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Volume average regularization for the Wheeler-DeWitt equation
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In this article, I present a volume average regularization for the second functional derivative operator that
appears in the metric-basis Wheeler-DeWitt equation. Naively, the second functional derivative operator in
the Wheeler-DeWitt equation is infinite, since it contains terms with a factor of a delta function or
derivatives of the delta function. More precisely, the second functional derivative contains terms that are
only well defined as a distribution—these terms only yield meaningful results when they appear within an
integral. The second functional derivative may, therefore, be regularized by performing an integral average
of the distributional terms over some finite volume; I argue that such a regularization is appropriate if one
regards quantum general relativity (from which the Wheeler-DeWitt equation may be derived) to be the
low-energy effective field theory of a full theory of quantum gravity. I also show that a volume average
regularization can be viewed as a natural generalization of the same-variable second partial derivative for an
ordinary multivariable function. Using the regularized second functional derivative operator, I construct an
approximate solution to the Wheeler-DeWitt equation in the low-curvature, long-distance limit.
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I. INTRODUCTION

In quantum geometrodynamics,1 states may be described
by a wave functional’ ¥ = W[g'], which is a functional of a
postive-definite inverse metric ¢ = ¢"(y) for a three-
manifold X, which I assume to be compact and without
boundary. In quantum geometrodynamics, wave function-
als satisfy the Wheeler-DeWitt equation [1-4], which takes
the following form®:

Y
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+(R=2A)\/g¥ =0, (LI)

where R is the Ricci curvature scalar for the three-manifold
¥, A is the cosmological constant, and the quantity G'/* is
defined as

'In this article, quantum geometrodynamics refers specifically
to the canonical formulation of quantum general relativity that
uses the three-metric (or its inverse) as configuration space
variables [1].

2Throughout this article, the symbol ¢~ in the arguments of
functionals refers to the inverse metric; I do this to distinguish g~
from the determinant of the metric g, and to avoid any confusion
with regard to indices.

*In some cases, one might wish to use some type of Laplace-
Beltrami operator in place of the second functional derivative
operator, either of the type briefly mentioned in [2] or the type
proposed in [5]. As discussed in [5], the choice depends on the
invariance principle required of the wavefunctional. Laplace-
Beltrami operators are often used in minisuperspace models [1,4].
For the sake of simplicity, I follow [2] and simply use the second
functional derivative operator in the Wheeler-DeWitt equation.
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where x = 87G, with G being Newton’s constant. The
Wheeler-DeWitt equation (1.1) is supplemented by the
following constraint, called the momentum constraint,

: vV
g’kvk (_Ké_l> =0,
V9 0g”

where V, is the covariant derivative on X. In quantum
geometrodynamics, the wavefunctional ¥ = ¥[g ] satisfies
the Wheeler-DeWitt equation and the momentum con-
straint. The dynamical content of quantum geometrody-
namics is provided by the Wheeler-DeWitt equation; as
originally pointed out in [6], the momentum constraint is
simply the requirement that the wavefunctional ¥ = ¥[g"]
be invariant under coordinate transformations on X.

One difﬁculty4 with the Wheeler-DeWitt equation is that,
naively, second functional derivatives evaluated at the same
spacetime point generally’ contain terms with a singular

(g% ¢! + g'g* — g ), (1.2)

(1.3)

*Another difficulty with quantum geometrodynamics concerns
the precise definition of the inner product, which is formally
defined as a functional integral over three-geometries. Further
discussion of the inner product is beyond the scope of this article;
I refer the reader to [7], the general discussion found in [1,4] and
the references contained therein.

As pointed out in [2], this is not always the case, as one can
avoid this with certain double integrals over the manifold.
However, it is generally the case if the functional contains single
integrals or double integrals with more than two factors of the
field in the integrand.
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factor of §°(0) [4], and/or terms containing a factor of the
derivatives of the Dirac delta function (as I will show in this
article).6 For this reason, the second functional derivative in
the full Wheeler-DeWitt equation is only defined a formal
manner [5,9]. The presence of delta functions and their
derivatives is an indication that second functional deriva-
tives only make sense as distributions; plainly speaking,
second functional derivatives are only meaningful when
they appear inside integrals. By itself, this is not problem-
atic. What makes this problematic is that the Ricci scalar
term in (1.1) is a multiplicative operator, and its action on
the wavefunctional will yield an ordinary (nondistribu-
tional) function, so that the Wheeler-DeWitt equation (1.1)
naively states that a distributional quantity is equal to some
nondistributional quantity. In this sense, the Wheeler-
DeWitt equation, as written in Eq. (1.1), is ill defined.
The origin of the singular quantity 5°(0) in the second
functional derivative operator comes from the fact that the
naive second functional derivative is formally a function of
two points x and y, and contains terms with factors of
5 (x—y). Since the second derivative operator in the
Wheeler-DeWitt equation is evaluated at a single point,
one may argue that the singular quantity 5°(0) follows from
short distance behavior (in particular the limit in which
x — y). It is well known that perturbative q7uantum general
relativity contains ultraviolet divergences,” so one might
expect the short distance limit x — y to yield divergences.”

®One can define a second functional derivative at a point
without delta functions [8], but in that case, one trades delta
functions for differential operators for functions f(y) over Z—in

particular, the quantity ¥ itself becomes a linear differential
operator acting on functions f(y) over X. One must then find a

functional ¥ such that the equation HWf(y) = 0 is satisfied for
all functions f(y). The Wheeler-DeWitt equation is no longer just
a constraint for every point y, but it is now a constraint on the
whole of some function space, namely the space of functions f(y)
on the manifold X. It presently is difficult for me to imagine how
one might obtain nontrivial solutions to the Wheeler-DeWitt
equation under such a strong constraint, so I will not pursue this
apgroach in this article.

Though one can absorb one-loop divergences for pure gravity
into the four-dimensional Gauss-Bonnet term via field redefini-
tions [10], ultraviolet divergences appear at two-loop order in
perturbation theory [11].

Furthermore, the perturbative nonrenormalizability of quan-
tum general relativity suggests that quantum general relativity,
and by extension the Wheeler-DeWitt equation [as given in
Eq. (1.1)], are incomplete; the renormalization of quantum
general relativity requires an infinite number of counterterms
in the action, which will generate additional terms in the Wheeler-
DeWitt equation. For this reason, it is often argued that quantum
general relativity cannot be a fundamental theory, but it has also
been suggested that perturbation theory may not be generating the
correct asymptotic series for quantum GR [12], and that gravi-
tational effects can somehow regulate the divergences of quantum
field theory [13] (though as argued in [12], there is little hope that
such a feature of quantum GR, if it exists, can be seen in
perturbation theory).

The modern View,9 of course, is that quantum general
relativity is the low-energy effective field theory of a full
theory of quantum gravity. Since the Wheeler-DeWitt
equation can be derived" in a formal manner from the
path integral for quantum general relativity [5,16], one
might expect some approximation to the Wheeler-DeWitt
equation to be valid [17]. If one imagines quantum general
relativity to be a low energy effective field theory, then the
second functional derivative operator in the Wheeler-
DeWitt equation must be regularized somehow. In particu-
lar, since the §(0) singularity comes from a short-distance
limit, effective field theory requires a regularization for the
second functional derivative operator in (1.1).

An ad-hoc regularization for the Wheeler-DeWitt equa-
tion was originally proposed by Bryce DeWitt in [2], which
is simply to set the singular quantities 6°(0) to zero (this is
done in dimensional regularization [18]); this is used to
obtain a WKB approximation for the Wheeler-DeWitt
equation [4,19]. Lattice regularizations have also been
studied in the literature, particularly those based on
Regge discretizations—see [20,21]. In this article, I describe
a continuum regularization, which can be viewed as a
natural generalization of the second-order same-variable
partial derivative for an ordinary multivariable function. In
particular, I perform a volume average of the second
functional derivative, using integrals performed over the
distributional part of the naive second functional derivative
operator. Such a regularization is appropriate if one views
the Wheeler-DeWitt equation as a description of a low
energy gravitational effective field theory, as effective field
theories are formed by integrating out high-energy modes
of the field. Compared to DeWitt’s regularization, the
volume average regularization I present in this article
has the advantage of providing a parameter that controls
the regularization (the averaging volume), and I will briefly
argue that a volume average regularization can in some
sense be regarded as a generalization of DeWitt’s regu-
larization. I must make two things clear: first, while the
methods presented in this article are motivated by effective
field theory considerations, I do not establish a precise
connection between the covariant methods of effective field
theory and the volume average regularization presented in
this article, which is formulated for a spatial hypersurface.
Second, I make no claim with regard to the UV behavior of
quantum geometrodynamics and the problem of nonrenor-
malizability for perturbative quantum gravity; my goal in
this paper is to present a possible framework in which one
can nonperturbatively investigate the low energy features of
quantum gravity.

