
 

Extreme Kerr black hole microstates with horizon fluff

K. Hajian,1,* M. M. Sheikh-Jabbari,1,† and H. Yavartanoo2,‡
1School of Physics, Institute for Research in Fundamental Sciences (IPM),

P.O.Box 19395-5531, Tehran, Iran
2State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics,

Chinese Academy of Sciences, Beijing 100190, China

(Received 30 August 2017; published 23 July 2018)

We present a one-function family of solutions to 4D vacuum Einstein equations. While all diffeomorphic
to the same extremal Kerr black hole, they are labeled by well-defined conserved charges and are hence
distinct geometries. We show that this family of solutions forms a phase space the symplectic structure of
which is invariant under a Uð1Þ Kac-Moody algebra generated by currents Jn and Virasoro generators Ln

with central charge six times angular momentum of the black hole. This symmetry algebra is well-defined
everywhere in the spacetime, near the horizon or in the asymptotic flat region. Out of the appropriate
combination of Jn charges, we construct another Virasoro algebra at the same central charge. Requiring that
these two Virasoro algebras should describe the same system leads us to a proposal for identifying extreme
Kerr black hole microstates, dubbed as extreme Kerr fluff. Counting these microstates, we not only
correctly reproduce the Bekenstein-Hawking entropy of extreme Kerr black hole, but also its expected
logarithmic corrections.
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I. INTRODUCTION

Existence of rotating black holes in the sky, besides the
notable gravity wave detection by LIGO [1], is backed by
many different advanced x-ray astronomy observations [2].
The Kerr geometry [3] provides a very good description of
these black holes and is specified by two parameters, mass
and angular momentum (spin). The spin of a Kerr black hole
is theoretically bounded by its mass and the maximum
possible angular momentum for a given mass happens for
the so-called extremal black holes. There are now several
observations confirming existence of (nearly) extremal black
holes [4].
Besides the observations, black holes pose many theo-

retical challenges. In particular, it is established that black
holes should behave as thermodynamical systems with a
given temperature and entropy [5–7]. The first step toward
resolution of the black hole information paradox, see, e.g.,
[8], may come from identifying “black hole microstates,” the
statistical mechanical system underlying the thermodynam-
ical behavior of black holes. Extremal black holes, on which

we focus in this work, have vanishing temperature but,
generically, a nonzero entropy. They are hence usually
viewed as the simplest black holes to tackle the microstate
problem.
The first successful example of black hole microstate

counting was performed by Strominger and Vafa [9]. Their
proposal makes a heavy use of supersymmetry and the
underlying “quantum gravity” structure, provided by string
theory. This proposal has been extended to many other
(nearly) supersymmetric black holes, all within string theory
[10]. There are other proposals based on or inspired by the
AdS=CFT, in particular, AdS3=CFT2, and using Cardy
formula to account for the black hole entropy [11–14].
This latter class is usually only apt for countingofmicrostates
and not identifying them. Another idea for black hole
microstate identification is the fuzzball proposal [15],
according which microstates of a black hole are smooth,
horizon-free geometries which are “superposed” to give rise
to black holes as usual general relativity solutions. Although
at the level of idea, fuzzball proposal does not rely on
supersymmetry, its explicit constructions so far, e.g., see [16]
and references therein, crucially use supersymmetry.
In the statistical mechanical description of usual ther-

modynamical systems, however, we do not usually need to
have a full quantum description of the system. One can
argue based on the principle of decoupling of scales, that
there is no reason why black holes should be different [17].
On the other hand, there is strong uniqueness and “no hair”
theorems [20] barring us from constructing black hole
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microstates within the strict reading of Einstein’s equiv-
alence principle (EEP). Nonetheless, geometries which are
diffeomorphic to each other and hence equivalent under the
strict EEP can be physically distinguishable if one can
associate conserved charges to certain coordinate trans-
formations relating these geometries; thereby leading to the
notion of “relaxed equivalence principle” [21] and “non-
trivial diffeomorphisms.” Prime examples of such geom-
etries and their symmetries are the BMS algebra [22] and
the Brown-Henneaux analysis [23]. This point of view has
been used to nicely rederive Weinberg’s soft theorems [24].
One may then hope that this set of geometries and the

