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We study the dependence on field parametrization of the functional renormalization group equation in
the fðRÞ truncation for the effective average action. We perform a systematic analysis of the dependence of
fixed points and critical exponents in polynomial truncations. We find that, beyond the Einstein-Hilbert
truncation, results are qualitatively different depending on the choice of parametrization. In particular, we
observe that there are two different classes of fixed points, one with three relevant directions and the other
with two. The computations are performed in the background approximation. We compare our results with
the available literature and analyze how different schemes in the regularizations can affect the fixed point
structure.
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I. INTRODUCTION

The well-known fact that quantum gravity based on the
Einstein-Hilbert theory is not perturbatively renormaliz-
able [1–3] has motivated the construction of different
approaches to quantum gravity beyond the standard quan-
tum field theory realm. Within the local quantum field
theory toolbox, a famous attempt to circumvent the
perturbative nonrenormalizability of general relativity is
the introduction of higher-derivative terms [4–9]. As is well
known, such a theory is perturbatively renormalizable. On
the other hand, the existence of ghosts at the perturbative
level is the main obstacle to making this theory a suitable
candidate for quantum gravity. Recently, this issue has been
investigated from different points of view; see [10–19]. The
possibility for a consistent quantum theory of quadratic
gravity can be realized within the quantum field theory

realm in a nonperturbative fashion. That is, the asymptotic
safety program for the quantization of the gravitational
interaction, which was introduced by Weinberg in [20], is a
possible candidate of the formulation for quantum gravity
as a continuum quantum field theory; see review papers
[21–25] and the recent [26]. It is crucial for the asymptotic
safety scenario that the theory has a nontrivial fixed point in
the renormalization group (RG) flow, a property which
ensures the “nonperturbative” renormalizability of the
theory. In order for this approach to be predictive, the
critical surface spanned by relevant operators of the RG
flow, i.e., the surface made of the set of points which are
attracted to the nontrivial fixed point, has to be finite
dimensional. The coupling constants of the operators
corresponding to the relevant directions become free
parameters to be fixed by experiments. In this way,
asymptotically safe quantum gravity could lead to an
ultraviolet (UV) complete theory. To look for such a
nontrivial fixed point, nonperturbative techniques have to
be employed.
In practice, the functional renormalization group (FRG)

is a powerful method to study systems without relying on
any perturbative expansion parameter such as coupling
constants and the spacetime dimensions; see review papers
[27–36]. A large number of analyses have been devoted to
investigating the asymptotic safety scenario for quantum
gravity using the FRG after its pioneering work [37].
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Indeed, it has been shown that the pure-gravity system
could have a nontrivial fixed point at which the dimension
of the critical surface becomes finite [13,38–60]. One of the
strengths of asymptotically safe quantum gravity is
the predictability for low-energy physics. The finiteness of
the critical surface dimensionality at the fixed point in the
system where gravity is coupled to matter could strongly
constrain the low-energy dynamics of matter [26,61–82].
Indeed, it has been successful at predicting quantities such as
the Higgs and top-quark masses and the charges in low-
energy regimes [83–89], and it has given hints towards a
solution to problems such as the gauge hierarchy problem
[90], the U(1) Landau-pole problem [85], and the cosmo-
logical constant problem [91]. Cosmological consequences
from asymptotically safe gravity for the early Universewere
also discussed in [92–94]. These facts not only encourage
the asymptotic safety scenario for quantum gravity but also
could give a test of it from low-energy physics observations.
As already mentioned, a crucial point in the asymptoti-

cally safe scenario is the finiteness of the number of
relevant operators with positive critical exponents around
the fixed point, from which the RG flow goes away. To
study this, we have to extend our theory space as much as
possible and identify this number. However, the theory
space is in general infinite dimensional, and this is practi-
cally impossible. The usual strategy is to make some
truncations, extend the space slightly, and check that the
extension does not much affect the result. In a pure-gravity
system, the largest truncation to date is the fðRÞ-type one,
namely, the theory space spanned by a function of the Ricci
scalar R. If asymptotic safety is realized, we should see that
the fixed point values of the relevant couplings converge to
certain numbers and the number of relevant directions does
not change upon enlargements of the truncations of theory
space. See [25,47,49,59,95–104] for investigations of the
asymptotic safety scenario in the fðRÞ truncation and [105]
in the unimodular case.
Recent works on this type of truncation in four-

dimensional spacetime indeed show the good convergence
of thevalues of the critical exponents [46,49]. In particular, it
is found that the number of relevant directions is three. That
is, asymptotically safe quantum gravity could describe the
low-energy dynamicswith three free parameters. This is also
observed in the R2 þ C2-type truncation [13,41,42,60],
where C2 is the squared Weyl tensor.
Apart from the fact that the existence of the fixed point

has to be tested for richer truncations, there is an issue that
has been under investigation in recent years: The fixed
point is computed by demanding that all beta functions of
the theory vanish simultaneously. Beta functions are off-
shell quantities and as such there could be spurious
parameter dependencies such as gauge choice and/or field
parametrization. The following question then naturally
comes to mind: what is a suitable choice of these param-
eters? A list of works on this topic and related aspects is

[52,106–112]. To calculate the beta functions, we usually
use the background field method where the metric gμν is
decomposed into a background part ḡμν and a fluctuation
δgμν. Many earlier works including [46,49] have employed
a linear split, namely, gμν ¼ ḡμν þ δgμν ¼ ḡμν þ hμν. As
reported, they obtain a fixed point with very good con-
vergent properties and three relevant directions. On the
other hand, one can also split the metric in the exponential
form, gμν ¼ ḡμαðehÞαν. Studies with the exponential para-
metrization in fðRÞ-type truncations were performed in
[101,102,104] and have found only two relevant directions
at the fixed point. Even though the number of relevant
directions is finite, it is an urgent problem to clarify why
and how the number changes depending on the way of the
metric parametrization since its information is important for
the asymptotically safe gravity scenario. In particular, one
can ask if different schemes in the field parametrization can
affect the number of relevant directions. Here we should
note that the previous results were obtained in the so-called
background field approximation. So, one should also
investigate whether such discrepancies are still present in
more sophisticated truncation schemes.
In this work, we investigate how different choices of field

parametrization affect the fixed point analysis in fðRÞ
truncations for the effective average action. In particular,
we employ polynomial truncations up to sixth degree on R
for a one-parameter family of field parametrization as
introduced in [109,110] and discuss the dependence of
the number of relevant directions for different parametri-
zations. Also, we perform our analysis for two different
values of the gauge parameter β introduced in Eq. (14),
namely, β ¼ 0 and β → −∞. We also comment on different
choices of basis for the computations and different pre-
scriptions to deal with spurious modes coming from field
decompositions. One of the main conclusions is that we do
find, upon changes in the parameter which interpolates
between different field parametrizations, that the number of
relevant directions changes. In particular, we are able to
find fixed points with two and three relevant directions
under certain conditions, in agreement with the existing
literature.
The structure of the paper is the following: In the next

section, we write a brief review of the functional renorm-
alization group equation (FRGE) in order to fix our
conventions. After that, we introduce the truncation for
the effective average action employed in this work and
discuss the derivation of the Hessians. Subsequently, we
briefly discuss the existence of a duality discovered and
discussed in [109,110,113] for the theory considered in this
paper. Then, in Sec. V we set up the flow equation, and in
Sec. VI we collect our results for fixed points and critical
exponents. Finally, we present some discussions and
perspectives in Sec. VII and draw our conclusions in
Sec. VIII. Technicalities relevant for a self-consistent
presentation are presented in the Appendices.
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II. BRIEF OVERVIEW OF THE FLOW EQUATION

The search for suitable nontrivial fixed points for the
asymptotic safety scenario is mostly carried out through the
FRGE; see [114,115]. This equation encodes the scale
dependence of the so-called “effective average action” Γk,
obtained by the integration of modes with momentum
greater than k. For k ¼ 0, the effective average action
corresponds to the effective action (one-particle irreducible
(1PI) generating functional) Γ, while for k → Λ, with Λ a
UV cutoff, to the bare action SΛ. In this perspective, k plays
the role of an infrared cutoff. The Wetterich equation (or
flow equation) is formally written as

∂tΓk ¼
1

2
STr

� ∂tRk

Γð2Þ
k þRk

�
; ð1Þ

where ∂t ≡ k∂k, Γð2Þ
k is a notation for the Hessian1

Γð2Þ
k ¼ δ2Γk=δΦδΦ, STr denotes the supertrace which takes

into account appropriate numerical factors depending on
the nature of the superfield Φ, and Rk is a cutoff function
responsible for the suppression of modes with momentum
smaller than k. The effective average action contains all
field operators compatible with the symmetries of the
underlying theory and can be generically expressed as

Γk ¼
X
i

giðkÞOiðΦÞ; ð2Þ

where OiðΦÞ is an integrated field operator and giðkÞ the
corresponding coupling constant for such an operator.
Taking the scale derivative ∂t of (2) leads to

∂tΓk ¼
X
i

∂tgiðkÞOiðΦÞ≡X
i

βiðkÞOiðΦÞ; ð3Þ

with βi being the beta function of the coupling gi. One can
obtain the explicit forms of the beta functions from (1).
After the computation of the beta functions, one can

immediately look for fixed points by demanding that all
beta functions vanish simultaneously, namely, βi ¼ 0 for all
i. Since exactly solving Eq. (1) for the complete theory
space is far from our capabilities, some approximations
must be employed. A useful scheme is the implementation
of truncations, namely, a particular basis which spans part
of the theory space fOg is chosen. Note that even though
we make approximations, they do not correspond to a
perturbative expansion and nonperturbative effects turn out
to be accessible.
Once an interacting fixed point is found, one still has to

check whether it leads to a predictive theory or not. The
fixed point will lead to a predictive theory if the critical
surface is finite dimensional. This can be studied by the
linearized flow around the fixed point, let us say g� ¼

fg�1; g�2;…; g�ng, with n being the dimensionality of the
theory space. The linearized flow equation is obtained by

∂tðgl−g�l Þ¼−
Xn
m

Blmðgm−g�mÞ with Blm¼−
∂βl
∂gm

����
g¼g�

:

ð4Þ

The matrix Blm is known as the stability matrix and its
eigenvalues are called critical exponents. The dimension-
ality of the critical surface is the number of positive
(relevant) critical exponents. If it is finite, we can define
a UV complete theory associated with such a fixed point.
More specifically, the solution of (4) is given by

gi ¼ g�i þ
Xn
j¼1

VijCj

�
k
Λ

�
−θj

; ð5Þ

where Vij is the matrix diagonalizing the stability matrix,
Cj are undetermined constants for the integration of the
scale and the critical exponents are denoted by θj. In the
context of asymptotic safety, the coupling constants with
θj > 0 are relevant and then the corresponding Cj become
free parameters to be fixed. Note that in the perturbative
approach, these operators just correspond to the renorma-
lizable interactions with four and fewer dimensions.

