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We explore the infrared limit of quantum gravity in the presence of a cosmological constant or effective
potential for scalar fields. For a positive effective scalar potential, one-loop perturbation theory around flat
space is divergent due to an instability of the graviton propagator. Functional renormalization solves this
problem by a flow of couplings avoiding instabilities. This leads to a graviton barrier limiting the maximal
growth of the effective potential for large values of scalar fields. In the presence of this barrier, variable
gravity with a field dependent Planck mass can solve the cosmological constant problem by a cosmological
runaway solution. We discuss the naturalness of tiny values of the cosmological constant and cosmon mass
due to a strong attraction towards an infrared fixed point.
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I. INTRODUCTION

Functional renormalization for the effective average
action or flowing action [1,2] aims for a description of
quantum gravity from the shortest to the longest distances
or wavelengths. An ultraviolet (UV) fixed point can define
an asymptotically safe model [3] and render quantum
gravity nonperturbatively renormalizable. We address here
the infrared (IR) limit. The existence of a consistent
IR-limit is a prerequisite for a consistent and reliable
description of quantum gravity. Furthermore, a crossover
between UV- and IR-fixed points in scalar-tensor theories
of quantum gravity can provide a realistic cosmology with
a single scalar field responsible both for early inflation and
late dynamical dark energy [4,5].
In the absence of a cosmological constant, perturbative

quantum gravity can be treated as an effective low energy
theory, expanded around flat space [6,7]. A one loop
computation yields rather mild nonlocal corrections to
the inverse graviton propagator ∼q4 ln q2, to be compared
with the classical contribution ∼M2q2, with M the Planck
mass. This type of computation can be extended to a
negative cosmological constant. For a positive cosmologi-
cal constant, however, the graviton propagator in flat space
becomes tachyonic. A perturbative expansion around flat
space is no longer possible, since the instability is asso-
ciated with divergent momentum integrals.
Accordingly, already the pioneering work by Reuter [8]

on the functional renormalization flow of quantum gravity
has revealed problems to achieve a proper IR-limit in case
of a positive cosmological constant. The issue concerns an
instability in the flow equation that needs to be controlled in

a proper way [9]. In turn, this instability is rooted in the
perturbative instability of the flat-space graviton propagator
in the presence of a positive cosmological constant. The
continued discussion of the role of the instability [10–19]
may have left the impression that results depend strongly
on the method and truncation chosen and can, therefore, not
be considered as reliable.
In Ref. [20], it was proposed that the use of a gauge

invariant flow equation (for a single metric field) [21,22]
leads to a conceptually simple solution of the infrared
problem. The flow of couplings is such that the singularity
is always avoided. In the infrared limit, a positive cosmo-
logical constant or effective scalar potential is subject to
strong nonperturbative renormalization effects. The flow
entails a “graviton barrier” implying that for an increasing
scalar field χ the effective potential VðχÞ cannot increase
faster than the squared χ-dependent Planck mass M2ðχÞ.
For a cosmology characterized by a runaway solution for
which χ increases towards infinity in the infinite future, the
observable dimensionless cosmological constant V=M4

vanishes if M2 diverges for χ → ∞ [23].
This constitutes a dynamical solution of the cosmologi-

cal constant problem. In particular, for models of variable
gravity [24], with M2 ¼ χ2 for χ → ∞, the graviton barrier
implies that the ratio V=M4 has to vanish ∼χ−2 or faster.
The presently still nonzero value of V can constitute
dynamical dark energy or quintessence [23,25].
In this paper, we have a closer look at the infrared limit of

quantum gravity. We pay particular attention to the role of
diffeomorphism symmetry. We show that this symmetry
enforces cancellations of flow contributions that are crucial
for a proper understanding of the infrared limit. At this
point one realizes the great advantage of a diffeomorphism
invariant flow equation with a single macroscopic metric.*c.wetterich@thphys.uni-heidelberg.de
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In the often-used background flow equation [26], it seems
rather hard to derive truncations that keep track of these
cancellations. The same holds for approaches in flat space
that do not employ explicit diffeomorphism symmetry of
the effective action [14–16,18].
The cancellation of contributions from different terms,

similar to different loop diagrams in perturbation theory, is
crucial for an understanding of the naturalness of a tiny
cosmological constant, or of a tiny mass term for the
cosmon, the pseudo Goldstone boson of spontaneously
broken scale symmetry. In the presence of a fixed point,
large individual diagrams do not indicate the “natural size”
of a quantity. They rather ensure an efficient approach to
the fixed point. The “natural size” of quantities is deter-
mined by their values at the fixed point or in the vicinity
of it.
The extreme infrared limit corresponds to vanishing

momenta. One, therefore, evaluates the effective action
for metric and scalar fields that do not depend on the
position in space and time. In the case of diffeomorphism
symmetry, this focuses on the effective scalar potential in
flat space.
In Sec. II, we show that a suitable truncation of the

diffeomorphism invariant flow equation indeed yields a
gauge invariant effective action in the infrared limit. In
Sec. III, we turn to the infrared limit in the scalar sector and
point out the cancellations which occur in the flow of scalar
n-point functions at zero momentum. We discuss the
naturalness of a tiny cosmological constant and cosmon
mass. Section IVextends this to the graviton propagator and
vertices at zero momentum. Our conclusions are discussed
in Sec. V.