associated symmetry algebras can remedy the black hole
microstate problem. In the last few years, there have been
many papers, most notably [25] where the term “soft hair”
was coined, trying to formulate this idea. In [26], see also
[27,28], building upon the analysis of [29], we presented
the horizon fluff proposal which realizes the idea of
black hole microstate identification within the relaxed
equivalence principle setting. The horizon fluff proposal
has been worked out for three-dimensional black holes
[30,31]. The two key points in the horizon fluff proposal
are, (1) the notion of “softness” of modes is not the same
from the near horizon or asymptotic observer viewpoints,
and it is the near horizon softness which is relevant to
black hole microstates [28], (2) the symmetry algebra
labeling the nontrivial diffeomorphisms may have two
complementary realizations, giving rise to a duality which
is used to solve for microstates. In the 3D cases, this was
argued to be a particle/(black) hole duality [28]. In this
work we show how the horizon fluff proposal works for
extremal 4D Kerr.

II. EXTREMAL KERR PHASE SPACE, ITS
CHARGE ALGEBRA AND

HILBERT SPACE

The extremal Kerr black hole (EKBH) metric in Boyer-
Lindquist coordinate system is

ds2 ¼ −
Δ
Σ
ðdtþm sin2θdϕÞ2 þ Σ

Δ
dr2 þ Σdθ2

þ sin2θ
Σ

ððr2 þm2ÞdϕþmdtÞ2; ð1Þ

where Δ ¼ ðr −mÞ2 and Σ ¼ r2 þm2 cos2 θ. The mass
and angular momentum of EKBH are given by

M ¼ m
GN

; j ¼ m2

GN
; ð2Þ

which saturates the extremality bound j ≤ GNM2. For this
metric the horizon is at r ¼ m, horizon area is Ah ¼ 8πm2

and hence the Bekenstein-Hawking entropy is

SB:H: ¼
Ah

4GN
¼ 8πm2

4GN
¼ 2πj: ð3Þ

We work in units where ℏ ¼ c ¼ kB ¼ 1.

A. Generating the phase space

We construct the Extremal Kerr black hole phase space
(EKPS) by a simple shift,

dϕ → JðϕÞdϕ; 1

2π

Z
2π

0

JðϕÞdϕ ¼ 1; ð4Þ

in the metric (1). The condition on JðϕÞ in the phase space
generating transformation (4) is to keep periodicity of ϕ
coordinate 2π. It is obvious that EKPS consists of geom-
etries which are solutions to 4D vacuum Einstein equations
and that all metrics in EKPS are black holes (have event and
non-bifurcate, degenerate Killing horizons) the same as the
metric (1), with the same ADM mass and angular momen-
tum. We shall discuss below how and in which sense these
one-function family of geometries form a phase space.

B. Symplectic symmetry generators,
their charges and algebra

The main new technical result in this letter is the
presence of two vector fields

χ̂ ¼ ϵðϕÞ∂ϕ; η ¼ 1

2JðϕÞ ϵ̃ðϕÞ∂ϕ; ð5Þ

which are both nontrivial diffeomorphisms (have well-
defined charge) over the EKPS. Here ϵðϕÞ, ϵ̃ðϕÞ are two
arbitrary periodic functions of ϕ. A concise account of
computations establishing this result is presented in the
Appendix, here we only give an outline of the analysis.
Recalling (4), it is seen that for ϵ̃ ¼ 1 vector field η is the
Killing vector over the whole EKPS whose associated
conserved charge is equal to half of the angular momentum
j. Note that the symmetry generators χ̂ and η are both along
the ∂ϕ direction and do not have any dependence on the rest
of metric. This is in contrast to similar analysis for the near
horizon extremal Kerr geometry [13,32] and, among other
things, allows us to define the symmetry generators and the
corresponding charges at the horizon or in the asymptotic
region. Moreover, χ̂ or η can be used to move on this phase
space,