See [14] and the references therein for an overview of
quantum gravity as an effective field theory, and [15] for a more
detailed review.

10Again, I emphasize the point, argued in [5], that the precise
form of the second functional derivative operator depends on the
definition for the path integral measure.
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This article is organized as follows. First, I present a
motivating example using ordinary second derivatives and
Kronecker delta functions, and construct by analogy an
expression for the second functional derivative operators of
the type that appear in the Wheeler-DeWitt equation. The
resulting expression is interpreted as an averaging of the
second functional derivative operator over some volume,
and its derivation makes it clear that it is a generalization of
the same-variable second partial derivative. I then derive
the Hessian for the volume functional and Einstein-Hilbert
action. The Hessians are then used to construct an approxi-
mate solution for the regularized Wheeler-DeWitt equation
in the low-curvature, long-distance limit. Finally, I examine
a minisuperspace restriction of the approximate solution for
three-sphere geometries.

II. THE VOLUME AVERAGE REGULARIZATION

In this section, I motivate the volume average regulari-
zation for the second functional derivative of a functional
F[p] evaluated at a single point x. In particular, I intend
to motivate a regularized expression for the following
quantity,

5*F
Spsp?’

where @2 = ¢”(x) is a function on a manifold M of
volume V,, and coordinate label x'. Instead of simply
stating the result, I will attempt to motivate it by showing
that the volume average regularization is a natural gener-
alization of the same-variable second partial derivative of
an ordinary multivariable function.

(2.1)

A. The functional Hessian

I begin by reviewing the definition of the second func-
tional derivative (or the functional “Hessian”). The second
functional derivative is typically defined in terms of the
Taylor expansion of the functional F[g],

01+3 [ o
+jz / /M 507507 35%5% d"xd"y

+ O(6¢%),

Flo + 6¢] = vd"x

(2.2)

where 1 define the functions &¢f :=6¢*(x) and
8¢} = 6¢*(y); if the manifold M has boundary OM, I
assume that the support of S¢f = 6p*(x) and &g =
5¢"(y) does not reach a neighborhood of any point on
the boundary O.M (this way, I can neglect boundary terms).
In this article, I do not employ summation convention for

capital Latin indices (A, B, ...,I,J,...). Given the Taylor
expansion (2.2), one can identify the second functional
derivative, or the “Hessian” of the functional F[g]:

&*F

(2.3
Stop? Spf )

Now consider a functional F[¢] given by an integral of the
form

- [ fo.0vaa (2.4)
M

The Taylor expansion of F|p] will, in general, contain
second-order terms of the form:

IS ON 2.5)

The above may be rewritten as

| [ S Fashenolont)dte )y,
(2.6)

where the brackets {}, ) represent the symmetrization,

(T (x) + T'(y)). (2.7)

| =

{TI}(x.y) =

and S(x, y) is the covariant delta function, defined by the
property,

/E ()32, 3) "y = plx) = B(x.y) = Lw:”

(2.8)

with §"(x —y) being the n-dimensional Dirac delta
function. Equation (2.6) indicates that in general, the
second functional derivative of a functional, as defined
by the Taylor expansion (2.2), contains terms with delta
functions.

Now consider what happens if the functional depends
on derivatives of ¢*(x). For instance, consider the
functional

~ [ £ Vot i (@9)

In general, the Taylor expansion of S[¢] to second order
will contain terms of the following form:
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where V7 is the covariant derivative taken with respect to x
and V7 is the covariant derivative taken with respect to y. It
is possible to add boundary terms to convert the above
expressions to an integral of the form (2.5):

/ Z(CAB&pA&pB)\/Ed”x.
M AB

However, in doing so, one will encounter terms containing
both delta functions and derivatives of delta functions.
Naively setting x = y will yield a divergent result.

Of course, the reader may be well aware that delta
functions and their derivatives are not really functions in
the usual sense—they are distributions and are only mean-
ingful if they appear once inside an integral. Recalling that
the covariant delta function & (x,y) is defined by the property
(2.8), I may use the divergence theorem to assign a definition
for the covariant derivative of the delta function 8(x, y),

/ V(Sxy)\/_d”
MAB

/ /M;;W

=-Vivi(x),

for some vector field v'(x).

(2.11)

\/— dl‘l

(2.12)

B. Ordinary second derivatives: A motivating example

To motivate the regularized expression for the same-
point second functional derivative, I consider an example
for ordinary multivariable functions. I examine Hessian of a
function f(x) of quantities x’:

f
S IaT " 2.13
Ox"Ox’ (2.13)
Now suppose that the Hessian takes the form
Pf
oo D, (%) + Qs (x), (2.14)

where §;; is the Kronecker delta, which is the discrete-
value analog of the Dirac delta function 6" (y — z)."" Again,
I must remind the reader that in this article, no sum is
implied over repeated capital Latin indices. If I simply set
I = J, I obtain the second derivative for a single value of
the index I:

Compare the expression » Jx’ 5y =x!

counterpart [, f(z)6"(y — z)d"z = f(y).

with its integral

(2.10)

O f

I oxd =@ (x) + Qy(x).

(2.15)
Now suppose that, for some reason, I want to obtain an

expression for % without explicitly setting [ = J. If I set
Q;;(x) = 0, I may do this by performing the following sum:

O f

T (2.16)
— Ox'Ox’

= Z@IJ(X)(SU = CD”()C).
J

Note that for Q;;(x) = 0, (2.16) and (2.15) yield the same
result. However, for Q;;(x) # 0, the sum in (2.16) does not
yield (2.15). To recover (2.15) in the case where Q;;(x) # 0,
I decompose the second derivative (2.14) into a part propor-
tional to the Kronecker delta, which I call D[ - ]|, and a part
that does not contain any factor of the Kronecker delta,
which I call N[ - ]]. For (2.14), I have

52
D ax]aij - q>IJ('x)éU
0% f
N 8x18x'] = QIJ(X) (217)
With this decomposition, I construct the following:
70~ (oloasel) e
— = D(|=—= N|z—== 2.1
Ox!ox! (Z Ox!ox’ ) BN PRE Iy (2.18)

It is straightforward to verify that the above construction
(2.18) yields the same result as (2.15).

C. Second functional derivatives at a single point

The generalization of Eq. (2.18) to second functional
derivatives comes from identifying the Dirac delta function
8" (y — z) as the continuous-index analog of the Kronecker
delta 6;; and the integral over M as the continuous-
index analog of the sum. Suppose I have a quantity H4? =
HAB(x,y) such that its transformation under coordinate
transformations on M leaves the following integral
unchangedlz:

[ e

If the indices (A, B) are formed from the indices of the
coordinate basis (i, j), then I require that H AB transforms as a tensor.

d”xd”

(2.19)
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I split the second functional derivative into a distributional
part and a nondistributional part,

|l

where the distributional part DS[ - [] is the part of a quantity
containing a factor of a delta function &(y, z) orits derivatives,
and the nondistributional ND[ - ]| is the part of the second
functional derivative that does not contain delta functions
5(y,z) or its derivatives.

By analogy to (2.18), I construct the following
regularization for the second functional derivative (with
the equivalence relation = indicating the regularized
expression),

8*F S" 8*F
sptopE — 7 lopleg?

