOR TAGGING

Flavor tagging is a fundamental ingredient for measuring
CP asymmetries with B0

ðsÞ-meson decays toCP eigenstates.

The sensitivity to the coefficients Cf and Sf governing the
time-dependent CP asymmetry defined in Eq. (1) is
directly related to the tagging power, defined as
εeff ¼

P
ijξijð1 − 2ηiÞ2=N, where ξi and ηi are the tagging

decision and the associated mistag probability, respectively,
for the ith of the N candidates.
Two classes of algorithms (OS and SS) are used to

determine the initial flavor of the signal B0
ðsÞ meson. The

OS taggers [45] exploit the fact that in p p collisions beauty
quarks are almost exclusively produced in bb̄ pairs. Hence
the flavor of the decaying signal B0

ðsÞ meson can be

determined by looking at the charge of the lepton, either
muon or electron, originating from semileptonic decays, and
of the kaon from the b → c → s decay transition of the other
b hadron in the event. An additional OS tagger is based on
the inclusive reconstruction of the opposite b-hadron decay
vertex and on the computation of a pT-weighted average of
the charges of all tracks associated to that vertex. For each
OS tagger, the probability of misidentifying the flavor of the
B0
ðsÞ meson at production (mistag probability, η) is estimated

bymeans of an artificial neural network, and is defined in the
range 0 ≤ η ≤ 0.5. When the response of more than one OS
tagger is available per candidate, the different decisions and
associated mistag probabilities are combined into a unique
decision ξOS and a single ηOS. The SS taggers are based on
the identification of the particles produced in the hadroni-
zation of the beauty quarks. In contrast to OS taggers, that to
a very good approximation act equally onB0 andB0

s mesons,
SS taggers are specific to the nature of the B0

ðsÞ meson under

study. The additional d̄ (d) or s̄ (s) quarks produced in
association with a B0 (B0) or a B0

s (B0
s) meson, respectively,

can form charged pions and protons, in the d-quark case, or
charged kaons, in the s-quark case. In this paper, so-called

SSπ and SSp taggers [46] are used to determine the initial
flavor ofB0mesons,while the SSK tagger [47] is used forB0

s
mesons.
The multivariate algorithms used to determine the values

of ηOS and ηSS are trained using specific B-meson decay
channels and selections. The differences between the train-
ing samples and the selected signal B0

ðsÞ mesons can lead to

an imperfect determination of themistag probability. Hence,
a more accurate estimate, denoted asω hereafter, is obtained
by means of a calibration procedure that takes into account
the specific kinematics of selected signalB0

ðsÞ mesons. In the

OS case, the relation between η and ω is calibrated using
B0 → Kþπ− and B0

s → πþK− decays. In the SSπ and SSp
cases, only B0 → Kþπ− decays are used. Once the calibra-
tion procedure is applied, the information provided by the
two taggers is combined into a unique tagger, SSc, with
decision ξSSc and mistag probability ηSSc, as discussed
in Appendix A 2. In the SSK case, the small yield of the
B0
s → πþK− decay is insufficient for a precise calibration.

Hence, a large sample ofB0
s → D−

s π
þ decays is used instead.

The procedure is described in Appendix A 3.
Flavor-tagging information enters the PDF describing

the decay-time distribution of the signals by means of the
Ωsigðξ⃗; η⃗Þ and Ω̄sigðξ⃗; η⃗Þ PDFs in Eqs. (8) and (11), and the
same parametrization is also adopted for the cross-feed
backgrounds. Similar PDFs are used also for the combi-
natorial and three-body backgrounds. The full description
of these PDFs is given in Appendix, together with the
details and the results of the calibration procedure.

VI. DECAY-TIME RESOLUTION

The model to describe the decay-time resolution is
obtained from the study of signal and B0

s → D−
s π

þ decays
in simulation. It is found that the resolution function
Rðt − t0jδtÞ is well described by the sum of two Gaussian
functions with a shared mean fixed to zero and widths that
depend on the decay-time uncertainty δt, which varies on a
candidate-by-candidate basis. The value of δt is determined
for each B candidate by combining the information of
momentum, invariant mass, decay length, and their corre-
sponding uncertainties. The two widths are parametrized as

σ1ðδtÞ ¼ q0 þ q1ðδt − δ̂tÞ;
σ2ðδtÞ ¼ rσσ1ðδtÞ; ð17Þ

where δ̂t ¼ 30 fs is approximately equal to the mean value
of the δt distribution. It is also found that the parameters q0,
q1, rσ and the relative fraction of the twoGaussian functions
are very similar between signal and B0

s → D−
s π

þ decays.
However, the simulation also shows the presence of a small
component with long tails, that could be accommodated
with a third Gaussian function with larger width. For
simplicity the double Gaussian function is used in the

MEASUREMENT OF CP ASYMMETRIES IN TWO-BODY … PHYS. REV. D 98, 032004 (2018)

