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We reconsider the criticality of the Ising model on two-dimensional dynamical triangulations based on
the N × N Hermitian two-matrix model with the introduction of a loop-counting parameter and linear terms
in the potential. We show that in the large-N limit even though the Ising model is classical, the critical
temperature can reach absolute zero by tuning the loop-counting parameter, and the corresponding
continuum theory turns out to be the quantized theory of neither pure gravity nor gravity coupled to
conformal matter with central charge being 1=2.

DOI: 10.1103/PhysRevD.98.026026

I. INTRODUCTION

Two-dimensional dynamical triangulations (2d DT), first
introduced in [1–6], are a quite powerful method to regularize
two-dimensional Euclidean quantum gravity (Liouville quan-
tum gravity) coupled to conformal matter with central charge
less than or equal to one, or equivalently world sheets of
noncritical string theories embedded in dimensions less than
or equal to one (see, e.g., [7,8]).With the help ofmatrix-model
descriptions, statistical systems on 2d DT have been studied
quite well, and the Ising model on 2d DT, which can be
described by the N × N Hermitian two-matrix model [9,10],
is an example. In the large-N limit, this model can be solved
exactlywhen an externalmagnetic field is zero and the critical
exponents of the Isingmodel dressed by quantum gravity turn
out to be different [10] from Onsager’s exponents on a two-
dimensional flat regular lattice, known as the Knizhnik-
Polyakov-Zamolodchikov (KPZ) exponents [11], which orig-
inateswith the existence of two kinds of divergent fluctuations
associated with triangulations as well as Ising spins at the
critical point. The field theory obtained by the continuum limit
around the critical point is known to be the quantized theory of
two-dimensional Euclidean gravity coupled to conformal
matter with central charge being 1=2 [9].
Two-dimensional causal dynamical triangulations

(2d CDT) [12], whose ensembles are different from those

of 2d DT,1 i.e., no baby-universe creation is allowed, are
known to provide a regularization for the two-dimensional
projectable Hořava-Lifshitz quantum gravity [14]. CDT is
closer to regular triangulations than DT in the sense that
backreactions of triangulations onmatter are small compared
to those of DT, e.g., critical exponents of the Ising model on
2d CDT exhibit Onsager’s values, which has been checked
numerically [15,16].2 It is known that there exist bijections
between ensembles in 2d CDT and trees [17–21]. In two
dimensions, there is a generalization of CDT in the con-
tinuum known as generalized causal dynamical triangula-
tions (generalized CDT) [22,23], in which a finite number of
baby-universe creation is allowed.
Based on the Hermitian one-matrix model, one can

define the continuum limit of (generalized) CDT [24] as
well as the conventional continuum limit corresponding to
the Liouville quantum gravity. As clarified in [21,25], in
order to obtain the continuum limit of (generalized) CDT it
is quite important to introduce a linear term in the matrix-
model potential and the parameter controlling the number
of loops appeared in perturbative expansions of the matrix
model, called loop-counting parameter in this paper: Due
to the linear term, graphs generated by perturbative
expansions can terminate to form trees, and tuning the
loop-counting parameter in such a way as to reduce the
number of loops, resulting graphs would be dominated by
trees; the critical point of (generalized) CDT is the one at
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1CDT is defined with the Lorentzian signature, but one can
move to the Euclidean signature by an analytic continuation,
which directly maps individual triangulations (e.g., see [13]). In
this paper we consider CDT with the Euclidean signature.

2This happens if Ising spins are placed in the center of triangles.
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which loops are suppressed, and therefore governed by that
of the trees.3

Having the argument above in mind, it would be
expected that if one defines the Ising model on 2d DT
based on the N × N Hermitian two-matrix model with the
introduction of the loop-counting parameter and linear
terms, one can reduce the known conventional critical
temperature of the Ising model on 2d DT to absolute zero
by tuning the loop-counting parameter in the direction of
reducing loops because the Ising model on connected tree
graphs called branched polymers can be critical only at the
zero temperature [30]. Investigating this possibility is quite
interesting since the critical point obtained in this manner
might be related to a quantum critical point. The quantum
critical point is the critical point at absolute zero originated
with quantum fluctuations, which can be achieved typically
by tuning a parameter denoting, say pressure or field, in
such a way that a conventional non-zero critical temper-
ature reaches absolute zero. In this paper, we pursue this
idea and as expected we find that in the large-N limit the
critical temperature of the Ising model dressed by quantum
gravity can indeed reach absolute zero by tuning the loop-
counting parameter; we also identify the corresponding
continuum theory around absolute zero, which is different
from two-dimensional Euclidean quantum gravity coupled
to conformal matter with central charge being 1=2.
This paper is organized as follows: In Sec. II, we review

basics of the Isingmodel on 2dDTand explain the relation to
the Hermitian two-matrix model. In Sec. III, we define our
model based on theN × N Hermitian two-matrixmodel with
the introduction of the loop-counting parameter and linear
terms, and examine the model by the saddle-point method in
the large-N limit. In Sec. IV, we obtain the critical coupling
constants as functions of the loop-counting parameter and
show that the critical temperature reaches absolute zerowhen
tuning the parameter in such away as to suppress the number
of loops. In Sec. V,we identify the continuum theory realized
around the critical point at absolute zero as a certain
continuum two-matrix model in the large-N limit.
Section VI is devoted to discussion.

II. ISING MODEL ON TWO-DIMENSIONAL
DYNAMICAL TRIANGULATIONS

We consider the Ising model on a connected triangula-
tion T with sphere topology such that an Ising spin,
σ ¼ �1, is placed on each face of triangles, which is
defined by the following partition function:

ZTðβÞ ¼
X
fσg

Y
hi;ji

eβσiσj ; ð2:1Þ

where β is the inverse temperature, the sum is over all Ising-
spin configurations on a triangulation T and the product is
over all neighboring triangles hi; ji in which i, j are labels
for triangles. We then introduce the Ising model on 2d DT
in such a way as to sum over all connected combinatorial
triangulations of sphere with an assignment of the weight g
for each triangle. The corresponding partition function is
given by

Zðβ; gÞ ¼
X
T

1

jAutðTÞj g
nðTÞZTðβÞ; ð2:2Þ

where jAutðTÞj is the order of automorphism group of a
triangulation T and nðTÞ is the number of triangles in a
triangulation T. The coupling constant g is related to the
bare cosmological constant of two-dimensional discrete
quantum gravity, μ, via the relation, g ¼ e−μ.
Alternatively, the partition function of the Ising model on

