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In this article, I present a volume average regularization for the second functional derivative operator that
appears in the metric-basis Wheeler-DeWitt equation. Naively, the second functional derivative operator in
the Wheeler-DeWitt equation is infinite, since it contains terms with a factor of a delta function or
derivatives of the delta function. More precisely, the second functional derivative contains terms that are
only well defined as a distribution—these terms only yield meaningful results when they appear within an
integral. The second functional derivative may, therefore, be regularized by performing an integral average
of the distributional terms over some finite volume; I argue that such a regularization is appropriate if one
regards quantum general relativity (from which the Wheeler-DeWitt equation may be derived) to be the
low-energy effective field theory of a full theory of quantum gravity. I also show that a volume average
regularization can be viewed as a natural generalization of the same-variable second partial derivative for an
ordinary multivariable function. Using the regularized second functional derivative operator, I construct an
approximate solution to the Wheeler-DeWitt equation in the low-curvature, long-distance limit.
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I. INTRODUCTION

In quantum geometrodynamics,1 states may be described
by a wave functional2 Ψ ¼ Ψ½g··�, which is a functional of a
postive-definite inverse metric gij ¼ gijðyÞ for a three-
manifold Σ, which I assume to be compact and without
boundary. In quantum geometrodynamics, wave function-
als satisfy the Wheeler-DeWitt equation [1–4], which takes
the following form3:

ĤΨ ¼ ℏ2Gijkl δ2Ψ
δgijδgkl

þ ðR − 2ΛÞ ffiffiffi
g

p
Ψ ¼ 0; ð1:1Þ

where R is the Ricci curvature scalar for the three-manifold
Σ, Λ is the cosmological constant, and the quantity Gijkl is
defined as

Gijkl ≔
2κ2ffiffiffi
g

p ðgikgjl þ gilgjk − gijgklÞ; ð1:2Þ

where κ ¼ 8πG, with G being Newton’s constant. The
Wheeler-DeWitt equation (1.1) is supplemented by the
following constraint, called the momentum constraint,

gik∇k

�
2κffiffiffi
g

p δΨ
δgij

�
¼ 0; ð1:3Þ

where ∇k is the covariant derivative on Σ. In quantum
geometrodynamics, the wavefunctional Ψ ¼ Ψ½g··� satisfies
the Wheeler-DeWitt equation and the momentum con-
straint. The dynamical content of quantum geometrody-
namics is provided by the Wheeler-DeWitt equation; as
originally pointed out in [6], the momentum constraint is
simply the requirement that the wavefunctional Ψ ¼ Ψ½g··�
be invariant under coordinate transformations on Σ.
One difficulty4 with theWheeler-DeWitt equation is that,

naively, second functional derivatives evaluated at the same
spacetime point generally5 contain terms with a singular

1In this article, quantum geometrodynamics refers specifically
to the canonical formulation of quantum general relativity that
uses the three-metric (or its inverse) as configuration space
variables [1].

2Throughout this article, the symbol g·· in the arguments of
functionals refers to the inverse metric; I do this to distinguish g··

from the determinant of the metric g, and to avoid any confusion
with regard to indices.

3In some cases, one might wish to use some type of Laplace-
Beltrami operator in place of the second functional derivative
operator, either of the type briefly mentioned in [2] or the type
proposed in [5]. As discussed in [5], the choice depends on the
invariance principle required of the wavefunctional. Laplace-
Beltrami operators are often used in minisuperspace models [1,4].
For the sake of simplicity, I follow [2] and simply use the second
functional derivative operator in the Wheeler-DeWitt equation.

4Another difficulty with quantum geometrodynamics concerns
the precise definition of the inner product, which is formally
defined as a functional integral over three-geometries. Further
discussion of the inner product is beyond the scope of this article;
I refer the reader to [7], the general discussion found in [1,4] and
the references contained therein.

5As pointed out in [2], this is not always the case, as one can
avoid this with certain double integrals over the manifold.
However, it is generally the case if the functional contains single
integrals or double integrals with more than two factors of the
field in the integrand.
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factor of δ3ð0Þ [4], and/or terms containing a factor of the
derivatives of the Dirac delta function (as I will show in this
article).6 For this reason, the second functional derivative in
the full Wheeler-DeWitt equation is only defined a formal
manner [5,9]. The presence of delta functions and their
derivatives is an indication that second functional deriva-
tives only make sense as distributions; plainly speaking,
second functional derivatives are only meaningful when
they appear inside integrals. By itself, this is not problem-
atic. What makes this problematic is that the Ricci scalar
term in (1.1) is a multiplicative operator, and its action on
the wavefunctional will yield an ordinary (nondistribu-
tional) function, so that the Wheeler-DeWitt equation (1.1)
naively states that a distributional quantity is equal to some
nondistributional quantity. In this sense, the Wheeler-
DeWitt equation, as written in Eq. (1.1), is ill defined.
The origin of the singular quantity δ3ð0Þ in the second