032004-7



baselinemodel, and a systematic uncertainty associatedwith
this approximation is discussed in Sec. IX. Figure 2 shows
the dependence on δt of the standard deviation of the
difference between the reconstructed and true decay time
for simulated B0

s → πþK− and B0
s → D−

s π
þ decays. This

dependence is found to be well modeled by a straight line.
The parameter rσ and the relative contribution of the first
Gaussian function are fixed to 3.0 and 0.97, respectively, as
determined from full simulation. The values of the param-
eters q0 and q1 are determined from data by means of OS-
tagged time-dependent fits to a sample of B0

s → D−
s π

þ
decays, where the combined response of the OS taggers
is calibrated using a sample ofB0 → D−πþ decays. Figure 3
shows the time-dependent asymmetries of the B0 → D−πþ

and B0
s → D−

s π
þ decays, with the result of the fit super-

imposed. The numerical results are q0 ¼ 46.1� 4.1 fs
and q1 ¼ 0.81� 0.38, with a correlation coefficient
ρðq0; q1Þ ¼ −0.32. Residual small differences between
signal and B0

s → D−
s π

þ decays, as seen in full simulation,
are taken into account in the determination of the uncer-
tainties on q0 and q1. If a simpler but less effective model
based on a single Gaussian function with constant width
were used, the value of such a width would have been
approximately equal to 50 fs.

The distributions of δt for the signal components,
gsigðδtÞ, are modeled using background-subtracted histo-
grams. For combinatorial and three-body backgrounds,
they are described using histograms obtained by studying
the high- and low-mass sidebands.

VII. DETECTION ASYMMETRY BETWEEN
K +π − AND K −π + FINAL STATES

In this section the determination of the nuisance exper-
imental detection asymmetry, needed to determine the CP

asymmetries AB0

CP and AB0
s

CP, is described. This asymmetry
arises because charge-conjugate final states are selected
with different efficiencies. To excellent approximation, it
can be expressed as the sum of two contributions

AF ¼ AK−πþ
D þ AK−πþ

PID ; ð18Þ

where AK−πþ
D is the asymmetry between the efficiencies of

the K−πþ and Kþπ− final states without the application
of the PID requirements and AK−πþ

PID is the asymmetry
between the efficiencies of the PID requirements selecting
the K−πþ and Kþπ− final states.
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FIG. 2. The triangles represent the standard deviation of the difference between the reconstructed (t) and true decay (ttrue) time versus
δt for simulated (left) B0

s → πþK− and (right) B0
s → D−

s π
þ decays. The dotted lines are the results of linear-function fits. The histograms

represent the corresponding δt distributions with arbitrary normalizations.
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A. Final-state detection asymmetry

The final-state detection asymmetry is determined using
Dþ → K−πþπþ and Dþ → K̄0πþ control modes, with the
neutral kaon decaying to πþ π−, following the approach
described in Ref. [48]. Assuming negligibleCP violation in
Cabibbo-favored D-meson decays, the asymmetries
between the measured yields of Dþ and D− decays can
be written as

AK−πþπþ
RAW ¼ ADþ

P þ AK−πþ
D þ Aπþ

D ; ð19Þ
AK̄0π
RAW ¼ ADþ

P þ Aπþ
D − AK0

D ; ð20Þ

where ADþ
P is the asymmetry between the production cross

sections of Dþ and D− mesons, and Aπþ
D (AK0

D ) is the
asymmetry between the detection efficiencies of πþ (K0)
and π− (K̄0) mesons. The difference between Eqs. (19) and
(20) leads to

AK−πþ
D ¼ AK−πþπþ

RAW − AK̄0πþ
RAW − AK0

D : ð21Þ

The asymmetry AK0

D was determined to be ð0.054�
0.014Þ% [48]. The asymmetries ADþ

P and Aπ
D could depend

on the kinematics of the Dþ and πþ mesons. To achieve
better cancellation of these nuisance asymmetries in
Eq. (21), the momentum and pT of the Dþ and πþ mesons
from the Dþ → K−πþπþ sample are simultaneously
weighted to match the corresponding distributions in the
Dþ → K̄0πþ sample. Because of the sizeable difference
in the interaction cross sections of positive and negative
kaons with the detector material, AK−πþ

D is determined in
bins of kaon momentum. By taking into account the
momentum distribution of the kaons from B0 → Kþπ−

and B0
s → πþK− decays, the values of AK−πþ

D for the two
decay modes are found to be consistent, and the numerical
result is

AK−πþ
D ðB0 → Kþπ−Þ ¼ −AK−πþ

D ðB0
s → πþK−Þ

¼ ð−0.91� 0.14Þ%: ð22Þ

The different sign of the corrections for the B0 → Kþπ−

and B0
s → πþK− decays is a consequence of the opposite

definition of the final states f and f for the two modes.