2d DT (2.2) can be expressed by the Hermitian two-matrix
model [9]:

ZNðc; gÞ ¼
Z

DϕþDϕ−e−NtrUðϕþ;ϕ−Þ; ð2:3Þ

where ϕ� is an N × N Hermitian matrix, Dϕ� is the Haar
measure on UðNÞ and U is the potential given by

Uðϕþ;ϕ−Þ¼
ffiffiffi
c

p
2ð1−c2Þðϕ

2þþϕ2
−−2cϕþϕ−Þ−

g
3
ðϕ3þþϕ3

−Þ;

ð2:4Þ

with the identification, c ¼ e−2β. The Gaussian parts
contribute to propagators:

hðϕaÞijðϕbÞkli0 ≔
1

ZNðc; 0Þ
Z

DϕþDϕ−ðϕaÞijðϕbÞkl

× e
−
ffiffi
c

p
N

2ð1−c2Þtrðϕ
2
þþϕ2

−−2cϕþϕ−Þ

¼ 1

N
Δabδilδjk; ð2:5Þ

where i; j ¼ 1; 2;…; N, a, b ¼ þ, − and the 2 × 2 matrix
Δ is given by

Δab ¼
�
1=

ffiffiffi
c

p ffiffiffi
c

p
ffiffiffi
c

p
1
ffiffiffi
c

p
�
¼
�
eβ e−β

e−β eβ

�
: ð2:6Þ

Using the propagators (2.5), perturbative expansions with
respect to g give the relation between the two-matrix
integral and the Ising model on 2d DT in the large-N limit:

3Also, a multicritical behavior of the Hermitian one-matrix
model has been reinvestigated with the introduction of the loop-
counting parameter and the linear term [26], and an unconven-
tional third multicritical point has been obtained by tuning the
parameter in the similar manner; the corresponding continuum
limit defines a multicritical generalized CDT. The combinatorial
interpretation of this work has been provided in [27,28] and the
description by string field theory has been introduced in [29].
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Zðβ; gÞ ¼ lim
N→∞

1

N2
log

�
ZNðc; gÞ
ZNðc; 0Þ

�
; ð2:7Þ

where in the right-hand side 1=N2 factor appears to pick up
planar Feynman graphs in the large-N limit and the
logarithm restricts them to connected ones. This relation
can be understood as follows. The dual description of each
connected planar graph is nothing but the triangulation of
sphere consisting of triangles on which Ising spins are
placed; the weight of triangles, g, can be properly assigned
by the two kinds of cubic terms in the potential (2.4) and
the Ising-spin interactions by the propagators (2.5).
The partition function of the Ising model on 2d DT (2.2)

can be rewritten as the sum over the number of triangles:

Zðβ; gÞ≕
X
n

gnZnðβÞ ¼
X
n

e−nðμ−1
nFnðβÞÞ; ð2:8Þ

where g ¼ e−μ and FnðβÞ ≔ logZnðβÞ. The partition func-
tion would be singular when tuning μ to a certain value, μc,
in such a way as to approach the radius of convergence
from above; μc is called the critical cosmological constant
given by

μcðβÞ ¼ lim
n→∞

1

n
FnðβÞ: ð2:9Þ

The critical cosmological constant can be understood as the
free energy per triangle of the Ising model dressed by
quantum gravity. On the critical line, μcðβÞ, infinitely many
triangles become important in the sum, i.e., the average
number of triangles, hni, blows up to infinity; if simulta-
neously tuning the lattice spacing of a triangle, ε, to zerowith
hniϵ2 kept fixed, then the triangulated surface becomes
continuous. This process is called the continuum limit.
Furthermore, the free energy per triangle, μcðβÞ, becomes
singular at a certain point on the critical line, β ¼ βc, on
which fluctuations of Ising spins diverge and the interaction
among triangulations and Ising spins become strongest. This
is the critical point of the Ising model dressed by quantum
gravity. Around this critical point, the critical exponents are
known to be different from Onsager’s value for the Ising
model on a flat regular lattice, which has been checked by
introducing a homogeneous magnetic field to the system
[10], and as well the back reactions of the Ising-spin
fluctuations on triangulations modify the so-called string
susceptibility exponent characterizing the rate of baby uni-
verse creations [31–33], as γsrt ¼ −1=2 at β ≠ βc to γstr ¼
−1=3 at β ¼ βc [10].
One can generalize the argument about the Ising model

on 2d DT in such a way as to consider discretizations not
only by triangles but also by generic polygons and hereafter
we also call them triangulations. Let us consider the Ising
model on 2d DT consisting of i-gons (i ¼ 1; 2;…; m)
whose weight is given by gti where ti ≥ 0. The partition
function (2.2) then can be replaced by

Zðβ; g; t1;…; tmÞ ¼
X
T

1

jAutðTÞj g
nðTÞYm

i¼1

tniðTÞi ZTðβÞ;

ð2:10Þ

where niðTÞ is the number of i-gons and nðTÞ is the number
of polygons in a triangulation T satisfying nðTÞ ¼P

m
i¼1 niðTÞ. The corresponding matrix model is given

by the matrix integral (2.3) with the replacement of the
potential by

Uðϕþ;ϕ−Þ ¼
ffiffiffi
c

p
2ð1 − c2Þ ðϕ

2þ þ ϕ2
− − 2cϕþϕ−Þ

− g
Xm
i¼1

ti
i
ðϕiþ þ ϕi

−Þ: ð2:11Þ

In this paper especially we consider triangulations
consisting of 1-gons and 3-gons, and relate t1 and t3 by
a new parameter θ as

t1 ∝
1ffiffiffi
θ

p ; t3 ∝
ffiffiffi
θ

p
: ð2:12Þ

This parametrization would allow us to use θ as a parameter
controlling the number of loops in Feynman graphs, first
introduced in the context of the Hermitian one-matrix
model4 [24]. The partition function becomes

Zðβ; g; t1; t3Þ ¼
X
T

1

jAutðTÞj g
nðTÞtn1ðTÞ1 tn3ðTÞ3 ZTðβÞ

≕
X
n

e−nðμ−1
nFnðβ;θÞÞ; ð2:13Þ

and the critical cosmological constant is given by

μcðβ; θÞ ¼ lim
n→∞

1

n
Fnðβ; θÞ: ð2:14Þ

Deriving the critical temperature, β−1c ðθÞ, at which fluctua-
tions of Ising spins diverge, and the critical coupling
constant at the critical temperature,

gcðθÞ ¼ e−μcðβcðθÞ;θÞ; ð2:15Þ

we investigate how the critical coupling constants, (βcðθÞ,
gcðθÞ), behave with decreasing θ. As will be shown, the
critical temperature approaches zero as θ → 0. In Sec. III,
we will define our model based on the hermitian two-
matrix model.