δχ̂gμν½J� ¼ Lχ̂gμν ¼ gμν½J þ δχ̂J� − gμν½J�;
δηgμν½J� ¼ Lηgμν ¼ gμν½J þ δηJ� − gμν½J�; ð6Þ

which yield

δχ̂J ¼ ðϵJÞ0; δηJ ¼ ϵ̃0=2; ð7Þ
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to first order in ϵ and ϵ̃. The difference between the χ̂ and η
variations in (7), as we will see below, leads to different
charge algebras associated with χ̂ and η.
We should next show that (4) indeed generates a phase

space. To this end, we use the covariant phase space method
(CPSM) [33,34]. We have provide a short account of
analysis in the Appendix. It is straightforward to verify
that our one-function family of metrics form a phase space,
the EKPS, in Einstein gravity with the Lee-Wald [35] or
Barnich-Brandt [36] symplectic structures, and as our
discussion around (6) shows, one can move over the phase
space by the action of χ̂ and/or η. In other words, one should
be able to associate well-defined conserved charges to χ̂
and η which are generators of infinitesimal displacement
on the phase space. These charges are functions of JðϕÞ
and act on the phase space by the Poisson bracket defined
by the (Lee-Wald or Barnich-Brandt) symplectic structure
[35,36].
Our other technical result which has important physical

consequences is that these conserved charges are “sym-
plectic” [32,37,38], meaning that they specify the sym-
plecto-isometries of our phase space, i.e., they keep the
symplectic two-form of the phase space intact. Physically
this means that these charges may be defined by surface
integrals over any compact two-surface at any value of t, r
coordinates [39]. Dealing with symplectic symmetries
brings the important advantage that our charges may be
defined at the horizon or in the asymptotic region or any
radius in between.
To keep the discussions as nontechnical as possible here

we only present simple analysis yielding the charge
algebra, details of the charge computation technicalities
will be presented in the Appendix. Let the charge variation
associated with χ̂½ϵ�, η½ϵ̃� be respectively denoted by δL̂½ϵ�
and δJ½ϵ̃�. These charge variations, by construction, are
linear in ϵ, ϵ̃ and a complete set of these charges may be
obtained by taking them to be einϕ, n ∈ Z, for which we
denote χ̂½einϕ� ¼ χ̂n, η½einϕ� ¼ ηn and associated charge
variations by δL̂n; δJn.
The CPSM has two general results [34]:
(1) If the charge variations are integrable over the phase

space (and we can hence talk about L̂n, Jn), then

δχ̂m L̂n ¼ fL̂n; L̂mg; δηmJn ¼ fJn;Jmg;
− δχ̂mJn ¼ δηn L̂m ¼ fL̂m; Jng; ð8Þ

where in the above L̂n; Jn are to be viewed as
functions over the phase space and the bracket
f; g is the Poisson bracket on this phase space.

(2) Algebra (Poisson bracket) of charges, up to possible
central terms, is the same as the algebra of corre-
sponding generators. To state this explicitly, let us
first recall that

fχ̂m; χ̂ngL:B: ¼ −iðm − nÞχ̂mþn;

fηm; ηngA:L:B: ¼ 0;

fχ̂m; ηngA:L:B: ¼ inηmþn; ð9Þ

where L.B. denotes Lie bracket and A.L.B. the
“adjusted Lie bracket,” adjusted by the J-field
dependence of the generators [32,38]

fζm½J�; ξn½J�gA:L:B:
≡ fζm½J�; ξn½J�gL:B: − δJζmξn þ δJξnζm:

To stress the field dependence of ζ or ξ vector fields,
we have explicitly expressed them as ζ½J� or ξ½J�.
Therefore, we have

fL̂m; L̂ng ¼ −iðm − nÞL̂nþm þ up to central terms;

fJm; Jng ¼ 0þ up to central terms;

fL̂m; Jng ¼ inJmþn þ up to central terms: ð10Þ

That is, L̂n form the Witt or possibly Virasoro
algebra while Jn are commuting or form a current
(Heisenberg) algebra. Our next task is to compute
the central terms and also to specify the expression
of the charges over the phase space, i.e., L̂n and Jn as
a function of JðϕÞ.