B. Asymmetry induced by PID requirements

The PID asymmetry is determined using the calibration
samples discussed in Sec. III. Using D�þ → D0ðK−πþÞπþ
decays, the asymmetry between the PID efficiencies of the
Kþ π− and K− πþ final states is determined in bins of
momentum, pseudorapidity, and azimuthal angle of the two
final-state particles. Several different binning schemes are
used, and the average and standard deviation of the
PID asymmetries determined in each scheme are used as
central value and uncertainty for AK−πþ

PID , respectively. The

corrections for the two decays are found to be consistent,
and the numerical result is

AK−πþ
PID ðB0 → Kþπ−Þ ¼ −AK−πþ

PID ðB0
s → πþK−Þ

¼ ð−0.04� 0.25Þ%: ð23Þ
VIII. FIT RESULTS

The simultaneous fit to the invariant mass, the decay time
and its uncertainty, and the tagging decisions and their
associated mistag probabilities for the Kþ π−, πþ π−, and
KþK− final states determines the coefficients Cπþπ− , Sπþπ− ,
CKþK− , SKþK− , AΔΓ

KþK− and the CP asymmetries AB0

CP and

AB0
s

CP. In the fits the parameters ΔmdðsÞ, ΓdðsÞ, and ΔΓdðsÞ are
fixed to the central values reported in Table III. The signal
yields areNðB0→πþπ−Þ¼28650�230,NðB0

s→KþK−Þ¼
36840�220, NðB0 → Kþπ−Þ ¼ 94220� 340, and
NðB0

s → πþK−Þ ¼ 7030� 120, where uncertainties are
statistical only. The one-dimensional distributions of the
measured variables used in the fit, with the results of the fit
overlaid, are shown in Figs. 4–6.
The time-dependent asymmetries, obtained separately by

using the OS or the SS tagging decisions, for candidates in
the region 5.20 < m < 5.32 GeV=c2 in the Kþ π− spec-
trum, dominated by the B0 → Kþπ− decay, are shown in
Fig. 7. The calibration parameters of the OS and SSc taggers
determined during the fit, mainly from B0 → Kþπ− decays,
are reported in Table VII in Appendix. The production
asymmetries for the B0 and B0

s mesons are determined to be
ð0.19� 0.60Þ% and ð2.4� 2.1Þ%, respectively, where
uncertainties are statistical only. They are consistent with
the expectations from Ref. [43]. The time-dependent asym-
metries for πþ π− candidates with mass values lying in the
interval 5.20 < m < 5.35 GeV=c2, and for KþK− candi-
dates in the interval 5.30 < m < 5.45 GeV=c2, both domi-
nated by the corresponding signals, are shown in Fig. 8,
again separately for the OS and SS tagging decision. The
tagging powers for the B0 → πþπ− and B0

s → KþK−

decays, together with a breakdown of the OS and SS
contributions, are reported in Table IV. The results for the
CP-violating quantities are

TABLE III. Values of the parameters Δmd, Δms, Γd, Γs, and
ΔΓs [19], fixed to their central values in the fit to the data. For Γs
and ΔΓs the correlation factor between the two quantities is also
reported. The decay width difference ΔΓd is fixed to zero.

Parameter Value

Δmd 0.5065� 0.0019 ps−1

Γd 0.6579� 0.0017 ps−1

ΔΓd 0
Δms 17.757� 0.021 ps−1
Γs 0.6654� 0.0022 ps−1
ΔΓs 0.083� 0.007 ps−1
ρðΓs;ΔΓsÞ −0.292

MEASUREMENT OF CP ASYMMETRIES IN TWO-BODY … PHYS. REV. D 98, 032004 (2018)

032004-9



Cπþπ− ¼ −0.34� 0.06;

Sπþπ− ¼ −0.63� 0.05;

CKþK− ¼ 0.20� 0.06;

SKþK− ¼ 0.18� 0.06;

AΔΓ
KþK− ¼ −0.79� 0.07;

AB0

CP ¼ −0.084� 0.004;

AB0
s

CP ¼ 0.213� 0.015;

where the uncertainties are statistical only and the central

values of AB0

CP and AB0
s

CP have been corrected for the Kþ π−

detection asymmetry. In this analysis the selection require-
ments and the flavor tagging performances for the various
decay modes differ with respect to previous LHCb pub-
lications [17,18]. For this reason, the statistical uncertainties
are improved and do not follow a simple scaling rulewith the
integrated luminosity.