4The loop-counting parameter, θ, is equivalent to gs in [24].
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III. MODEL

We consider the Ising model on 2d DT consisting
of 1-gons and 3-gons based on the Hermitian two-matrix
model given by (2.3) with the potential (2.11) in which
t1 ≠ 0, t3 ≠ 0 and ti ¼ 0 for i ≠ 1, 3. As explained in the
previous section, we relate t1 and t3 by introducing the
parameter θ as

t1 ¼
� ffiffiffi

c
p

1 − c2

�
1=2 1ffiffiffi

θ
p ; t3 ¼

� ffiffiffi
c

p
1 − c2

�
3=2 ffiffiffi

θ
p

: ð3:1Þ

Changing the integration variables,

ϕ� ¼
�
1 − c2

θ
ffiffiffi
c

p
�

1=2

φ�; ð3:2Þ

the two-matrix integral can be written, up to an overall
constant, as

ZNðc; g; θÞ ¼
Z

DφþDφ−e−NtrUð0Þðφþ;φ−Þ; ð3:3Þ

where

Uð0Þðφþ;φ−Þ ¼
1

θ

�
1

2
φ2þ þ 1

2
φ2
− − cφþφ− − gðφþ þ φ−Þ

−
g
3
ðφ3þ þ φ3

−Þ
�
: ð3:4Þ

From (3.4), one can understand that for the small θ the two-
matrix integral would be dominated by its “classical” value.
In other words, θ controls the number of loops in Feynman
graphs generated by Uð0Þ.

A. Role of θ and linear terms

Let us clarify the importance of the linear terms in
the potential (3.4) when θ is small, which has been
explained in [21,25] in the context of the one-matrix model.
A typical planar graph generated by the potential (3.4) is

shown in the left-hand side of Fig. 1. As can be seen from
Fig. 1, due to the linear terms in the potential (3.4), lines
can terminate to form trees. One can eliminate the linear
terms of the potential (3.4) by changing variables,

φ� ¼ φ̃� þ Ztreeðg; cÞ; ð3:5Þ

where

Ztreeðg; cÞ ≔
1 − c −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − cÞ2 − 4g2

p
2g

; ð3:6Þ

as

Uð1Þðφ̃þ; φ̃−Þ ¼ Uð0Þðφ̃þ þ Ztreeðg; cÞ; φ̃− þ Ztreeðg; cÞÞ
þ constant;

¼ 1

θ

�
1 − 2gZtreeðg; cÞ

2
ðφ̃2þ þ φ̃2

−Þ − cφ̃þφ̃−

−
g
3
ðφ̃3þ þ φ3

−Þ
�
: ð3:7Þ

Here Ztreeðg; cÞ is the summation of all connected planar,
rooted tree graphs generated by the potential (3.4): Four kinds
of lines are weighted by θ=ðNð1 − c2ÞÞ or θc=ðNð1 − c2ÞÞ
and vertices are weighted by gN=θ. Using the graphical
expressions shown in Fig. 2, one can write the equations
defining the summations over all connected planar, rooted
tree graphs denoted by Z�:

Zþ ¼ θ

Nð1 − c2Þ
gN
θ

þ θc
Nð1 − c2Þ

gN
θ

þ θ

Nð1 − c2Þ
gN
θ

Z2þ

þ θc
Nð1 − c2Þ

gN
θ

Z2
−; ð3:8Þ

FIG. 1. The left figure: A typical planar graph generated by the
potential (3.4) in which tree graphs attached to lines are produced
by the linear terms. Each solid line and each dotted line
correspond to the propagators, hφþφþi0 and hφ−φ−i0, respec-
tively; each half-solid and half-dotted line corresponds to the
propagator, hφþφ−i0 or hφ−φþi0. The right figure: A typical
planar graph generated by the potential (3.7) in which all tree
graphs are integrated out. Each solid double-line and each dotted
double-line correspond to the propagators, hφ̃þφ̃þi0 and
hφ̃−φ̃−i0, respectively; each half-solid and half-dotted double-
line corresponds to the propagator, hφ̃þφ̃−i0 or hφ̃−φ̃þi0.

FIG. 2. Graphical expressions defining the summations over all
connected planar, rooted tree graphs: Each solid line and each
dotted line are weighted by θ=ðNð1 − c2ÞÞ and each half-solid
and half-dotted line is weighted by θc=ðNð1 − c2ÞÞ; each vertex
is weighted by gN=θ. The left-hand side of the top figure is Zþ
and the left-hand side of the bottom figure is Z−, which are
defined by the right-hand sides in a self-consistent manner.
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Z− ¼ θ

Nð1 − c2Þ
gN
θ

þ θc
Nð1 − c2Þ

gN
θ

þ θ

Nð1 − c2Þ
gN
θ

Z2
−

þ θc
Nð1 − c2Þ

gN
θ

Z2þ: ð3:9Þ

Solving (3.8) and (3.8) one obtains

Zþ ¼ Z− ¼ Ztree: ð3:10Þ

The quadratic terms in the potential (3.7) produce “dressed”
propagators which are alternatively obtained by summing all
connected planar, rooted tree graphs attached to the propa-
gators generated by the potential (3.4):

θ

N
ð1þ2gZtreeþð2gZtreeÞ2þ�� �Þ× ð1þc2ð1þ2gZtree

þð2gZtreeÞ2þ���Þ2þc4ð1þ2gZtreeþð2gZtreeÞ4þ���Þ4

þ�� �Þ¼ θð1−2gZtreeÞ
Nðð1−2gZtreeÞ2−c2Þ¼ hφ̃þφ̃þi0¼hφ̃−φ̃−i0;

ð3:11Þ

θc
N
ð1þ2gZtreeþð2gZtreeÞ2þ���Þ2× ð1þc2ð1þ2gZtree

þð2gZtreeÞ2þ���Þ2
þc4ð1þ2gZtreeþð2gZtreeÞ4þ���Þ4þ�� �Þ

¼ θc
Nðð1−2gZtreeÞ2−c2Þ¼ hφ̃þφ̃−i0¼hφ̃−φ̃þi0; ð3:12Þ

where indices of the matrices are omitted. A graph obtained
by integrating out all tree graphs is depicted in the right-hand
side of Fig. 1, which is called a cubic “skeleton” graph [25].
Rescaling the matrices,

φ̃� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

θ

1 − 2gZtreeðg; cÞ

s
ψ�; ð3:13Þ

one obtains the following potential:

Uð2Þðψþ;ψ−Þ¼Uð1Þ
 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

θ

1−2gZtreeðg;cÞ

s
ψþ;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
θ

1−2gZtreeðg;cÞ

s
ψ−

!