(2.20)

2 ZF
HAB( ) 5 \/ / (HAB X y)DSH 5A B”)dny
540x5<0x s
8F
+ HAB(x NDHH , 2.21
(x) P - (2.21)

where H ,p(x) := H,p(x,x) and V is a volume parameter.
The inverse volume factor of 1/V in front of the first term
must be included so that Eq. (2.21) is dimensionally
correct; DS[ -] has the same units as its argument, and
one must compensate for the volume element d"y with a
factor of 1/V. The factor of /Ty 1n front of the first term is
put in so that the first term satisfies the same transformation
properties as the second term; the second functional
derivative contains a factor of \/g_x\/g_) (also note that

the covariant delta function &(x,y) eliminates a factor of
/9y in the integral). One might recognize the integral in the

first term of (2.21) as an average of the second functional
derivative over some volume V.

D. The regularized Wheeler-DeWitt equation

Equation (2.21) suggests the following regularization for
the second derivative operator in the Wheeler-DeWitt
equation,

~ Y
Gabmn(y)ﬂ

69y 69y
z\/_g_y/ {Gabmn} DS 52\1} H d3Z
R V4 s (v.z) 59 b(sg

~ R
+G“”m"(y)NDH7 : (2.22)
sgitsgr Il

where G is the following tensor, constructed from
G (1.2):

\/‘ Gabmn

Gabmn — _ gabgmn _ gamgbn _ gangbm‘ (223)
2i?
The regularized Wheeler-DeWitt equation is then
2n%K? ~ R 4
/ <{Gabmn}(y,z)DS[| — H)d3z
14 z 59 592
R4
+ hZGabmn (y)NDH = mnﬂ
6937692,
+ (R(y) = 2A) /5% = 0, (2.24)

In the limit V — 0, the above expression diverges, as one
might expect—as discussed earlier, the second functional
derivative operator in the Wheeler-DeWitt equation is
formally divergent, since it is naively the limit of a
distributionally valued quantity.

For compact three-manifolds X with finite volume Vy[g'],
it is tempting (one might even say that it is “natural”) to
choose V = Vy[g'] in Eq. (2.21). For manifolds with infinite
volume Vy[g'| — oo, the first term in (2.21) vanishes; this is
the sense in which a volume averaging regularization can be
viewed as a generalization of DeWitt’s ad hoc regularization
[2]: 6°(0) = 0. One might imagine formulating a model for
quantum gravity with the replacement (by fiat) of the second
functional derivative by the expression (2.22) where
V = Vslg']; in this case, the distributional part of (2.21)
is nonvanishing for small volumes, but vanishes in the
large-volume limit. Assuming certain properties13 for the
wavefunctional, one recovers the Einstein-Hamilton-Jacobi
equation in the large-volume limit, irrespective of the value
for 7; this behavior suggests a possible mechanism in which
this V = Vx[g'] quantum gravity model “classicalizes” in
the large-volume limit.

On the other hand, if one imagines quantum geometro-
dynamics to be the result of some low-energy gravitational
effective field theory, then it may be appropriate to perform a
volume averaging that corresponds to integrating out short
distance degrees of freedom. In the context of effective field
theory, it is appropriate to choose V = vy, where v is a
fixed, finite volume determined by the length scale corre-
sponding to the high frequency modes that have been
integrated out in the effective field theory; for quantum
gravity, it is natural to choose v, to be the Planck volume
(hx)3/2. Since effective field theory provides a clear physical
justification for the choice V = v, (the physical justification
for V = Vg[g']is less clear to me at present), I shall focus on
the effective field theory viewpoint and the choice V = v
for the remainder of this article.

PIn particular, one assumes ¥[g] = exp(S[g’]), where S[g] is
a local functional of g"/ (by local, I mean that S[g"] can be written
as an integral over ¥ with an integrand that depends only on g/
and its derivatives at a single point).
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III. WAVEFUNCTIONALS AND HESSIANS OF
INVARIANT INTEGRALS

A. Wavefunctionals and the chain rule

In this section, I will derive expressions for the second
functional derivative of the volume functional and the
Einstein-Hilbert functional. This is a long section, and
the calculations are tedious, so I wish to first provide some
motivation for deriving the second functional derivative of
these functionals. Recall the momentum constraint (1.3),
which I rewrite here:

’kV 2k O¥ _ 0
NYE

If the functional W[g"] is constructed from integrals over a
compact three-manifold X, then the momentum constraint
(3.1) implies that the integrals must be invariant under
coordinate transformations [6]. The integrals themselves
must be constructed out of curvature invariants, since they
are the only scalar quantities that can be constructed from
the three-metric [20,21]. Under the assumption that any
covariant multiple integral constructed from the three-
metric can be expanded in terms of products of single
integrals of a curvature invariant, it follows that the wave-
functional can be written as a function of (single) integrals
of curvature invariants. If the three-manifold has finite
volume, the wavefunctional will also depend on the volume
functional of the manifold:

= /2 Vodly.

The simplest nontrivial curvature invariant is the Ricci
scalar R, and its integral is the (three-dimensional) Einstein-
Hilbert action:

(3.1)

(3.2)

Seulg’] = / Ry/Gdy. (3.3)

A simple ansatz for the wavefunctional is one in which the
wavefunctional is a function of the following functional:

In particular, I write:
Ylg] = ¥(S:lg7).- (3.5)
I now perform the variation of the wavefunctional:
A¥[g] =Yg~ + 697 - ¥lg']
= W(S[g"] + AS) = ¥(S[g"])

oY 1%

=—AS+-—AS? AS3 3.6

oS + 2 aSZ + O( ) ( )

where AS := S[g"/ + 8¢”] — S[g"]. Upon performing a Taylor
expansion of AS in 8g"/ to second order [cf., Eq. (2.2)],
Eq. (3.6) becomes

1 0w 825,
AW¥[g" wsgmtd’yd?
1= asa 305, ). e sfog B %V
+162 882+ O([6g° ). (3.7)
208?2 4 ‘
where 5g3” = 8g**(y) and 6¢2"" = 6¢™"(z). The variation

0S, can be written in terms of a functional derivative,

oS
3S; :/5 By, (3.8)
and 657 may be written as
oS, oS
/ 2L Pydiz. (3.9)
z 5gy 5.9

The variation of the functional derivative (3.7) may then be

rewritten as:
/ / oY %S,
6S/1 35,1 5g$bég

92 55, S,
082 5g§’b Sgm

A¥lg] =

}5 Wogmdiydiz.  (3.10)

From the above expression, I identify the second functional
derivative:

FY oY S,
Sgebsgmm  9S, 5gtbsgmn

0*¥ 58S, 58S,
05?2 5g§b Sgmn”

(3.11)

The above expression depends on the second functional
derivative (the functional “Hessian”) of the functional S;[¢"[;
in the remainder of this section, I will derive expressions for
the second functional derivative of ;.

B. The Hessian of the volume functional

First, I compute the second functional derivative (the
functional Hessian) for the volume functional Vg [g]. I first
work out a few useful expressions. Since I am expanding to
second order in 8¢", it does not suffice to work in terms of
the first order variation 8g;; = —gmgjbég“b for the metric.
In general, what is needed is the second order expression
for the change in the metric Ag;;:

AGi; = =9ia9jp59" + 9aiGjmIond9"" 55" + O([8g]).
(3.12)
The second order expression follows from the property

49, = 8,3 in particular, Eq. (3.12) follows from demand-
ing that the following expression holds to second order:
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(g + 89 (g + Aguy) = 7. (3.13)

The property ¢"g;, = &, may also be used to derive the
following expressions for the derivatives of ¢g"/ and g;:

OGun dg"
s - gmignj Os (314)
OGn g

L : 1

Using the Jacobi determinant formula with (3.15), I obtain
the following result:

ovg 1 0g

89,,

1 g’
— e ij = —— o 3.16
ds  2/g0s \/_ 2 V99 Os (3.16)
Another result is the following:
— (85,60 + 8.60). 3.17
b = 3 Ok + 8,00) (3.17)

Using (3.14), (3.16), and (3.17), I compute the change in
the volume element, keeping terms to second order:

/g 1 /g
sva= (g Jor 5 (g oo

+0([6g°1)
1 1
= _5 \/ggab(sgab + 5 \/.ayabmnégabégmn + O([égP)
(3.18)
where Y., 1s defined as
1
Yabmn = Z (gabgmn + 9Ima9nb =+ gmbgna)' (319)

The change in the volume functional may be written as

Valg) = [ avady. (320)

Using the result (3.18) and inserting a delta function &(y, z)
into the integral, I obtain

AVy =Vy[g +6g7] -

1
AVy = —5/2 gabggab\/gcpy
1
+§/E Yabmnégabégmn\/gdSy + 0([59]3)
1
=-5 / 9abB9** /9y

/ {Yabmn}y zég b59mn5()’, Z)\/Q;\/g_zd3yd3z
+0([69]). (3.21)

I can read off the first and second functional derivatives
from the above by comparing it with the functional Taylor
expansion (2.2):

5vZ
5y

gab V9 (3.22)

8Vs

3.23
5gab5 mn ( )

{Yabmn}yz (y Z)\/_\/E

C. The Hessian of the Einstein-Hilbert action

I now compute the second functional derivative (the
functional Hessian) for the Einstein-Hilbert action Sgy[g]
itself. Expressions for the Hessian of the Einstein-Hilbert
action do appear in the literature (particularly in work which
makes use of the saddle-point approximation for quantum
gravity—see for instance [22,23]). I present for the benefit of
the reader an explicit derivation of the Hessian. For the
remainder of this article, I assume that the manifold X is
compact and without boundary.

I begin by writing down an expression for the change in
the Ricci scalar. Though it may be strange to do so before
performing variations of the Christoffel symbols, the varia-
tion of the Christoffel symbols is rather complicated at
second order (later, I show that the first-order expressions for
the Christoffel symbols suffice). If I obtain a variation in the
Ricci scalar first, I can identify the places where second-
order terms in the variation of the Christoffel symbols are
needed, if at all. In fact, I show that the second variation of
the Einstein-Hilbert action does involve second-order var-
iations in the Christoffel symbols.

The change in the Ricci curvature is worked out in the
Appendix [see Eq. (A7)],

AT, AT

AR, =V,AlY —V,Al" + A AT —

(3.24)

where AT e [Eq. (A1)] is the change in the Christoffel
symbols. In terms of AR, and 5¢°, the change in the Ricci
scalar is

AR = 8¢ R, + ¢"" AR, + 5g"° AR, (3.25)

One can combine equations (3.18), (3.24), and (3.25) to
obtain the following expression for the variation of the
Einstein-Hilbert action [see Appendix for the algebra
leading up to Eq. (A20)]:
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ASgy = Sgnlg” + 697 — Seulg’] = /Z (AR\/g+ RA\/g+ ARA\/g)dy

4 o . S
= 5SEH + L |:gab(viAFlba - vbAFia) + E (RYahmn - Rahgmn)égabégmn + gab(AF;sAFZa - AFZSAF;a)

1 . .
+ (59‘”’ - Eg“bgmnég’"”> (V,Al,, — V,ALY,) + O( [59"]3)] Vody. (3.26)

where 6Sgy is the first-order variation of the action given by

1
S5Spy = /}2 (Rab - Zg”hR> 5q°t\/gd®y. (3.27)

I recognize that the term ¢* (VAT , — V,AT™,)) in (3.26) is a total divergence—it is a boundary term. Since the manifold £
is assumed to be compact and without boundary, I eliminate this boundary term. The variation of the Einstein-Hilbert action
becomes (A35)

. ) 1 . )
ASEH = 6SEH + / |:gub(AFi&AFl;a - AFZsAr;a) + (5gah - Zgahgmnégm”) (VIAF;M - thria)
z

1
+ 5 (RYabmn - Rabgmn)(sgabégmn + O([59]3):| \/§d3y (328)
Note that each time AFZ , appears in the above expression, it is either accompanied by a factor of 8¢ or another factor of
AT, . Tt follows that only the first-order part of AT, contributes to second-order terms in (3.28). To obtain an expression
for AS that is second order in the variations of the inverse metric 6¢°°, it suffices to use an expression for AT" , to first order

in 5¢*°. Recalling the definition of the Christoffel symbol,

1
I'f = Egak(aigkj + 0,9 — Or9ij)- (3.29)

it is not difficult to show that, to first order, the variation of the Christoffel symbol takes the covariant form
1
oIy, = Egak(viAgkj + V;Agy — Vihgi;) + O[89, (3.30)

where Ag;; is defined in (3.12). To first order, one may use (3.12) to rewrite Eq. (3.30) in terms of variations of the inverse
metric:

1
01 = 5 (Gmignig" Vidg™" = 9n;Vi6g™ = gniV ;69") + O([69)- (3.31)

Given (3.31), I may then rewrite the variation of the Einstein-Hilbert action (3.28) in terms of the first-order

3 \a
expressions oI’ i

ASEH == 5SEH + /

. . 1 . .
[g“”ér;sar;;a — g8T 5T, + <5g“” - zg“bgmnégm"> (Vil},, = VpoT%,)
z

1

+ E (RYabmn - Rabgn1n)5gab59mn + 0([59]3>:| \/§d3yv (332)

where 617} is given by (3.31). After an application of the divergence theorem, Eq. (3.32) for the variation of the Einstein-
Hilbert action takes the following form [Eq. (A35)],

iy !
ASEH = 5SEH + / [Zd]bm;lviégahvjégmn + 5 (RYahmn - Rahgmn)égahégmn + O([égP) \/§d3y’ (333)
b
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where Zabmn is a tensor formed from terms containing
products of g;;, ¢”, and 5’] From metric compatibility, it
follows that Z

abmn

satisfies the property

v, Z% =0 (3.34)

abmn

Ultimately, the explicit form for Za »mn 15 DOt important for
the results in this paper; what matters is that it satisfies the

property (3.34). Nevertheless, I have derived the following
explicit expression for ZY,  in the Appendix [Eq. (A36)]:

abmn

Z;]bmn = 4 (4gn¢15l 2gml75 6 gmbgtmg”

+ gijgmngab - 29mn5;;5t]l) (335)

Equation (3.33) may be converted into the following
multiple integral,

1 N
ASgy ~ 6Sgy + / / [{zahmn vyaga”vzagm"+§{RYG,,,,M— RapGmn} (520957892 | 6(y, 2) /Gy /92, (3.36)

where V7 and Vi, respectively, denote covariant derivatives taken with respect to y’ and z', 5g§fb
denote the operation

8g7" = 8g"" (z). Recall (2.7), where the brackets {} )

for some tensor T! = T'(y). 8(y,

= 59" (y), and

1
M =5 T'0) +T(2)), (3:37)
7) is the covariant three-dimensional delta function, defined by the property
- ~ S(y—z
/go(z)&(y, V0= (z) = 6(y.z) = g (3.38)
s V9:

where ¢(z) is a scalar and §"(y — z) is the n-dimensional Dirac delta function.

Applying the divergence theorem, I obtain
ASgn ~ 68y + / / l:{Zahmn

where I have used the fact that VkZ = 0, since Z,

abmn ~ abmn

1
vyv 5())» ))agvbég + E {RYahmn - Rahgmn}(y z)égybégmné( ):| \/g_y\/g_zd3yd3Z7

(3.39)

is constructed from Kronecker deltas and the metric g,,,. By

comparison with Eq. (2.2), I may write down the following expression for the second functional derivative (Hessian) as:

5 Sen
5g§bég;nn

IV. AN APPROXIMATE SOLUTION TO THE
WHEELER-DEWITT EQUATION

In this section, I obtain approximate solutions to the
Wheeler-DeWitt equation, using the results obtained in the
preceding sections.