II. INFRARED LIMIT OF QUANTUM GRAVITY

We explore the infrared limit of quantum gravity by
solving the flow equation [1] for the effective average
action Γk

∂tΓk ¼
1

2
trf∂tRkðΓð2Þ þ RkÞ−1g; ð1Þ

with ∂t ¼ k∂k. Here the infrared cutoff Rk suppresses the
contribution of modes with small eigenvalues of the
covariant Laplacian (or some other suitable differential
operator), −D2 ≪ k2, while the factor ∂tRk removes
contributions from large eigenvalues −D2 ≫ k2, such that
momentum integrals in the one loop expression (1) are both
infrared and ultraviolet finite. We work within the gauge
invariant formalism for a single metric field [21]. In Eq. (1),
we have not indicated explicitly the projections on physical
modes. We also have omitted the subleading measure

contribution. The second functional derivative Γð2Þ
k depends

on the macroscopic metric gμν, which is the argument of
the effective average action or flowing action Γk. For Rk a

function of suitable covariant derivative operators the rhs of
Eq. (1) is manifully gauge invariant.
For evaluating the rhs of Eq. (1) we employ (in a

Euclidean setting) the truncation

Γk ¼
Z
x

ffiffiffi
g

p �
V −

M2

2
R

�
; ð2Þ

with R the curvature scalar for the metric gμν and
g ¼ detðgμνÞ. Both V and M2 depend on k. They can be
functions of scalar fields, and we consider here the situation
where both quantities are positive, V ≥ 0, M2 ≥ 0.
Perturbative nonlocal corrections typically involve terms
∼R2 or RμνRμν, with logarithmically running dimensionless
coefficients [7]. In the infrared region of q2 ≪ M2 (or
−D2 ≪ M2), these terms play no role for our discussion.
For V > 0 and V ≪ M4 they only induce tiny shifts for the
location of the onset of instability in momentum space. The
shift in the graviton barrier is, therefore, tiny, and we can
omit such terms for our discussion of the gravitational
contribution to the flow of V.

A. Gauge invariance of IR-limit

The infrared limit corresponds to a situation where the
physical length scales grow very large. These physical
length scales are either given by a curved geometry or by
the inverse momentum in some scattering process. In
momentum space, the physical length scales act as an
effective infrared cutoff for quantum fluctuations, such that
fluctuations with momenta q smaller than qphys no longer
contribute. The flow with k of vertices and propagators
contained in Γk remains essentially unaffected by the
presence of a physical cutoff as long as k ≫ qphys. On
the other hand, this flow effectively stops for k≲ qphys. For
qphys given, e.g., by the Hubble parameter of the present
universe, we may, therefore, follow the flow from very
large k to qphys, neglecting the effects of curved geometry to
a good approximation. The infrared limit qphys → 0 trans-
lates to the limit k → 0 for the solution of Eq. (1).
The extreme infrared limit (“zero momentum limit”)

obtains for an x-independent metric gμν, as well as constant
scalar fields. This limit is the subject of the present
investigation. For a realistic cosmological situation the
information about the approach to the extreme infrared
limit may be used by stopping the k-flow at some
characteristic value k ≈ qphys. The zero momentum limit
projects on the first term in Eq. (2).
We first want to show that the flow equation (1) is

consistent with the diffeomorphism invariant form for the
effective action at zero momentum,

ΓV ¼
Z
x

ffiffiffi
g

p
V; ð3Þ
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verifying explicitly the gauge invariance of the flow
equation. For this purpose we have to evaluate the rhs of
Eq. (1) for arbitrary constant gμν and to verify that the flow
does not induce terms that are not proportional to

ffiffiffi
g

p
. We

can employ SOðdÞ rotations—the euclidean analogue of
the Lorentz transformations—in order to bring any constant
gμν to diagonal form, with eigenvalues gμ > 0,

g0μν ¼ gμδμν: ð4Þ

For an SOðdÞ-invariant cutoff Rk, the flow equation is
SOðdÞ invariant provided that Γ is SOðdÞ-invariant. It is,
therefore, sufficient to evaluate ∂tΓ for the metric (4). The
dominant contributions to the flow in the infrared arises
from the transverse traceless metric fluctuations tμν which
obey gμνtμν ¼ 0, gνρ∂νtμρ ¼ 0. For positive V > 0 and in
the absence of the IR-cutoff Rk the propagator for these
modes shows a tachyonic instability. We will see that the
flow is precisely such that this instability is avoided. The
dominant IR-contribution of metric fluctuations is associ-
ated to a large enhancement near the “graviton barrier”
[20], which prevents the singularity to appear.
The inverse propagator for the transverse traceless metric

fluctuations reads in momentum space

Γð2ÞμνρτðqÞ ¼ ffiffiffi
g

p �
M2

4
q2 −

V
2

�
PðtÞμνρτðqÞ; ð5Þ

with

q2 ¼ gμνqμqν ¼
X
μ

q2μ
gμ

;
ffiffiffi
g

p ¼
ffiffiffiffiffiffiffiffiffiffiffiY
μ

gμ

s
; ð6Þ

and Pμνρτ
t the projector on transverse traceless metric

fluctuations obeying

TrPðtÞ ¼ PðtÞμν
μν ¼ 5: ð7Þ

In accordance, the infrared cutoff for these fluctuations is
chosen as

Rμνρτ
k ¼RkðqÞPðtÞμνρτ; RkðqÞ¼

ffiffiffi
g

p
M2k2

4
rk

�
q2

k2

�
; ð8Þ

with rk a dimensionless function of q2=k2 to be specified
later. In Eqs. (5) and (8), we have omitted the unit
operator in momentum space, corresponding to a product
of δ-distributions.
Insertion of Eqs. (5) and (8) into the general flow