IX. SYSTEMATIC UNCERTAINTIES

Two different strategies are adopted to determine
systematic uncertainties on the CP-violating parameters:
to account for the knowledge of external inputs whose
values are fixed in the fit, the fit to the data is repeated a
large number of times, each time modifying the values of
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these parameters; when accounting for systematic uncer-
tainties on the fitting model, several pseudoexperiments
are performed according to the baseline model, and both
the baseline model and modified models are used to fit
the generated data. In either case the distribution of the
difference between the baseline and alternative results for
the CP asymmetries is built, and the sum in quadrature of
the mean and root-mean-square of the distribution is used
to assign a systematic uncertainty. A detailed breakdown
of the systematic uncertainties described in this section is
reported in Table V.
The alternativemodels used to determine systematic uncer-

tainties associated with the choices of the invariant-mass

shapes consist in turn of: substituting the invariant-
mass resolution function used for signals and cross-
feed backgrounds with a single Gaussian function;
fixing the parameters governing the tails of the Johnson
functions and their relative amount to the same values for all
signals, namely to those of the B0 → Kþπ− decay; and
modeling the combinatorial-background model with a linear
function.
To determine a systematic uncertainty associated with

the knowledge of the efficiency as a function of the decay
time, εsigðtÞ, different sets of the parameters governing the
efficiency functions are generated, according to their
uncertainties and correlations. A systematic uncertainty
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shown.
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FIG. 7. Time-dependent asymmetries forK� π∓ candidates with invariant-mass values in the interval 5.20 < m < 5.32 GeV=c2: (left)
using the OS-tagging decision and (right) the SS-tagging decision. The result of the simultaneous fit is overlaid.
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associated with the choice of the decay-time model for the
cross-feed backgrounds is evaluated by using an alternative
model where the CP asymmetry of the B0 → Kþπ−

component in the πþ π− and KþK− final-state samples,
and the Cf and Sf parameters of the B0 → πþπ− and
B0
s → KþK− components in the Kþ π− final-state sample,

are fixed to zero. A systematic uncertainty associated with

the choice of the decay-time model for the combinatorial
background is evaluated using a uniform decay-time
efficiency function for this component in the alternative
model. A systematic uncertainty associated with the model
adopted for the three-body background is evaluated by
performing the fits to pseudoexperiments, removing can-
didates with invariant-mass values lower than 5.2 GeV=c2,
and removing the components describing this background
from the model.
Systematic uncertainties associated with the calibration

of the per-event decay-time resolution are due to the
uncertainties on the parameters q0 and q1 and to the
simulation-driven assumption that the resolution model
is well described by a double Gaussian function. Different
values for q0 and q1 are generated according to their
uncertainties and correlations, and then are repeatedly used
to fit the data. In addition, an alternative model for the
decay-time resolution is used to assess a systematic
uncertainty, including an additional contribution described
by a third Gaussian function. The relative contributions of
the three Gaussian functions and the ratios between their
widths are determined from simulation, and the overall
calibration of the new model is performed applying the
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FIG. 8. Time-dependent asymmetries for (top) πþ π− and (bottom) KþK− candidates with mass values in the intervals 5.20 < m <
5.35 GeV=c2 and 5.30 < m < 5.44 GeV=c2, respectively: (left) using the OS-tagging decision and (right) using either the SSc-tagging
decision (for the πþ π− candidates) or the SSK-tagging decision (for theKþK− candidates). The result of the simultaneous fit is overlaid.

TABLE IV. Tagging powers for the B0→πþπ− and B0
s→KþK−

decays (last two rows), with a breakdown of the OS and SS
contributions.

Flavor tagger Tagging power (%)

OS 2.94� 0.17 (%)

SSπ 0.81� 0.13 (%)
SSp 0.42� 0.17
SSc 1.17� 0.11

SSK 0.71� 0.12 (%)

Total B0 → πþπ− 4.08� 0.20 (%)
Total B0

s → KþK− 3.65� 0.21
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same procedure outlined in Sec. VI. A systematic uncer-
tainty associated with the uncertainties on the parameters
reported in Table III is determined by repeating the
simultaneous fit using different fixed values, generated
according to their uncertainties and correlations.
Systematic uncertainties associated with the calibration

of the OS and SSc flavor-tagging responses are determined
by replacing the linear relation between ηOSðSSÞ and ωOSðSSÞ
of Eq. (A3) with a second-order polynomial. A systematic
uncertainty associated with the calibration of the SSK
flavor-tagging response is determined by varying the
calibration parameters reported in Table VIII according
to their uncertainties and correlations. Finally, the uncer-
tainties on the PID and detection asymmetries reported in
Eqs. (23) and (22) are accounted for as systematic uncer-

tainties on AB0

CP and AB0
s

CP.
The total systematic uncertainties are obtained as the

quadratic sum of the individual contributions, and are
smaller than the corresponding statistical uncertainties

for all parameters but AΔΓ
KþK− . The dominating systematic

uncertainty for AΔΓ
KþK− is related to the knowledge of how

the efficiency varies with the decay time. Since such a
dependence is determined from data, using the B0 → Kþπ−
decay, the size of the associated uncertainty will be reduced
with future data.