C. Charges over the phase space

Standard CPSM analysis [40] reveals that L̂n and Jn are
integrable and

fL̂m; L̂ng ¼ −
j
2π

Z
dϕ eiðmþnÞϕð2JðimJ þ J0ÞÞ: ð11Þ

Recalling (7), (9), and (10), we learn that L̂n should satisfy
a Witt algebra and hence

L̂n ¼
j
2π

Z
dϕ einϕJ2: ð12Þ

The charges associated to ηn can be evaluated in a similar
fashion and we get

Jn ¼
j
2π

Z
dϕ einϕJ; ð13Þ

with the Jn algebra

fJm; Jng ¼ i
nj
4π

Z
dϕ eiðmþnÞϕ ¼ in

2
jδmþn;0: ð14Þ

With the above, (12) then yields
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L̂n ¼
1

j

X
p

JpJn−p;

fL̂m; L̂ng ¼ −iðm − nÞL̂mþn ð15Þ

and as a consistency check, one may also show
fL̂m;Jng ¼ inJnþm, in accord with (9), (10).

D. Twisted Sugawara construction
and the Virasoro algebra

Given the symplectic symmetry generators χ̂; η, any
linear combination of them is also a symplectic symmetry
generator. In particular, let us consider

χ½ϵðϕÞ�≡ χ̂½ϵ� þ η½ϵ0� ¼
�
ϵþ ϵ0

2J

�
∂ϕ: ð16Þ

The charge associated with ϵ ¼ einϕ, Ln, is then

Ln ¼ L̂n þ inJn ¼
1

j

X
p

JpJn−p þ inJn ð17Þ

and together with current Jn form a Kac-Moody algebra,

fLm;Lng ¼ −iðm − nÞLmþn − im3
j
2
δmþn;0: ð18Þ

As expected and discussed, J0 is the charge corresponding
to the Killing vector 1

2JðϕÞ ∂ϕ and commutes with all the

other generators of the algebra, J0 is the center element of
the algebra.

E. Quantizing the algebra

To quantize the charges, we assume that they are
operators defined on a Hilbert space (which we construct
below). To avoid cluttering we use the same notation for
classical charges over the phase space and quantum
(operator-valued) charges over the Hilbert space and denote
both by Ln, Jn. We can quantize the Poisson bracket of
charges by replacing them with commutators,

f; g → −i½; �; ð19Þ

to obtain

½Jm; Jn� ¼
m
2
j δmþn;0;

½Lm; Jn� ¼ −nJmþn − in2
j
2
δmþn;0;

½Lm;Ln� ¼ ðm − nÞLmþn þm3
j
2
δmþn;0: ð20Þ

From the last equation, the central charge c ¼ 6j for the
Virasoro algebra can be read. Nonetheless, there is a

convention in our construction which (harmlessly) affects
the magnitude of the central charge, as we describe here.
The convention is the normalization of the generators
ηn → αηn. Accordingly, Jn → αJn with the new commu-
tation relation

fJm; Jng ¼ inα2

2
jδmþn;0: ð21Þ

Then, (17) would be rewritten as

Ln ¼
1

α2j

X
p

JpJn−p þ inJn ð22Þ

which yields the redefined central charge c → α2c.
Specifically, the choice of α2 ¼ 2 reproduces the Kerr/
CFT central charge c ¼ 12j. However, as the reader will
find in our later analysis, this convention will not affect our
proposed microstate counting.

