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We develop an approach to quantum dynamics based on quantum phase space trajectories. The latter are
built from a unitary irreducible representation of the symmetry group of the respective classical phase
space. We use a quantum action functional to derive the basic equations. In principle, our formulation is
equivalent to the Hilbert space formulation. However, the former allows for consistent truncations to
reduced phase spaces in which approximate quantum dynamics can be derived. We believe that our
approach can be very useful in the domain of quantum cosmology and therefore, we use the cosmological
phase space example to establish the basic equations of this formalism.
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I. INTRODUCTION

In this article we propose a certain trajectory approach to
quantum mechanics and we develop it with an emphasis on
its application to simple quantum cosmological systems.
The essence of our approach is to reformulate the
Schrödinger equation densely defined on vectors in the
Hilbert space in terms of a set of Hamilton’s equations in a
phase space. The quantum states are represented by phase
space points. The phase space variables encode both
classical and nonclassical observables. By classical observ-
ables in this context we mean the expectation values of
basic operators in a given quantum state. By nonclassical
observables we mean all other phase space variables which
encode such properties as the dispersions of basic observ-
ables and so on.
Our formalism builds on the notion of coherent states

and in particular on the idea of semiclassical framework by
J. Klauder [1,2]. In fact, our formalism is a natural
extension of the Klauder framework which is included
as a special case. The basic tools behind our formalism are,
first, the variational formulation of the quantum dynamics
once a quantum Hamiltonian has been provided and,
second, coherent states that are constructed with a unitary
and irreducible representation of a minimal canonical group
in the phase space of the respective classical model. The
coherent states are used to incorporate the classical observ-
ables into our formalism in a natural (more precisely,
covariant) way and, as it is in the original framework, the
equations of motion for the classical observables include
in general terms with nonvanishing ℏ. Nevertheless, our

extension of the framework by nonclassical observables
brings in some new advantages that are not present in the
original framework.
In principle, our approach is based on an infinite-

dimensional phase space representing the quantum
Hilbert space. However, its main advantage is that it
includes consistent truncations to finite-dimensional phase
spaces. Specifically, the dimensionality can be as large as to
reproduce the exact Schrödinger equation in the form of
phase space trajectories in the case of infinitely many
dimensions, or as small as to give the roughest quantum
corrections to the classical equations of motion in the
case of the classical phase space dimensionality. The latter
case corresponds, in fact, to the Klauder framework. Our
approach allows to control the level of detail and can be
adjusted to any specific quantum system, in particular, it
can be used to deal with those quantum dynamics which are
too complex to be solved explicitly.
Since we are mainly interested in quantum cosmological

systems, we will develop our ideas for the case of the
classical phase space which is a half-plane rather than a
plane. For this particular phase space, a well-suited minimal
canonical group is the affine group. Nevertheless, we wish
to emphasize that our approach can be easily developed for
the case of Weyl-Heisenberg (W-H) and other groups.
The great advantage of our approach is that it allows for

addressing physical questions which are not possible in the
simplest semiclassical framework. For example, as usual
classical phase space is now extended by nonclassical
observables (such as spreading variables which describe
specific quantum effects) one can investigate the dynamical
properties of nonclassical observables in pseudoclassical
terms of energy transfers between classical and nonclass-
ical observables. It is worth mentioning that the appearance
of such phenomenons could be misinterpreted as “real”
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energy transfers from/to hidden spatial dimensions in the
universe, which are introduced by the braneworld theories
and alike [3,4]. In fact, a wave function naturally spreads
when a system leaves a classical-like regime and enters a
more quantum one. The dynamical spreading is in par-
ticular expected for cosmological systems when they
approach the big bang singularity. As it was already shown
in [5], in this case a quantum repulsive potential may halt
the contraction preventing the universe form collapsing
into the singularity and make it bounce and reexpand.
Despite the fact that the expectation values of the basic
observables such as the volume or the Hubble rate evolve
symmetrically on both sides of the bounce (see [5] or
almost any other work on the semiclassical dynamics of
bouncing Friedmann models), on the fully quantum level
the bounce does not simply revert the evolution. Thus, the
evolution of some of quantum features is expected to be
asymmetric with respect to the bounce. The detailed
behavior can be captured within our extended approach
by inspecting the evolution of nonclassical observables.
Other associated questions that can be potentially exam-

ined within our approach include: How to specify the
degree of “classicality” (i.e., a measure of classicality) of a
quantum behavior or, put differently in the present context,
what is the “classical universe”? How this classical universe
emerges from a quantum state? Had the universe been
classical before the bounce? Note, however, that our
approach concerns only the deterministic dynamical behav-
ior of objects in quantum mechanics, which includes the
wave-function itself and the expectation values of observ-
ables. Other deep questions involved in quantum mechan-
ics such its interpretation or the measurement problem are
not addressed within this framework.
To finish these introductory remarks, let us notice that

our formulation offers an alternative way of looking at
quantum dynamics. To some extend it could be also viewed
as a kind of a hidden-variable theory. Our approach is based
on the time-dependent variational principle and therefore, it
bears some resemblance to the formalism developed in [6].
However, the latter lacks the physical interpretation that our
approach has thanks to the use of coherent states. In this
regard some similarities can be found with the geometric
approach and the effective equations for quantum motion
developed in [7].
The outline of the article is as follows. We begin by

recalling in Sec. II some basic properties of the expectation
values in quantummechanics, which sets a broad context for
our framework. In Sec. III we recall the semiclassical
framework of Klauder. In Sec. IV we discuss the variational
formulation of quantum dynamics. In Sec. V we develop our
formalism. We apply it to two examples in Sec. VI. In
Sec. VII we revisit the quantum flat Friedmann model with
our approach. We conclude in Sec. VIII. The Appendices
deal with some technicalities (self-adjointness and the
numerical code)which have been omitted from themain text.