III. f ðRÞ-TRUNCATION: PRELIMINARIES

A. Gravitational sector

The gravitational action we consider in this work has the
form

Γk½g� ¼
Z

ddx
ffiffiffi
g

p
fkðRÞ; ð6Þ

with k encoding the scale dependence of the action and f is
a generic function of the Ricci scalar R. For simplicity, we
assume that f admits a Taylor expansion on R. Employing
(A1), one obtains

Γk½hμν; ḡμν�¼
Z

ddx
ffiffiffī
g

p �
fkðR̄Þþ

1

2
δgð1ÞfkðR̄ÞþRð1Þf0kðR̄Þ

þ1

2
Rð1Þ2f00kðR̄Þþ

1

2
ðδgð1ÞRð1Þ þ2Rð2ÞÞf0kðR̄Þ

þ1

8
ððδgð1ÞÞ2−2δgð1Þμν δgð1Þμν

þδgð2ÞÞfkðR̄ÞþOðh3Þ
�
: ð7Þ

The explicit expressions for Rð1Þ and Rð2Þ are reported in
Appendix A. In the present work, we restrict the back-
ground to be a maximally symmetric space:

R̄μν ¼
R̄
d
ḡμν; R̄μναβ ¼

R̄
dðd − 1Þ ðḡμαḡνβ − ḡμβḡναÞ; ð8Þ1We use Φ as a shorthand notation for all the fields of the

theory.
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with R̄ a constant. Also, we retain the terms of (7) up to second order in the fluctuation hμν and neglect total derivatives.
Then the second order expression in h for Γk is given by

Γk;2½hμν; ḡμν� ¼
Z

ddx
ffiffiffī
g

p �
1

8
ððδgð1ÞÞ2 − 2δgð1Þμν δgð1Þμν þ 4δgð2ÞÞfkðR̄Þ þ

�
1

4
δgð1Þμν∇̄2δgð1Þμν

−
1

4
δgð1Þ∇̄2δgð1Þ þ 1

2
δgð1Þ∇̄μ∇̄νδgð1Þμν þ

1

2
∇̄μδgð1Þμν∇̄αδg

ð1Þ
ν

α þ 1

2
δgð1Þμνδgð1ÞαβR̄μανβ

−
1

2
δgð1Þδgð1ÞμνR̄μν þ

1

2
δgð1Þμνδgð1Þμ

αR̄να − δgð2ÞμνR̄μν

�
f0kðR̄Þ þ

1

2
ð∇̄μ∇̄νδgð1Þμν∇̄α∇̄βδgð1Þαβ

þ δgð1Þ∇̄2δgð1Þ − 2∇̄μ∇̄νδgð1Þμν∇̄2δgð1Þ − 2R̄αβδgð1Þαβ∇̄μ∇̄νδgð1Þμν þ 2R̄μνδgð1Þμν∇̄2δgð1Þ

þ R̄μνR̄αβδgð1Þμνδgð1ÞαβÞf00kðR̄Þ
�
; ð9Þ

where the subscript 2 means that we keep only quadratic
terms on the quantum fluctuation hμν. Next, we employ the
York decomposition for the fluctuation hμν:

hμν ¼ hTTμν þ ∇̄μξν þ ∇̄νξμ þ ∇̄μ∇̄νσ −
1

d
∇̄2σ þ 1

d
ḡμνh;

ð10Þ

with

∇̄μhTTμν ¼ 0; ḡμνhTTμν ¼ 0; ∇̄μξμ ¼ 0; h¼ ḡμνhμν:

ð11Þ

As is well known [25,116], the York decomposition entails
the introduction of Jacobians. We will introduce the effects
of these Jacobians later on. Another feature which has to be
taken into account is the existence of solutions to the
equations

∇̄μξν þ ∇̄νξμ ¼ 0 and ∇̄μ∇̄νσ −
1

d
ḡμν∇̄2σ ¼ 0: ð12Þ

Configurations ðξ; σÞ that satisfy Eq. (12) do not contribute
to hμν and should be removed from the path integral. This
procedure is explained in detail in [25,96,116] and will be
used in this paper.

B. Gauge-fixing and ghost sectors

For the present computation we employ the same gauge-
fixing term as in [109]. We add to (9) the term

Sgf ¼
ZN

2α

Z
ddx

ffiffiffī
g

p
FμḡμνFν; ð13Þ

with

Fμ ¼ ∇̄αhαμ −
1þ β̄

d
∇̄μh; ð14Þ

where α and β̄ are gauge parameters and ZN is chosen such
that α is dimensionless. We choose ZN ¼ 1=ð16πGbareÞ
with Gbare being the bare or classical Newton’s constant;
see [96]. As in [109], we rescale β̄ such that β̄ ¼
βð1þ dmÞ. Equation (13) can be expressed as

Sgf ¼ −
ZN

2α

Z
ddx

ffiffiffī
g

p �
hμν∇̄ν∇̄αhαμ

− 2
1þ βð1þ dmÞ

d
h∇̄μ∇̄νhμν

þ
�
1þ βð1þ dmÞ

d

�
2

h∇̄2h

�
: ð15Þ

Applying the York decomposition (10) leads to

Sgf ¼
ZN

2α

Z
ddx

ffiffiffī
g

p �
ξμ

�
−∇̄2 −

R̄
d

�
2

ξμ

−
�
d − 1

d

�
2

σ

�
−∇̄2 −

R̄
d − 1

�
2∇̄2σ

−
�
1þ dm

d

�
2

β2h∇̄2h

þ 2β
ðd − 1Þð1þ dmÞ

d2
σ

�
∇̄2 þ R̄

d − 1

�
∇̄2h

�
: ð16Þ

Collecting the contributions coming from (9) and (16)
results in

Γgrav
k ¼ 1

2

Z
ddx

ffiffiffī
g

p ½hTTμν Γμναβ
TT hTTαβ þ ξμΓ

μν
ξξξν þ σΓσσσ

þ hΓhhhþ σΓσhhþ hΓhσσ�; ð17Þ
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where Jacobians and spurious configurations that satisfy
Eq. (12) still have to be taken into account. We collect the
explicit complete expressions for the Hessians in
Appendix B.
The introduction of the gauge-fixing term (13) demands

the introduction of the Faddeev-Popov contribution,
which is

Sgh¼
Z

ddx
ffiffiffī
g

p
C̄μ

�
δνμ∇̄2þ

�
1−2

1þβ

d

�
∇̄μ∇̄νþ R̄

d
δνμ

�
Cν;

ð18Þ

with ðC̄; CÞ being the Faddeev-Popov ghosts. We employ
the York decomposition for the ghost fields, i.e.,

C̄μ ¼ C̄Tμ þ ∇̄μC̄; Cμ ¼ CT
μ þ ∇̄μC; ð19Þ

where ∇̄μC̄Tμ ¼ ∇̄μCT
μ ¼ 0. As before, the decomposition

(19) generates Jacobians which will be introduced later on.
The decomposed ghost action is given by

Sgh ¼
Z

ddx
ffiffiffī
g

p �
C̄Tμ

�
∇̄2 þ R̄

d

�
CT
μ − 2

d − 1 − β

d
C̄

×

�
∇̄2 þ R̄

d − 1 − β

�
∇̄2C

�
: ð20Þ

We emphasize that in Eq. (20) the gauge parameter β
appears without the factor (1þ dm), unlike in the

gauge-fixing action (15). In this work, we focus on the
Landau gauge condition which corresponds to setting
α ¼ 0. In the next subsection we introduce the contribu-
tions coming from the Jacobians of the York decomposi-
tions (10) and (19).