F. Extremal Kerr Hilbert space

Given the algebra (20) one can construct Hilbert space of
unitary representations of the Virasoro algebra HKerr. To
this end, we start with the vacuum state, j0; J0i (see [28] for
more detailed discussion),

J0j0;J0i¼ jJ0j0;J0i; Jnj0;J0i¼ 0; n> 0; ð23Þ

and take j0; J0i to be normalized, hJ00; 0j0; J0i ¼ δj0;j. The
other states in HKerr may then be constructed as

jfnig; J0i ¼ N ni

Y
ni>0

J−ni j0; J0i;N −2
fnig ¼

Y
ni; ð24Þ

where N fnig is chosen such that hj0; fn0igjfnig; ji ¼
δfn0ig;fnigδj0;j. In (23) we have used the convention compat-
ible with (13), i.e., the charge operators and the corre-
sponding functions are related as

hJðϕÞi ¼ c
6
JðϕÞ; c ¼ 6j: ð25Þ

The geometries in the EKPS then come with J0 ¼ 1, cf. (4),
while one may have cases with J0 ≠ 1 corresponding to
cases with deficits or excesses [41]. For the vacuum states
one may observe that

hJ00; 0jLnj0; J0i ¼
c
6
J20δJ00;J0δn;0;

and hence geometries in EKPS have positive L0 [43].

G. Another construction for the Virasoro algebra

Positivity of norm condition for states in HKerr, while
requiring J†n ¼ J−n, n ≠ 0, allows for both Hermitian and
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anti-Hermitian J0. In particular, HKerr includes states with
imaginary J0 ¼ �iν=2 with ν ∈ ð0; 1�, which will be
relevant to our microstate construction. Moreover, noting
L, J commutator in (20), J is not a conformal primary
operator, see [28] for more details. To avoid dealing with
anti-hermitian operators, one may instead introduce W
fields and W operators [28],

WðϕÞ ¼ e−2
R

ϕ J; W ¼ ∶e−
2
j

R
ϕ J∶; ð26Þ

where ∶∶ denotes normal ordering, which have “twisted
periodicity” Wðϕþ 2πÞ ¼ e�2πiνWðϕÞ. In our setting j is
the angular momentum of the original Kerr black hole and
it is expected to be quantized by Bohr-quantization.
Therefore, central charge c ¼ 6j is also integer-valued.
Recalling spectral flow symmetry of the Uð1Þ Kac-Moody
algebra and general expectations from quantum gravity
[28,46], one expects ν to take c discrete values,
ν ¼ r=c, r ¼ 1; 2;…; c.
Using (20) one can see that W is a conformal primary

operator of weight one and we hence have 6j independent
such primary fields WrðϕÞ, each with different twisted
periodicity. These fields provide a free field representation
for the Virasoro algebra at central charge 6j. For the details
of the construction, we refer the reader to analysis in Sec. 4
of [28].
This Virasoro algebra is more conveniently written in

terms of J n operators which are the collection of Fourier
modes of the c ¼ 6j independent W-fields, Wr

n, into a
single operator J n where J pcþr ∝ Wr

p and,

½J m;J n� ¼
m
2
δmþn;0: ð27Þ

In terms of these operators,

Ln ¼
1

6j

X
m

∶J 6nj−mJ m∶;

½Lm;Ln� ¼ ðm − nÞLmþn þ
6j
12

ðm3 −mÞδmþn;0: ð28Þ

To construct the Hilbert space for the above Virasoro
algebra HJ we start with the vacuum state j0i

J nj0i ¼ 0; n ≥ 0: ð29Þ

The rest of states in HJ can be constructed as usual:

jfnigi ¼
Y

fni>0g
J −ni j0i:

One can readily see that for any jΨi ∈ HJ , J 0jΨi ¼ 0.
Since J 0 measures the energy from the near horizon
viewpoint, HJ may be conveniently called Hilbert space
of “near horizon soft hairs.”

III. EXTREMAL KERR MICROSTATES

We have given two different constructions for the same
Virasoro algebra at central charge 6j, in (17) and (28) and
the associated Hilbert spaces HKerr and HJ . Recalling that
J was constructed from W which in turn is constructed
from J, HJ and HKerr should be equivalent. We can use
this equivalence to identify microstates of extremal Kerr
black hole. The analysis and arguments is as outlined and
discussed for the 3D case of BTZ black holes, the horizon
fluff proposal [26–28] and will be discussed in more detail
in [40]. To identify extreme Kerr fluff (microstates of
extremal Kerr), we propose that these two Virasoros and the
corresponding Hilbert spaces provide dual descriptions for
the same physical system, i.e., we requireLn ¼ Ln, or more
precisely,