II. STATES AND EXPECTATION VALUES
IN QUANTUM MECHANICS

Let us assume a quantum system described by a
normalized state jψi, or rather by the corresponding
projector (ray) Pψ ¼ jψihψ j in a finite dimensional
Hilbert space H of dimension N. Pψ belongs to the
complex projective space CPN−1 ≅ S2N−1=Uð1Þ and
depends on 2N − 2 real parameters. For a quantum
observable represented by a self-adjoint operator O on
H the expectation value in a state Pψ is given by

hOiψ ¼ TrðPψOÞ ∈ R: ð1Þ

The Lie algebra of self-adjoint operators on H is a real
vector space of dimension N2, or N2 − 1 if we exclude
the identity. Notice that N2 − 1 ≥ 2N − 2 for N ≥ 2.
Therefore, if we choose appropriately 2N − 2 independent
observables fOig2N−2

i¼1 , the mapping

Pψ ↦ x⃗ψ ¼ fhO1iψ ; hO2iψ ;…; hO2N−2iψg ∈ R2N−2; ð2Þ

is locally invertible. Hence, the set of rays Pψ can be seen
as a manifold locally parametrized by an array of expect-
ation values x⃗ ∈ R2N−2. This mapping gives a natural
physical picture of a quantum state: a quantum state is a
complete set of statistical properties specified by a family
of expectation values. The inverse mapping: x⃗ ↦ Px⃗,
allows us to define any expectation value of any quantum
observable O as a function

x⃗ ↦ fOðx⃗Þ ≔ TrðPx⃗OÞ: ð3Þ

Hence, the set of quantum expectation values looks like a
set of classical observables defined on a classical phase
space represented here by the set of x⃗. This picture is
enhanced by the Ehrenfest theorem stipulating that
expectation values have a deterministic behavior through
equations similar to the Hamilton equations. Notice,
however, that any function of x⃗ is not an expectation
value of a quantum observable. This is different from the
usual classical framework.
Notice that this picture obscures those quantum aspects of

single systems that are addressed by the so-called measure-
ment axioms of quantum mechanics. Nevertheless, the usual
stochastic quantum reasoning remains in principle accessible
since the quantum probabilities yielded by the Born rule,

jhψ jϕij2 ¼ TrðPψPϕÞ; ð4Þ

are included in the framework through Eq. (3) for Pψ ≔ Px⃗
and Pϕ ≔ O.
The above picture is very attractive for establishing a

bridge between classical and quantum calculations. Indeed,
if we ignore the quantum stochastic origin of the picture,
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we recover a classical-like formalism. The presented
construction is valid only for finite dimensional Hilbert
spaces, though, the idea of using expectation values is
obviously attractive for the infinite dimensional spaces
as well. The desired extension can be established if one
finds a way to truncate the principally infinite sequence of
expectation values needed to specify a quantum state
belonging to an infinite dimensional Hilbert space. Herein
we propose a suitable framework. Let us emphasize that
this framework bears little resemblance with the usual
“phase space formulation of quantum mechanics” based
on Wigner functions, Weyl-Wigner transformation, the
star product, etc.

III. COHERENT STATES AND KLAUDER’S
FRAMEWORK

A. Coherent states

By coherent states (see e.g., [8]) we mean a continuous
mapping from a set of labels, collectively denoted by l and
equipped with a measure dl, into unit vectors in Hilbert
space,

l ↦ jli ∈ H; ð5Þ

such that it resolves the identity,

Z
dljlihlj ¼ IH: ð6Þ

Hence, the coherent states jli form an overcomplete basis in
H. The above property was first used by Klauder [9] in his
definition of what he called an overcomplete family of
states (OFS). They provide a bridge between the abstract
quantum formalism and the continuous label-space,

H ∋ jψi ↦ PψðlÞ ≔ jhljψij2; ð7Þ

where Pψ ðlÞ is a normalized (with respect to dl) probability
distribution on the space l that can be further identified with
some classical observables. Suppose that there exists a
unitary irreducible representation on H, UðXÞ, of a
minimal group of canonical transformations in a phase
space X . Then, the mapping

X ∋ ξ ↦ jξi ≔ UðξÞjψ0i ∈ H; ð8Þ

defines a family of coherent states whose labels describe
the classical states of that system [10]. The fixed normal-
ized vector jψ0i is called the fiducial vector.