X. CONCLUSIONS

Measurements are presented of time-dependent CP
violation in B0 → πþπ− and B0

s → KþK− decays, and of
the CP asymmetries in B0 → Kþπ− and B0

s → πþK−

decays, based on a data sample of pp collisions corre-
sponding to an integrated luminosity of 3.0 fb−1 collected
with the LHCb detector at center-of-mass energies of 7 and
8 TeV. The results are

Cπþπ− ¼ −0.34� 0.06� 0.01;

Sπþπ− ¼ −0.63� 0.05� 0.01;

CKþK− ¼ 0.20� 0.06� 0.02;

SKþK− ¼ 0.18� 0.06� 0.02;

AΔΓ
KþK− ¼ −0.79� 0.07� 0.10;

AB0

CP ¼ −0.084� 0.004� 0.003;

AB0
s

CP ¼ 0.213� 0.015� 0.007;

where the first uncertainties are statistical and the second
systematic. They supersede with much improved precision
those of Refs. [17,18]. The corresponding statistical corre-
lationmatrix is reported in Table VI. Taking into account the
sizes of statistical and systematic uncertainties, correlations
due to the latter can be neglected. The measurements of

TABLE V. Systematic uncertainties on the various CP-violating parameters. When present, the dots indicate that the uncertainty is not
applicable to the given case.

Source of uncertainty Cπþπ− Sπþπ− CKþK− SKþK− AΔΓ
KþK− AB0

CP AB0
s

CP

Time-dependent efficiency 0.0011 0.0004 0.0020 0.0017 0.0778 0.0004 0.0002
Time-resolution calibration 0.0014 0.0013 0.0108 0.0119 0.0051 0.0001 0.0001
Time-resolution model 0.0001 0.0005 0.0002 0.0002 0.0003 negligible negligible
Input parameters 0.0025 0.0024 0.0092 0.0107 0.0480 negligible 0.0001
OS-tagging calibration 0.0018 0.0021 0.0018 0.0019 0.0001 negligible negligible
SSK-tagging calibration � � � � � � 0.0061 0.0086 0.0004 � � � � � �
SSc-tagging calibration 0.0015 0.0017 � � � � � � � � � negligible negligible
Cross-feed time model 0.0075 0.0059 0.0022 0.0024 0.0003 0.0001 0.0001
Three-body bkg. 0.0070 0.0056 0.0044 0.0043 0.0304 0.0008 0.0043
Comb.-bkg. time model 0.0016 0.0016 0.0004 0.0002 0.0019 0.0001 0.0005
Signal mass model (reso.) 0.0027 0.0025 0.0015 0.0015 0.0023 0.0001 0.0041
Signal mass model (tails) 0.0007 0.0008 0.0013 0.0013 0.0016 negligible 0.0003
Comb.-bkg. mass model 0.0001 0.0003 0.0002 0.0002 0.0016 negligible 0.0001
PID asymmetry � � � � � � � � � � � � � � � 0.0025 0.0025
Detection asymmetry � � � � � � � � � � � � � � � 0.0014 0.0014

Total 0.0115 0.0095 0.0165 0.0191 0.0966 0.0030 0.0066

TABLE VI. Statistical correlations among the CP-violating
parameters.

Cπþπ− Sπþπ− CKþK− SKþK− AΔΓ
KþK− AB0

CP AB0
s

CP

Cπþπ− 1 0.448 −0.006 −0.009 0.000 −0.009 0.003

Sπþπ− 1 −0.040 −0.006 0.000 0.008 0.000

CKþK− 1 −0.014 0.025 0.006 0.001

SKþK− 1 0.028 −0.003 0.000

AΔΓ
KþK− 1 0.001 0.000

AB0

CP
1 0.043

AB0
s

CP
1
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Cπþπ− , Sπþπ− , AB0

CP and AB0
s

CP are the most precise from a
single experiment to date, and are in good agreement with
previous determinations [22–25]. Those of CKþK− and
SKþK− are in good agreement with the previous LHCb
result [17]. By summing in quadrature the statistical
and systematic uncertainties and neglecting the small corre-
lations between CKþK− , SKþK− and AΔΓ

KþK− , the significance
for ðCKþK− ; SKþK− ; AΔΓ

KþK−Þ to differ from ð0; 0;−1Þ is
determined by means of a χ2 test statistic to be 4.0 standard
deviations. This result constitutes the strongest evidence for
time-dependentCP violation in the B0

s-meson sector to date.
As a cross-check, the distribution of the variable Q, defined
by Q2 ¼ ðCKþK−Þ2 þ ðSKþK−Þ2 þ ðAΔΓ

KþK−Þ2, is studied by
generating, according to the multivariate Gaussian function
defined by their uncertainties and correlations, a large sample
of values for the variables CKþK− , SKþK− , and AΔΓ

KþK− . The
distribution ofQ is found to beGaussian,withmean 0.83 and
width 0.12.