1

6j

X
m

∶J 6nj−mJ m∶ ¼ 1

j

X
m

∶Jn−mJm∶þ inJn: ð30Þ

This equation is the main part of the “horizon fluff”
proposal. It would be interesting to provide a rigorous
proof for that. InHKerr the extremal Kerr black hole state is
given by j0; J0 ¼ 1i, or equivalently, hLmi ¼ jδm;0. This
state then corresponds to set of states jBðfnigÞ; ji ∈ HJ ,
the extreme Kerr fluff states, which satisfy

hB0ðfnigÞ; jjLmjBðfnigÞ; ji ¼ jδm;0δB0;B: ð31Þ

The above, recalling (30), is evidently solved by

jBðfnigÞ; ji ¼ jfnigi;
X
i

ni ¼ 6j2: ð32Þ

A. Microstate counting, a consistency check

For large j number of states specified by (32) is given by
the standard Hardy-Ramanujan problem of number of ways
PN a given integer N (here 6j2) can be partitioned into non-
negative integers (see [47] and references therein):

PN ≃
1

4N
ffiffiffi
3

p e2π
ffiffi
N
6

p
; N ≫ 1: ð33Þ

The logarithm of this number gives the black hole entropy

SðjÞ ¼ 2πjþ log -corrections; ð34Þ

reproducing the Bekenstein-Hawking entropy (3).
Had we introduced the α parameter through a normali-

zation of J, the central charge would change to 6α2j
and hL0i to j=α2 cf. (22). Therefore, N would remain
unchanged. As expected, the entropy is independent of this
normalization.
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IV. DISCUSSION AND OUTLOOK

We showed how the horizon fluff idea can be worked
through for the 4D extremal Kerr black hole. Our analysis
expands upon the Kerr/CFT analysis [13] in three important
ways: (1) our symmetry algebra is defined over the whole
extremal Kerr geometry and not only in the near horizon
region; (2) we have introduced the extremal Kerr phase space,
our symmetries are symplectic (and not just asymptotic) and,
(3) besides the Virasoro, we have a current algebra and our
symmetry generator diffeomorphisms are all along the azimu-
thal angle ∂ϕ. Our preliminary analysis shows that similar
features can be extended to other extremal black holes in
higher dimensions, in particular to the class discussed in [32].
One obvious question which arises is whether similar

analysis and horizon fluff proposal work for generic non-
extremal Kerr geometry. The phase space corresponding to
generic Kerr will presumably have two or four independent
functions (rather than the single JðϕÞ in our analysis) [26]
and consequently one expects to see a larger algebra than
Uð1Þ Kac-Moody. This symmetry algebra is inevitably a
subalgebra of the asymptotic BMS4 symmetry [22,48].
Ideas and analysis discussed in [49,50] could be helpful in
tackling this problem.
The first check of our proposal was provided through

reproducing the Bekenstein-Hawking area law. The non-
trivial test, however, comes from the logarithmic correc-
tions. The Hardy-Ramanujan counting (33) gives
S ¼ 2πj − 2 ln jþ subleading. The Kerr/CFT analysis the
log-corrections for the 4D extremal case is not yet avail-
able [51]. Nonetheless, there are general analysis by Sen
[52] which divides the log-corrections into “zero-mode”
and “non-zero mode” contributions. As discussed in Secs. 2
and 3 of [52], a semiclassical analysis like ours is expected
to only capture the zero-mode part. The nonzero mode part
needs a more “quantum gravity” type treatment which in
[52] was performed using quantum entropy function and
Euclidean quantum gravity approach. The zero-mode part
of [52] matches with our result of −2 ln j.
We stated and used a “duality” between J n and Jn and

the corresponding Hilbert spaces and discussed that in large
j limit the J n provide a free field representation for
classical extreme Kerr microstates. Addressing questions
of great interest like black hole evaporation dynamics and
information paradox requires turning on microstate-micro-
states or microstate-background interactions, which are 1=j
effects we did not consider here. Nonetheless, there are
interesting potentially observable effects associated with
energy and angular momentum distribution of the micro-
states. Our proposal, as seen from (31), (32), has a specific
spectrum. We intend to explore such possible observable
effects in our upcoming studies.
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APPENDIX: DETAILS OF CHARGE
CALCULATIONS