C. Auxiliary sector

As mentioned in the previous subsections, the York
decomposition brings in nontrivial Jacobians that should
be taken into account in the computations. Also, spurious
modes that satisfy (12) have to be discarded in the evaluation
of the path integral since they do not contribute to hμν. The
later procedure iswell discussed in the literature [25,96,116].
The Jacobians can be easily derived [25,96,116], and they
lead to the following contributions:

Jgrav ¼
�
det0ð1Þ

�
−∇̄2 −

R̄
d

��
1=2

×

�
det00ð0Þ

�
−∇̄2

�
−∇̄2 −

R̄
d − 1

��	
1=2

;

Jgh ¼ ½det0ð0Þð−∇̄2Þ�−1; ð21Þ

where Jgrav is the resulting Jacobian coming from the York
decomposition of hμν, while Jgh is that from the decom-
position of the Faddeev-Popov ghosts. The primes denote the
appropriate elimination of spurious modes. These determi-
nants can be expressed as functional integrals:

Jgrav¼
Z

DζDζ̄DψDψ̄DχDθexp

�
−
Z

ddx
ffiffiffī
g

p �
1

2
χμ

�
−∇̄2−

R̄
d

�0
χμþ1

2
θ

�
−∇̄2

�
−∇̄2−

R̄
d−1

��00
θ− ζ̄μ

�
−∇̄2−

R̄
d

�0
ζμ

− ψ̄

�
−∇̄2

�
−∇̄2−

R̄
d−1

��00
ψ

�	
; ð22Þ

with χμ a real bosonic vector field; θ a real bosonic scalar field; ðζ̄μ; ζνÞ vector anticommuting ghosts; and ðψ̄ ;ψÞ scalar
anticommuting ghosts. For the Jacobian coming from the ghost sector Jgh, one writes

Jgh ¼
Z

Dϕ̄Dϕ exp

�
−
Z

ddx
ffiffiffī
g

p
ϕ̄ð−∇̄2Þ0ϕ

�
; ð23Þ

where ðϕ̄;ϕÞ are complex scalar fields. Hence, the contribution coming from the Jacobians of the York decomposition can
be taken into account by the introduction of a set of auxiliary fields Φ ¼ fχμ; θ; ζ̄μ; ζμ; ψ̄ ;ψ ; ϕ̄;ϕg. The complete set of
fields including the gravitational, Faddeev-Popov ghosts and auxiliary sector define the following functional measure:

Dμ ¼ DhTTDξDσDhDC̄TDC̄DCTDCDζDζ̄DψDψ̄DχDθDϕ̄Dϕ: ð24Þ
We are now ready to discuss FRGE and our results.

IV. DUALITY

In Refs. [109,110], gauge and parametrization dependence of one-loop divergences was studied for Einstein-Hilbert and
higher derivative theories. An interesting feature that was observed is the existence of a “duality,” namely, the invariance of
the results under a discrete transformation of the parameters that characterizes different parametrizations of the fluctuation,
viz., ðω; mÞ. Specifically, this duality transformation is defined by
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ðω; mÞ →
�
1 − ω;−m −

2

d

�
: ð25Þ

In the present case, it is possible to prove that the
duality also holds, because it is an invariance of the
Hessian. This is easily seen by noticing that the ghost
and auxiliary sectors are independent of ðω; mÞ and
therefore are obviously invariant. The pure gravitational
sector and the gauge-fixing terms are nearly diagonal
apart from the σ − h mixing. Note that the combination
ð2ω−1Þð1þdmÞ is duality invariant. Hence, the traceless-
transverse hTT and transverse ξ sectors are clearly duality
invariant. The diagonal scalar sector is invariant while the
off-diagonal flips a sign. However, what matters for our
computations is the determinant of the mixed scalar
matrix, which is duality invariant since the flipped sign
cancels out. Therefore, our results for beta functions, fixed
points, and critical exponents should be explicitly invariant
under (25).

V. SETTING THE FLOW EQUATION FOR THE
f ðRÞ TRUNCATION

A. Choice of cutoff function

In this paper we use the type I cutoff functions; see [25].
That is, the regulator function Rk takes the following form:

−∇̄2 → Pkð−∇̄2Þ ¼ −∇̄2 þ Rkð−∇̄2Þ; ð26Þ

with Pkð−∇̄2Þ being the regularized Laplacian operator.
This is easily achieved by defining the regulator
Rkð−∇̄2Þ as

R
ϕiϕj

k ð−∇̄2Þ ¼ Γϕiϕj

k ðPkð−∇̄2ÞÞ − Γϕiϕj

k ð−∇̄2Þ; ð27Þ

with Γϕiϕj

k denoting the second derivative of Γk with respect
to the fields ϕi and ϕj. Finally, we choose for the profile
function of the regulator the optimized or Litim’s cutoff
[117], given by

RkðzÞ ¼ ðk2 − zÞθðk2 − zÞ: ð28Þ

An interesting and important task is the investigation of the
stability of the results reported in this work under mod-
ifications of the cutoff type [see the recent paper [104] for
this kind of analysis in the context of gravity-matter
systems within the fðRÞ truncation in the exponential
parametrization] and profile function. We leave this
detailed analysis for future study. Here instead we simply
point out that results computed in the linear parametrization
of the quantum fluctuation point to a fixed point with three
relevant directions (see [25,49,95]), while in the exponen-
tial parametrization a fixed point with two relevant direc-
tions is reported in the literature (see [102,104]). We verify
that such discrepancy is due to different choices of
regularization schemes.

B. Flow equation

The flow equation (1) is written explicitly in terms of all
the fields coming from the York decomposition of hμν,
Faddeev-Popov ghosts, and auxiliary fields as

∂tΓk½0; ḡ� ¼
1

2
Trð2Þ

� ∂tRTT
k

ΓTT
k þRTT

k

�
þ 1

2
Tr0ð1Þ

� ∂tR
ξξ
k

Γξξ
k þRξξ

k

�
þ 1

2

X2
j¼1

∂tRhh
k ðλjÞ

Γhh
k ðλjÞ þRhh

k ðλjÞ

þ 1

2
Tr00ð0Þ

��Γσσ
k þRσσ

k Γσh
k þRσh

k

Γhσ
k þRhσ

k Γhh
k þRhh

k

�−1� ∂tRσσ
k ∂tRσh

k

∂tRhσ
k ∂tRhh

k

��
− Trð1Þ

� ∂tRCTCT

k

ΓCTCT

k þRCTCT

k

�

− Tr0ð0Þ

� ∂tRCC
k

ΓCC
k þRCC

k

�
þ 1

2
Tr0ð1Þ

� ∂tR
χχ
k

Γχχ
k þRχχ

k

�
þ 1

2
Tr00ð0Þ

� ∂tRθθ
k

Γθθ
k þRθθ

k

�
þ Tr0ð0Þ

� ∂tR
ϕ̄ϕ
k

Γϕ̄ϕ
k þRϕ̄ϕ

k

�

− Tr0ð1Þ

� ∂tR
ζζ
k

Γζζ
k þRζζ

k

�
− Tr00ð0Þ

� ∂tR
ψψ
k

Γψψ
k þRψψ

k

�
; ð29Þ

where we explicitly point out that we are working within
the background approximation by setting hμν ¼ 0. In
comparison with expression (1), we see that suitable factors
of 1=2 and−1must be taken into account, depending on the
nature of the field. Finally, the Hessians for the ðσ; hÞ sector
contribute as

Tr00ð0Þ

��Γσσ
k þRσσ

k Γσh
k þRσh

k

Γhσ
k þRhσ

k Γhh
k þRhh

k

�−1� ∂tRσσ
k ∂tRσh

k

∂tRhσ
k ∂tRhh

k

��

¼ Tr00ð0Þ½Wσh
k ð−∇̄2Þ�; ð30Þ

with
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Wσh
k ð−∇̄2Þ

¼ Γhh
k ∂tRσσ

k þ Γσσ
k ∂tRhh

k − Γσh
k ∂tRhσ

k − Γhσ
k ∂tRσh

k

Γσσ
k Γhh

k − Γσh
k Γhσ

k

:

ð31Þ

Using the heat kernel coefficients given in Appendix C
together with the above results, we can write down the
FRGE. Since its final form is lengthy, we do not write it
explicitly.

VI. FIXED POINTS AND CRITICAL EXPONENTS

In order to obtain concrete results, we consider poly-
nomial truncations up to Nth order in R, namely,

fkðRÞ ¼
XN
i¼0

giðkÞRi; ð32Þ

where giðkÞ denotes the scale dependent couplings. In
particular, g0 ¼ Λk=ð8πGkÞ and g1 ¼ −1=ð16πGkÞ, with
Gk and Λk the dimensionful Newton and cosmological
constant, respectively. We analyze up to N ¼ 6 in d ¼ 4
and separate the analysis for β ¼ 0 and β ¼ −∞, but we
always choose the Landau gauge α ¼ 0. As is well known,
this choice corresponds to a sharp imposition of the gauge
condition and also corresponds to a fixed point of the
renormalization group flow [118]. In the next subsections
we collect our results for the different values of β.
The right-hand side of the flow equation (29) is

∂tΓk½0; ḡ� ¼ ∂t

Z
ddx

ffiffiffī
g

p
fkðR̄Þ: ð33Þ

The couplings giðkÞ are dimensionful in general and can be
expressed in terms of dimensionless ones g̃iðkÞ as

giðkÞ ¼ kd−2ig̃iðkÞ ⇒ ∂tgiðkÞ ¼ kd−2iðd − 2iþ ∂tg̃iðkÞÞ:
ð34Þ

Using the ansatz (32), Eq. (33) is expressed as

∂tΓk½0; ḡ� ¼
XN
i¼0

kd−2iðd − 2iþ ∂tg̃iðkÞÞ

×
Z

ddx
ffiffiffī
g

p
R̄i ≡XN

i¼0

kd−2iðd − 2iþ β̃iÞ

×
Z

ddx
ffiffiffī
g

p
R̄i; ð35Þ

where β̃i stands for the beta function of the coupling g̃i. The
flow equation (29) enables the extraction of beta functions
by the computation of the trace on its right-hand side and a
suitable projection rule.