The measurements of AB0

CP and AB0
s

CP allow a test of the
validity of the SM, as suggested in Ref. [7], by checking the
equality

Δ ¼ AB0

CP

AB0
s

CP

þ BðB0
s → πþK−Þ

BðB0 → Kþπ−Þ
τd
τs

¼ 0; ð24Þ

where BðB0 → Kþπ−Þ and BðB0
s → πþK−Þ are CP-

averaged branching fractions, and τd and τs are the B0

and B0
s mean lifetimes, respectively. Using the world

averages for fs=fd × BðB0
s → πþK−Þ=BðB0 → Kþπ−Þ

and τs=τd [19] and the measurement of the relative
hadronization fraction between B0

s and B0 mesons
fs=fd ¼ 0.259� 0.015 [49], the value Δ ¼ −0.11�
0.04� 0.03 is obtained, where the first uncertainty is from
the measurements of the CP asymmetries and the second is
from the input values of the branching fractions, the
lifetimes and the hadronization fractions. No evidence
for a deviation from zero of Δ is observed with the present
experimental precision.
These new measurements will enable improved con-

straints to be set on the CKM CP-violating phases, using
processes whose amplitudes receive significant contribu-
tions from loop diagrams both in the mixing and decay of
B0
ðsÞ mesons [9–11]. Comparisons with tree-level determi-

nations of the same phases will provide tests of the SM and
constrain possible new-physics contributions.
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APPENDIX A: FLAVOR-TAGGING DETAILS

1. Formalism

The functions Ωsigðξ⃗; η⃗Þ and Ω̄sigðξ⃗; η⃗Þ in Eqs. (8) and
(11) are

Ωsigðξ⃗; η⃗Þ ¼ ΩOS
sig ðξOS; ηOSÞΩSS

sigðξSS; ηSSÞ;
Ω̄sigðξ⃗; η⃗Þ ¼ Ω̄OS

sig ðξOS; ηOSÞΩ̄SS
sigðξSS; ηSSÞ; ðA1Þ

where Ωtag
sigðξtag; ηtagÞ and Ω̄tag

sigðξtag; ηtagÞ (with
tag ∈ fOS; SSg) are

Ωtag
sigðξtag; ηtagÞ ¼ δξtag;1ε

tag
sig ½1 − ωtagðηtagÞ�htagsigðηtagÞ

þ δξtag;−1ε
tag
sigωtagðηtagÞhtagsigðηtagÞ

þ δξtag;0ð1 − εtagsigÞUðηtagÞ;
Ω̄tag

sigðξtag; ηtagÞ ¼ δξtag;−1ε̄
tag
sig ½1 − ω̄tagðηtagÞ�htagsigðηtagÞ

þ δξtag;1ε̄
tag
sigω̄tagðηtagÞhtagsigðηtagÞ

þ δξtag;0ð1 − ε̄tagsigÞUðηtagÞ: ðA2Þ

The symbol δξtag;i stands for the Kronecker delta function,

εtagsig (ε̄tagsig) is the probability that the flavor of a B0
ðsÞ (B

0
ðsÞ)

meson is tagged, ωtagðηtagÞ (ω̄tagðηtagÞ) is the calibrated
mistag probability as a function of ηtag for a B0

ðsÞ (B0
ðsÞ)

meson, htagsigðηtagÞ is the PDF describing the distribution
of ηtag for tagged events, and UðηtagÞ is a uniform
distribution of ηtag. It is empirically found that, to a good
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approximation, ηtag and ωtag are related by a linear
function, i.e.,

ωtagðηtagÞ ¼ ptag
0 þ ptag

1 ðηtag − η̂tagÞ;
ω̄tagðηtagÞ ¼ p̄tag

0 þ p̄tag
1 ðηtag − η̂tagÞ; ðA3Þ

where η̂tag is a fixed value, chosen to be equal to the mean
value of the ηtag distribution to minimize the correlation
among the parameters. To reduce the correlation among εtagsig
and ε̄tagsig , and ptag

0 , p̄tag
0 , ptag

1 , and p̄tag
1 , these variables are

conveniently parametrized as

εtagsig ¼ ε̂tagsigð1þ ΔεtagsigÞ;
ε̄tagsig ¼ ε̂tagsigð1 − ΔεtagsigÞ;
ptag
0 ¼ p̂tag

0 ð1þ Δptag
0 Þ;

p̄tag
0 ¼ p̂tag

0 ð1 − Δptag
0 Þ;

ptag
1 ¼ p̂tag

1 ð1þ Δptag
1 Þ;

p̄tag
1 ¼ p̂tag

1 ð1 − Δptag
1 Þ; ðA4Þ

where p̂tag
0;1 and Δptag

0;1 are the average and the asymmetry

between ptag
0;1 and p̄tag

0;1, and ε̂tagsig and Δεtagsig are the average

and the asymmetry between εtagsig and ε̄tagsig . The PDF hOSsig ðηÞ
is modeled using background-subtracted histograms of
signal candidates. The description of hSSsigðηÞ for the SS
taggers is presented in Secs. A 2 and A 3, respectively.
The PDF of ξtag and ηtag for the combinatorial back-

ground is empirically parametrized as

Ωtag
combðξtag; ηtagÞ ¼ δξtag;1ε

tag
combh

tag
combðηtagÞ

þ δξtag;−1ε̄
tag
combh

tag
combðηtagÞ

þ δξtag;0ð1 − εtagcomb − ε̄tagcombÞUðηtagÞ;
ðA5Þ

where εtagcomb and ε̄tagcomb are the efficiencies to tag a
combinatorial-background candidate as B0