Here we provide more details about the conserved charge
calculations presented in this paper. For clarity, we focus on
the general relativity which is the gravitational theory in our
analysis. In CPSM [35], conserved charge variations δH in
general relativity L ¼ 1

16πGN
R in 4 dimensions are calcu-

lated by a 2-form kξðgμν; δgαβÞ integrated over asymptotic
two dimensional boundary (which may be taken to be the
two sphere at infinity)

δHξ ¼
I
S2
kξðgαβ; δgαβÞ: ðA1Þ

The k is determined by Lagrangian (find the details of how
to find the k from a Lagrangian, e.g., in [53,54]) to be
Hodge dual to

kμνξ ðδgαβ;gαβÞ¼
1

16πG

�
½ξν∇μh−ξν∇τhμτþξτ∇νhμτ

þ1

2
h∇νξμ−hτν∇τξ

μ�− ½μ↔ ν�
�
; ðA2Þ

where hμν ≡ δgμν, h≡ hμμ and ϵμνσρ is the Levi-Civita
symbol such that ϵtrθφ ¼ þ1. As the notation suggests, k
has three inputs: (1) the background solution gαβ, (2) linear-
ized field perturbations δgαβ, (3) symmetry generator ξ. For
the symmetries generated by diffeomorphisms, ξ is a vector
field ξμ. The first two inputs are determined by the phase
space under consideration. In our analysis in this paper, the
metric gαβ is the extremalKerr black hole (1) deformedby the
transformations (4), i.e., gαβ½J�. The perturbations δgαβ are
chosen from the tangent of the phase space, which are either
Lηgαβ½J� orLχ̂gαβ½J�, or any linear combination of them. The
vectors ξμ for which we calculated charges over the phase
space could be also chosen to be either ημ or χ̂μ or any linear
combination of them. In summary, charge variations in this
paper are explicitly calculated by:

−δχ̂m L̂n ¼ δχ̂mHχ̂n ¼
I
∞
kχ̂nðgαβ; δχ̂mgαβÞ;

−δχ̂mJn ¼ δχ̂mHηn ¼
I
∞
kηnðgαβ; δχ̂mgαβÞ;

−δηm Ĵn ¼ δηmHηn ¼
I
∞
kηnðgαβ; δηmgαβÞ; ðA3Þ
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in which we considered the conventional minus sign (in the
same footing as the angular momentum) in defining the
charges L̂n and Jn with respect to the Hχn and Hηn .
It can be checked that for all of the k’s in the relations

above we have dk ¼ 0. So, ηn and χ̂n (and hence, any linear
combination of them) are symplectic symmetries over the
proposed phase space. Therefore by the Stokes’ theorem,
the integration

H
S2 can be relaxed to be taken over any

closed surface which is a smooth deformation of the
boundary at infinity into the bulk. The rest of the analysis
would be just performing the calculations. The results turn
out to be

δχ̂m L̂n ¼
j
2π

Z
2π

0

dϕeiðmþnÞϕð2JðimJ þ J0ÞÞ; ðA4Þ

δχ̂mJn ¼
j
2π

Z
2π

0

dϕ eiðmþnÞϕðimJ þ J0Þ; ðA5Þ

δηmJn ¼ i
nj
4π

Z
2π

0

dϕ eiðmþnÞϕ: ðA6Þ

Considering the relation (7), i.e., δχ̂mJ ¼ ðeimϕJÞ0 ¼
eimϕðimJ þ J0Þ, from Eqs. (A4) and (A5) we can simply
read

L̂n¼
j
2π

Z
2π

0

dϕ einϕJ2; Jn ¼
j
2π

Z
2π

0

dϕ einϕJ: ðA7Þ

Besides, the Eq. (A6) is nothing but the commutation
relation (14).
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