A. Second functional derivatives of the wavefunctional
I now compute the regularized operator [Eq. (2.22)]:
¥

5 gab S gmn

~ R
g@/ <{Gabmn}<yZ)Ds : ﬂ>d3Z
Vs o l6gy ey

~ Y
+ Gdbm'l (y)NDH ab s mn
bgy° 04"

Gabmn (y)

(4.1)

~ 1
= |:{Zabmn} v,z)(v{vié(y’ Z)) + 5 {RYabmn - Rabgmn} (».2) (y Z>:| \/@\/E

(3.40)

for wavefunctionals of the form ¥ = ¥(S,). I now recall
Eq. (3.11):

s B
SgiPogim S, 8 6g2"

W 55, 55,
0S; bgy” 8g2"

(4.2)

From Eqgs. (3.22) and (3.27), the first functional derivative

of S/l = SEH - 2/1‘/2 (34) is
oS, 1 .
5gab = <Rah - EgabR> \/_, (43)
where I have defined
R:=R-2.. (4.4)

From Eq. (4.3), one can infer that the second term in (4.2)
is nondistributional. Using (3.23) and (3.40), one can
construct the Hessian of S; = Sgy — 24Vs:
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85,
mn [ {Za mn} )
S brnn 7 (3:2)

+ {(R - l/z)yahmn - R

X \/g_y\/g—z

(ViVid(y. 2))

abgmn}(y.z)é(y7 Z)]
(4.5)

Every term in the Hessian (4.5) contains a factor of the delta
function or its derivatives. I can now identify the distribu-
tional part of the second functional derivative:

Y ] _ov s,
uégubagmn” as, 5gub59

oY
8S [Z{Zabmn} (»,2)

+ {(R _1/2) Yabmn _Rabgmn} (y.2) (y Z)]
X \/Gy\/9z- (4.6)

(ViVid(y.2)

To work out the explicit expression for (4.6), I begin by
constructing the following integral:

o S, )
Gabmn i d3Z
/Z ({ }(%Z 59yb59
/[2{ZabmnGabmn}(y-Z)(V{V§S(y’ Z))] VIyv gZd3Z

+ /Z[{Gabmn((R - /1/2> Yabmn - Rabgmn)}(y,z)s(y’ Z)]
X /Gy /G2 (4.7)

It is straightforward to derive the following result for the
two quantities § = 5(y,z) and QY = Q(y, z):

VI(QUV36) — Vi(8V} Q1) = QV)Vis — 6ViVi QY.

(4.8)

Using the above result, I may rewrite (4.7) as

528
Gabmn A d3
L_<{ S V5 sgmn ) ‘
= [TV G 500 2) T

+ / (G (R = 2/ ) omm — Rapom)} 5,050 2)

X \/Z];\/Z];d%, (4.9)

which becomes

5%S,
Gabmn d3
/Z <{ } (y.2) 5gab59mn> 2

=2 [Vyv {Zabmn Gahmn } (,V-Z)]Z:y \/g

Gabmn((R - 2/1) Yabmn - Rabgmn)\/.a' (410)

Note that Z"/

abmn (3:35) 1s a quadratic expression in g;; and

5}, and G’ is a quadratic expression in g; ;- It follows that

covariant derivatives of ij;mnf?“h'”” vanishes by virtue of
metric compatibility [V,g;; = 0 and V,¢" = 0; cf. (3.34)].
From the definition of Y, (3.19):

S
/ {Gabmn} — A d3Z
> <) sgab g

o 1
= Gahmn |:Z (R _1/2) (gabgmn + 29amgbn) - Rabgm” \/§

(4.11)

Using the definition (2.23) for G®mn 1 work out the
following quantities:

Gabmngamgbn =-9

9ab9mn = 3
GahmnRabgmn = Gahmngamen =R
G’ R,,,R.y = R* = 2R™R,,,

Gabmn

(4.12)

I then use Eqgs. (4.11) and (4.12) to obtain the following

expression:
R
Hih H d’z
6961 6gmn

/2 ({G(zhmn}(y’z>Ds
v i & Sey

Gabmn d3

38,1/ <{ }»z 5g}"59 Z

oY - 1 A
- Gabmn - _~ 2 _R
85‘/1 <4 < 2> (gabgmn + gamgbn) abgmn> \/§

= —18—T(38R— 152)\/g.

335, (4.13)

I now work out the nondistributional part of the second
functional derivative of ¥ in Eq. (4.15). It is not too difficult
to show that

5S, 58S, 1, . 1. .
= (R, == g, R ) Raw = = G R ) /Oo\/0-
5gyb5g (uh 2 ab >( mn "~ Jmn ) 99\ 9z

1.,
zRyg;benn

— <R}’ RZ _legz R —
ab*tmn 2 mn-tab

1 .
+3 gzbgngyRZ> NN (4.14)
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again, recalling the definition R := R — 21 [Eq. (4.4)]. Since Eq. (4.14) contains no delta functions, I write down the
nondistributional part of the second functional derivative of ¥:

N ﬂ ¥ H_ahp 3, 55, O°%
552"

1
= = R . R: —_R?
083 5gib 5g2" asﬁ( abrmr 3

o1, L
iy = 3R G + {0 R R ) VT (415

Making use of the symmetry in G*™ [recall that it is symmetric in the indices (a, b) and (m, n)], Eq. (4.15) yields the

result:

~ 5Y
Guhmn (y)ND” H

Sgsbsgmn

=y

Using (4.12), the nondistributional term (4.16) simplifies to

o Y
Gabmn (y)NDH — mn”
bgy° 04"

7=y

_ Gubmn 82—1}’

952

109

T 4082

Finally, plugging Egs. (4.13) and (4.17) into Eq. (4.1), I obtain the following result,

1 oY

Gabmn 52lP ~ ?
= 2V 9S8,

K
Sqbsgr T 2

where [recalling Eq. (2.23)] I have made use of the relation
2K2 Gabmn — \/gGuhmn‘

B. An approximate solution to the
Wheeler-DeWitt equation

The result (4.18) may be used to obtain approximate
solutions to the regularized Wheeler-DeWitt equa-
tion (2.24). First, I set V = vy, where v, is a constant.
For later convenience, I wish to work in terms of a
dimensionless parameter; since v, has units of volume,
it is helpful to write vy in terms of the Planck volume
(hx)/? and a dimensionless parameter b:

vy = b3 (hK)3/2. (4.19)

To solve the regularized Wheeler-DeWitt equation, I take a
low-curvature limit and neglect terms to second order in the
Ricci curvature,' so that Eq. (4.18) yields

Gijkl

PR 1 p
AL (—WG (38R — 152)

o*Y

-5 (4R1 — 12,12)> NG (4.20)

With some algebra, the regularized Wheeler-DeWitt equa-
tion (2.24) becomes

“This is essentially a small curvature expansion for the
Wheeler-DeWitt equation, which was introduced in [21].

~ 1 -
(Ramen - RgmnRab + ZgabgmnRz) g- (416)
(3R? — 8R™R,,, — 4R\ + 12)2)g. (4.17)
[0 SN 5
o5 (B8R = 152)\/5+ 5 (3R — 8R™R,,,, 4R+ 124)/3 ). (4.18)
A
[
Y 19vhk O
22—+ —5-= YR
< o5t T 2 as, ) Vo
1 /(15 hk 0¥ oY
— | ———— 4+ 12R%% )2 — — 4AVY =0.
2< 25 o, K s >\/§
(4.21)

For simplicity, I first consider the 1 = A = 0 case; here,
the Wheeler-DeWitt equation simplifies considerably:

19vhak 0¥
N\ —=——-Y |RJ/g=0. 4.22
< 2b3 aSEH > \/.6 ( )
Equation (4.22) admits the following solution:
Wylg] = C [ 2 Gl ~]} (4.23)
=Cyexp |——=— . .
09 0 €Xp 19\/H EH 9

Before proceeding to the 4 # 0, A # O case, I argue for the
necessity of taking the low-curvature limit, in which I
neglect terms quadratic in the Ricci curvature. Recall that
the volume average regularization used to obtain
Egs. (4.18) and (4.24) is based on the assumption that
the Wheeler-DeWitt equation is a low energy description
for the effective field theory that results after one has
integrated out short distance (large curvature) modes for
some theory of quantum gravity. If I reinsert (4.23) into
(4.18) and multiply through by 73k, I obtain (setting 1 = 0)
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Y 1 4
fl3 Gabmn —  ~_ | -=2AKkR —b6fl2 2 3R2
G s =3 R g

- 8R’””Rmn)\/§> Y(g]. (4.24)

If b is on the order of unity (which corresponds to choosing
vy to be on the order of the Planck volume), the limit in
which one can neglect the quadratic curvature terms
corresponds to the limit #k|R,,| < 1, or when the Ricci
curvature is much less than the inverse Planck area (k)"
Curvatures on the order of the inverse Planck area corre-
spond to short distance behavior, and it follows that the
low-curvature limit is necessary if one chooses the averag-
ing volume v, to be on the order of the Planck volume
(hK)3/2.