B. Framework

First, let us recall that the quantum dynamics can be
obtained via the variation of the quantum action,

Sðψ ; _ψÞ ¼
Z

tf

ti

dthψ ji∂t − Ĥjψi; ð9Þ

with respect to the normalized jψi ∈ H, where Ĥ is the
quantum Hamiltonian that corresponds to a certain classical
Hamiltonian, H. The stationary points of the action (9) are
found to satisfy the Schrödinger equation,

i∂tjψi ¼ Ĥjψi: ð10Þ

The idea of the semiclassical framework based on the
coherent states was introduced by Klauder in [1]. Initially,
he applied it to the case of the phase space X ¼ R2 and the
Weyl-Heisenberg coherent states. The W-H coherent states,
jx; pi, are defined as follows

jx; pi ≔ Dðx; pÞjψ0i; ð11Þ

where the displacement operator Dðx; pÞ ¼ eiðpQ̂−xP̂Þ
satisfies

Dðx0; p0Þ∘Dðx; pÞ ¼ e
i
2
ðxp0−px0ÞDðxþ x0; pþ p0Þ; ð12Þ

and where ðQ̂; P̂Þ are the position and momentum operators
[11]. The fiducial vector jψ0i ∈ H is fixed and its choice is
almost arbitrary. The only condition that one imposes on
the fiducial is the so called physical centering condition. It
relates the classical observables and the expectation values
of the respective operators by demanding

hx; pjQ̂jx; pi ¼ x; hx; pjP̂jx; pi ¼ p; ð13Þ

and leads to the constraint,

hψ0jQ̂jψ0i ¼ 0 ¼ hψ0jP̂jψ0i: ð14Þ

We find that

ihx; pjdjx; pi ¼ pdx; ð15Þ

where d is the exterior derivative. This result can be guessed
(up to the irrelevant total derivative) from the fact that the
above one-form must be invariant with respect to the action
of the W-H group. The same reasoning applies to all other
canonical groups. Now the quantum action functional (9)
can be evaluated on the family of coherent states,

Sðx; pÞ ¼
Z

tf

ti

dthx; pji∂t − Ĥjx; pi

¼
Z

tf

ti

dtð_xp −Hsðx; pÞÞ; ð16Þ

where Hs ¼ hx; pjĤjx; pi. Thus, the variation of the
quantum action with respect to the ðx; pÞ-labeled coherent
states yields the Hamilton equations for x and p,
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_x ¼ ∂Hs

∂p ; _p ¼ −
∂Hs

∂x : ð17Þ

On the one hand, the above equation provides an approxi-
mation to the exact quantum motion via the coherent states,

R ∋ t ↦ jxðtÞ; pðtÞi ∈ H; ð18Þ

and on the other hand, it establishes a very appealing
interpretation of the classical observables and their dynam-
ics within the more fundamental quantum framework. We
notice that these equations, in general, differ from the
classical equations as the semiclassical Hamiltonian Hs

may include ℏ-corrections,

Hs ¼ H þOðℏÞ: ð19Þ

Since in the real world ℏ never vanishes, the possibility
of modeling the dynamics of the classical observables
with nonvanishing ℏ could be very useful. Indeed, this
possibility becomes particularly important for improving
the dynamics of classically singular cosmological models
as we show later.

C. Affine group

As we are concerned with gravitational systems, we shall
turn to the important example of the phase space that
appears in cosmology, namely the half-plane X ¼ Rþ ×R.
The basic observables form a canonical pair,

ðq; pÞ ∈ Rþ ×R; ð20Þ

where q is the volume of the universe and p is a rate of its
expansion. Clearly, the W-H group is not applicable to the
present case as one of the canonical variables, q, is confined
to the half-line. Instead, we shall employ the affine group
[2,12,13], Af, that is defined by the multiplication law,

ðq0; p0Þ∘ðq; pÞ ¼
�
q0q;

p
q0
þ p0

�
; ð21Þ

and preserves the symplectic structure of the half-plane
phase space,

ðq0; p0Þ∘½dq ∧ dp� ¼ dðq0qÞ ∧ d
�
p
q0
þ p0

�
¼ dqdp; ð22Þ

where ðq0; p0Þ is a fixed element of the affine group. There
exists a unique (up to sign) unitary irreducible representa-
tion of Af, which in H ¼ L2ðRþ; dxÞ takes the form

Uðq; pÞψðxÞ ¼ eipxffiffiffi
q

p ψ

�
x
q

�
: ð23Þ

Thus, we define the affine coherent states as

jq; pi ≔ Uðq; pÞjψ0i; ð24Þ

where hxjψ0i ∈ L2ðRþ; dxÞ is the fiducial vector that is
subject to the constraintZ

Rþ
jψ0j2

dx
x

< ∞; ð25Þ

(which follows from the group integrability condition). To
tighten the connection between quantum and classical
observables we demand

hq; pjQ̂jq; pi ¼ q; hq; pjP̂jq; pi ¼ p; ð26Þ

where Q̂ ¼ x and P̂ ¼ 1
i ∂x. This is equivalent to

hψ0jQ̂jψ0i ¼ 1; hψ0jP̂jψ0i ¼ 0: ð27Þ
One finds that

ihq; pjdjq; pi ¼ −qdpþ hψ0jD̂jψ0i
dq
q
; ð28Þ

where D̂ ¼ 1
2i ðx∂x þ ∂xxÞ is the dilation operator and

which agrees with the general statement given below
Eq. (15). Now, provided a quantum Hamiltonian Ĥ, the
quantum action functional evaluated on the affine coherent
states reads

Sðq; pÞ ¼
Z

tf

ti

dtð _qp −Hsðq; pÞÞ; ð29Þ

where Hs ¼ hq; pjĤjq; pi. Hence, the variation of the
quantum action with respect to the classical labels ðq; pÞ
yields the Hamilton equations,

_q ¼ ∂Hs

∂p ; _p ¼ −
∂Hs

∂q ; ð30Þ

for the stationary trajectories.