functional derivative operator comes from the fact that the
naive second functional derivative is formally a function of
two points x and y, and contains terms with factors of
δ3ðx − yÞ. Since the second derivative operator in the
Wheeler-DeWitt equation is evaluated at a single point,
one may argue that the singular quantity δ3ð0Þ follows from
short distance behavior (in particular the limit in which
x → y). It is well known that perturbative quantum general
relativity contains ultraviolet divergences,7 so one might
expect the short distance limit x → y to yield divergences.8

The modern view,9 of course, is that quantum general
relativity is the low-energy effective field theory of a full
theory of quantum gravity. Since the Wheeler-DeWitt
equation can be derived10 in a formal manner from the
path integral for quantum general relativity [5,16], one
might expect some approximation to the Wheeler-DeWitt
equation to be valid [17]. If one imagines quantum general
relativity to be a low energy effective field theory, then the
second functional derivative operator in the Wheeler-
DeWitt equation must be regularized somehow. In particu-
lar, since the δð0Þ singularity comes from a short-distance
limit, effective field theory requires a regularization for the
second functional derivative operator in (1.1).
An ad-hoc regularization for the Wheeler-DeWitt equa-

tion was originally proposed by Bryce DeWitt in [2], which
is simply to set the singular quantities δ3ð0Þ to zero (this is
done in dimensional regularization [18]); this is used to
obtain a WKB approximation for the Wheeler-DeWitt
equation [4,19]. Lattice regularizations have also been
studied in the literature, particularly those based on
Regge discretizations–see [20,21]. In this article, I describe
a continuum regularization, which can be viewed as a
natural generalization of the second-order same-variable
partial derivative for an ordinary multivariable function. In
particular, I perform a volume average of the second
functional derivative, using integrals performed over the
distributional part of the naive second functional derivative
operator. Such a regularization is appropriate if one views
the Wheeler-DeWitt equation as a description of a low
energy gravitational effective field theory, as effective field
theories are formed by integrating out high-energy modes
of the field. Compared to DeWitt’s regularization, the
volume average regularization I present in this article
has the advantage of providing a parameter that controls
the regularization (the averaging volume), and I will briefly
argue that a volume average regularization can in some
sense be regarded as a generalization of DeWitt’s regu-
larization. I must make two things clear: first, while the
methods presented in this article are motivated by effective
field theory considerations, I do not establish a precise
connection between the covariant methods of effective field
theory and the volume average regularization presented in
this article, which is formulated for a spatial hypersurface.
Second, I make no claim with regard to the UV behavior of
quantum geometrodynamics and the problem of nonrenor-
malizability for perturbative quantum gravity; my goal in
this paper is to present a possible framework in which one
can nonperturbatively investigate the low energy features of
quantum gravity.

6One can define a second functional derivative at a point
without delta functions [8], but in that case, one trades delta
functions for differential operators for functions fðyÞ over Σ—in
particular, the quantity ĤΨ itself becomes a linear differential
operator acting on functions fðyÞ over Σ. One must then find a
functional Ψ such that the equation ĤΨfðyÞ ¼ 0 is satisfied for
all functions fðyÞ. The Wheeler-DeWitt equation is no longer just
a constraint for every point y, but it is now a constraint on the
whole of some function space, namely the space of functions fðyÞ
on the manifold Σ. It presently is difficult for me to imagine how
one might obtain nontrivial solutions to the Wheeler-DeWitt
equation under such a strong constraint, so I will not pursue this
approach in this article.

7Though one can absorb one-loop divergences for pure gravity
into the four-dimensional Gauss-Bonnet term via field redefini-
tions [10], ultraviolet divergences appear at two-loop order in
perturbation theory [11].

8Furthermore, the perturbative nonrenormalizability of quan-
tum general relativity suggests that quantum general relativity,
and by extension the Wheeler-DeWitt equation [as given in
Eq. (1.1)], are incomplete; the renormalization of quantum
general relativity requires an infinite number of counterterms
in the action, which will generate additional terms in the Wheeler-
DeWitt equation. For this reason, it is often argued that quantum
general relativity cannot be a fundamental theory, but it has also
been suggested that perturbation theory may not be generating the
correct asymptotic series for quantum GR [12], and that gravi-
tational effects can somehow regulate the divergences of quantum
field theory [13] (though as argued in [12], there is little hope that
such a feature of quantum GR, if it exists, can be seen in
perturbation theory).