A. β= 0

This particular choice of β is motivated by previous
works on the fðRÞ truncation. In [25,49,96], this truncation
was analyzed for polynomials of R̄ using this choice (on top
of the Landau gauge condition). These works have
employed the linear split of the metric, which in our
notation corresponds to ðω; mÞ ¼ ð0; 0Þ. In the following,
we report our results for fixed points for different choices of
ðω; mÞ in this gauge and make some comments about the
stability of the results.
Before that, however, let us mention a subtlety in this

gauge. From the full expressions for the Hessians (see
Appendix B), one easily notices that the parameter β enters
the mixed contributions ðσ; hÞ; the pure trace part ðh; hÞ;
and the longitudinal ghost contributions. When one
sets β ¼ 0, the only gauge-parameter dependent contribu-
tion in the scalar sector comes from the ðσ; σÞ sector
with 1=α dependence. By taking into account that in the
Landau gauge limit terms with 1=α dominant, we have a
disentanglement of the (gravitational) scalar sector [see
Eq. (31)]:

lim
α→0

Tr00ð0Þ½Wσh
k ð−∇̄2Þ�jβ¼0

¼ Tr00ð0Þ

�∂tRσσ0
k

Γσσ0
k

�
þ Tr00ð0Þ

�∂tRhh
k

Γhh
k

�
; ð36Þ

where Γσσ0
k is the last term in (B3) and Rσσ0

k is the regulator
obtained from it by (27). Also, for the ðξ; ξÞ sector, the
Landau gauge limit makes the contribution2 coming from
the pure gravitational action suppressed with respect to the
gauge-fixing contribution. Effectively, the ðξ; ξÞ term
leads to

lim
α→0

1

2
Tr0ð1Þ

� ∂tR
ξξ
k

Γξξ
k þRξξ

k

�
¼ Tr0ð1Þ

� ∂tPk

Pk þ R̄
d

�
; ð37Þ

see, for instance, [96]. On the other hand, the contribution
to the flow equation from the transverse ghost sector is
expressed as

−lim
α→0

Trð1Þ

� ∂tRCTCT

k

ΓCTCT

k þRCTCT

k

�
¼ −Trð1Þ

� ∂tPk

Pk þ R̄
d

�
: ð38Þ

One sees that the contributions (37) and (38) nearly cancel
each other apart from the fact that the former trace is primed
and the latter is not. A common strategy is to “prime” the
trace over the transverse ghost sector to have an exact
cancellation of these sectors. The contribution from the
spin-1 sector in the gauge-fixing is exactly canceled by that
from the transverse ghost. This was implemented in

2For ω ¼ 1=2 or m ¼ −1=d, the ðξ; ξÞ contribution to the pure
gravitational sector vanishes.
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[25,95,96]. We present results without employing this
procedure. However, as a consistency check, when this
prescription is used and the linear parametrization is fixed,
we reproduce the results obtained in, e.g., [96].

1. ω-dependence

In the following, we exhibit our results. First, for the
truncation (32) with a finite N, we plot the values of the
fixed points against the parameter ω. For simplicity, we
take m ¼ 0.
In the Einstein-Hilbert truncation, i.e., N ¼ 1, we show

our results in Fig. 1. One can see that the numerical value of
the fixed points ðg�0; g�1Þ changes for different choices of ω.
However, the numerical variation is relatively small and the
qualitative behavior is the same: for all choices of ω in the
interval [0, 1], the fixed point value for g�0 is positive, while
g�1 is negative. Moreover, the values of g�1 are very stable for
1=2 ≤ ω ≤ 1 and we find a local maximum around
ω ¼ 1=2. We also plot the product Λ̃�G̃� against the
parameter ω in Fig. 2. Again, one sees that the product
reaches a local maximum around the exponential

parametrization ω ¼ 1=2. One can conclude that within
this truncation, the exponential parametrization gives the
most stable results in the sense that small perturbations of
this choice give very similar results. For all values of
ω ∈ ½0; 1�, one obtains two relevant directions for the UV
fixed point in this truncation as shown in Fig. 2.
For N ¼ 2 truncation, one can see how the values for the

fixed point ðg�0; g�1; g�2Þ change with respect to the parameter
ω in Fig. 3. For these plots we use two types of plot
markers, namely, black dots and red squares. The reason is
the following: for 0 ≤ ω < 0.4, the UV fixed point has
three relevant directions. At ω ¼ 0.4, a second fixed point
with two relevant directions shows up and, for 0.4 < ω ≤ 1,
the only viable fixed point we obtain has two relevant
directions. The fixed points with three relevant directions
are identified by black dots and those with two relevant
directions by red squares. We see thus that it is not possible
to continuously deform a fixed point for different values of
ω at N ¼ 2 order. As particular examples, the linear
(ω ¼ 0) and the exponential (ω ¼ 1=2) parametrizations
have fixed points with three and two relevant directions,
respectively. Such a difference was already detected in

FIG. 1. Fixed point values for the couplings g0 and g1 in the Einstein-Hilbert truncation.

(a) (b)

FIG. 2. Einstein-Hilbert truncation in the β ¼ 0 gauge. (a) Product Λ̃�G̃�. (b) Real part of the critical exponents.
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FIG. 3. Fixed point values for the couplings g0, g1, and g2 in the R2 truncation in the β ¼ 0 gauge.

(a) (b)

(c)

FIG. 4. R2 truncation in the β ¼ 0 gauge. (a) Product Λ̃�G̃�. (b) Real part of the critical exponents θ1;2. (c) Real part of the critical
exponent θ3.
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previous works [102]. For each class of fixed points (black
dots and red squares), the numerical values for the fixed
points are relatively stable under changes on ω. In Fig. 4 we
show the product Λ̃�G̃� in N ¼ 2 truncation. We emphasize
that, at ω ¼ 0.4, the black dot and the red square almost
coincide. We also show how the critical exponents change
under variations of ω in Fig. 4. As pointed out before, for
each class of fixed points, the results do not show strong ω-
dependence.
The discrepancy in the number of relevant directions for

different choices of parametrization persists at N ¼ 3 order.
In Fig. 5 we collect the values of the fixed points for
each coupling for different choices of ω. As in the N ¼ 2
truncation, we find two types of fixed points: for
0 ≤ ω < 0.3, we obtain fixed points with three relevant
directions; at ω ¼ 0.3 and ω ¼ 0.4, two fixed points are
viable, one with three and the other with two relevant
directions; for 0.4 < ω ≤ 1, the fixed point obtained has
two relevant directions. This is the same qualitative behav-
ior observed in the N ¼ 2 truncation. The ω-dependence of
the product Λ̃�G̃� and of the critical exponents calculated at
N ¼ 3 are collected in Fig. 6.
In order to understand how, in a given parametrization,

the fixed point values change upon enlargement of the
truncation, we plot the values of the fixed points against the
curvature power N in Fig. 7. We consider truncations up to
N ¼ 6 and we plot the couplings ðg�0; g�1; g�2; g�3Þ. We show
the cases of linear and exponential parametrizations. It is
known in the literature that for both parametrizations, it is

possible to find very good convergence for the fixed point
values upon truncation improvements; see [49,102,104].
The qualitative picture we have discussed before, namely,
that in the linear split one finds a fixed point with three
relevant directions and, in the exponential parametrization,
a fixed point with two relevant directions, persists in larger
truncations. However, in the exponential parametrization,
the fixed point structure is not very stable up to N ¼ 6. In
particular, using the prescriptions described in the previous
sections, we typically find more than one fixed point
candidate for a given N which fulfills the basic requirement
of stability under truncation improvement.3 Thus in the
exponential parametrization, the fixed point structure is not
so stable up to N ¼ 6. Ultimately one needs to go beyond
N ¼ 6 in order to check if the convergence property
improves or not in this case. For the construction of
the plots, we have chosen a particular set of fixed
points for illustration. To make this point clear and avoid

FIG. 5. Fixed point values for the couplings g0, g1, g2, and g3 in the R3 truncation in the β ¼ 0 gauge.

3For this choice of gauge parameter, we found two viable fixed
points for 3 ≤ N ≤ 6. For N ¼ 3 both display two relevant
directions. For N ¼ 4, 5, 6, there is an oscillation on the number
of relevant directions. One of the candidate fixed points oscillates
from two to three relevant directions at N ¼ 4 but for N ¼ 5, 6 it
returns to two relevant directions. The other one remains with two
relevant directions atN ¼ 4 but for N ¼ 5, 6 the number grows to
four relevant directions. In order to completely distinguish which
fixed point is stable (if any) and which is a truncation artifact, one
needs to enlarge the truncation for larger values of N.
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(a) (b)

(c) (d)

FIG. 6. R3 truncation in the β ¼ 0 gauge. (a) Product Λ̃�G̃�. (b) Real part of the critical exponent θ1;2. (c) Real part of the critical
exponent θ3. (d) Real part of the critical exponent θ4.

FIG. 7. Values of the fixed point couplings g�0, g
�
1, g

�
2, and g

�
3 for different truncations in the β ¼ 0 gauge for ðω; mÞ ¼ ð0; 0Þ and ð1=2; 0Þ.

ASYMPTOTIC SAFETY AND FIELD PARAMETRIZATION … PHYS. REV. D 98, 026027 (2018)

026027-11



too many plots, we collect these results in Tables II–V in
Appendix D.