D. Free particle dynamics on q > 0

In this article we are going to study a quantum free
motion of a particle on the half-line, q > 0. It is a very
important example as it formally describes the dynamics of
the flat Friedmann universe with a perfect fluid-source [5].
The big-bang singularity is represented by the end-point,
q ¼ 0. The variable q describes the volume and the variable
p describes the expansion of the universe (see Sec. VII
for more details). Let the classical system be defined as
follows,

H ¼ p2;ω ¼ dqdp; ðq; pÞ ∈ Rþ ×R; ð31Þ
and let the quantum Hamiltonian read

Ĥ ¼ −Δx: ð32Þ
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We discuss the technical issue of extending the above
symmetric operator to a self-adjoint one in Appendix A.
For a fiducial vector ψ0ðxÞ ∈ L2ðRþ; dxÞ, we obtain

S ¼
Z

tf

ti

dtð− _qp −Hsðq; pÞÞ; ð33Þ

where

Hs ¼ p2 þ ℏ2
K
q2

; ð34Þ

where K ¼ R
Rþ

jψ 0
0j2dx. The respective Hamilton equa-

tion (30) include an ℏ2-correction that resolves the singu-
larity at q ¼ 0. The particle is repelled away from the
singularity by the quantum potential ℏ2 K

q2 and this produces
a bounce in its dynamics. See Fig. 1.

IV. THEORY OF THE RESTRICTED
QUANTUM ACTION

The idea of this work is to extend the phase space
description of quantum mechanics due to J. Klauder to a
significantly broader framework. For this purpose it is
useful to discuss the quantum action formulation of
quantum dynamics in somewhat more detail.

A. Variation of the quantum action

The quantum action is defined on trajectories in the
Hilbert space and reads

Sðψ ; _ψÞ ¼
Z

tf

ti

dthψ ji∂t þ Δjψi: ð35Þ

Its variation with respect to ψ such that ψ , ψ ;x, ψ ;xx ∈
L2ðRþ; dxÞ ∩ C∞ðRþÞ at each t, yields

δS¼
Z

tf

ti

dt
Z
Rþ
ðiψ ;tδψ̄ − iψ̄ ;tδψÞdx

þ
Z

tf

ti

dt
Z
Rþ
ðψ ;xxδψ̄þ ψ̄ ;xxδψÞdx

þ
�Z

Rþ
iψ̄δψdx

�
tf

ti

þ
Z

tf

ti

dt½ψ̄δψ ;x− ψ̄ ;xδψ �∞0 : ð36Þ

Provided that the variations vanish at the endpoints,
δψðtiÞ ¼ 0 ¼ δψðtfÞ, the stationary points of the quantum
action Sðψ ; _ψÞ satisfy the Schrödinger equation,

ði∂t þ ΔÞψðx; tÞ ¼ 0: ð37Þ

We conclude that for each ψðxÞ there exists a unique
stationary trajectory in the Hilbert space ψðx; tÞ such
that ψðx; tiÞ ¼ ψðxÞ.

B. Variation of the reduced quantum action

Now, suppose we confine the quantum action functional
to trajectories in a subspace Γ ⊂ L2ðRþ; dxÞ ∩ C∞ðRþÞ
that is parametrized by real parameters. More precisely, we
assume a differentiable map

Rn ∋ fλig ↦ ψΓ ∈ Γ: ð38Þ

We will consider the reduced action

SðψΓ; _ψΓÞ ¼
Z

tf

ti

dthψΓji∂t þ ΔjψΓi: ð39Þ

Its variation yields

δS ¼
Z

tf

ti

dt
Z
Rþ
ðiψΓ;tδψ̄Γ − iψ̄Γ;tδψΓÞdx

þ
Z

tf

ti

dt
Z
Rþ
ðψΓ;xxδψ̄Γ þ ψ̄Γ;xxδψΓÞdx; ð40Þ

where δψΓ ¼ ∂ψΓ∂λi δλi and δλiðtiÞ ¼ 0 ¼ δλiðtfÞ. The sta-
tionary trajectories ψΓðtÞ satisfy

hδψΓðtÞji∂t þ ΔjψΓðtÞi ¼ 0; ð41Þ

FIG. 1. Classical and semiclassical dynamics of a free particle
on the half-line. As the semiclassical particle approaches the
singular state q ¼ 0, it is repelled by the potential, which results
in a bounce. We set ℏ2K ¼ 2.
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for any variations δλiðtÞ’s. In other words, the Schrödinger
equation ði∂t þ ΔÞjψΓðtÞi ¼ 0 holds only in the tangent
space to jψΓi, namely

T λ⃗Γ ¼ span

�∂jψΓi
∂λi jλ⃗

�
; ð42Þ

and, in general, T λ⃗Γ ≠ Γ. Given an orthonormal basis,
e1; e2;…; en, in the tangent space T λ⃗Γ, the equation of
motion (41) reads

i∂tjψΓi ¼
X
i

heij − ΔjψΓi · jeii: ð43Þ

Suppose we gradually enlarge the subspace Γ and its
tangent space T λ⃗Γ by increasing the number of real
parameters λi. Then, the orthonormal basis is enlarged
accordingly enþ1; enþ2;…. Thus, for a fixed jψΓi, its time
derivative i∂tjψΓi becomes progressively a better and better
approximation to the exact −ΔjψΓi as the series

lim
n→∞

Xn
i¼1

heijΔjψΓi · jeii ¼ ΔjψΓi; ð44Þ

converges by the virtue of Parseval’s identity. Notice that
the convergence is defined for each point separately.