¼ 1

2
ðψ2þþψ2

− −2cdtψþψ−Þ−
gdt
3
ðψ3þþψ3

−Þ;
ð3:14Þ

where

cdt ≔
c

1 − 2gZtreeðg; cÞ
; gdt ≔

θ1=2g

ð1 − 2gZtreeðg; cÞÞ3=2
:

ð3:15Þ

As we have seen above, starting from the potential, Uð0Þ,
one can erase the linear terms by the linear transformation
(3.5), which is equivalent to integrating out all connected
planar, rooted tree graphs, and the parameter, θ, can be
absorbed by rescaling the matrices (3.13) and redefinition
of coupling constants (3.15), resulting in the potential,Uð2Þ.
When θ ∼Oð1Þ, the linear terms are not important in the
sense that they do not alter the criticality obtained by
Kazakov, but they become important when θ is small: Since
the power of θ in a graph generated by the potential, Uð0Þ,
can be counted as θl−2, where l is the number of loops in a
graph, if θ is small, then loops are suppressed and as a result
the tree graphs would be dominant [25]. Therefore, one can
expect that tuning θ → 0, the criticality of the model
defined by the partition function (3.3) is governed by that
of trees. As argued in [30], the Ising model on branched
polymers (connected tree graphs) can be critical only at the
zero temperature, i.e., c ¼ 0. In fact, the average number of
vertices in a tree,

hnitree ¼ g
d
dg

logZtreeðg; cÞ; ð3:16Þ

the average number of vertices in the dressed propagators,
hφ̃þφ̃þi and hφ̃−φ̃−i,

hnip1 ¼ g
d
dg

log

�
1 − 2gZtreeðg; cÞ

ð1 − 2gZtreeðg; cÞÞ2 − c2

�
; ð3:17Þ

and the average number of vertices in the dressed propa-
gators, hφ̃þφ̃−i and hφ̃−φ̃þi,

hnip2 ¼ g
d
dg

log

�
c

ð1 − 2gZtreeðg; cÞÞ2 − c2

�
; ð3:18Þ

all diverge at the critical point,

g ¼ g� ≔
1

2
; c ¼ c� ≔ 0: ð3:19Þ

Here the average number of vertices is that of faces in dual
triangulations.
Taking into account the observations above, one would

expect that using the two-matrix model (3.3) the critical
point of the Ising model on dynamical triangulations
specified by the critical coupling constants, (gcðθÞ,
ccðθÞ), in which fluctuations of both triangulations and
Ising spins diverge can reach the critical point of the Ising
model on branched polymers by tuning θ → 0, which is
characterized by (gcð0Þ ¼ g�, ccð0Þ ¼ c�).
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B. Saddle-point analysis

In the following we will investigate the two-matrix
integral (3.3) basically using the techniques established
in [34]. Changing the variables again,

φþ ¼ A −
1

2g
Bþ 1

2g
ð1þ cÞ;

φ− ¼ −A −
1

2g
Bþ 1

2g
ð1þ cÞ; ð3:20Þ

(3.3) becomes up to overall constant

ZNðc; g; θÞ ¼
Z

DADBe−
N
θ trðA2BþVðBÞÞ; ð3:21Þ

where

VðBÞ ¼ 1

12g2
ðB3 − 6cB2 þ 3ð4g2 þ ð3c − 1Þðcþ 1ÞÞBÞ:

ð3:22Þ

Since the DA and DB are Haar measures on U(N), one can
diagonalize B in such a way that

B → U†BU ¼ diagðλ1; λ2;…; λNÞ; ð3:23Þ

withU ∈ UðNÞ and implementing the Gaussian integration
with respect to A, (3.21) becomes up to overall constant

ZNðc; g; θÞ ¼
Z YN

i¼1

dλie−
N2

θ VeffðλÞ; ð3:24Þ

where

VeffðλÞ ¼
1

N

XN
i¼1

VðλiÞ −
θ

N2

XN
i¼1

XN
jð≠iÞ¼1

log jλi − λjj

þ θ

2N2

XN
i¼1

XN
j¼1

logðλi þ λjÞ: ð3:25Þ

In the large-N limit, the saddle-point equation, dVeffðλÞ=
dλi ¼ 0, becomes

V 0ðλiÞ ¼
2θ

N

XN
jð≠iÞ¼1

1

λi − λj
−

θ

N

XN
j¼1

1

λi þ λj
: ð3:26Þ

Following [35] we introduce the nondecreasing function
λðxÞ:

λði=NÞ ≔ λi: ð3:27Þ

Then the saddle-point equation (3.26) becomes the following
integral equation:

V 0ðλðxÞÞ¼ 2θ

Z
1

0

dy

�
P

λðxÞ−λðyÞ−
1=2

λðxÞþλðyÞ
�
; ð3:28Þ

where P denotes Cauchy’s principal value. It is natural to
introduce the density of eigenvalues,

ρðλÞ ≔ dx
dλ

; ð3:29Þ

satisfying the normalization condition:

1 ¼
Z

1

0

dx ¼
Z

b

a
dλρðλÞ; ð3:30Þ

in which we have assumed that eigenvalues are distributed
within the real interval, ½a; b�. Based on the density (3.29), the
saddle-point equation (3.28) can be written as

V0ðλÞ ¼ θ

Z
b

a
dμρðμÞ

�
2P

λ − μ
−

1

λþ μ

�
: ð3:31Þ

We introduce the resolvent of the matrix B in the large-N
limit:

w0ðzÞ ¼
Z

b

a
dλ

ρðλÞ
z − λ

; ð3:32Þ

defined for complex z outside the real interval, ½a; b�.
By definition of Cauchy’s principal value, the saddle-
point equation (3.31) can bewritten in terms of the resolvent
(3.32) as