2. m-dependence

Let us briefly discuss them-dependence of our results on
fixed point values and number of relevant directions. For
simplicity, we consider the well-studied cases of ω ¼ 0 (the
linear split of the metric) and ω ¼ 1=2 (the exponential
split). However, for ω ¼ 1=2, the m-dependence just
cancels out since m always appears in the combination
ð1 − 2ωÞð1þ dmÞor as an overall factor in theHessians; see
Appendix B. In this connection, we also note that the
ω-dependence also disappears form ¼ −1=d, but this case,
corresponding to unimodular gravity, is singular [109].
Nevertheless we may consider that case by extrapolating
our results [119].
We find the following results for ω ¼ 0: in the Einstein-

Hilbert truncation, the coupling g0 corresponding to the
cosmological constant starts from the value 0.00523 at
m ¼ 0, decreases to 0.00211 atm ¼ −1=4, and increases to
0.00365 at m ¼ −1=2, whereas g1 for the Einstein-Hilbert
term starts from −0.0202, increases to −0.00875 at
m ¼ −1=4, and decreases to −0.0117 at m ¼ −1=2.
Both operators are relevant for those choices of m. In
the N ¼ 2 truncation, g0 ¼ 0.00330, g1 ¼ −0.137, g2 ¼
0.00161 with three relevant operators at m ¼ 0;
g0 ¼ 0.00211, g1 ¼ −0.0102, g2 ¼ −0.00283 with three
relevant operators at m ¼ −1=4; and g0 ¼ 0.00370,
g1 ¼ −0.00778, g2 ¼ −0.000680 with two relevant oper-
ators at m ¼ −1=2. Thus, the number of relevant operators
changes from three to two here. When we go to N ¼ 3
truncation, g0 ¼ 0.00518, g1 ¼ −0.0196, g2 ¼ 0.000716,
g3 ¼ −0.00737 with three relevant operators at m ¼ 0;
g0 ¼ 0.00211, g1 ¼ −0.0767, g2 ¼ 0.00157, g3 ¼
0.000998 with three relevant operators at m ¼ −1=4;
and g0 ¼ 0.00262, g1 ¼ −0.0101, g2 ¼ −0.0838, g3 ¼
−0.0532 with two relevant operators at m ¼ −1=2. Here
again the number of relevant operators changes from three

to two. We thus find that the dimensionality of the critical
surface also changes according to m, just as for ω.

B. β= −∞
Recently, different works in the context of asymptotic

safety have employed the gauge choice β ¼ −∞; see
[52,101,102,104,109,110,120]. The combination of this
choice with the exponential parametrization (in our notation
ω ¼ 1=2) minimizes the dependence of the beta functions
(or divergences) on other free parameters as discussed in
[52,109]. Frequently, this gauge choice is called “physical
gauge.” Generically it amounts to setting ξμ ¼ 0 and h ¼ 0.
As a consequence, the flow equation analysis is simpler
[101,102,104,120]. In the following, we collect our results
for this choice in the same style that we did in the previous
subsection and comment on the comparisonwith the existent
results in the literature afterwards. Here we restrict our
discussions to the most studied case of m ¼ 0.
In the Einstein-Hilbert truncation, we display how the

fixed point values ðg�0; g�1Þ change with ω in Fig. 8. We find
that not only the dependence on ω is similar to the one
reported for β ¼ 0 in Fig. 1, but also the numerical values
are quite close to those computed for β ¼ 0. One sees that
the local maximum for g�1 is located around ω ¼ 0.6
differently from the β ¼ 0 gauge where it is located near
ω ¼ 1=2. Nevertheless, the results are still close. In Fig. 9
we show the product Λ̃�G̃� and (real part of) the critical
exponents θ1 and θ2. In contrast to the β ¼ 0 choice, the
critical exponents at ω ¼ 1=2 and ω ¼ 0.6 are real, but they
are both positive, leading to two relevant directions as for
β ¼ 0. Therefore, within the Einstein-Hilbert truncation we
see that the results obtained for β ¼ 0 and β ¼ −∞ are
qualitatively similar.
The fixed point values ðg�0; g�1; g�2Þ for different values ofω

in theN ¼ 2 truncation are shown in Fig. 10. We employ the
same representation as in the β ¼ 0: black dots represent
fixed points with three relevant directions and red squares
fixed points with two relevant directions. As exhibited in
Fig. 10, for 0 ≤ ω < 1=2, one finds a nontrivial fixed point

FIG. 8. Fixed point values for the couplings g0 and g1 in the Einstein-Hilbert truncation in the physical gauge.
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FIG. 10. Fixed point values for the couplings g0, g1, and g2 in the R2 truncation in the physical gauge.

(a) (b)

(c)

FIG. 9. Einstein-Hilbert truncation in the physical gauge. (a) Product Λ̃�G̃�. (b) Real part of θ1. (c) Real part of θ2.
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(a) (b)

(c) (d)

FIG. 11. R2 truncation in the physical gauge. (a) Product Λ̃�G̃�. (b) Real part of the critical exponent θ1. (c) Real part of the critical
exponent θ2. (d) Real part of the critical exponent θ3.

FIG. 12. Fixed point values for the couplings g0, g1, g2, and g3 in the R3 truncation in the physical gauge.
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with three relevant directions, while for 1=2 ≤ ω ≤ 1, a fixed
point with just two relevant directions. This is in qualitative
agreement with the β ¼ 0 results in Fig. 3. It should be noted
that, typically, for a givenω, one obtains more than one fixed
point, which satisfies the basic requirements for a viable UV
fixed point (sometimes, viable fixed points with different
numbers of relevant directions are found, as already pointed
out in the β ¼ 0 case). The selection rule we employ is to
check which of those fixed points are still present under
truncation enlargement. The product Λ̃�G̃� together with the

critical exponents in the N ¼ 2 truncation are collected in
Fig. 11. As in the Einstein-Hilbert truncation, there are
specific choices of ω where the critical exponents θ1 and θ2
are real. This happens, in particular, for ω ¼ f0.4; 0.5; 0.6g.
As also happens in the case β ¼ 0, the critical exponents in
this truncation are rather large.
For the N ¼ 3 truncation, we show the fixed point

values ðg�0; g�1; g�2; g�3Þ as a function of ω in Fig. 12. The
existence of two different classes of fixed points (with
three and two relevant directions, respectively) persists. In

(a) (b)

(c) (d)

(e)

FIG. 13. R3 truncation in the physical gauge. (a) Product Λ̃�G̃�. (b) Real part of the critical exponent θ1. (c) Real part of the critical
exponent θ2. (d) Real part of the critical exponent θ3. (e) Real part of the critical exponent θ4.
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particular, one identifies that the “transition” from three to
two relevant directions occurs at ω > 1=2. This is differ-
ent from the results reported in [102,104], for instance,
where a fixed point with two relevant directions for pure
gravity in the exponential parametrization (ω ¼ 1=2) in
the physical gauge was found. On the other hand, it
agrees with the result reported in [105], which also
displays a fixed point with two relevant directions, but
in the unimodular setting (i.e., the cosmological constant
is not a coupling of the theory). Although there is an
apparent clash between these results, we argue in the next
section that they arise due to different choices of
regularization schemes. We collect the product Λ̃�G̃� as
well as the critical exponents in the N ¼ 3 truncation
in Fig. 13.
It was reported for the linear [49] and exponential

[102,104] parametrizations that it is possible to identify
stability (for numerical convergence, one has to go beyond
the N ¼ 6 truncation) of the fixed point values and critical
exponents under truncation enlargement.However, for a fixed
truncation, we have seen explicitly that the results are not
quite stable against changes in the parameterω apart from the
Einstein-Hilbert truncation, a result already reported in [52].
In the next section we comment on this fact and point out
someobservations about such adependence.However, before
moving to that, we show how the fixed point values change

under truncation enlargement in Fig. 14. We employ two
different plot markers (dots and squares) and two different
colors (black and blue) to distinguish between the linear
(black dots) and the exponential (blue squares) splits.We note
that, in the physical gauge, both parametrizations display a
fixed point with three relevant directions.4 It should be noted
that, typically, in a given truncation, one finds more than one
fixed point with the “minimum requirement” of a positive
Newton constant. On top of such requirement, one can
demand some selection rules as, for instance, the stability
of the fixed point under truncation enlargement or under
changes of parametrization and/or gauge parameter values.
Since we find different numbers of relevant directions for
different choices ofω, the selection of one single fixed point is
not always obvious and one has to be careful in the selection
of fixed points around the value of ω, where the transition
from three to two relevant directions occurs. Ultimately,
sufficiently large truncationswill ensurewhether the selection
was properly done (this is particularly important for finding

FIG. 14. Values of the fixed point couplings g�0, g
�
1, g

�
2, and g�3 for different truncations in the physical gauge for ðω; mÞ ¼ ð0; 0Þ and

ð1=2; 0Þ.

4This statement should be taken with a grain of salt: as one can
see in Appendix D, the number of relevant directions in the
exponential parametrization oscillates from three to two under
truncation enlargements. For N ¼ 5, 6, it has three relevant
directions, and in this sense we say that the fixed point displays
three relevant directions. Clearly, a definite answer requires
further studies.
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fixed points in large truncationswhere one typically has to use
some input value to look for the numerical solutions). Also,
the amount of fixed points one finds in a given truncation
varies with the prescription used. For instance, if one uses the
prescription5 discussed in the beginning ofSec.VI A, namely,
the elimination of an extra mode from the transverse ghost
sector, there is a reduction in the number of fixed point
solutions per truncation, in general. This helps the selection of
fixed points.