equation (1) yields

∂tð
ffiffiffi
g

p
VÞ ¼ 5Ĩk

�
−
2V
M2

; gμ

�
; ð9Þ

with
R
q ¼ ð2πÞ−4 R d4q and

Ĩk ¼
1

2

Z
q

�
q2 þ k2rk −

2V
M2

�
−1
fk2rk; ð10Þ

where

fðxÞ ¼ 2 − 2
∂ ln r
∂ ln x ; x ¼ q2

k2
: ð11Þ

The only dependence on gμ arises from q2 in Eq. (6). By a
rescaling qμ ¼ ffiffiffiffiffigμp q̃μ we can achieve

q2 ¼
X
μ

q̃2μ; ð12Þ

such that the Jacobian,

Z
q
¼

Y
μ

ffiffiffiffiffi
gμ

p Z
q̃
¼ ffiffiffi

g
p Z

q̃
; ð13Þ

results in

Ĩk ¼
ffiffiffi
g

p
Ik: ð14Þ

The integral

Ik ¼
k4

32π2

Z
∞

0

dxxðpðxÞ − vÞ−1fðxÞrðxÞ ð15Þ

involves

pðxÞ ¼ xþ rðxÞ: ð16Þ

It is independent of gμ. Besides the factor k4 it only depends
on the dimensionless combination v,

v ¼ 2V
M2k2

; ð17Þ

which may in turn depend on constant scalar fields. Thus Ĩk
in (9) is indeed ∼ ffiffiffi

g
p

. This concludes the argument that
the zero-momentum limit of Γ is given for all k by the
diffeomorphism invariant form (3).
The simple diffeomorphism invariant form (3) of the

effective action for constant metric and scalar fields has
important consequences. It defines the zero momentum
limit of the metric and scalar propagators, as well as all
vertices with vanishing external momentum. The zero-
momentum limit of the inverse propagator corresponds to
the second functional derivative of ΓV , while higher
derivatives of ΓV yield directly the zero momentum limit
of the corresponding one-particle irreducible vertices.
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B. Zero momentum graviton propagator

In flat space, the inverse propagator for transverse
traceless metric fluctuations takes by symmetry consider-
ations for all k the general form

G−1
μνρτðqÞ ¼ G−1ðqÞPðtÞ

μνρτ;

G−1ðqÞ ¼ −
1

2
Vg þ Kgðq2Þ; ð18Þ

with Kg defined such that Kgðq2 ¼ 0Þ ¼ 0. The zero
momentum limit of the propagator Gðq2 ¼ 0Þ is then
determined by −2=Vg. We can computeGðqÞ by expanding
the effective action in second order in the transverse
traceless metric fluctuations tμν; gμν ¼ δμν þ tμν,

Γ2 ¼
1

2

Z
q
tνμð−qÞG−1ðqÞtμνðqÞ: ð19Þ

The zero momentum limit obtains from ΓV , employing
(for ḡμνhμν ¼ 0)

V
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðḡμν þ hμνÞ

q
¼ V

ffiffiffiffiffiffiffiffiffiffiffiffiffi
det ḡμν

q �
1 −

1

4
hρτhτρ þ

1

6
hρτhσρhτσ

−
1

8
hρτhσρh

η
σhτη þ

1

32
hρτhτρh

η
σhση þ…

�
ð20Þ

Comparison of Eqs. (18) and (19) yields for the quadratic
term in Eq. (20) the expected result

Vg ¼ V: ð21Þ

The three-graviton vertex and the four-graviton vertex at
zero external momentum are also given by V. They
correspond to the third and fourth derivative of ΓV , as
given by the terms cubic and quartic in hνμ in Eq. (20).

C. Flow of effective scalar potential

The contribution of the transverse traceless metric
fluctuations to the flow of V for arbitrary values of constant
scalar fields can be evaluated for gμν ¼ δμν in Eq. (9),
resulting in the flow equation for V [20]

∂tV ¼ 5k4

32π2

Z
dxxfðxÞrðxÞðpðxÞ − vÞ−1: ð22Þ

One obtains for the dimensionless combination v

∂tv ¼ −2v −
∂tM2

M2
vþ 5k2

8π2M2
l0ð−vÞ; ð23Þ

with “threshold function”

l0ðwÞ ¼
1

2

Z
∞

0

dxxðpðxÞ þ wÞ−1fðxÞrðxÞ: ð24Þ

The threshold functions depend on the choice of the cutoff
function rkðxÞ and have been discussed extensively in the
literature [2,27–29], with lnðwÞ ¼ l4nðwÞ.
We may consider a choice of IR-cutoffs such that pðxÞ

has a minimum at x̄, with expansion close to the minimum

pðxÞ ¼ p̄þ aðx − x̄Þ2: ð25Þ

Close to the graviton barrier only a narrow range in jx − x̄j
makes a substantial contribution to the integral (24). We
approximate x ≈ x̄ and

fðxÞrðxÞ ≈ fðx̄Þrðx̄Þ ¼ 2s̄: ð26Þ

This yields for v in the vicinity of p̄

l0ð−vÞ ¼
πx̄ s̄ffiffiffi
a

p ðp̄ − vÞ−1=2; ð27Þ

and we conclude that the threshold function diverges for
v → p̄. The flow of v prevents v to exceed p̄—this is the
“graviton barrier”.
We do not attempt to compute the flow ofM2 in this note.