V 0ðzÞ ¼ θðw0ð−zÞ þ w0ðzþ i0Þ þ w0ðz − i0ÞÞ: ð3:33Þ

A polynomial solution to (3.33) is

wrðzÞ ¼
1

3θ
ð2V 0ðzÞ − V 0ð−zÞÞ

¼ 1

12g2θ
ðz2 − 12czþ 4g2 þ ð3c − 1Þðcþ 1ÞÞ:

ð3:34Þ

We rewrite the saddle-point equation (3.33) in terms of

wðzÞ ≔ 12θðw0ðzÞ − wrðzÞÞ; ð3:35Þ

as

wðzþ i0Þ þ wðz − i0Þ þ wð−zÞ ¼ 0: ð3:36Þ

This homogeneous equation implies the structure of the
Riemann surface consisting of three sheets with square root
branch cuts [34], and by definition of the eigenvalue
distribution (3.30) there is a single square root branch cut,
½a; b�, on the sheet we are working on, called physical sheet.
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Taking into account that w0ðzÞ ≅ 1=zþOð1=z2Þ for
large z, we obtain

wðzÞ ≅ −
1

g2
z2 þ 12c

g2
z −

4g2 þ ðcþ 1Þð3c − 1Þ
g2

þ 12θ

z
þOðz−2Þ: ð3:37Þ

C. Algebraic cubic equation

Using the resolvent (3.32) of the matrix B, the saddle
point equation (3.26) in the large-N limit can be also
written as follows:

θðw0ðzÞ2 þ w0ðzÞw0ð−zÞ þ w0ð−zÞ2Þ
¼ V 0ðzÞw0ðzÞ þ V 0ð−zÞw0ð−zÞ þ r0; ð3:38Þ

where r0 is a constant. In terms of (3.35), (3.38) can be
recast in

wðzÞ2 þ wðzÞwð−zÞ þ wð−zÞ2 ¼ 3rðzÞ; ð3:39Þ
where rðzÞ is a regular even function. As anticipated from
the structure of the Riemann surface, the saddle-point
equation (3.39) can be written as an algebraic cubic
equation multiplying by wðzÞ − wð−zÞ:
wðzÞ3 − 3rðzÞwðzÞ ¼ wð−zÞ3 − 3rð−zÞwð−zÞ ¼ 2sðzÞ;

ð3:40Þ
where sðzÞ is an even polynomial since sðzÞ is regular
everywhere [34]. Introducing the following useful notation
[34],

w�ðzÞ ¼ � i
2 sin δ

ðe�iδ=2wðzÞ − e∓iδ=2wð−zÞÞ;
δ ¼ 2π=3; ð3:41Þ

with w�ð−zÞ ¼ w∓ðzÞ, one notices

wþðzÞw−ðzÞ ¼ rðzÞ: ð3:42Þ
wðzÞ then can be written in terms of w�ðzÞ as

wðzÞ ¼ e−2πi=3wþðzÞ þ e2πi=3w−ðzÞ: ð3:43Þ
Using the notation (3.41) we can express the algebraic
cubic equation (3.40) as

wþðzÞ3 þ w−ðzÞ3 ¼ 2sðzÞ;
wþðzÞw−ðzÞ ¼ rðzÞ; ð3:44Þ

Additionally, the homogeneous equation (3.36) has the
following alternative form:

w�ðz − i0Þ ¼ e�2πi=3w∓ðzþ i0Þ: ð3:45Þ

Assuming (3.45) one can recover the homogeneous
equation (3.36).
The solution to the algebraic cubic equation (3.40) is

given as

wðzÞ ¼ e−2πi=3wþðzÞ þ e2πi=3w−ðzÞ; ð3:46Þ

where

w�ðzÞ ¼ ½sðzÞ �
ffiffiffiffiffiffiffiffiffiffi
ΔðzÞ

p
�1=3; ð3:47Þ

ΔðzÞ ¼ sðzÞ2 − rðzÞ3;ffiffiffiffiffiffiffiffiffiffi
ΔðzÞ

p
¼ 1

2
½wþðzÞ3 − w−ðzÞ3�: ð3:48Þ

From the asymptotic behavior of wðzÞ for large z (3.37), we
obtain

w�ðzÞ ≅
z2

g2
� 4i

ffiffiffi
3

p
c

g2
zþ 4g2 þ ð3c − 1Þðcþ 1Þ

g2

� 4i
ffiffiffi
3

p
θ

z
þOðz−3Þ; ð3:49Þ

ffiffiffiffiffiffiffiffiffiffi
ΔðzÞ

p
¼ 12i

ffiffiffi
3

p
c

g6
zðz2−e2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz2−a2Þðz2−b2Þ

q
; ð3:50Þ

where a, b, and e are constants and we assume that
b ≥ a ≥ 0. The form of (3.50) has been fixed in such a
way as to satisfy (3.45) [34].

IV. PERTURBATIONS AROUND CRITICAL POINT

The analytic structure of the resolvent (or equivalently
that of wðzÞ) can change when some zeros of ΔðzÞ in (3.50)
coincide; this change of analytic structure would happen if
coupling constants reach their radius of convergence for the
resolvent. The corresponding coupling constants are critical
coupling constants. In the following we will find one-
parameter family of the critical coupling constants, gcðθÞ
and ccðθÞ, on which interactions among triangulations and
Ising spins become strongest, and then tune θ to 0.
Since on the physical sheet we have assumed that there

exists a single square root branch cut, ½a; b�, we consider
the confluence of one of the end points of the branch cut
and the other zeros of Δ, e and 0. As investigated in [34]
when θ is not zero, the confluence, a ¼ e, corresponds to
the conventional critical point of the one-matrix model
around which one can take the continuum limit resulting in
the quantized theory of pure gravity, and on the other hand,
the confluence, a ¼ 0, makes the Ising-spin fluctuations
diverge. Therefore, the simultaneous confluence of two
zeroes, a ¼ e ¼ 0, corresponds to the criticality associated
with the quantized theory of gravity coupled to conformal
matter with central charge being 1=2.
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Let us consider the confluence, a ¼ 0, and determine the
corresponding generic form of w�ðzÞ. The critical solution
satisfying a ¼ 0 can be determined by the following four
conditions:
(1) There exists a single branch cut, ½0; b�, on the

physical sheet.
(2) w�ðzÞ should satisfies the Eq. (3.45).
(3) The product, wþðzÞw−ðzÞ, is a polynomial.
(4) w�ðzÞ ≅ z2=g2 þ � � � for large z.