ðsÞ or B
0
ðsÞ, respec-

tively, htagcombðηtagÞ is the PDF of ηtag. As done for the signal
model, the tagging efficiencies are parametrized as

εtagcomb ¼
ε̂tagcomb

2
ð1þ ΔεtagcombÞ; ε̄tagcomb ¼

ε̂tagcomb

2
ð1 − ΔεtagcombÞ;

ðA6Þ

such that the fits determine the total efficiency to tag a
combinatorial-background candidate as B0

ðsÞ or B
0
ðsÞ (ε̂

tag
comb),

and the asymmetry between the two efficiencies (Δεtagcomb).
The PDF htagcombðηtagÞ is determined as a histogram from the
high-mass sideband where only combinatorial background

is present. The combined PDF of ξOS, ξSS, ηOS and ηSS,
analogously to the signal case, is given by

Ωcombðξ⃗; η⃗Þ ¼ ΩOS
combðξOS; ηOSÞ ·ΩSS

combðξSS; ηSSÞ: ðA7Þ

The PDF of ξtag and ηtag for three-body backgrounds in
the πþ π− andKþ K− spectra is empirically parametrized as

Ωtag
3-bodyðξtag; ηtagÞ ¼ δξtag;1ε

tag
3-bodyh

tag
3-bodyðηtagÞ

þ δξtag;−1ε̄
tag
3-bodyh

tag
3-bodyðηtagÞ

þ δξtag;0ð1 − εtag3-body − ε̄tag3-bodyÞUðηtagÞ;
ðA8Þ

where εtag3-body and ε̄tag3-body are the efficiencies to tag a

background candidate as B0
ðsÞ or B0

ðsÞ, respectively, and

htag3-bodyðηtagÞ is the PDF of ηtag. Also in this case the tagging
efficiencies are parametrized as a function of the total
efficiency (ε̂tag3-body) and asymmetry (Δεtag3-body)

εtag3-body ¼
ε̂tag3-body
2

ð1þ Δεtag3-bodyÞ;

ε̄tag3-body ¼
ε̂tag3-body
2

ð1 − Δεtag3-bodyÞ: ðA9Þ

The PDF htag3-bodyðηtagÞ is determined as a histogram from the
low-mass sideband, where the residual contamination of
combinatorial-background candidates is subtracted. As
mentioned in Sec. IV B, for the Kþ π− final-state sample
the three-body background is parametrized in the same way
as for the B0 → Kþπ− decay, but with independent
parameters for the flavor-tagging calibration.
The PDFs in Eqs. (A1), (A7) and (A8) are valid if ηOS

and ηSS are uncorrelated variables. This assumption is
verified by means of background-subtracted [50] signals,
and of candidates from the high- and low-mass sidebands
for the combinatorial and three-body backgrounds,
respectively.

2. Combination of the SSπ and SSp taggers

The SSπ and SSp taggers are calibrated separately using
background-subtracted B0 → Kþπ− decays. By using the
PDF in Eq. (8) to perform a fit to the tagged decay-time
distribution of these candidates, the parameters governing
the relations in Eqs. (A1) are determined separately for the
two taggers. The calibration parameters determined from
the fit are used to combine the two taggers into a unique one
(SSc) with decision ξSSc and mistag probability ηSSc. To
validate the assumption of a linear relation between ηtag and
ωtag, the sample is split into bins of ηSSπðSSpÞ, such that each
subsample has approximately the same tagging power. The
average mistag fraction in each bin is determined by means
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of a tagged time-dependent fit to the various subsamples.
This check is performed separately for the SSπ, SSp, and
SSc. The results of the calibration procedure and of the
cross-check using the fits in bins of ηSSπ , ηSSp, and ηSSc are
shown in Fig. 9. The final calibration for ηSSc is performed
during the final fit, and the values of the calibration
parameters are reported later in Table VII.
The PDFs hSSsigðηSScÞ describing the ηSSc distributions for

the signal B0 mesons are determined using background-
subtracted histograms of B0 → D−πþ decays. It is empiri-
cally found that the distribution of ηSSc has a sizeable

dependence on the B0-meson pT. Hence the B0 → D−πþ
sample is weighted in order to equalize the pT distribution to
that of the signal.