As an example we consider a scenario where j∂t lnM2j ≪ 1

such that M2 becomes effectively a k-independent quantity.
This may not be the correct infrared behavior of M2, but it
illustrates well our purposes. For constantM2 one finds for v
close to p̄

∂tv ¼ −2p̄þ ēk2

M2
ðp̄ − vÞ−1=2; ð28Þ

where

ē ¼ 5x̄ s̄
8π

ffiffiffi
a

p : ð29Þ

The flow of v is attracted for decreasing k to an
approximate partial IR-fixed point for which the rhs of
Eq. (28) vanishes,

v ¼ p̄ −
�

ēk2

2p̄M2

�
2

; V ¼ p̄k2M2

2
−

ē2k6

8p̄2M2
: ð30Þ

For small values of k2=M2 the ratio V=M2 comes very
close to a universal IR-value

V
M2

≈
p̄k2

2
: ð31Þ

It vanishes for k → 0.
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III. INFRARED QUANTUM GRAVITY
WITH SCALAR FIELD

In this section, we investigate in more detail the flow of
derivatives of the effective potential. This will reveal
important cancellations of individual contributions, due
to gauge symmetry and the presence of a fixed point.

A. Flow of χ -dependence of scalar potential

Let us next assume that V depends on a single scalar field
χ, without specifying its normalization. We want to under-
stand the flow of the χ—dependence of VðχÞ, and con-
centrate again on the dominant contribution from the
transverse traceless metric fluctuations. The flow of
∂V=∂χ obtains by taking a χ-derivative of the flow equation
for V,

∂tV ¼ 5

2

Z
q
∂tRkðqÞP−1

k ðqÞ; ð32Þ

with

PkðqÞ ¼
M2q2

4
−
V
2
þ RkðqÞ: ð33Þ

The χ derivative of Eq. (32) yields

∂t
∂V
∂χ ¼ −

5

2

Z
q
∂tRkP−2

k ðqÞ
�
q2

4

∂M2

∂χ −
1

2

∂V
∂χ

�
þ Δð1Þ

R ;

ð34Þ

with

Δð1Þ
R ¼ 5

2

Z
q

�
∂t

�∂Rk

∂χ
�
P−1
k ðqÞ − ∂tRkP−2

k ðqÞ ∂Rk

∂χ
�
: ð35Þ

The first term in Eq. (34) has a standard representation as
a one-loop diagram, shown in Fig. 1.
Here the curled line denotes a graviton propagator, the

cross the insertion of ∂tRk and the dot the scalar-graviton-
graviton cubic vertex. According to the truncation (2) the
vertex for a zero-momentum scalar and two gravitons with
momenta q and −q is given as

V3ð0; q;−qÞ ¼
q2

4

∂M2

∂χ −
1

2

∂V
∂χ : ð36Þ

Insertion of these expressions in the graph of Fig. 1, together
with the statistical factor 5=2 accounting for the five degrees
of freedom, yields indeed the first term in Eq. (34).
The second term Δð1Þ

R arises from the dependence of Rk
on χ. It reflects our implicit definition of the effective
average action where Rk depends on the macroscopic fields
χ and gμν, rather than on some fixed background fields. In
particular, for the choice (8) one has ∂χRk ¼ ∂χðlnM2ÞRk.
The additional term ensures that derivatives commute,

∂t
∂V
∂χ ¼ ∂

∂χ ∂tV: ð37Þ

This is a crucial feature of a closed gauge invariant flow
equation for a single metric and scalar field [21]. It
distinguishes the present approach from the background
field formalism.

B. Infrared enhancement for χ derivatives

ForM2 independent of k one obtains for the χ-derivative
of the dimensionless ratio v

∂t

�∂v
∂χ

�
¼ ðAv1 − 2Þ ∂v∂χ −

5k2

8π2M2
l0ð−vÞ

∂ lnM2

∂χ ; ð38Þ

with

Av1 ¼
5k2

8π2M2
l1ð−vÞ; ð39Þ

where the appropriate threshold function reads

l1ðwÞ ¼
1

2

Z
dxxfðxÞrðxÞðpðxÞ þ wÞ−2 ¼ −

∂
∂w l0ðwÞ:

ð40Þ

We are interested here in the range of v for which the
infrared enhancement of the graviton fluctuations occurs,
e.g., for v near p̄.
Typically, the flow equations for derivatives of Γ, e.g.,

inverse propagators and vertices, contain a higher number
of graviton propagators in the loop. This is reflected by a
stronger divergence of individual diagrams in the vicinity
of the graviton barrier. In our case this is manifest by the
stronger divergence of l1ð−vÞ as compared to l0ð−vÞ,

l1ð−vÞ ¼
πx̄ s̄
2

ffiffiffi
a

p ðp̄ − vÞ−3=2 ¼ l0ð−vÞ
2ðp̄ − vÞ : ð41Þ

For the approximate scaling solution (30), this results in a
huge enhancement of l1=l0 for small k2=M2,

l1ð−vÞ
l0ð−vÞ

¼ 1

2

�
2p̄M2

ēk2

�
2

: ð42Þ
FIG. 1. Graphical representation of a contribution to the flow of
∂V=∂χ. For the other contributions the scalar line ends in the
Rk-insertion.
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One may wonder what are the effects of this additional
huge infrared enhancement, in particular if it could invali-
date our discussion of the approach to the scaling form
of V.
According to Eq. (38), the flow of ∂v=∂χ is attracted for

k → 0 towards the approximate partial fixed point,

∂v
∂χ ¼ l0ð−vÞ

l1ð−vÞ
∂ lnM2

∂χ : ð43Þ

For a tiny ratio l0=l1, the dimensionless combination v
becomes, therefore, almost independent of χ. The addi-
tional IR-enhancement leads to a rapid flow of vðχÞ
towards a χ-independent value. As it should be, this
corresponds to the scaling solution (30), which implies
directly

∂v
∂χ ¼ 2

�
ēk2

2p̄M2

�
2 ∂ lnM2

∂χ : ð44Þ

We observe that the “IR-enhancement” of diagrams with
a higher number of graviton propagators in the loop affects
only the small difference between V and the scaling form

VcðχÞ ¼
p̄k2M2ðχÞ

2
; ð45Þ

which corresponds to the χ-independent value vc ¼ p̄. For

M2ðχÞ ¼ cχαk2−α; ð46Þ

the derivative ∂Vc=∂χ shows no trace of an additional
IR-enhancement. It follows the order of magnitude estimate
∂V=∂χ ≈ V=χ, e.g.,

χ
∂Vc

∂χ ¼ αVc: ð47Þ

C. Flow of scalar propagator and IR-cancellation

We next address the flow of the scalar propagator at zero
momentum. We discuss the contributions of various dia-
grams separately. This will reveal strong cancellation
effects between different diagrams. The flow of the inverse
scalar propagator at zero momentum (mass term), ∂2V=
∂χ2, obeys

∂t
∂2V
∂χ2 ¼ ζð3Þm þ ζð4Þm þ Δð2Þ

R ; ð48Þ

with

ζð3Þm ¼ 5

Z
q
∂tRkP−3

k ðqÞ
�
q2

4

∂M2

∂χ −
1

2

∂V
∂χ

�
2

; ð49Þ

and

ζð4Þm ¼ −
5

2

Z
q
∂tRkP−2

k ðqÞ
�
q2

4

∂2M2

∂χ2 −
1

2

∂2V
∂χ2

�
; ð50Þ

while Δð2Þ
R denotes terms involving χ-derivatives of Rk. The

graphical representation of the first two terms is shown
in Fig. 2.
Evaluating the contribution of the diagram with the

squared cubic vertex yields for the region close to the
graviton barrier

ζð3Þm ¼ 5

2π2M4

�
k2x̄
4

∂M2

∂χ −
1

2

∂V
∂χ

�
2

l2ð−vÞ; ð51Þ

with threshold function

l2ðwÞ ¼
Z

dxxfðxÞrðxÞðpðxÞ þ wÞ−3

¼ −
∂l1
∂w ¼ 3πx̄ s̄

4
ffiffiffi
a

p ðp̄þ wÞ−5=2: ð52Þ

For V near Vc one obtains

ζð3Þm ¼ 3ēðx̄ − p̄Þ2k4
16

ðp̄ − vÞ−5
2

�∂ lnM2

∂χ
�

2

: ð53Þ

Inserting for p̄ − v the scaling solution (30) produces for
large M=k a huge enhancement factor

ðp̄ − vÞ−5
2 ¼

�
2p̄M2

ēk2

�
5

: ð54Þ

A naive estimate of the order of ∂V=∂χ2 by the
contribution of the first diagram in Fig. 2 is wrong by
many orders of magnitude. ForM2 of the form (46) one has
ð∂ lnM2=∂χÞ2 ¼ α2=χ2. With this form of M2 the correct
value of ∂2V=∂χ2 is given by

∂2Vc

∂χ2 ¼ αðα − 1Þp̄k2M2

2χ2
: ð55Þ

The ratio

FIG. 2. Graphical representation of contributions to the flow
of ∂2V=∂χ2. For other contributions scalar lines end in Rk-
insertions.
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ζð3Þm =
∂2Vc

∂χ2 ¼ 3αðx̄ − p̄Þ2
4ðα − 1Þ

�
2p̄M2

ēk2

�
4

ð56Þ

is huge for large M2=k2. The reason for the failure of the
naive order of magnitude estimate is the neglection of two
important properties. The first is that the flow of ∂V2=∂χ2
arises from the second derivative of the flow of V, which
involves a less IR-enhanced diagram. This entails partial
cancellations between different diagrams, e.g., between

ζð3Þm ; ζð4Þm and ΔðRÞ
2 . The second is the strong attraction

to the approximate IR-fixed point, which also enforces
cancellations.
The sum of all contributions to the flow of ∂V=∂χ2 can

be inferred by taking a χ-derivative of Eq. (38),

∂t

�∂2v
∂χ2

�
¼ 5k2

8π2M2

�
l2ð−vÞ

�∂v
∂χ

�
2

þ l1ð−vÞ
�∂2v
∂χ2 − 2

∂ lnM2

∂χ
∂v
∂χ

�

þl0ð−vÞ
��∂ lnM2

∂χ
�

2

−
∂2 lnM2

∂χ2
��

− 2
∂2v
∂χ2 :
ð57Þ

We observe again the strong IR-enhancement factor l2ð−vÞ
from the diagrams with three graviton propagators. Close to
the scaling solution this is multiplied by the tiny factor
ð∂v=∂χÞ2 according to Eq. (44). The combination