As a result, one obtains [34]

w�ðzÞ¼
z2

g2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−b2=z2

q
∓ ib=z

�1=3� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−b2=z2

q
�iσb=z

�
;

ð4:1Þ

where σ is a constant to be determined. Accordingly, one
finds

ffiffiffiffi
Δ

p
¼ ibð3σ − 1Þ

g6
z2
�
z2 −

ðσ − 1Þ3
ð3σ − 1Þ b

2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 − b2

p
: ð4:2Þ

Comparing (4.2) with (3.50) under the condition a ¼ 0,
one can describe e in terms of σ and b:

e2 ¼ b2
ðσ − 1Þ3
ð3σ − 1Þ : ð4:3Þ

The large-z expansion of (4.1) becomes

w�ðzÞ ≅
z2

g2
� ibð3σ − 1Þz

3g2
þ b2ð3σ − 5Þ

9g2
� ib3ð19 − 9σÞ

162g2z

þOðz−2Þ: ð4:4Þ

Comparing the large-z expansions, (4.4) and (3.49), one
obtains the set of equations:

bð3σ − 1Þ ¼ 12
ffiffiffi
3

p
c; ð4:5Þ

b2ð3σ − 5Þ ¼ 9ð4g2 þ ð3c − 1Þðcþ 1ÞÞ; ð4:6Þ

b3ð19 − 9σÞ ¼ 648
ffiffiffi
3

p
θg2: ð4:7Þ

From the conditions, c ≥ 0 and θ ≥ 0, and the set of
equations (4.5)–(4.7), one can find the region for σ to
satisfy:

1

3
≤ σ ≤

19

9
: ð4:8Þ

The following two critical behaviors can be expected [34]5:

(1) We do not consider further confluence of zero and
set c ¼ 0 by choosing σ ¼ 1=3 (see (4.5), which as a
result “freezes” the Ising-spin degrees of freedom,
resulting in the conventional criticality of the one-
matrix model.

(2) We consider further confluence of zero such that
a ¼ e ¼ 0, which can be realized by setting σ ¼ 1
from (4.3). At this critical regime, interactions among
triangulations and Ising spins become strongest.

The case 1 above might look weird since although the
critical condition, a ¼ 0, means the divergent fluctuations
of Ising spins, the conventional criticality of the one-matrix
model can be reached. This might happen because fluctua-
tions of Ising spins would be converted to those of
triangulations by setting c ¼ 0, which can be confirmed
by the fact that the critical coupling constant associated
with the case 1 coincides with the conventional coupling
constant of the one-matrix model. In the following, let us
check the two cases above for small θ.

A. Case with c= 0

From (4.5)–(4.7) with σ ¼ 1=3, one can obtain the
equation which the critical g should satisfy:

g2 ¼ 1

12
ffiffiffi
3

p
θ
ð1 − 4g2Þ3=2: ð4:9Þ

The solution to (4.9) in the regime, 0 ≤ θ ≤ 1=6, is

g2cðθÞ¼
1

4
−
9

4
θ2þ 3

4×22=3F
θ2=3ð21=3F2−4θ2=3þ18θ8=3Þ;

ð4:10Þ

where

F ¼ ð−1þ 18θ2 − 54θ4 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4θ2

p
Þ1=3: ð4:11Þ

The small-θ expansion of (4.10) is given as

g2cðθÞ ≅ g2� þ
3

4 × 21=3
θ2=3 þ � � � ; ð4:12Þ

where g� has been defined in (3.19).

B. Case with c ≠ 0

We consider the set of equations, (4.5)–(4.7), with σ ¼ 1.
From (4.7), one finds

b ¼ αθ1=3ðg2Þ1=3; with α ≔
�
324

ffiffiffi
3

p

5

�1=3

: ð4:13Þ

From (4.5), (4.6), and (4.13), one obtains the equation
which the critical g satisfies

5One cannot consider b ¼ e since from (4.3) one has to choose
σ as 0 or 3, which are out of the range (4.8).
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g2 ¼ 1

4

�
1 −

ffiffiffi
3

p
α

9
θ1=3ðg2Þ1=3 − α2

4
θ2=3ðg2Þ2=3

�
; ð4:14Þ

and

c ¼
ffiffiffi
3

p
α

18
θ1=3ðg2Þ1=3: ð4:15Þ

For a fixed θ, one can obtain the critical value of g, gcðθÞ,
by solving (4.14); accordingly, critical value of b and c,
bcðθÞ and ccðθÞ, can be obtained from (4.13) and (4.15),
respectively. The solution to (4.14) in the regime,
0 ≤ θ ≤ 5ð251þ 85

ffiffiffiffiffi
85

p Þ=5103 ¼ 1.01378 � � �, is

g2cðθÞ¼
�
−

9

4×102=3
θ2=3þ31=3θ1=3ð243θ−80ÞþH2

4×302=3H

�
3

;

ð4:16Þ

where

H¼
h
81ð40−81θÞθ

þ80
�
90þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8100þ3ð2510−5103θÞθ

p �i
1=3

: ð4:17Þ

The small-θ expansion of (4.16) is given as

g2cðθÞ ≅ g2� −
1

4 × 51=3
θ1=3 þ � � � ; ð4:18Þ

where g� is the critical coupling of the Ising model on
branched polymers defined in (3.19). Plugging (4.16) into
(4.15), one obtains the critical value of c:

ccðθÞ ¼
1

101=3
θ1=3

�
−

9

4 × 102=3
θ2=3

þ 31=3θ1=3ð243θ − 80Þ þH2

4 × 302=3H

�
: ð4:19Þ

Remembering that c is related with the inverse temperature
β as c ¼ e−2β, one finds that the critical temperature
reaches absolute zero as θ → 0:

lim
θ→0

β−1c ðθÞ ¼ −lim
θ→0

2

log½ccðθÞ�
¼ 0: ð4:20Þ

A plot of the critical line is given by Fig. 3.