C. How to confine quantum motion?

The Klauder semiclassical framework is based on a fixed
family of coherent states. Each element of a given family
satisfies the constraints,

hq; pjQ̂jq; pi ¼ q; hq; pjP̂jq; pi ¼ p; ð45Þ

which tighten the relation between classical observables
and their quantum counterparts. We may view the families
of coherent states as sections of a certain fiber bundle [14].
Namely, the total space is the Hilbert space (or, its dense
subspace), the base space is the space of all possible
expectation values of the basic operators, and the fibers are
made of state vectors that give equal expectation values,

π∶H ∋ jψi ↦ ðhψ jQ̂jψi; hψ jP̂jψiÞ ∈ Rþ ×R: ð46Þ

The “coherent” sections are defined by fixing a fiducial
vector jψ0i in the fibre (1,0) and then by transporting it to
all the other fibers via the unitary group action,

jψ0i ↦ Uðq; pÞjψ0i: ð47Þ

In other words, the orbits of the group define the “coherent"
sections. There are as many families of coherent states as
fiducial vectors, jψ0i, and the particular choice of the
fiducial vector fixes purely quantum characteristics of the
coherent states such as dispersions of the basic observables.

They are nonclassical parameters that are completely fixed
by the fiducial vector and are not allowed to evolve as they
normally would do. Thus, the dynamical contribution from
nonclassical observables is completely neglected in the
Klauder framework and the only dynamical observables are
the expectation values ðq; pÞ whose approximate dynamics
could be for some purposes too rough.
Away to improve this framework is to consider a fiducial

space rather than a fiducial vector. It translates into
confining the quantum motion to families of families of
coherent states instead of a single family of coherent states.
Such a framework allows the quantum motion to take
place along the fibers of fixed expectation values of the
basic observables. This idea is presented in Fig. 2. Such a
framework would keep the connection between quantum
states and classical observables while adding more dimen-
sions to the phase space, which would describe purely
quantum features of the quantum states. The number of the
extra features would be controlled by the dimensionality of
the fiducial space. Moreover, as we showed above, one
expects that as the fiducial space is enlarged, the accuracy
of this description is increased and it converges to a fully
quantum mechanics expressed in terms of trajectories in a
phase space of infinite dimension.

V. EXTENSION OF KLAUDER’S FRAMEWORK

A. Quantum action

We will now extend the Klauder semiclassical frame-
work based on the affine coherent states. Instead of
fixing a fiducial vector jψ0i, we shall consider a fiducial
space, jψ0ðλjÞi, which contains the vectors labeled by λj,

FIG. 2. We illustrate the quantum dynamics that takes place in
the fiber bundle. The fibers consist of state vectors with the same
expectation values, q and p, of the basic operators, Q̂ and P̂,
respectively. In the Klauder framework, it is the action of the
affine group Uðq; pÞ that for given a fiducial vector jψ0i induces
a section in the bundle, to which the quantum motion is confined.
In our approach, we introduce extra parameters λi’s to para-
metrize the fiducial space. As a result, the quantum motion takes
place both along the sections given by Uðq; pÞjψ0i and along the
fibers as the extra parameters can vary.
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j ¼ 1;…. Hence, we obtain a family of families of the
affine coherent states,

jq; piλ⃗ ¼ Uðq; pÞjψ0ðλjÞi; ð48Þ

which are labeled by λj; j ¼ 1;…. The quantum action
functional (35) restricted to those families of the affine
coherent states reads

S ¼
Z

tf

ti

dt

�
−q _pþ _q

q
D −Gi _λi −

�
p2 þ K

q2

��
; ð49Þ

where

Gi½λj� ¼ hψ0ðλjÞj
1

i
∂λi jψ0ðλjÞi; ð50Þ

D½λj� ¼ hψ0ðλjÞjx
1

2i
∂x þ

1

2i
∂xxjψ0ðλjÞi; ð51Þ

K½λj� ¼ hψ0ðλjÞj − Δxjψ0ðλjÞi; ð52Þ

where we assume that ψ0ðλjÞ ∈ L2ðRþ; dxÞ ∩ L2ðRþ;
dx=xÞ and that the conditions of normalization and for
the expectation values for the basic observables hold,

hψ0ðλjÞjψ0ðλjÞi ¼ 1; hψ0ðλjÞjP̂jψ0ðλjÞi ¼ 0;

hψ0ðλjÞjQ̂jψ0ðλjÞi ¼ 1: ð53Þ

We assume the fiducial space to be linear and consist of
the fiducial vectors of the form:

jψ0ðλjÞi ¼
X

λjjeji; λj ∈ C; ð54Þ

such that hejjeii ¼ Nji.
1 Then,

Gi½λj� ¼
1

i
Njiλ̄j; ð55Þ

D½λj� ¼ Djiλ̄jλi; ð56Þ

K½λj� ¼ Kjiλ̄jλi; ð57Þ

where Nji, Dji and Kji are Hermitian. The quantum action
reads now (after removing total time derivatives)

S ¼
Z

tf

ti

Ldt; ð58Þ

where L reads

�
_q

�
pþDjiλ̄jλi

q

�
−
1

i
Njiλ̄j _λi −

�
p2 þ Kjiλ̄jλi

q2

��
: ð59Þ

From the above action one derives the Hamiltonian
formalism

H ¼ p2 þ Kjiλ̄jλi
q2

; ð60Þ

ω ¼ dqd

�
pþDjiλ̄jλi

q

�
þ dλid

�
−
1

i
Njiλ̄j

�
ð61Þ

with the quadratic constraints

Njiλ̄jλi ¼ 1; Qjiλ̄jλi ¼ 1; Pjiλ̄jλi ¼ 0: ð62Þ

Note that the action (58) yields the symplectic structure
for both the classical and nonclassical observables. We
follow the Dirac procedure [15] and define the total
Hamiltonian