5k2

8π2M2
l2ð−vÞ

�∂v
∂χ

�
2

¼ 6p̄

�∂ lnM2

∂χ
�

2

ð58Þ

contains no longer any strong IR-enhancement, in contrast

to the combination ζð3Þm in Eqs. (53) and (54), which only
includes a particular diagram. The contribution to the flow
(58) is of the same order as other terms. Inserting the
scaling solution for v and ∂v=∂χ, Eq. (57) becomes

∂t

�∂2v
∂χ2

�
¼

�
p̄

�
2p̄M2

ēk2

�
2

− 2

� ∂2v
∂χ2

− 2p̄

�∂2 lnM2

∂χ2 − 2

�∂ lnM2

∂χ
�

2
�
: ð59Þ

For largeM2=k2 the second derivative of v is attracted very
rapidly towards the approximate partial fixed point

∂2v
∂χ2 ¼ 2

�
ēk2

2p̄M2

�
2
�∂2 lnM2

∂χ2 − 2

�∂ lnM2

∂χ
�

2
�
: ð60Þ

As it should be, the latter coincides with the χ-derivative
of Eq. (44).

D. Cancellations and naturalness

We have made this somewhat lengthy explicit demon-
stration in order to show that a naive estimate of the
“natural order of magnitude” of a quantity by the evaluation
of a typical contributing loop diagram can be wrong by a
huge factor. Infrared fixed points can lead to almost
complete cancellations of terms, inducing small quantities
whose symmetry origin is not immediately visible. Part of
the properties can be understood by the realization of
dilatation or scale symmetry at the fixed point [30].
Another part is related to the particular approach towards
the fixed point, e.g., the corresponding “anomalous dimen-
sions” characterizing the stability matrix.
These properties are relevant for two important issues in

particle physics and cosmology, namely the naturalness of a
small cosmological constant and a small mass for the
cosmon—the scalar field responsible for dynamical dark
energy. For both cases naive order of magnitude estimates
suggest that tiny values are unnatural. We will see that the
fixed point behavior precisely leads to such small values.
Our findings confirm the general discussion of the conse-
quences of an IR-fixed point for the issue of naturalness in
Ref. [30]. For a naive estimate, large individual contribu-
tions to the flow seem to imply large “natural” values of the
corresponding flowing coupling. In the presence of an
IR-fixed point, large contributions to the flow induce a
particular rapid approach to the fixed point and, therefore,
particularly efficient cancellations of individual terms. This
is the reason why the scaling form of the potential Vc is
realized with a very high accuracy for small k2=M2.

IV. GRAVITON PROPAGATOR AND
VERTICES AT ZERO MOMENTUM

For the graviton propagator and vertices at zero momen-
tum similar considerations apply. In addition, an important
particular feature is related to the presence of diffeomor-
phism symmetry. We have already established that the
inverse graviton propagator at zero momentum Vg equals
the effective potential V, as required by diffeomorphism
symmetry if a derivative expansion for the effective action
is valid for the lowest order term. It is interesting to
investigate again various individual contributions to the
flow equation for Vg and to see their partial cancellations.
For this purpose we evaluate the flow of the Γ for a

constant diagonal traceless metric

gμν ¼ diagð1; 1þ g1; 1 − g1; 1Þ; ð61Þ
e.g.,

Γ ¼
Z
x
L0ðg1Þ: ð62Þ

The inverse graviton propagator at zero momentum is given
by the second derivative of L0,
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∂2L0

∂g21
				
g1¼0

¼ −Vg: ð63Þ

For the truncation (2) the flow equation for L0ðg1Þ reads
explicitly

∂tL0¼
5

2

Z
q
∂tRkðqÞ

�
M2

ffiffiffiffiffiffiffiffiffiffiffi
1−g21

p
4

�
q20þ

q21
1þg1

þ q22
1−g1

þq23

�

−
V

ffiffiffiffiffiffiffiffiffiffiffi
1−g21

p
2

þRkðqÞ
�
−1

ð64Þ

Taking two derivatives with respect to g1 one finds

∂t
∂2L0

∂g21
				
g1¼0

¼ ζð3Þg þ ζð4Þg þ Δðg2Þ
R ; ð65Þ

with

ζð3Þg ¼ 5

Z
q
∂tRkðqÞP−3

k ðqÞ
�
M2

4
ðq22 − q21Þ

�
2

; ð66Þ

and

ζð4Þg ¼ −
5

2

Z
q
∂tRkðqÞP−2

k ðqÞ

×

�
M2

4
ðq21 þ q22 − q20 − q23Þ þ

V
2

�
; ð67Þ

with q2 ¼ P
μq

2
μ. Again, the part Δ

ðg2Þ
R involves derivatives

of the cutoff functions Rk with respect to g1. The con-

tributions ζð3Þg and ζð4Þg are depicted as graphs in Fig. 3.
We observe that the part ζð3Þg with two three-graviton

vertices does not have a part involving V in the last bracket
in Eq. (66). This holds despite the presence of a term ∼h3 in
Eq. (20). For the part ζð4Þg proportional to the four-graviton
vertex the momentum integration retains only the term
∼V=2 in the last bracket of Eq. (67), resulting in