For the 1 # 0, A # 0 case, I can solve the Wheeler-
DeWitt equation (4.21) by seeking a function ¥(S,) that
satisfies the following set of ordinary differential equations:

P¥  19VAx 0P
o)l DVIKIE w425
Aost T o as, (4.25)

523/fik O 2 8
AVAROY L snaert S Aw —o. 426
T TR (4.26)

The first equation (4.25) admits solutions of the following
form:

—19+ /361 + 3226
+ K) SA} (4.27)

Lpi(Si):Ciexp |:< 8/1b3(fll(‘)3/2

where C, and C_ are complex constants. In the 4 — 0
limit, ¥, becomes the 1 = 0 solution ¥, (4.23). Inserting
WY, (4.27) into Eq. (4.26), I obtain the following condition
on the parameter A:

99(19 — QV/361 + 326°hKA) + 326°AK(34 — 2A) = 0.
(4.28)

where Q = +1 for ¥, and Q = —1 for ¥_. Solving for 4, I
find that for both Q=1 and Q = —1, I obtain the
following values for A:

o _ 128°7kA — 33(15 + V76855 hrA + 225)

4.29
192657k (4.29)

Though Eqgs. (4.27) and (4.29) describe a solution to the
regularized Wheeler-DeWitt equation, they are unsatisfac-
tory in their present form due to their dependence on the
regularization parameter b. While one might expect b ~ 1,
so that v, is on the order of the Planck volume, the precise
value for b is dependent on the details of the short distance
physics. On the other hand, the viewpoint here is that

quantum general relativity (and by extension quantum
geometrodynamics) is a low energy effective field theory,
which can be formulated without reference to the details of
short distance physics; it is, therefore, appropriate to seek
results that are independent of the value for the regulari-
zation parameter b.

To obtain a regularization independent result, I recall that
the volume averaging regularization was introduced to
avoid a delta function divergence, and note that divergences
reappear in the Wheeler-DeWitt equation when taking the
limit b — 0, which corresponds to the limit in which the
averaging volume goes to zero. I also recall that in
perturbative quantum field theory, the coupling constants
in the (unrenormalized) action are bare constants that do
not correspond to physically meaningful quantities and that
in renormalization, one absorbs the divergences into the
coupling constants by replacing the bare coupling constants
with coupling constants that depend on the regularization
parameter (which is effectively what is done with the
addition of counterterms in the action). With this in mind,
I imagine that « represents a “bare” quantity, and introduce
a dependence on the regularization parameter b. I then
require that for small b, k has the following leading-order
dependence on b:

Kk =K&kb® 4+ O(b7) (4.30)
For the A = A = 0 solution (4.23), it is straightforward to
see tl}ailt in the limit » — 0, Eq. (4.30) for « yields the
result ™:

,lji_f}(l)q'o[g"] = Cyexp [#ﬁsm[g"]] (4.31)

For the 4 # 0, A # 0 solution ¥_ (4.27), the limit » — 0
yields a similar result'®:

fime g = Coep | 25| (432

Taking the same limit for the expression for 4 in Eq. (4.29),
I find that in the “—" case, I obtain a finite result that is
independent of &:

TO6N
A=— 4.33

75 (4.33)
Thus, in the long-distance limit (b — 0), ¥, has the
explicit form:

“Note that the limit b — 0 provides further justification
for dropping the curvature squared terms in (4.24).
The exponent becomes infinite in the W_ case.
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W[g]=Aexp {ﬁﬁ <SEH lg7] -

Eq. (4.34) forms the main result of this article; it describes a
solution of the regularized Wheeler-DeWitt equation in the
low-curvature, long-distance limit.

One may note that the solution (4.34) has a form similar
to the that proposed in Eq. (107) of [21] for the large-
volume limit. Unfortunately, the solution (4.34), obtained
from a Regge simplicial lattice regularization, is distinct
from the large-volume solution presented in Eqgs. (107),
(117), and (118) of [21], so a direct comparison cannot be
made. In particular, the coefficients (Eq. (118) of [21]) in
front of the volume functional and the Einstein-Hilbert
functional in their solution differ by a factor of i, and have a
different dependence on the value of A; in the large-volume
the solution presented in [21], the coefficient for the volume
functional vanishes in the limit A — 0, the coefficient in
front of the Einstein-Hilbert functional diverges.]7

152

F/\V[g--]>] . (434)

C. A three-sphere universe

I conclude this article with a brief investigation of the
solution described in Eq. (4.34) for a minisuperspace
restriction to the “round” geometry for a three-sphere,
given by the line element

ds* = r[dy? + sin?y (d6* + sin*0d¢?)]. (4.35)
For the round metric (4.35) on the three-sphere, Sgy=

127%r,and V = 2227r3. The wavefunctional (4.34) evaluated
for the geometry (4.35) is given by

W(r) = Aexp {% (r - 7—6Ar3>} . (4.36)

I note that for A > 0, lim,_,,¥(r) = 0, and that ¥(r) has a
maximum at r = /15/76A; in a DeSitter universe with a
closed slicing, this three-geometry corresponds to a time ¢
satisfying r* = 3 cosh?(¢y/3/A)/A. In the minisuperspace
restriction, one can normalize ¥(r), as long as k and A have
finite values; the integral (performed with Mathematica
[24]) of the square of ¥ has the following form:

|A|2/o°exp <,ur—%r3>dr
0

2
:%(4ﬂy2/sBi(ﬂ/yl/3) +3u% F,(1;4/3,5/3; 4% /9v))

(4.37)

"This remark is not meant to be a criticism; I am merely
pointing out the differences between the solution presented in this
article and the solution presented in [21] that preclude a direct
comparison.

where Bi(x) is an Airy function of the second kind, and
,,Fq(rl, ...Fp3 Sy, ...8,3X) is a generalized hypergeometric
function. Though the result diverges for v — 0 (which
corresponds to taking A — 0), the above remains finite
for finite values of the parameters ¢ and v. The divergence in
the limit v — 0 corresponds to setting A = 0; in this case,
one can see thatlim,_, ., W(r) = oo. This suggests that for the
three-sphere manifold, the state W[g'] (4.34) is not normal-
izable for A = 0. One might observe that the unboundedness
for W(r) when A = 0 corresponds to the limit in which the
volume becomes infinite. In minisuperspace models, the
scale factor of the FRW metric, which controls the volume
for spatial slices, often plays the role of a time parameter
[1,4,25]. One may attempt to resolve the unboundedness in
the (nonminisuperspace) functional W[g'] by treating the
volume Vy of the three-manifold X as a time parameter;
however, while this might lead to a normalizable state at a
fixed volume, it does so at the cost of nonunitary time
evolution [26].

V. FINAL REMARKS

In this article, I have examined a volume average
regularization for the second functional derivative operator
in the Wheeler-DeWitt equation. I have argued that such a
regularization is natural for studying quantum geometro-
dynamics if one regards quantum general relativity to be a
low energy effective field theory of quantum gravity. In the
low-curvature, long-distance limit, I have found a solution
[Eq. (4.34)] to the regularized Wheeler-DeWitt equation.