HT ¼ H þ c1Njiλ̄jλi þ c2Qjiλ̄jλi þ c3Pjiλ̄jλi; ð63Þ

where ci ∈ R are to be determined with the use of the
consistency conditions,

∂tðNjiλ̄jλiÞ ¼ fNjiλ̄jλi; HTg ¼ 0;

∂tðQjiλ̄jλiÞ ¼ fQjiλ̄jλi; HTg ¼ 0;

∂tðPjiλ̄jλiÞ ¼ fPjiλ̄jλi; HTg ¼ 0: ð64Þ

B. Dynamics

Since Nji is the identity operator and Dji is a Hermitian
operator, they can be simultaneously diagonalized. Suppose
that they are diagonal, i.e., Nji ¼ δji, Dji ¼ djδji. Then,

HT ¼ p2 þ Kjiλ̄jλi
q2

þ c1δjiλ̄jλi þ c2Qjiλ̄jλi þ c3Pjiλ̄jλj;

ð65Þ

ω ¼ dqd

�
pþ djδjiλ̄jλi

q

�
þ idλjdλ̄j: ð66Þ

We introduce γj ¼ λjeidj lnq and find

idγjdγ̄j ¼ idλjdλ̄j − dqd

�
djδjiλ̄jλi

q

�
: ð67Þ

Thus, we may turn to a canonically equivalent formalism in
which

ω ¼ dqdpþ idγjdγ̄j; ð68Þ
1Instead of classical parameters, we use the complex param-

eters λi’s and λ̄i’s which are assumed independent.
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Kjiλ̄jλi ¼ eiðdj−diÞ ln qKjiγ̄jγi≕ kijγ̄jγi; ð69Þ

Qjiλ̄jλi ¼ eiðdj−diÞ lnqQjiγ̄jγi≕ qijγ̄jγi; ð70Þ

Pjiλ̄jλi ¼ eiðdj−diÞ lnqPjiγ̄jγi ≕pijγ̄jγi: ð71Þ

and

HT ¼ p2 þ kjiγ̄jγi
q2

þ c1δjiγ̄jγi þ c2qjiγ̄jγi þ c3pjiγ̄jγi:

ð72Þ
Let us define

½MN�jiγ̄jγi ≔ fMjiγ̄jγi; Njiγ̄jγig

¼ 1

i
ðMjkNki − NjkMkiÞγ̄jγi: ð73Þ

Now, the consistency relations yield

c1 ¼ arbitrary ðphase shift generatorÞ; ð74Þ

c2 ¼ −
ð2p ∂pji

∂q þ 1
q2 ½pk�jiÞγ̄jγi

½pq�jiγ̄jγi
; ð75Þ

c3 ¼ −
ð2p ∂qji

∂q þ 1
q2 ½qk�jiÞγ̄jγi

½qp�jiγ̄jγi
: ð76Þ

It follows that the normalization condition is a first-class
constraint that generates a pure gauge transformation (an
overall phase-shift) and thus, the coefficient c1 is arbitrary.
On the other hand, the physical centering conditions are
second-class and the values of the coefficients c2 and c3 are
determined. The equations of motion take the form

_q ¼ 2p; ð77Þ

_p ¼ 2
kjiγ̄jγi
q3

−
kji;qγ̄jγi

q2
− c2qji;qγ̄jγi − c3pji;qγ̄jγi; ð78Þ

_γj ¼ −i
kjiγi
q2

− ic1δjiγi − ic2qjiγi − ic3pjiγi: ð79Þ

C. A basis for the fiducial space

In what follows we propose a set of orthonormal vectors
jeii, i ¼ 0; 1; 2… that diagonalize the dilation operatorDij.
Observe the following unitary transformation:

L2ðRþ; dxÞ ∋ ψðxÞ ↦ ϕðyÞ ¼ ey=2ψðeyÞ ∈ L2ðR; dyÞ
ð80Þ

It transforms the dilation, position and momentum operator
as follows

D̂ ¼ x
1

2i
∂x þ

1

2i
∂xx ↦

1

i
∂y; ð81Þ

Q̂ ¼ x ↦ ey; ð82Þ

P̂ ¼ 1

i
∂x ↦

1

i
e−y=2∂ye−y=2 ð83Þ

Notice that the dilation operator is the momentum operator
on y ∈ R. Let us take the harmonic oscillator eigenvectors:

hyjψni ¼
1ffiffiffiffiffiffiffiffiffi
2nn!

p e−
y2

2ffiffiffi
π4

p HnðyÞ ð84Þ

where Hn are the Hermite polynomials. If we restrict the
considerations to the even eigenvectors, i.e.,

jeni ¼ jψ2ni; ð85Þ

we obtain

Nij ¼ heijeji ¼ δij; Dij ¼ heij
1

i
∂yjeji ¼ 0: ð86Þ

In this case the dynamical analysis becomes very simple.
Indeed, the equations of motion (77)–(79) become