ζð4Þg ¼ −
5Vk2

16π2M2
l1ð−vÞ: ð68Þ

For the scaling solution close to the graviton barrier one
finds

ζð4Þg ¼ −
p̄V
2

�
2p̄M2

ēk2

�
2

ð69Þ

A naive estimate of the order of magnitude of Vg by the size

of the flow contribution ζð4Þg would result in an overestimate

by a huge factor ∼ðM2=k2Þ2. This is even worse for ζð3Þg

which involves a factor ðM2=k2Þ4.
For the complete calculation the term Δðg2Þ

R in Eq. (65) is
important. For our realization of diffeomorphism symmetry
the cutoff function involves the macroscopic metric gμν in
the form of covariant derivatives and by the multiplicative
factor

ffiffiffi
g

p
. As a result one finds by a suitable momentum

rescaling (as discussed above) the simple relation

∂tL0ðg1Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − g21Þ

q
∂tV; ð70Þ

with ∂tV given by Eq. (22) being independent of g1. This
implies directly the expected result

∂tVg ¼ −∂t
∂2L0

∂g21
				
g1¼0

¼ ∂tV: ð71Þ

The presence of the term Δðg2Þ
R is crucial for this argument.

Omitting it, the rescaling of momenta no longer permits the
tremendous simplification. In other words, if we omit the
dependence of Rk on the macroscopic metric through
covariant derivatives, strong violations of diffeomorphism
symmetry would occur.
Also the flow of a graviton vertices at zero mome-

ntum is given by ∂tV, according to the relation for homo-
geneous gμν

∂tL0ðgμνÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðgμνÞ

q
∂tV: ð72Þ

We conclude that a proper implementation of diffeo-
morphism symmetry—in our case by the dependence of the
cutoff Rk on the macroscopic fields gμν and χ—is crucial
for a reliable result in the vicinity of the graviton barrier.
Otherwise spurious large infrared enhancement factors can
lead easily to huge errors.

V. DISCUSSION

Let us discuss our findings in the context of scalar tensor
theories. For such theories of a scalar χ coupled to the
metric, the functional flow equations based on the back-
ground field method or expansions around flat space have
been discussed in Refs. [31–34]. Away from the strong
nonperturbative infrared flow our approach based on the
diffeomorphism invariant flow equation is expected to yield
similar results. In the vicinity of the singularity, however,
the strong cancellation effects discussed in the present note
require a detailed understanding of the consequences of

FIG. 3. Contributions to the flow of the inverse graviton
propagator. For other contributions graviton lines end in
Rk-insertions.
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gauge symmetry, for which our method is particularly well
suited.
Our central finding concerns the graviton barrier for the

scalar effective potential VðχÞ, cf. Eq. (31),

VðχÞ ≤ p̄k2M2ðχÞ
2

; ð73Þ

together with the diffeomorphism invariant form (3) of the
zero momentum limit. This implies that the dimensionless
ratio

λ ¼ V
M4

≤
p̄k2

2M2
ð74Þ

vanishes for k → 0 if λ ≥ 0. The ratio λ plays the role of a
dimensionless frame invariant cosmological constant [23].
In the Einstein frame, the cosmological constant becomes
λE ¼ λM4 and, therefore, vanishes ∼k2 or faster for k → 0.
We have only derived an upper bound on λ. A behavior
λE ∼ k4 [33,34] is perfectly compatible with this bound.
The flow of v typically has an UV- and an IR-partial

fixed point. Indeed, a simple structure for the zeros of βv ¼∂tv follows if βv is negative for some region of v due to the
term −2v. For v → p̄ the function βv always becomes
positive due to the enhanced graviton contribution near the
barrier. On the other hand, for v → −∞ the term −2v
dominates such that βv is again positive for large negative
v. The necessary zeros of βv inbetween the limits corre-
spond to the partial fixed points. If we consider any fixed k̄
and start for large k close enough to the UV-fixed point, the
infrared instability is not reached at k ¼ k̄. The bound (73)
is obeyed nevertheless, such that for V > 0 the potential
cannot increase faster than M2 as χ increases.
A general trajectory as a function of k is a crossover from

the UV-fixed point to the IR-fixed point. One may associate
k qualitatively with a physical IR-cutoff qphys by external
momenta in some scattering process or from a curved
background geometry. More precisely, if k gets smaller
than qphys the flow with k stops, such that in the limit k → 0

one replaces vðχ=kÞ by vðχ=qphysÞ. If no intrinsic scale is
present, the crossover of v as a function of χ corresponds to
the scaling solution for a scale invariant quantum effective
action. The whole scaling solution can be associated to the
UV-fixed point.
From the point of view of the UV-fixed point, the ratio v

is a relevant parameter. If this parameter flows away from
the UV-fixed point, this will induce some characteristic
intrinsic scale μ̄ that indicates that v is no longer close to its
fixed point behavior. As long as k > μ̄, the flow is close to
the fixed point and one can neglect the presence of μ̄. Let us
make the assumption (realized in many crossover situa-
tions) that the flow of v with k stops for k < μ̄. For k → 0
we can then replace vðχ=kÞ by vðχ=μ̄Þ, such that