An important question is whether the solution ¥[g']
Eq. (4.34) describes a physically meaningful state for
quantum geometrodynamics. I have briefly studied the
features of W[g'| Eq. (4.34) for three-sphere geometries,
and have found that for finite ¥ and finite A > 0, the
solution is normalizable on the minisuperspace restriction
to metrics of the form (4.36). It is curious that the
minisuperspace state ¥(r) (4.36) is peaked at the geometry
corresponding to a particular time in the closed slicing of
DeSitter spacetime; this seems to suggest that the state
described by W[g'] Eq. (4.34) contains some information
about the temporal placement of the three-geometry in
spacetime which in turn suggests that a more complete
account of the dynamics requires solutions with a more
complicated dependence on the three-geometry. One diffi-
culty, as discussed earlier is the unboundedness of ¥[g] for
geometries on the three-sphere manifold when A = 0. One
can, however, place an upper bound on Sgy[g°] with certain
choices of topology on compact manifolds; in fact, it has
been shown [27] that Sgy[g'] always has a negative value
for the three-torus.

"An interesting question is whether one can identify
other three-manifolds that have this property—in particular,
one seeks three-manifolds with a negative or vanishing Yamabe

(topological) invariant [28], which implies Sgy[g7] < 0.
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There are some general issues that have not been
addressed in this article, some which have been discussed
elsewhere in the literature, and some which I leave for
future work. A particularly intriguing line of investigation,
which I leave for future work, concerns the V = Vs
quantum gravity model briefly described in Sec. IID.
Another question of interest is whether it is appropriate
to replace the second functional derivative operator in the
Wheeler-DeWitt equation (1.1) with a Laplace-Beltrami
operator, such as those described in [2,5]. Though the
methods presented in this article are motivated by effective
field theory considerations and inspired by renormalization
theory, the precise relationship between the methods
presented here and perturbative quantum field theory is
presently unclear. In particular, the methods presented here
are formally nonperturbative and gauge/slicing depen-
dent,” which complicate the task of establishing the
relationship between the results presented in this article
and relativistic quantum field theory. One difficulty in
particular concerns the fact that the volume averaging is
performed over a spatial volume, rather than a spacetime
volume; to fully establish the relationship between the
regularization presented in this article to a covariant
regularization, one may be required to perform an addi-
tional temporal averaging, in which one must confront the
problem of time. Furthermore, one must take into consid-
eration the fact that W,[g°] are approximate® solutions to
an equation that is only valid in a low-energy limit—in the
effective field theory framework, the Wheeler-DeWitt
equation itself is only valid at scales in which quantum
general relativity remains valid; in particular, the solution is
only expected to be valid at scales where one can ignore the
effects of curvature-squared terms in the bulk (four-dimen-
sional) action. Since the approximate solutions ¥,[¢"| are
functionals of ¢/, they automatically contain information at
all scales [17]. This may require the suppression of
information contained in W,[¢g"] for 3-geometries corre-
sponding to scales where the Wheeler-DeWitt equation is
no longer expected to be valid.
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Pof particular concern is the fact that low 3-curvature
limit used to obtain the approximate solutions is gauge/
slicing dependent.

Though as argued in Sec. IV B, such an approximation is
necessary if one considers the reasoning used to justify the
volume average regularization.

Note added in proof.—I recently became aware of another
set of approaches in the literature which regularize the
Wheeler-DeWitt equation. I am referring in particular to the
heat kernel and point splitting regularizations described in
[29-33], which are related to those described in the present
article; the volume average regularization may be inte-
preted as an average over the displacement in the point
splitting regularization.

APPENDIX: THE VARIATION OF THE
EINSTEIN-HILBERT ACTION

1. The change in the Ricci tensor

In this section, I review the variation of the Ricci tensor.
In particular, I work out the change in the curvature tensor
under the following transformation of the connection
coefficients,

= + 0 = 05 = ATy,

(A1)

where Qf; are components of a tensor. The transformed
Riemann curvature tensor may be written

Rijup = Ry + 0,05 — 0,05 + LT3, + T4, 0,

= Q)0 — T Qi + Qs Q) — 0, Q0 (A2)
Comparing this with the covariant derivatives of O
VaQi; = 020} + T4 Q35 = 15,045 — T3, 0)
Vp Qi = 0pQ4; + T3, Q0 — 13,05 — T3,Q05. (A3)
I find that
Rijab — R + SZhQij
= anéj - vbelj + Qisz;,j - QZS [Slj, (A4)

where 8%, :=1%, —T%  is the torsion tensor. The torsion
tensor comes from the fact that the terms I'},Q!; and
rs ol ; in the covariant derivatives (A3) do not appear in

the expression (A2) and must be added in when converting
the partial derivatives of the connection variations to
covariant derivatives. I contract indices to also obtain the
transformation of the Ricci tensor:

Rap = Rap + 83,050 = ViQhy = Vo0l + 01,05, = 0, Ol
(AS)

Recalling in = Ar‘?j (A1), I may rewrite the above as

026024-14



VOLUME AVERAGE REGULARIZATION FOR THE ...

PHYS. REV. D 98, 026024 (2018)

Rah - Rab + StSbAFia = leFlba - vbAFiu
+ AF;:SAFZ o AFZSAFf-a. (A06)

For a torsion-free connection, S%, =0, I may rewrite
(A6) as

ARab = Rab - Rab = leF;m - vbAFiu

+ AT ;iSAF‘,‘;u — AF;‘,‘YAF‘EH. (A7)
2. The variation of the Einstein-Hilbert
action to first order

I now review the first-order variation of the Einstein-
Hilbert action, which may be found in a standard
text on general relativity [34-36]. The variation of the
Ricci tensor is

where
. 1 .
5F§'a = Egm (vi5gsa + va5gis - vségia)
: 1 .
5F;7a - Egm (vbégsa + vaégbs - vségba>. (A9)

25Rab = _gij(gjmganvivbégmn + gbmgjnvivaégmn - gamglmvivjégmn - gimgjnvbvaégmn)’

OR = _(vivjégij - gmngijvivjégmn) + Rabégab-

The variation of the Ricci tensor takes the following form,

26R ., = 4" (Vi V,,89,, + ViV 89,

- vivj5gba - vbvaégij)v (AIO)

and it follows that the variation of the Ricci scalar is

5R = g’ 6R y, + Rup0™

= gijgabvi<vbégja - vjégab) + Rabégab‘ (Al 1)

To first order, the variation of the metric and its inverse are
related in the following manner:

5gab = _gamgbnégmn' (A12)

I use the above (A12) to rewrite equations (A10) and
(A11) as

(A13)

(A14)

Using (3.18), the variation of the volume element is, to first order,

1 1
6\/.5 = 5 \/ggnmégmn = - E \/ggmnégmn'

(A15)

I now present the algebra for the first variation of the Einstein-Hilbert action,

3 1
5Sgn = A (6R\/g+ R8\/g)d*y = L ((—g’-’g”” Vi(9in9anV609™ = Gam9onV j89™) + RapS9**) /9 — 5 V99ar09" R) dy

1
— [ (Rar =50k ) i

(A16)

where a boundary term has been dropped in the second equality due to the fact that the manifold X is compact and without
boundary (recall the metric compatibility condition Vyg;; = 0, Vig"/ = 0).

3. The variation of the Einstein-Hilbert action to second order

Here, I present some algebra for the variation of the Einstein-Hilbert action leading up to Eq. (3.26). First, I expand the

variation of the Einstein-Hilbert action,
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ASgy = Sgulg” + 697 — Seulg’] = /}: (AR\/g + RA\/g + ARA\/g)dy
1 1
= / ([59“”Rab + g’ AR, + 89"’ AR ) — ER[gabég”b — Y apmn09**8g™] — 5 InnARSG"™" + 0([59”]3)> Vod®y
>
1 1
= / ([5guhRuh + gabARah + 6gabARah} - _Rgubégab + ERYabmnégubégmn
>

2
S 8 Ry + AR} + Ol ) ) Vi (A17)
Next, I substitute the expression for AR, in Eq. (A7) into Eq. (A17) to obtain (keeping terms to second order in variations):
ASpy = /z ({5gabRab + (9" +389")[ViAT,, = V, AT}, + AT AL} — AT, AT} |} - %Rgab(sgab
+ %RYuhmnagabégm" - %gmnég""l{agﬂbleab + g [ViAly, = VAL, + AL, AT, — AT} AL ]} + O [69"]3>> Vod'y

= / <{5gabRab =+ gab [viAFZa - vbAFia + ArisAFia - AFEJSAFtSa] + 6gab(viAF§;a - vbAFia)}
z

1 1 1 1 . .
—=Rup8G” + = RY 489" 89™" = = GunS9"" 89" Ry = = Gpun09™" g** (V, AL}, =V, AT ) + 0([59“]3)> VIdy.