V. CONTINUUM LIMIT

In Sec. IV, we have obtained the critical point at absolute
zero as a critical end point of the two critical lines, (4.10)
for c ¼ 0 and (4.16) for c ≠ 0, as θ → 0. Since when θ is
small the two-matrix integral would be dominated by its
“classical” value, one would expect that the potential term,
V ≔ 1

θ ðA2Bþ VðBÞÞ, in the two-matrix integral (3.21),
would be important in the continuum limit as opposed
to the conventional continuum limit with θ being non-zero
meaning that the potential term would also scale non-
trivially in the continuum limit. In order to make this point
clear, we rewrite (3.21) as

ZNðc;g;θÞ∝
Z YN

i¼1

dτi
YN
j¼1

dλjΔþðτ;λÞΔ−ðτ;λÞ
YN
k¼1

e−NVðτk;λkÞ;

ð5:1Þ

where τi and λi are eigenvalues of the matrices, A and B,
respectively, and

Δ�ðτ; λÞ ¼
Y
i<j

jðτi − τjÞ � ðλi − λjÞ=2gj; ð5:2Þ

Vðτk; λkÞ ¼
1

θ

�
τ2kλk þ

1

12g2
ðλ3k − 6cλ2k

þ 3ð4g2 þ ð3c − 1Þðcþ 1ÞÞλkÞ
�
; ð5:3Þ

The form of (5.1) can be obtained by a change of variables
in the Harish-Chandra-Itzykson-Zuber integral [36,37].
In fact, the critical point at absolute zero can be obtained
in such a way that the first and the second derivatives of the
potential vanish,

FIG. 3. A plot of the critical line: Tuning g2 → g2� ¼ 1=4, the
critical temperature can reach absolute zero.

CRITICALITY AT ABSOLUTE ZERO FROM ISING MODEL … PHYS. REV. D 98, 026026 (2018)

026026-9



V 0ðτ�; λ�; c�; g�Þ ¼ V 00ðτ�; λ�; c�; g�Þ ¼ 0; ð5:4Þ

where

ðτ�; λ�; c�; g�Þ ¼ ð0; 0; 0; 1=2Þ: ð5:5Þ
This means that if we assume that the eigenvalues scale as ε
which is the lattice spacing since all eigenvalues approach
zero as θ → 0, then the potential would scale as θV ∼ ε3.
This observation motivates us to take the continuum limit at
the level of the two-matrix integral (3.21), resulting in the
continuum matrix model, as done in [24] for the Hermitian
one-matrixmodel case, instead of determining the continuum
form of the resolvent directly. In fact in the case of the
Hermitian one-matrix model, it has been shown in [24] that
the continuum matrix model can correctly reproduce the
resolvent of generalized CDT at least in the large-N limit.
Taking into account the expected scaling of the potential,
θV ∼ ε3, it would be natural to set the scaling of θ as

θ ¼ Θε3; ð5:6Þ
where Θ is the renormalized coupling constant. In the
following, we will take the continuum limit of the partition
function (3.21) around the two critical lines close to the
critical end point (5.5).

A. Case with c= 0

Setting c ¼ 0, we consider the continuum limit around
the critical line (4.10) close to the critical end point (5.5).
As examined in the Hermitian one-matrix model in [24],
the corresponding continuum theory should be generalized
CDT; we will check if it is really the case. From (4.12), we
tune the coupling constant as

g2 ¼ g2cðθÞð1 − Λε2Þ ¼ 1

4
ð1 − Λcdtε

2Þ þ � � � ; ð5:7Þ

where Λ is the renormalized cosmological constant and
Λcdt is given by

Λcdt ≔ Λ −
3

21=3
Θ2=3; ð5:8Þ

and the scaling of θ is given by (5.6). Changing variables in
(3.21),

A ¼ Aε; B ¼ Bε; ð5:9Þ
and inserting (5.6) and (5.7) into the two-matrix integral
(3.21), one obtains the following two-matrix model in the
small-ε limit6:

lim
ε→0

ε−2N
2

ZNð0; g; θÞ ¼
Z

DADBe−NtrVðA;BÞ; ð5:10Þ

where

VðA;BÞ ¼ 1

Θ

�
A2B þ 1

3
B3 − ΛcdtB

�
: ð5:11Þ

In fact, the two-matrix integral (5.10) can be written as a
product of the two identical one-matrix integrals: Expressing
A and B as linear combinations of new variables, Φ�,

A ¼ −ðΦþ −Φ−Þ; B ¼ −ðΦþ þΦ−Þ; ð5:12Þ

one findsZ
DADBe−NtrVðA;BÞ ∝ ðZgcdt

N ðΛcdt;ΘÞÞ2; ð5:13Þ

where

Zgcdt
N ðΛcdt;ΘÞ ≔

Z
DΦþe−

N
ΘtrðΛcdtΦþ−4

3
Φ3

þÞ

¼
Z

DΦ−e−
N
ΘtrðΛcdtΦ−−4

3
Φ3

−Þ: ð5:14Þ

Thematrix integral (5.14) is equivalent to the one introduced
in [24], which gives the correct disk amplitude of generalized
CDT in the large-N limit. Therefore, as expected the
continuum theory starting from the condition, c ¼ 0, is
essentially generalized CDT; the corresponding string sus-
ceptibility is known: γstr ¼ 1=2 [12].

B. Case with c ≠ 0

In the case with c ≠ 0, from (4.15) and (4.18) we tune the
coupling constants as

g2 ¼ g2cðθÞð1 − Λϵ2Þ

¼ 1

4

�
1 −

1

51=3
Θ1=3ϵ −

77

12 × 52=3
Θ2=3ϵ2 − Λϵ2

�
þ � � � ;

c ¼ ccðθÞ ¼
1

2 × 51=3
Θ1=3ϵ

�
1 −

1

3 × 51=3
Θ1=3ϵ

�
þ � � � :

ð5:15Þ

and the scaling of θ is given by (5.6). Similarly, changing
the variables as (5.9) and inserting (5.6), (5.15) and (5.16)
into (3.21), one obtains the following two-matrix model in
the small-ε limit:

lim
ε→0

ε−2N
2

ZNðc; g; θÞ ¼
Z

DADB e−NtrVðA;BÞ≕ INðΛ;ΘÞ;

ð5:16Þ

where

6In the large-N limit, the model in the continuum limit (5.10) is
equivalent to the one formulated in [38] based on a string field
theory for CDT with extended interactions if we choose b ¼ 1.
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VðA;BÞ ¼ 1