VII. DISCUSSION

A. Scheme dependence

In this work, we took the point of view that one is
allowed to parametrize the quantum fluctuations in differ-
ent forms, as represented in Eqs. (A1) and (A2). In
particular, we have used this freedom to introduce two
interpolating parameters ω and m. Then, we employ the
Wetterich equation to compute beta functions associated
with different couplings in a fðRÞ truncation. In addition to
the fðRÞ truncation, we also made use of the so-called
background approximation, which consists in expanding
the effective average action up to second order in the
fluctuation hμν. After the computation of the Hessian, one
turns off the field hμν. Therefore, in the background
approximation, there are two pieces that are crucial for
the computation: the effective average action projected on
the background, i.e., Γk½ḡ; h ¼ 0� and the quadratic terms
on the fluctuation hμν. All the other terms will not
contribute to the flow equation when the approximation
hμν ¼ 0 is taken. As is clear from Eqs. (A1) and (A2),
different choices of ðω; mÞ will certainly modify the
quadratic part of Γk. Also, from the Hessians in
Appendix B, one sees that parametrization dependence
always appears either as terms proportional to the equations
of motion or as overall factors. This suggests that working
with a background metric ḡμν, which satisfies the equations
of motion, would remove parametrization dependence from
the computations. For an off-shell background, different
choices of parametrization lead to different background
dependence of the regularized Hessian. This changes the
right-hand side of the FRGE, leading, typically, to different
results in different parametrizations. In the background
approximation, one might change the background depend-
ence of the regularized Hessian coming from different
choices of parametrization by a suitable modification of the
regulator. However, it is known that modifying background
dependence of the regulator leads to nonuniversal results if
no further constraints are imposed; see [121,122]. Our
results show that, within the approximation employed,

different choices of parametrization can affect the number
of relevant directions while keeping the regulator choice
fixed. On the other hand, since one can trace back the origin
of such differences to different background dependence of
the regularized Hessian, it is conceivable that for a given
parametrization, different choices of the background
dependence of the regulator will also produce different
results.
Let us also comment on some other type of freedom in

the implementation of the regulator which also brings
in “scheme dependence” to the results. As discussed in
Sec. VI B, there are results in the literature that point to a
fixed point in the exponential parametrization (in the
physical gauge) with two relevant directions. In the present
work, for those choices of parametrization and gauge, we
obtain a fixed point with three relevant directions. The
difference arises due to different regularization schemes.
For comparison, we note that the Hessians reported in
Appendix B reduce to those given in [102]. Also, in [102],
the scalar sector ðσ; hÞ is rewritten in terms of χ and s
defined by

χ ¼ ½ðd − 1Þ∇̄2 þ R̄�σ − βh

ðd − 1 − βÞ∇̄2 þ R̄
and s ¼ h − ∇̄2σ: ð39Þ

Such a change of variables has a trivial Jacobian. The pure
gravitational part [namely, the one which comes from the
fðRÞ action and not from gauge-fixing terms] contains a
diagonal term in s, which is expressed as

d − 1

4d
s

�
2ðd − 1Þ

d
f00ðR̄Þ

�
−∇̄2 −

R̄
d − 1

�

þ d − 2

d
f0ðR̄Þ

��
−∇̄2 −

R̄
d − 1

�
s: ð40Þ

In [102], the second operator that appears in parentheses in
Eq. (40) is canceled against the contribution that comes
from the Jacobian due to the York decomposition.
Consequently, the scalar contribution arising from the pure
gravitational sector is encoded in the operator

2ðd − 1Þ
d

f00ðR̄Þ
�
−∇̄2 −

R̄
d − 1

�
þ d − 2

d
f0ðR̄Þ: ð41Þ

Then, one can introduce the regulator for this operator and
compute its contribution to the FRGE. Another procedure
that leads to the same contribution is to perform the

redefinition of the field s by s̃ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−∇̄2 − R̄=ðd − 1Þ

q
s.

The scalar operator simplifies to (41) and the Jacobian
generated by such a redefinition is canceled by the York
decomposition Jacobian. This was employed in [104]. They
lead to the same results. In contrast, we simply regularize
the full operator (40) as well as the contributions from the

5This prescription, for β ¼ −∞ and ω ¼ 1=2, has the curious
feature that for N ¼ 2 truncation no fixed points are found.
However, at N ¼ 3 order, one recovers one single fixed point
with three relevant directions.
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Jacobian of the York decomposition. One can show that
after regularization, these contributions do not cancel
exactly and the resulting contribution to the FRGE differs
from those reported in [102,104]. In particular, this leads to
the difference in the number of relevant directions obtained
in [102,104] and in the present paper. Also, since the results
reported in [102,104] are stabler under truncation enlarge-
ment than those studied here, one might infer that they are
less contaminated by truncation artifacts. Hence, even if
one chooses a specific parametrization—in the present
discussion, the exponential parametrization—different
regularization schemes can lead to different numbers of
relevant directions. One should notice that this is not even
related to the choice of the type of the regulator (see, e.g.,
[25]) but on how to treat the regularization of the Jacobians
that arise from the York decomposition. Our findings show
how sensitive the fixed point structure is with respect to
different regularization prescriptions.
Finally, let us recall that in [105], the fðRÞ truncation

was analyzed in the unimodular setting with the exponen-
tial parametrization. A fixed point with two relevant
directions is obtained. This is consistent with our findings,
given that, in the unimodular case, the cosmological
constant is not a coupling (hence, one would have an extra
relevant direction in the standard case). This also suggests

that, in the background approximation, different schemes in
the (field) basis that one uses for the FRGE, the modes one
subtracts or not from the flow, and the choice of regulator
can lead to different numbers of relevant directions, a
known fact in the functional renormalization group liter-
ature. Therefore, if one wants to capture the effects of more
sophisticated computations using the background approxi-
mation, a possible consistent way is to constrain such a
freedom on the scheme used for the computations.

B. Graviton propagator poles and
parametrization dependence

As we have seen in the previous section, the number of
relevant directions changes under the variation of the
parameters ω and m. In order to understand the ω-
dependence of the critical exponents, we investigate the
structure of the beta functions. To this end, we consider the
R2 truncation in the Landau gauge α → 0 with the choice
β ¼ 0 and m ¼ 0. In this case, the graviton propagator
contains the following structures for the traceless-transverse
sector and the trace mode sector, respectively:

1

ð1−2ωÞg̃0þ g̃1
and

1

2ð1þ2ωÞg̃0þ3g̃1þ18g̃2
: ð42Þ

FIG. 15. The ω-dependence of the critical exponents in the R2 truncation with α → 0, β ¼ 0, andm ¼ 0. The value of the fixed point is
set to g�0 ¼ 1=3, g�1 ¼ −1, g�2 ¼ 0.01.
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For a fixed point g̃�0, g̃
�
1, g̃

�
2, the values ω ¼ ðg̃�0 þ g̃�1Þ=2g̃�0

and ð−2g̃�0 − 3g̃�1 − 18g̃�2Þ=4g̃�0 become poles of (42), at
which the graviton fluctuations are enhanced. In such a
case, the results of the critical exponents tend to be unstable,
and then one has to avoid such choices of ω.
Next, let us see the explicit forms of the critical

exponents within a certain approximation: since the abso-
lute value of the R2 coupling constant g̃�2 is smaller than
those of the cosmological constant g̃�0 and the Newton
constant jg̃�1j, as we can see from the fixed point analysis in
the previous section, we neglect it. Also, we assume that g̃�0
is smaller than jg̃�1j, which is typically the case, and take
into account terms up to orderOðg0Þ. Although the stability
matrix is not diagonal, the main contributions to the critical
exponents come from the diagonal part. Then, assuming
that θi ≃ ∂βi=∂gijg¼g� , we have

θ1 ≃ 4þ 17 − 26ω

72π2g̃�1
þ −49þ 164ω − 196ω2

108π2g̃�1
2

g�0; ð43Þ

θ2 ≃ 2þ 597 − 1922ωþ 1568ω2

1728π2g�1
2

g�0; ð44Þ

θ3 ≃
−49þ 79ωþ 24ω2

144π2g�1

þ 5791 − 19438ωþ 13560ω2 − 4800ω3

4320π2g�1
2

g�0: ð45Þ

We see that due to the dominance of the canonical scaling
dimensions, θ1 and θ2 would be always positive under
variation of ω. On the other hand, the sign of θ3 depends on
the value of ω. The first term on the right-hand side of (45)
vanishes at ω� ¼ 0.533716. With a negative value of g�1, it
could become positive for ω smaller than ω�, whereas for a
larger ω, the sign of θ3 could become negative. In order to
determine the behavior more precisely, we evaluate the criti-
cal exponents numerically (without resorting to the approx-
imations discussed above). In Fig. 15, we show the
ω-dependence of the critical exponents. As illustrative
values of the fixed point, we use g�0 ¼ 1=3, g�1 ¼ −1,
g�2 ¼ 0.01, for which ω ¼ 1.615 leads to a singularity in
the graviton propagator (42). We see that θ1 and θ2 are
stable under variations of ω except around the singular
point. In contrast, θ3 strongly depends on ω and its sign
changes at ω ≃ 0.3. From this fact, we can understand the
difference of the number of the relevant directions between
the linear split (ω ¼ 0) and the exponential one (ω ¼ 1=2).
It is precisely this type of mechanism that generates
different counting on the number of relevant directions.