3. Calibration of the SSK tagger

To calibrate the response of the SSK tagger, the natural
control mode would be the B0

s → πþK− decay. However,
the signal yield of this decay is approximately 8% of
that of the B0 → Kþπ− decay, and 20% of that of the
B0
s → KþK− decay. Hence the calibration parameters of the

SSK tagger would be affected by large uncertainties,
limiting the precision on CKþK− and SKþK− . Therefore,
the calibration is performed with a large sample of
B0
s → D−

s π
þ decays. Analogously to the SSπ and SSp

cases, the SSK-calibration parameters are determined using
an unbinned maximum likelihood fit to the tagged decay-
time distribution of the B0

s → D−
s π

þ decay. The PDF used
to fit the decay-time rate is the same as that for the SSπ and
SSp taggers. The fit is performed using the flavor-tagging
information on a per-event basis, determining the calibra-
tion parameters directly. To check the linearity of the
relation between ηSSK and ωSSK , the sample is again
divided in bins of ηSSK and the average ωSSK is determined
in each bin (see Fig. 9).
The SSK tagger uses kaons coming from the hadroniza-

tion of the beauty quark to determine the flavor of the B0
s

heta
Entries  95358
Mean   0.4565
Std Dev    0.03476

0 0.1 0.2 0.3 0.4 0.5
SSπ

η
0

0.1

0.2

0.3

0.4

0.5

π
SS

ω
heta

Entries  95358
Mean   0.4565
Std Dev    0.03476

heta
Entries  95358
Mean  0.4565
Std Dev  0.03476

LHCb

heta
Entries  65806
Mean   0.4664
Std Dev    0.03443

0 0.1 0.2 0.3 0.4 0.5
pSS

η
0

0.1

0.2

0.3

0.4

0.5

p
SS

ω

heta
Entries  65806
Mean   0.4664
Std Dev    0.03443

heta
Entries 65806
Mean  0.4664
Std Dev  0.03443

LHCb

heta
Entries  111210
Mean   0.4514
Std Dev    0.0388

0 0.1 0.2 0.3 0.4 0.5
SSc

η
0

0.1

0.2

0.3

0.4

0.5

SS
c

ω

heta
Entries  111210
Mean   0.4514
Std Dev    0.0388

heta
Entries  111210
Mean 0.4514
Std Dev  0.0388

LHCb

0 0.1 0.2 0.3 0.4 0.5
KSS

η
0

0.1

0.2

0.3

0.4

0.5

SS
K

ω

LHCb

FIG. 9. Relation between ωtag on ηtag for (top left) SSπ, (top right) SSp, (bottom left) SSc, and (bottom right) SSK taggers. The black
dots represent the average value of ωtag in bins of ηtag, as described in the text. The black straight line represents the linear relation
between ωtag and ηtag obtained from the calibration procedure. The darker and brighter areas are the corresponding 68% and
95% confidence intervals, respectively. The distributions of ηtag are also reported as histograms with arbitrary normalizations.

TABLE VII. Values for the calibration parameters of the flavor
tagging obtained from the fits. The values of η̂OS and η̂SS are fixed
in the fit to 0.37 and 0.44, respectively.

Parameter Value

p̂OS
0 0.385� 0.004

ΔpOS
0 0.016� 0.006

p̂OS
1 1.02� 0.04

ΔpOS
1 0.029� 0.024

p̂SSc
0 0.438� 0.003

ΔpSSc
0 0.002� 0.004

p̂SSc
1 0.96� 0.07

ΔpSSc
1 −0.03� 0.04
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meson. As the kaon kinematics are correlated to those of
the B0

s meson, the performance of the SSK tagger also
depends on the latter. To take into account the differences
between the B0

s-meson kinematics and other relevant
distributions in B0

s → D−
s π

þ and B0
s → KþK− decays,

due to the different topologies and selection requirements,
a weighting procedure is applied to the B0

s → D−
s π

þ
sample. It is empirically found that the distributions of
the following variables need to be equalized: the transverse
momentum, the pseudorapidity and the azimuthal angle of
the B0

s meson, and the number of PVs and tracks in the
events. The results of the fit to the weighted sample are
reported in Table VIII.

The PDF hSSKsig ðηSSKÞ for B0
s → KþK− decays is determined

using a background-subtracted histogram of the same
weighted sample of B0

s → D−
s π

þ decays used for the
calibration.
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oAlso at Università di Padova, Padova, Italy.
pAlso at MSU—Iligan Institute of Technology (MSU-IIT), Iligan, Philippines.
qAlso at Escuela Agrícola Panamericana, San Antonio de Oriente, Honduras.
rAlso at Scuola Normale Superiore, Pisa, Italy.
sAlso at Hanoi University of Science, Hanoi, Vietnam.
tAlso at P. N. Lebedev Physical Institute, Russian Academy of Science (LPI RAS), Moscow, Russia.
uAlso at National Research University Higher School of Economics, Moscow, Russia.
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