Θ

�
A2B þ 1

3
B3 −

1

51=3
Θ1=3B2

−
�
Λþ 6

52=3
Θ2=3

�
B
�
: ð5:17Þ

Changing variables,

A ¼ 1

2
ðΦþ −Φ−Þ;

B ¼ −
1

2
ðΦþ þΦ−Þ þ

Θ1=3

2 × 51=3
; ð5:18Þ

one can rewrite the matrix integral (5.16) in a symmetric
fashion up to an overall constant:

INðΛtree;ΘÞ ¼
Z

DΦþDΦ−e−NtrWðΦþ;Φ−Þ; ð5:19Þ

where

WðΦþ;Φ−Þ ¼
1

Θ

�
Λtree

2
ðΦþ þΦ−Þ

−
1

6
ðΦ3þ þΦ3

−Þ−
Θ1=3

2× 51=3
ΦþΦ−

�
; ð5:20Þ

with

Λtree ≔ Λþ 27

4 × 52=3
Θ2=3: ð5:21Þ

From this expression, it is apparent that the interaction
among Φþ and Φ− vanishes when Θ ¼ 0.
In the limits, N → ∞ andΘ → 0, the two-matrix integral

(5.19) would be dominated by the saddle point, W 0 ¼ 0,
and the resolvent ofΦ� would reduce to that of CDT (up to
redefinition of the renormalized cosmological constant),
and therefore the string susceptibility is 1=2. This is natural
because the model given by IN and generalized CDT
originate with the same critical point where θ is zero.

VI. DISCUSSION

In this paper, we have reconsidered the criticality of the
Ising model on 2d DT with the introduction of the loop-
counting parameter, θ, and the linear terms. As a result, we
have shown that the conventional nonzero critical temper-
ature of the Ising model dressed by quantum gravity can
reach absolute zero as θ → 0. This happens because tuning
θ → 0, the criticality would be governed by that of the Ising
model on branched polymers, which becomes critical only
at the zero temperature. Also, we have identified the
continuum theory defined around the critical end point
(at absolute zero) of the critical line with c ≠ 0, which can
be described by the nontrivial continuum two-matrix
model (5.19).
We elaborate how configurations of triangulations and

Ising spins can be affected by the critical point at absolute
zero. First let us review what happens at the non-zero

critical temperature. When the temperature is lower than the
critical temperature, Ising spins are on average aligned in
the same direction, i.e., magnetized, and triangulations are
not affected by Ising spins. On the other hand, when the
temperature is higher than the critical temperature, it is
favorable for Ising spins to be randomly oriented since the
entropy of the Ising model would be more important than
the magnetic energy in this regime, and therefore triangu-
lations are again independent of the Ising-spin degrees of
freedom. It is known that interactions among triangulations
and Ising spins become strongest at the critical temperature.
When approaching to the critical temperature fluctuations
of Ising spins are getting divergent, which change trian-
gulations in such a way that the length of the boundary of
clusters of Ising spins aligned in the same direction gets
shorter and eventually becomes the length being of order of
the lattice spacing on average around the critical temper-
ature. This is because the magnetic energy, energy needed
to flip Ising spins, would be proportional to the length of
the cluster of Ising spins and the shorter the length is, the
more easily Ising spins fluctuate (see, e.g., [7]). Therefore,
on the critical line triangulations are changed by Ising spins
into those consisting of the clusters of Ising spins connected
by the minimum possible links called minimum neck baby
universes (abbreviated mimbu [31]). Around the critical
line, one can define the continuum limit and the resulting
field theory is known to be the quantized theory of two-
dimensional Euclidean gravity coupled to conformal matter
with central charge being 1=2 [9], in which trees attached to
ensembles are not important.
Decreasing θ along the vicinity of the critical line,

mimbu’s would tend to “slim down” to form trees on
average. At the critical end point, β−1c ð0Þ ¼ 0, typical
geometries would become branched polymers. Around
the critical point at absolute zero two kinds of continuum
limit would be considered depending on how we go away
from it since two kinds of critical lines specified by (4.10)
and (4.16), respectively, meet at the same critical point. The
first possibility is to go away along the curve of pure gravity
given by (4.12) on which the coupling constant c is taken to
be zero. The corresponding continuum theory is general-
ized CDT as shown in VA. Another possibility is to be
away along the curve given by (4.18) with nonzero c. As
shown in V B the corresponding continuum theory would
be the one defined by the two-matrix model (5.19) in the
large-N limit, in which divergent fluctuations of Ising spins
are taken into account, but its physical properties would be
closer to those of generalized CDT than the Liouville
quantum gravity coupled to conformal matter with central
charge being 1=2 since the two continuum theories origi-
nate with the same critical point.
Here we emphasize that the continuum limit discussed in

this paper is nothing to do with that of the Ising model on
(generalized) CDT in which Ising spins are put in the centre
of triangles: Although when θ → 0 typical geometries
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become trees (with finite number of loops) which can be
mapped to ensembles of (generalized) CDT, after mapping
to (generalized) CDT Ising spins are not placed in the
centre of triangles.
As conjectured in [14], the quantized theory of the

nonprojectable Hořava-Lifshitz gravity in two dimensions
would be generalized CDT because of the “many” fingered
proper time of Wheeler (for the detail, see Discussion in
[14]). Similarlywe conjecture that the quantized theory of the
non-projectable Hořava-Lifshitz gravity coupled to fermions
in two dimensions is the model defined by the continuum
two-matrix model (5.19) at least in the large-N limit.
It is important to compute the critical exponents around

θ ¼ 0 by introducing an external magnetic filed as done in
[10]when θ∼Oð1Þ, whichwould tell us the effects caused by
back-reactions of triangulations on Ising-spin configurations.
Since the Ising model on 2d DT can be considered as the

O(1)-matrix model [34], it would be natural to consider the
general OðnÞ-matrix model with the introduction of θ and
the linear terms, and argue the critical points when θ → 0.
It would be possible to describe the model defined by the

two-matrix model (5.19) in terms of string field theory as
done for generalized CDT in [23].
The critical point at absolute zero obtained in this paper

might be interpreted as a quantum critical point since even
though the Ising model we consider is classical, quantum
fluctuations of triangulations would allow us to reduce the

critical temperature to absolute zero. The relation to the
quantum criticality would be worthwhile to examine in
detail, which might lead to further understanding of two-
dimensional quantum gravity coupled tomatter, in which the
continuum two-matrix model (5.19) might play a key role.
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