9See [14] and the references therein for an overview of
quantum gravity as an effective field theory, and [15] for a more
detailed review.

10Again, I emphasize the point, argued in [5], that the precise
form of the second functional derivative operator depends on the
definition for the path integral measure.
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This article is organized as follows. First, I present a
motivating example using ordinary second derivatives and
Kronecker delta functions, and construct by analogy an
expression for the second functional derivative operators of
the type that appear in the Wheeler-DeWitt equation. The
resulting expression is interpreted as an averaging of the
second functional derivative operator over some volume,
and its derivation makes it clear that it is a generalization of
the same-variable second partial derivative. I then derive
the Hessian for the volume functional and Einstein-Hilbert
action. The Hessians are then used to construct an approxi-
mate solution for the regularized Wheeler-DeWitt equation
in the low-curvature, long-distance limit. Finally, I examine
a minisuperspace restriction of the approximate solution for
three-sphere geometries.

II. THE VOLUME AVERAGE REGULARIZATION

In this section, I motivate the volume average regulari-
zation for the second functional derivative of a functional
F½φ� evaluated at a single point x. In particular, I intend
to motivate a regularized expression for the following
quantity,

δ2F
δφA

x δφ
B
x
; ð2:1Þ

where φA
x ¼ φAðxÞ is a function on a manifold M of

volume VM and coordinate label xi. Instead of simply
stating the result, I will attempt to motivate it by showing
that the volume average regularization is a natural gener-
alization of the same-variable second partial derivative of
an ordinary multivariable function.

A. The functional Hessian

I begin by reviewing the definition of the second func-
tional derivative (or the functional “Hessian”). The second
functional derivative is typically defined in terms of the
Taylor expansion of the functional F½φ�,

F½φþ δφ� ≔ F½φ� þ
X
A

Z
M

δF
δφA

x
δφA

x dnx

þ 1

2!

X
AB

Z
M

Z
M

δ2F
δφA

x δφ
B
y
δφA

x δφ
B
y dnxdny

þOðδφ3Þ; ð2:2Þ

where I define the functions δφA
x ≔ δφAðxÞ and

δφA
y ≔ δφAðyÞ; if the manifold M has boundary ∂M, I

assume that the support of δφA
x ≔ δφAðxÞ and δφA

y ≔
δφAðyÞ does not reach a neighborhood of any point on
the boundary ∂M (this way, I can neglect boundary terms).
In this article, I do not employ summation convention for

capital Latin indices ðA; B;…; I; J;…Þ. Given the Taylor
expansion (2.2), one can identify the second functional
derivative, or the “Hessian” of the functional F½φ�:

δ2F
δφA

x δφ
B
y
: ð2:3Þ

Now consider a functional F½φ� given by an integral of the
form

F½φ� ¼
Z
M

fðφ; xÞ ffiffiffi
g

p
dnx: ð2:4Þ

The Taylor expansion of F½φ� will, in general, contain
second-order terms of the form:

Z
M

X
AB

ðFABδφ
AδφBÞ ffiffiffi

g
p

dnx: ð2:5Þ

The above may be rewritten as

Z
M

Z
M

X
AB

ðfFABgðx;yÞδφA
x δφ

B
y Þδ̃ðx; yÞ

ffiffiffiffiffi
gx

p ffiffiffiffiffi
gy

p
dnxdny;

ð2:6Þ

where the brackets fgðx;yÞ represent the symmetrization,

fTIgðx;yÞ ≔
1

2
ðTIðxÞ þ TIðyÞÞ; ð2:7Þ

and δ̃ðx; yÞ is the covariant delta function, defined by the
property,

Z
Σ
φðyÞδ̃ðx; yÞ ffiffiffiffiffi

gy
p

dny ¼ φðxÞ ⇒ δ̃ðx; yÞ ¼ δnðx − yÞffiffiffiffiffigyp ;

ð2:8Þ

with δnðx − yÞ being the n-dimensional Dirac delta
function. Equation (2.6) indicates that in general, the
second functional derivative of a functional, as defined
by the Taylor expansion (2.2), contains terms with delta
functions.
Now consider what happens if the functional depends

on derivatives of φAðxÞ. For instance, consider the
functional

S½φ� ¼
Z
M

LðφA;∇iφ
A; xÞ ffiffiffi

g
p

dnx: ð2:9Þ

In general, the Taylor expansion of S½φ� to second order
will contain terms of the following form:
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Z
M