VIII. CONCLUSIONS

In this work, we discussed how different choices of the
parametrization for the quantum fluctuations affect the
fixed point structure in fðRÞ truncations. In particular, this

study was carried out in the background approximation for
the effective average action. The quantum fluctuations were
parametrized by two free parameters ðω; mÞ. All the
computations were performed in the Landau gauge
α ¼ 0. For comparison, we analyzed parametrization
dependence for two choices of the gauge parameter β: 0
and −∞. Qualitatively, the results are similar for both
choices of β: in the Einstein-Hilbert truncation, the fixed
point structure is relatively stable for different values of ω.
Starting from the N ¼ 2 truncation, setting m ¼ 0 for
simplicity, one sees that for ω ∈ ½0; 1� there are two
different types of fixed points, namely, one with three
relevant directions and the other with two relevant direc-
tions. Typically, the transition from one fixed point to the
other occurs in the vicinity of the exponential parametriza-
tion choice, namely, ω ¼ 1=2. For β ¼ 0, this transition
happens for ω < 1=2, leading to a fixed point with two
relevant directions in the exponential parametrization,
while for β ¼ −∞, the transition takes place for
ω > 1=2, which entails a fixed point with three relevant
directions in the exponential parametrization. We expect
the same behavior in other higher derivative truncations
such as the R2 þ R2

μν-type truncation since the Ricci tensor-
squared is a marginal operator in four-dimensional space-
time. In this connection, we note that three relevant
directions are observed in [41,42], whereas four relevant
directions are found when a different prescription for the
cutoff scheme (as well as the treatment of zero modes) is
employed [76].
We have found that in the background approximation,

changes in the parametrization, i.e., in the background
dependence of the regularized Hessian, lead to modifica-
tions in the number of relevant directions at the UV fixed
point. This result is compatible with those reported in
[104], where modifications on the endomorphisms present
in the regulator can lead to different numbers of relevant
directions of the UV fixed point for gravity-matter systems.
It should be clear that in this work we have investigated the
dependence on the parametrization, while the dependence
on the regulator choice deserves an independent study
by itself. In our perspective, this is a limitation of the
background approximation and further constraints should
be imposed on the calculations (e.g., on the choice of
regulators, compatibility with Ward identities and so on).
See also [123], where a new version of the effective average
action is put forward, leading to novel contributions in the
background approximation. On the other hand, one might
still argue that, although an unambiguous result for the
number of relevant directions is unable to be given, one still
finds a nontrivial fixed point with a critical surface
dimensionality lower than the truncated theory space
dimension. Hence, even in the simple background approxi-
mation, it is possible to find a suitable candidate for a
nontrivial UV fixed point. Ultimately, in order to obtain
more precise information about the fixed point (namely,
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how many relevant directions are associated with it), more
sophisticated approximations should be employed.
Of course, the issue of whether the fixed point features

two, three, or other finite number of relevant directions is
crucial. In particular, relevant directions count the number
of free parameters in the theory that should be fixed,
ultimately, by experiments. As a consequence, depending
on the number of relevant directions, higher curvature
couplings, for example, can be a prediction or not (namely,
are free parameters) of asymptotically safe quantum grav-
ity. Therefore, establishing precisely the number of relevant
directions associated with the nontrivial fixed point is not
simply a formal exercise. The present work suggests that
this answer should be given in schemes that go beyond the
background approximation or in improved versions of it.
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APPENDIX A: QUANTUM FLUCTUATION
PARAMETRIZATION

In this work we consider the split of the metric gμν of the
form [109,110]

gμν ¼ ḡμν þ δgμν ≡ ḡμν þ δgð1Þμν þ δgð2Þμν ; ðA1Þ

with

δgð1Þμν ¼ hμν þmḡμνh;

δgð2Þμν ¼ ωhμρh
ρ
ν þmhhμν þm

�
ω−

1

2

�
ḡμνh2αβ þ

1

2
m2ḡμνh2;

ðA2Þ

with m and ω free parameters and the upper index
i in δgðiÞ counts the number of h fields. Also, we define

δgðiÞ ≡ ḡμνδgðiÞμν .
Expanding the Ricci scalar R in powers of h, one obtains

R ¼ R̄þ Rð1Þ þ Rð2Þ þ � � � ; ðA3Þ

with

Rð1Þ ¼ ∇̄μ∇̄νδgð1Þμν − ∇̄2δgð1Þ − δgð1ÞμνR̄μν; ðA4Þ

and

Rð2Þ ¼ δgð1Þμν∇̄μ∇̄νδgð1Þ − 2δgð1Þμν∇̄ν∇̄αδg
ð1Þ
μ

α þ δgð1Þμν∇̄2δgð1Þμν þ 3

4
∇̄αδg

ð1Þ
μν ∇̄αδgð1Þμν

−
1

4
∇̄νδgð1Þ∇̄νδgð1Þ − ∇̄μδgð1Þμν∇̄αδg

ð1Þ
ν

α þ ∇̄νδgð1Þ∇̄αδgð1Þνα −
1

2
∇̄νδg

ð1Þ
μα ∇̄αδgð1Þμν

þ ∇̄μ∇̄νδgð2Þμν − ∇̄2δgð2Þ þ δgð1Þμνδgð1ÞαβR̄μανβ − δgð2ÞμνR̄μν: ðA5Þ

APPENDIX B: HESSIANS

In this Appendixwe collect all the Hessians that enter the flow equation (29). Notice that the following expressions contain
contributions coming from the gravitational action, gauge-fixing term (13), Faddeev-Popov ghosts, and auxiliary fields:

Γμναβ
TT ¼ −

1

2

��
−∇̄2 þ 2

d
R̄

d − 1

�
f0kðR̄Þ − ð2ω − 1Þð1þ dmÞ

�
fkðR̄Þ −

2

d
R̄f0kðR̄Þ

��
1μν;αβ; ðB1Þ

Γμν
ξξ ¼

�
−∇̄2 −

R̄
d

��
ð2ω − 1Þð1þ dmÞ

�
fkðR̄Þ −

2

d
R̄f0kðR̄Þ

�
þ ZN

α

�
−∇̄2 −

R̄
d

��
ḡμν; ðB2Þ
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Γσσ ¼
d − 1

2d

�
2

d
ðd − 1Þf00kðR̄Þ

�
∇̄2 þ R̄

d − 1

�
∇̄2 −

d − 2

d
f0kðR̄Þ∇̄2 þ ð2ω − 1Þð1þ dmÞ

�
fkðR̄Þ −

2

d
R̄f0kðR̄Þ

�

−
2ZN

α

d − 1

d

�
∇̄2 þ R̄

d − 1

���
∇̄2 þ R̄

d − 1

�
∇̄2; ðB3Þ

Γhh ¼
�
1þ dm

d

�
2
�
ðd − 1Þ2f00kðR̄Þ

�
−∇̄2 −

R̄
d − 1

�
2

þ ðd − 1Þðd − 2Þ
2

f0kðR̄Þ
�
−∇̄2 −

R̄
d − 1

�

þ d
4

�
2ð2ω − 1Þ
1þ dm

þ d

��
fkðR̄Þ −

2

d
R̄f0kðR̄Þ

�
−
β2ZN

α
∇̄2

�
; ðB4Þ

Γσh ¼ Γhσ ¼
ðd − 1Þð1þ dmÞ

d2

�
ðd − 1Þf00kðR̄Þ

�
−∇̄2 −

R̄
d − 1

�
þ 1

2
ðd − 2Þf0kðR̄Þ þ

βZN

α

��
∇̄2 þ R̄

d − 1

�
∇̄2; ðB5Þ

Γμν
CTCT ¼ ḡμν

�
∇̄2 þ R̄

d

�
; ðB6Þ

ΓCC ¼ 2
1þ β − d

d

�
∇̄2 −

R̄
1þ β − d

�
∇̄2; ðB7Þ

Γμν
χχ ¼ ḡμν

�
∇̄2 þ R̄

d

�
; ðB8Þ

Γθθ ¼
�
∇̄2 þ R̄

d − 1

�
∇̄2; ðB9Þ

Γϕ̄ϕ ¼ −∇̄2; ðB10Þ

Γμν
ζζ ¼ ḡμν

�
∇̄2 þ R̄

d

�
; ðB11Þ

Γψψ ¼ −
�
∇̄2 þ R̄

d − 1

�
∇̄2: ðB12Þ

with 1μν;αβ ¼ ð1=2Þðḡμαḡνβ þ ḡμβḡναÞ. It should be empha-
sized here that, in the expressions of the Hessians shown
above, we have factorized the term fkðR̄Þ − ð2=dÞR̄f0kðR̄Þ,
whose zero corresponds the equation of motion of (6)
projected on the background. One sees that the para-
metrization dependence on ðω; mÞ always appears as an
overall factor or terms proportional to the equation of
motion. Then, if one imposes the equation of motion, i.e.,
the on-shell condition, one easily sees that the parametri-
zation dependence drops. For simplicity, we do not write
the primes which take into account spurious modes for each
operator written above.

APPENDIX C: HEAT KERNEL

Throughout this paper we compute functional traces with
the following structure,

TrðsÞ½Wð−∇̄2Þ1ðsÞ�; ðC1Þ

where Wð−∇̄2Þ denotes some function of the Bochner-
Laplacian operator and 1ðsÞ represents the identity operator
acting on the space of scalars (s ¼ 0), transverse vectors
(s ¼ 1), and transverse-traceless symmetric tensors
(s ¼ 2). Usually, this computation can be performed in
terms of the heat kernel expansion [124–126], namely,

TrðsÞ½Wð−∇̄2Þ1ðsÞ�

¼ 1

ð4πÞd=2
X∞
n¼0

Z
ddx

ffiffiffī
g

p
Qd=2−n½W�tr½b2nð−∇̄2Þ1ðsÞ�;

ðC2Þ

where b2nð−∇̄2Þ denote the (nonintegrated) heat kernel
coefficients associated with the operator −∇̄2. In addition,
the so-called Q-functional can be written in terms of the
following expression (for arbitrary real n):

Qn½W� ¼ ð−1Þk
Γðnþ kÞ

Z
∞

0

dzznþk−1 d
kWðzÞ
dzk

; ðC3Þ

where k denotes some (arbitrary) positive integer satisfying
the restriction nþ k > 0.
Furthermore, we cast the values of tr½bnð−∇̄2Þ1ðsÞÞ�, i.e.,

the heat kernel coefficients for each spin sector s and for
each derivative order n, evaluated over a sphere S4 in
Table I.
Since we have performed traces over differential con-

strained fields associated with the York decomposition, we
have to remove some spurious modes which do not
contribute to the lhs of the FRG equation. As usual this
question was indicated with the inclusion of primes over
the trace operation. As a matter of fact, the “primed” trace
can be computed in terms of the usual trace by means of the
following expression:
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Tr0���0ðsÞ ½Wð−∇̄2Þ1ðsÞ�
¼ TrðsÞ½Wð−∇̄2Þ1ðsÞ� −

X
l∈M

Dlðd; sÞWðλlðd; sÞÞ; ðC4Þ

where M ¼ f0; 1; 2;…; m − 1g for scalar fields; M ¼
f1; 2;…; mg for the case of vectors; and so on (m denotes
the number of spurious modes). In addition, λlðd; sÞ
represents the lth eigenvalue of the d-dimensional
Bochner-Laplacian acting in space of spin-s fields and
Dlðd; sÞ denotes the degree of degeneracy associated with
λlðd; sÞ. Below we present some expressions for λl and Dl

(evaluated over the sphere S4) which have been used
throughout this work:

λlð4; sÞ ¼
ðlþ 3Þl − s

12
R̄; ðC5Þ

Dlð4; 0Þ ¼
ð2lþ 3Þðlþ 2Þ!