_q ¼ 2p; ð87Þ

_p ¼ 2
Kjiλ̄jλi
q3

; ð88Þ

_λj ¼ −i
Kjiλi
q2

− ic1δjiλi − ic2Qjiλi − ic3Pjiλi; ð89Þ

where c1 is arbitrary and

c2 ¼ −
½PK�jiλ̄jλi
q2½PQ�jiλ̄jλi

; c3 ¼ −
½QK�jiλ̄jλi
q2½QP�jiλ̄jλi

: ð90Þ

VI. NUMERICAL EXAMPLES

In what follows we consider two simple examples. In
the first example, we set the fiducial space to be two-
dimensional,

jψ0i ¼ λ1je1i þ λ2je2i; ð91Þ

where the vectors jeii are defined by Eq. (85) and λi ∈ C.
We find that the absolute values jλij are constant in time
while the respective phases are dynamical. The classical
observables q and p undergo a simple bounce as in the case
of Eq. (34) to which solutions are presented in Fig. 1. This
result is not surprising as there is, in fact, no extra degree of
freedom. The counting of the extra degrees of freedom
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gives: 4 (two complex parameters)—2 (two second-class
constraints from the physical centering)—2 (a first-class
constraint and the respective gauge transformation from the
normalization condition) ¼ 0.
In the second example, we set the fiducial space to be

three-dimensional,

jψ0i ¼ λ1je1i þ λ2je2i þ λ3je3i: ð92Þ
In this case neither the absolute values jλij nor the
respective phases are preserved during the evolution. In
Fig. 3 we compare the dynamics of the classical observ-
ables and of the extra parameters between the two- and
three-parameter cases.

VII. QUANTUM DYNAMICS OF THE
FRIEDMANN UNIVERSE

Let us see how one can apply the formalism developed
above to a quantum cosmological model, namely the
quantum radiation-filled flat Friedmann universe with a
bounce. For more details on the framework we refer to [5].
The metric of the classical model reads:

ds2 ¼ −N2dt2 þ q2ðdx⃗Þ2; ð93Þ
where N is a nonvanishing and otherwise arbitrary lapse
function. The Hamiltonian constraint reads

C ¼ Nq−1ð−p2 þ pTÞ; ð94Þ
where T and pT are canonical variables that describe the
radiation and

q ¼ a; p ¼ a2H; ð95Þ
are canonical variables that describe the geometry, the scale
factor a and the Hubble rate H times the scale factor
squared, respectively. We solve the Hamiltonian constraint
with respect to pT , set the lapse functionN ¼ q and employ
the variable T as the internal clock. Then, the reduced phase
space is given just by the canonical pair ðq; pÞ ∈ Rþ × R
and the physical Hamiltonian reads

H ¼ p2: ð96Þ
The above Hamiltonian can be promoted to the quantum
Hamiltonian of Eq. (32). Then, we can use our approach to
determine the quantum dynamics of the Friedmann uni-
verse in terms of a trajectory. In Fig. 4 we will plot the
dynamics of the classical variables a and H and their
dispersions. Note the following relations,

σq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hq; pjQ̂2jq; pi − hq; pjQ̂jq; pi2

q
; ð97Þ

σp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hq; pjP̂2jq; pi − hq; pjP̂jq; pi2

q
; ð98Þ

FIG. 3. We compare the cases of two and three extra complex
parameters, λ1, λ2 and λ1, λ2, λ3, respectively. The two upper plots
show the dynamics of the extra parameters. For the two-
parameter case, the extra parameters can only rotate in the
complex plane. For the three-parameter case, the extra parameters
exhibit very rich dynamics with both rotation and contraction/
expansion. The latter proves that the evolution occurs across a set
of families of coherent states. The bottom plot shows the
dynamics of the classical observables q and p and despite the
fact that the initial conditions for these observables are the same,
the two-parameter (dashed) trajectory gives a bounce at smaller
values of q than the three-parameter (solid) one. As the initial

condition we set λ1ð0Þ ¼
ffiffiffiffi
9
10

q
, λ2ð0Þ ¼ −

ffiffiffiffi
1
10

q
, λ3ð0Þ ¼ 0, qð0Þ ¼

10 and pð0Þ ¼ −2.
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σa ¼ σq; σH ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4
p2

q6
σ2q þ q−4σ2p

s
: ð99Þ

In this section we present just one example of the extended
phase space formulation of a quantum cosmological model.
In our future work [16] we investigate the quantum
Friedmann model much more thoroughly.

VIII. CONCLUSION

In this article we present a quantum phase space
trajectory approach to quantum dynamics. We start from
the semiclassical framework introduced by J. Klauder
many years ago and we extend it by inclusion of non-
classical observables that are equipped with a symplectic
form. The obtained infinite-dimensional phase space
trajectories are, in principle, equivalent to the exact
solutions of the Schrödinger equation, though it is the
possibility for consistent truncations to finite phase spaces
that makes our approach attractive. We show that the
respective Hamilton equations are not too complicated
and can be successfully used for numerically integrating
the dynamics.
Our trajectory approach is a tool that opens new

possibilities in the studies of quantum cosmological sys-
tems. In the present article we test our approach with two
simple examples. We postpone a detailed study of cosmo-
logical systems to our next papers. We believe that our
approach can be helpful in establishing a definition of the
“degree of classicality” of cosmological systems. If the
universe is quantum by nature, it is never really classical
or, put differently, quantum mechanics cannot “disappear.”
Therefore, “classicality” must correspond to a special
quantum behavior or, more precisely, to a special behavior
in a particular picture of quantum dynamics. Given such a
definition, we may be able to “explain,” or “recover,” the
supposed classicality of the present universe and probe the
effects of the lack of classicality on the past of the universe.
We may learn if the universe can move back and forth
between the classical and quantum phases. Finally, we
could verify whether the universe could had been classical
before the bounce. We investigate these and other related
issues in the forthcoming paper [16].
Since the main purpose of developing this framework