2 2 2 2
(A18)
A rearrangement of terms yields the result [Eq. (3.26)]:
ASgr = /Z [(Rab - %Rm) 89" + g (ViATy,, = V,AT,) + ¢ AT} AT, — " AT AT,
+ 69" (VAL = VAT, ) + %R Y apmn09*" 8™ — %Rabgmncsg’""csg"b
- " (ViAT}, = VaATY) + O3 )| Vi (A19)
Using Eq. (A16), I may further simplify this to obtain the result
ASgn = 6Sgn + L {gah(viAF;m — V,AL,) + % (RY apmn = RapGmn)09°"89™" + g** (AT AT}, — AT} AT,)
+ (59“” - %g“”gmnciq”’”) (ViA@Y = V,AL,) + 0([59"]3)] Vody. (A20)
4. Simplifying terms in the second-order variation of the Einstein-Hilbert action
In this section, I present the algebra for obtaining Eq. (3.33) from Eq. (3.32). First, I rewrite Eq. (3.32):
ASpy = 8Spn + L {g“”fSF?ﬁF‘};a — g*ol;,0T, + <5g“” - ;g“”gmnﬁgm”> (Vidly, = Vol
+ % (RY abmn = RapGnn )09 59”’"] Vody. (A21)

I apply the divergence theorem to obtain
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. . 1 .
ASgy = 6Sgn + / {gﬂbér;,s&r;a — g*P6T o1, — (Viég“b — ig”bgm,,vi(ng”) T,
z

1 . 1
+ <vb5gab - Egabgmnvbégmn> 5F;'a + E (RYabmn - Rabgmn)égabégmn} \/§d3y

= 5SEH + /2 |:gab5F:'s5Fia - gabér‘émﬁrfa - viégab(SF;?a + Egabgmnvib‘gmnar;m + vbégabéri'a

1 . 1
- Egubgmnvbégmnéri‘a =+ 5 (RYahmn - Rabgmn)égahégmn:| \/§d3y (A22)

Now the first-order variation of the Christoffel symbols (3.31) may be used to obtain the following expressions, which
will be useful for working out expressions for (A27):

oIy, = %(gmignags"vkﬁg”’” = 92aVi69" = iV abg"™)

oy, = %(gmbgnag”‘vkﬁg’"" = 92aV89"" = GmpVa69™)

o}, = %(gmbgnsg"kvkégm” — 9ns V09" = gV :09™)

o, = —%(gmivac?g””')- (A23)

I use the last one (5T, = —1g;,V,8¢") to simplify some terms in (A22):

1 . . . 1 ‘
ASpy = 68gn + /E [—Eg“bgijvség”éria — g*ber 8T, — V6g°PoT  + Eg“bgmnviég’”"él";m

1

| o1
- Egijvbégabvaégu + Zg“bgmngijvbﬁgm”vaﬁg’/ + E (RYabmn - Rabgmn>59ab5.gmn \/§d3y (A24)

Now I insert some Kronecker deltas and change index labels so that I can combine terms:

1 . 1
ASpy = 6y + /E [— ST gV 89"6T s, = 6T} 8T, = V89T, + 2 60,V ,698T,

1 1 o
=59 V89°°V 597 + Zg“”gmngijvbég’””vaég"’ + 5 (RY apn = RapGmn )09 89™ | /9d®y

1 1 .
= 0Spn + /Z KE 9 gun V69" — Eg“bgmnvﬁg”’” - V89" >5Fia — g*oT},oT,

1 L1 | |
- Egijvbagabvaégl] + Zg”hgmngijvbég’"”vaégu + 5 (RYabmn - Rabgmn)égahagmn \/f_]d?’y

) 1 | i,
= 5SEH + / [_v‘végabéria - gabérémérts'a - Egijvbégabvaégu + Zgabgmngijvb(sgmnvaégu
s

+ (RYabmn - Rabgmn)(sgabagmn] \/gdBy (A25)

N[ =

I again change index labels and insert Kronecker deltas to simplify further:

. 1 1
ASpy = 6Sgy + L {—Vség“bél“fm = g0T}, BT, =5 980TV 8GN 189" + 1 6V 159V i
1

+ E (RYabmn - Rabgmn)agabégmn] \/Z]d3y (A26)

I now define the following two scalar quantities:
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A =V 5g°b6Ts
Ay = g*boT o1 (A27)

a’

so that the variation of the action becomes [after collecting terms in (A26)]:

1 .. 1 1
ASEH = §SEH +/ |:_(Al +A2) + <Zgl]gmngah —Egmnéi’(s?) viégabvjagmn +§(RYuhmn _Rabgmn)agabégmn \/§d3y
s .

(A28)
I now work out explicit expressions for A; and A,, using the expressions Eq. (A23). A, is relatively simple to work out:
A; =V 59°05T,
= %V‘vﬁg"b (95919 Vi89"" = 92aV509" = 9V u0g™)

1 3
=3 (9mbnag” V8GN ;8™ = 26,4V 69V ,5g™). (A29)

I perform additional index relabelings and insert Kronecker deltas to obtain

[

A1 = = (v Gnad” = 29naBin6),) V8970V ;5™ (A30)

T2

The computation of A, is more involved [again, I use Eq. (A23)]:

A2 - gahérinél—\lsa
1 . ‘ .
= Zg“” (9nb9ns I Vi8g™ = GusVp89™ = 91upV89™) (919909 V697! = 943aVi89° — 9,V 169"*)
1 ] Y [ Y ir mn g
= Zg“” (9nb 959"V 169™ 919309 V6971 = Gnbns 9"V 169 94V 65" = GripGns g™V ,69™ 9,V 1597
= 9ns V509" 9119509 V89" + 95V 69" 93aV 166" + 9usV 89" 9,V 1897
- gmbvségmigpigqagﬂ(vkégpq + gmbvségmigqaviégsq =+ gmbvsagmigpivadgps)‘ (A31)

After performing some contractions and index relabeling, the above becomes

1 . ) .
A2 = Z (gmbvaég'nnvnégah - gmbgnsglrvrégmnviagbb - gnsvrég‘mvaég” - gpivbégmvnagph + gnsvréganvaagv

+ Ipmns9" V89"V 89" = 91599 V89"V 897" + G V09"V 189" + 9,V 1,69V ,597). (A32)

The underlined terms cancel and I obtain the following expression:

As = =29,V 89"V .89 = Gup9,19° V6™ Vi 5gP?)

(29mp048.V 185"V 86" = Gy Gan gV ;6™ V :56°)

(29mp048s = GupGang™ ) V892V ;5™ (A33)

I N
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I now insert Egs. (A30) and (A33) into Eq. (A28) to obtain the following expression for ASgy, which I simplify as

2 2

4

o 1 o )
ASgy = 8Sgn + / [(gm&ﬁi — = 9mbInad” = = Gmpady + gmbgang”> V69V 59
>

4 2

1 .. 1 o 1
+ <_ gugmngab - _gmn(s;;(s{l) viégabvjégmn + 3 (RYabmn - Rabgmn)(sgabégmn] \/§d3y

2

- 5SEH + / |:_ (4gna5:1152 - 2gmb5{15£l - gmbgangl] + gl]gmngab - 2gmn625{1)viégabvjagmn
z

4
+ % (RY apmn = RapGun )09 59’”"] Vod'y. (A34)
Finally, T write
ASgy = 8Spy + /Z [z;"bmnv,-ﬁg“bvjégm" + % (RY ahun = Ra Gn)09**09"™ | /g%, (A35)
where I define the following quantity:
Zepmn = % (49148318 = 295540 = G Gand” + 97 GunGab = 29mnS35%)- (A36)
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