6l!
; ðC6aÞ

Dlð4; 1Þ ¼
1

2
lðlþ 3Þð2lþ 3Þ: ðC6bÞ

APPENDIX D: LINEAR AND EXPONENTIAL PARAMETRIZATION: NUMERICAL
RESULTS FOR FIXED POINTS AND CRITICAL EXPONENTS

1. Collection of the numerical results taking β → 0 according to the order of truncation N

TABLE I. Heat kernel coefficients on S4.

n

s 0 2 4 6 8 10 12

0 1 1
6
R̄ 29

2160
R̄2 37

54432
R̄3 149

6531840
R̄4 179

431101440
R̄5 − 1387

201755473920
R̄6

1 3 1
4
R̄ − 7

1440
R̄2 − 541

362880
R̄3 − 157

2488320
R̄4 � � � � � �

2 5 − 5
6
R̄ − 1

432
R̄2 311

54432
R̄3 109

1306368
R̄4 � � � � � �

TABLE II. Collection of the fixed points and the dimensionless parameters G̃� and Λ̃� for β → 0 related to truncations from R to R6 in
the linear and exponential parametrization. All dimensionless couplings g� have been multiplied by 103.

ðω; mÞ N Λ̃� G̃� g�0 g�1 g�2 g�3 g�4 g�5 g�6

(0,0) 1 0.1293 0.9842 5.2261 −20.2143 � � � � � � � � � � � � � � �
2 0.1204 1.4532 3.2978 −13.6899 1.6139 � � � � � � � � � � � �
3 0.1322 1.0155 5.1789 −19.5905 0.7163 −7.3666 � � � � � � � � �
4 0.1250 0.9764 5.0953 −20.3749 0.3310 −7.9945 −4.9547 � � � � � �
5 0.1253 0.9780 5.0994 −20.3415 0.3466 −7.7524 −4.7746 −0.4112 � � �
6 0.1220 0.9580 5.0672 −20.7662 0.0653 −8.4164 −6.9364 −0.8994 3.2256

ð1
2
; 0Þ 1 0.2130 1.8611 4.5543 −10.6898 � � � � � � � � � � � � � � �

2 0.2117 1.8502 4.5530 −10.7528 0.0166 � � � � � � � � � � � �
3 0.7563 9.062 3.3199 −2.1948 2.2341 −0.7894 � � � � � � � � �
3 0.1871 1.5315 4.8604 −12.9903 0.5985 0.1587 � � � � � � � � �
4 0.2794 3.493 3.1828 −5.6949 1.4525 0.48974 0.0855 � � � � � �
4 0.1694 1.3755 4.9012 −14.4638 0.9469 0.2670 0.0328 � � � � � �
5 0.4335 5.109 3.3766 −3.8943 2.5626 −0.2955 0.1403 0.0378 � � �
5 0.1491 1.3202 4.4943 −15.0692 1.1932 0.3310 0.0585 8.8872 × 10−3 � � �
6 0.361 4.267 3.3647 −4.6620 2.3788 −0.00786 −0.1489 −0.0442 −0.00662
6 0.1082 1.3839 3.1108 −14.3753 1.4132 0.3569 0.0723 0.0164 2.9223 × 10−3
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2. Collection of numerical results taking β → −∞ according to the order of truncation N

TABLE III. Collection of the critical exponents for β → 0 related to linear and exponential parametrization corresponding to
truncations from R to R6.

ðω; mÞ N θ1 θ2 θ3 θ4 θ5 θ6 θ7

(0,0) 1 2.3824 − 2.1682i 2.3824þ 2.1682i � � � � � � � � � � � �
2 1.7460 − 1.9667i 1.7460þ 1.9667i 25.3713 � � � � � � � � �
3 2.8804 − 2.3186i 2.8804þ 2.3186i 2.0680 −3.5466 � � � � � � � � �
4 3.0312 − 2.5737i 3.0312þ 2.5737i 1.6344 −3.0192 −5.2476 � � � � � �
5 2.5393 − 2.7234i 2.5393þ 2.7234i 1.8536 −3.9829–5.5518i −3.9829þ 5.5518i −4.2034 � � �
6 2.5911 − 2.5754i 2.5911þ 2.5754i 1.3801 −4.2009–5.1360i −4.2009þ 5.1360i −3.9152 −8.4705

ð1
2
; 0Þ 1 1.9651 − 2.4602i 1.9651þ 2.4602i � � � � � � � � � � � � � � �

2 2.3541 − 1.3334i 2.3541þ 1.3334i −14.0103 � � � � � � � � � � � �
3 4.3792 0.9969 −2.1823 −7.5179 � � � � � � � � �
3 1.9970 − 1.8763i 1.9970þ 1.8763i −23.6101 −42.9915 � � � � � � � � �
4 3.8619þ 1.1964i 3.8619 − 1.1964i 2.3719 −2.3054 −7.6558 � � � � � �
4 1.4877 − 2.1637i 1.4877þ 2.1637i −22.2537 −1.6897–52.4913i −1.6897þ 52.4913i � � � � � �
5 4.5842 2.5658 −2.6039þ 1.5312i −2.6039–1.5312i −5.9929 −16.325 � � �
5 0.8547 − 2.0726i 0.8547þ 2.0726i 30.6260 − 23.1427i 30.6260þ 23.1427i −21.3017 −105.9410 � � �
6 5.508þ 2.849i 5.508 − 2.849i −2.612þ 2.644i −2.612–2.644i −7.3045 −15.923 −34.678
6 0.6977 − 1.5086i 0.6977þ 1.5086i 21.3403 37.6352 −15.6291–76.8264i −15.6291þ 76.8264i −17.9181

TABLE IV. Collection of the fixed points and the dimensionless parameters G̃� and Λ̃� for β → −∞ related to truncations from R to R6

in the linear and exponential parametrization. All dimensionless couplings g� have been multiplied by 103.

ðω; mÞ N G̃� Λ̃� g�0 g�1 g�2 g�3 g�4 g�5 g�6
(0,0) 1 0.1341 1.0368 5.1447 −19.1892 � � � � � � � � � � � � � � �

2 0.0961 1.1387 3.3570 −17.4716 2.8955 � � � � � � � � � � � �
3 0.1180 0.9464 4.9600 −21.0219 −1.4932 −13.6691 � � � � � � � � �
4 0.0763 0.6679 4.5450 −29.7845 −21.4321 −70.7808 −70.4563 � � � � � �
5 0.0751 0.6597 4.5268 −30.1556 −21.5084 −77.6290 −79.6259 27.4329 � � �
6 0.1300 1.0149 5.0954 −19.6022 −0.2955 −5.8584 −1.5900 −3.0728 1.6702

ð1
2
; mÞ 1 0.2330 2.7451 3.3774 −7.2473 � � � � � � � � � � � � � � �

2 0.2026 2.2498 3.5838 −8.8427 −2.7598 � � � � � � � � � � � �
3 0.1583 1.7374 3.6243 −11.4505 −6.7583 −3.6280 � � � � � � � � �
4 0.2426 2.7923 3.4566 −7.1248 −0.3962 0.3601 0.1253 � � � � � �
5 0.2141 2.3942 3.5579 −8.3093 −1.8365 0.0811 0.1950 0.0663 � � �
6 0.2037 2.6879 3.0160 −7.4014 0.6575 0.3404 0.2990 −0.0476 0.0201

TABLE V. Collection of the critical exponents for β → −∞ related to linear and exponential parametrization corresponding to
truncations from R to R6.

ðω; mÞ N θ1 θ2 θ3 θ4 θ5 θ6 θ7

(0,0) 1 2.4545 − 2.5767i 2.4545þ 2.5767i � � � � � � � � � � � � � � �
2 2.5148 − 1.8917i 2.5148þ 1.8917i 7.8779 � � � � � � � � � � � �
3 2.6394 − 2.1159i 2.6394þ 2.1159i 4.0655 −1.8134 � � � � � � � � �
4 4.3836 − 2.8471i 4.3836þ 2.8471i 3.0636 −0.2609 −5.7246 � � � � � �
5 2.5904 − 7.1776i 2.5904þ 7.1776i 3.7292 −0.3354 −3.2286 −8.1730 � � �
6 3.0894 − 3.4346i 3.0894þ 3.4346i 5.6203 −2.4728 −4.5203 −12.2586–2.8747i −12.2586þ 2.8747i

ð1
2
; mÞ 1 4.0 2.4415 � � � � � � � � � � � � � � �

2 4.0 1.7496 −19.1745 � � � � � � � � � � � �
3 4.0 0.4374 20.7814 −11.4433 � � � � � � � � �
4 4.0 1.9279 −4.4716 −7.1001 −10.0966 � � � � � �
5 4.0 0.8724 25.3874 −5.4564 −5.9866 −7.8517 � � �
6 4.0 2.1819 4.9551 −4.1972–1.1378i −4.1972þ 1.1378i −4.7917–0.3080i −4.7917þ 0.3080i
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