was to study quantum cosmological systems, we are led to
ask to what extent a framework based on expectation values
can reasonably describe a single system, namely the
universe. There are two possible attitudes. The first attitude
is to focus on the mathematical structure. Since our frame-
work includes the complete time behavior of the wave-
function, it is physically equivalent to the Schrödinger
equation. If our main purpose is to construct a picture of
quantum dynamics that allows for a direct comparison with
the corresponding classical equations of motion, we simply
state that our framework is averygoodcandidate. The second
attitude starts with the observation that the question of the
interpretation of our formulation has been ignored. However,
a similar interpretational issue arises in statistical physics
where it is addressed with the so-called thermodynamical
limit. Namely, statistical physics is designed to describe
ensembles of systems in terms of probabilities. However,
the expectation values obtained from this theory are able to
describe individual large systems: this is the thermodynam-
ical limit.We canmake an analogy and view a homogeneous

FIG. 4. The top plot shows the bouncing evolution of the
Friedmann universe in the half-plane ða;HÞ. The two lower
plots show the evolution of the dispersions σa and σH of the scale
factor and the Hubble rate, respectively. We see the first evidence
that the dynamics is not symmetric in time around the bounce.
As the initial condition we set the initial data from the three-

parameter case of Sec. V, i.e., λ1ð0Þ ¼
ffiffiffiffi
9
10

q
, λ2ð0Þ ¼ −

ffiffiffiffi
1
10

q
and

λ3ð0Þ ¼ 0.
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cosmological system as made of an infinite number of
“copies” of the same system localized at different points
of space and therefore, describable as a large systemmade of
“small identical systems.” Provided that the property valid in
the framework of statistical physics can somehow be applied
to the quantum cosmological context, the set of quantum
expectationvalues in the cosmological framework becomes a
relevant description of the universe.
As a final remark, let us make a brief comparison of our

approach to the Bohm-de Broglie (BdB) approach used in
quantum cosmology [17]. In the BdB formulation, a given
solution to the Schrödinger equation plays the role of the
so-called pilot-wave which is a source of an extra quantum
term in the classical equations of motion. The latter deter-
mine a complete set (i.e., for arbitrary initial data) of quantum
trajectories in the classical phase space. Whereas in our
approach, a given solution to the Schrödinger equation is
represented by a unique trajectory of quantum expectation
values in an infinite dimensional phase space that includes
both classical and nonclassical variables. Thus, in our
approach the system follows a unique and predictable,
though, higher dimensional trajectory.
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APPENDIX A: SELF-ADJOINT EXTENSIONS

The symmetric operator of Eq. (32),

−
∂2

∂x2 ; D

�
−

∂2

∂x2
�

¼ C∞
c ðRþÞ; ðA1Þ

defined on smooth functions with a compact support is
symmetric. There exist infinitely many self-adjoint exten-
sions of the operator, which can be obtained by extending
the domain to C∞ðRþÞ ∩ L2ðRþ; dxÞ with the boundary
condition,

ψ 0ð0Þ þ μψð0Þ ¼ 0; ðA2Þ

where μ ∈ R ∪ f∞g labels the extensions [18]. In the
article, we impose the Dirichlet condition, ψð0Þ ¼ 0
(or, μ ¼ ∞), though this particular choice has no essential

consequences for the obtained framework, and other
choices of μ may be easily included. To ensure that we
are consistent with this choice throughout the article we
must demand that any fiducial vector satisfies,

ψ0ð0Þ ¼ 0: ðA3Þ

Indeed, one may verify that the eigenvectors of the dilation
operator introduced in Eq. (84) satisfy the above condition.

APPENDIX B: IMPOSING THE CONSTRAINTS
ON FIDUCIAL VECTORS

We relate the expectation values of the basic observables
Q̂ and P̂ in coherent states jq; pi to the phase space
observables q and p by demanding (26), which in the case
of a many-parameter fiducial vector yields two last con-
ditions of Eq. (62). Hence, in order for q and p to
correspond to the aforementioned expectation values one
needs to impose the awkward constraints (62) on the
fiducial vector labels λi ∈ Cn. This problem can be over-
come rather easily after one notices that in the absence of
the constraints,

hq; pjQ̂jq; pi ¼ qhψ0jQ̂jψ0i ¼ qQjiλ̄jλi; ðB1Þ

hq; pjP̂jq; pi ¼ pþ hψ0jP̂jψ0i ¼ pþ Pjiλ̄jλi: ðB2Þ

Hence, one may ignore the constraints (62) and treat q and
p as auxiliary parameters. The genuinely classical observ-
ables can be then defined as follows,

qs ¼ qQjiλ̄jλi; ps ¼ pþ Pjiλ̄jλi: ðB3Þ

The quantities Qjiλ̄jλi and Pjiλ̄jλi are constant along the
motion. In the studied examples we therefore first solve the
dynamics for q and p and next plot the evolution of qs and
ps. In terms of the geometric viewpoint that we develop at
the end of Sec. IV, the employment of fiducial vectors
which do not satisfy the constraints (62) is equivalent to
fixing the respective family of coherent states via a state in
a fiber different than (1,0), which is clearly an admissible
procedure provided that one recalculates the expectation
values as shown above.
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