V ¼ 1

2
μ̄2M2vðχ=μ̄Þ: ð75Þ

This interpolates between

VIR ¼ p̄
2
μ̄2M2 ð76Þ

for v near p̄, and

VUV ∼ μ̄4M2=χ2 ð77Þ

for v in the region where βv ≈ −2v. For χ in the region
where Eq. (77) applies, the IR-enhancement of the graviton
fluctuations is not effective. A qualitative form of the
effective potential is given by

VðχÞ ¼ μ2M2ðχÞ þ cμ4M2ðχÞ=χ2; ð78Þ

where μ2 ¼ p̄μ̄2=2 and the coefficient c depends on the
details how the flow with k is stopped for k < μ̄.
If M2 increases monotonically with increasing χ, one

may choose a normalization of χ where M2 ¼ χ2. The
effective action for the scalar-graviton system becomes then

Γ¼
Z
x

ffiffiffi
g

p �
−
χ2

2
Rþμ2χ2þcμ4þ1

2
ðBðχ=μÞ−6Þ∂μχ∂μχ

�
:

ð79Þ

Here, the form of the scalar kinetic term, encoded in the
dimensionless function Bðχ=μÞ, has not yet been computed
so far. Stability requires Bðχ=μÞ ≥ 0. With a specification
of the qualitative behavior of B, Eq. (73) constitutes the
effective action of variable gravity [24]. Realistic cosmol-
ogy, with χ playing the role of the inflaton in early
cosmology, and the cosmon of dynamical dark energy in
late cosmology, can be obtained [4,5] for a suitable flow of
the dimensionless kinetic function Bðχ=μÞ from a large
UV-value for small χ=μ to a small IR-value for large χ=μ.
For the cosmological solutions of the field equations
derived from Eq. (79), one finds that R is of the order
μ2 for all times. For this type of solutions the graviton
instability is cured on-shell by the geometry. A nonzero
value of V, as implemented by the stop of the flow for
k < μ̄, does not lead to unstable behavior of the cosmo-
logical solution.
The generic solution of the cosmological constant

problem for an effective action of the type (79) is very
simple. It suffices that cosmology is described by a “run-
away solution”where χ → ∞ for t → ∞. The cosmological
constant in the Einstein frame is given (for M the fixed
reduced Planck mass) by

λE ¼ V
χ4

·M4 ¼ μ2M4

χ2
þ cμ4M4

χ4
: ð80Þ
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It vanishes in the infinite future since χ → ∞. At present λE
still differs from zero since χ ¼ M, explaining a non-
vanishing dynamical dark energy. No small dimensionless
parameter is needed since μ is the only intrinsic scale. The
present dark energy density is tiny since the Universe is
very old and the ratio χ=μ, therefore, very large. This basic
mechanism was underlying the prediction [23] of a
homogeneously distributed dynamical dark energy of the
same order of magnitude as dark matter, long before its
discovery.
The derivation of the graviton barrier in this note has

made two important assumptions. The first states that the
inverse graviton propagator for momenta q2 in the vicinity
of k2 is reasonably well approximated by Eq. (5). In the
presence of the strong IR-flow close to the singularity, the
validity of a derivative expansion in the gravitational sector
is not guaranteed. The effective gravitational action may
contain nonlocal terms. The definition of the parameterM2

may become ambiguous. For our purposes it should be
defined by the graviton propagator at nonzero momentum,
inserting q2 ¼ p̄k2 in Eq. (5). The next important step
concerns, therefore, the understanding of the graviton
propagator in the range q2 ≈ k2, in addition to the behavior
at q2 ¼ 0 discussed in the present paper.
The second assumption has neglected the flow ofM2 with

k. The additional term∼∂t lnðM2Þ in Eq. (23) cannot remove
the singular behavior of the last term as the graviton barrier is
approached for v → p̄. In principle, it is not yet excluded that
∂t lnðM2Þ also becomes singular for v → p̄, or even for
v < p̄. Even in this case, and even for a more complicated
nonlocal form of the gravitational effective action in the
IR-domain, we expect that a proper treatment of the flow
never enters a parameter range where the effective action
becomes unstable. This will always imply an upper bound on
v and, therefore, some form of a graviton barrier.

In this note we have not discussed in detail how
cosmology provides for a dynamical solution of the
cosmological constant problem. This has been done in
numerous papers on variable gravity in the past. The reader
may find detailed investigations of observable conse-
quences as early dark energy in these papers [4,5,23,24].
The emphasis of the present paper is more on technical
aspects, concerning the issues of cancellations and natu-
ralness [30]. We find important cancellations between
individual contributions to the cosmological constant or
effective scalar potential. They are due to symmetry and the
presence of an IR-fixed point. Rather than being in
contradiction to the naturalness of a tiny value of the
cosmological constant or present dark energy density, these
cancellations are a direct consequence of the general
structure of the flow near fixed points.
We believe that our work contains general lessons for the

discussion of naturalness of small parameters. We have
demonstrated that in the vicinity of a fixed point the naive
estimate of the order of magnitude of some quantity by the
size of an individual loop contribution can be erroneous by
many orders of magnitude. This naive estimate is, however,
the approach often taken in discussions of the naturalness
of a small cosmological constant. The present work
demonstrates that the proper understanding of the flow
near fixed points is crucial for estimates of the “natural”
range of values for the cosmological constant.
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