Z
M

X
AB

ðfCiABgðx;yÞδφA
x ð∇y

i δφ
B
y ÞÞδ̃ðx; yÞ

ffiffiffiffiffi
gx

p ffiffiffiffiffi
gy

p
dnxdny

Z
M

Z
M

X
AB

ðfDij
ABgðx;yÞð∇x

i δφ
A
x Þð∇y

jδφ
B
y ÞÞδ̃ðx; yÞ ffiffiffiffiffi

gx
p ffiffiffiffiffi

gy
p

dnxdny; ð2:10Þ

where ∇x
i is the covariant derivative taken with respect to x

and ∇y
i is the covariant derivative taken with respect to y. It

is possible to add boundary terms to convert the above
expressions to an integral of the form (2.5):Z

M

X
AB

ðCABδφAδφBÞ ffiffiffi
g

p
dnx: ð2:11Þ

However, in doing so, one will encounter terms containing
both delta functions and derivatives of delta functions.
Naively setting x ¼ y will yield a divergent result.
Of course, the reader may be well aware that delta

functions and their derivatives are not really functions in
the usual sense—they are distributions and are only mean-
ingful if they appear once inside an integral. Recalling that
the covariant delta function δ̃ðx; yÞ is defined by the property
(2.8), I may use the divergence theorem to assign a definition
for the covariant derivative of the delta function δ̃ðx; yÞ,Z

M

X
AB

viðyÞ∇y
i δ̃ðx;yÞ ffiffiffiffiffi

gy
p

dny

¼−
Z
M

Z
M

X
AB

∇y
i v

iðyÞδ̃ðx;yÞ ffiffiffiffiffi
gy

p
dny

¼−∇x
i v

iðxÞ; ð2:12Þ
for some vector field viðxÞ.

B. Ordinary second derivatives: A motivating example

To motivate the regularized expression for the same-
point second functional derivative, I consider an example
for ordinary multivariable functions. I examine Hessian of a
function fðxÞ of quantities xI:

∂2f
∂xI∂xJ : ð2:13Þ

Now suppose that the Hessian takes the form

∂2f
∂xI∂xJ ¼ ΦIJðxÞδIJ þ ΩIJðxÞ; ð2:14Þ

where δIJ is the Kronecker delta, which is the discrete-
value analog of the Dirac delta function δnðy − zÞ.11 Again,
I must remind the reader that in this article, no sum is
implied over repeated capital Latin indices. If I simply set
I ¼ J, I obtain the second derivative for a single value of
the index I:

∂2f
∂xI∂xI ¼ ΦIIðxÞ þΩIIðxÞ: ð2:15Þ

Now suppose that, for some reason, I want to obtain an

expression for ∂2f
∂xI∂xI without explicitly setting I ¼ J. If I set

ΩIJðxÞ ¼ 0, I may do this by performing the following sum:

X
J

∂2f
∂xI∂xJ ¼

X
J

ΦIJðxÞδIJ ¼ ΦIIðxÞ: ð2:16Þ

Note that for ΩIJðxÞ ¼ 0, (2.16) and (2.15) yield the same
result. However, for ΩIJðxÞ ≠ 0, the sum in (2.16) does not
yield (2.15). To recover (2.15) in the casewhereΩIJðxÞ ≠ 0,
I decompose the second derivative (2.14) into a part propor-
tional to the Kronecker delta, which I call D⟦ · ⟧, and a part
that does not contain any factor of the Kronecker delta,
which I call N⟦ · ⟧. For (2.14), I have

D⟦ ∂2f
∂xI∂xJ⟧ ¼ ΦIJðxÞδIJ

N⟦ ∂2f
∂xI∂xJ⟧ ¼ ΩIJðxÞ: ð2:17Þ

With this decomposition, I construct the following:

∂2f
∂xI∂xI ¼

�X
J

D⟦ ∂2f
∂xI∂xJ⟧

�
þ N⟦ ∂2f

∂xI∂xJ⟧
����
I¼J

: ð2:18Þ

It is straightforward to verify that the above construction
(2.18) yields the same result as (2.15).

C. Second functional derivatives at a single point

The generalization of Eq. (2.18) to second functional
derivatives comes from identifying the Dirac delta function
δnðy − zÞ as the continuous-index analog of the Kronecker
delta δIJ and the integral over M as the continuous-
index analog of the sum. Suppose I have a quantity HAB ¼
HABðx; yÞ such that its transformation under coordinate
transformations on M leaves the following integral
unchanged12:

Z
M

Z
M

HABðx; yÞ δ2F
δφA

x δφ
B
y
dnxdny: ð2:19Þ

11Compare the expression
P

Jx
JδIJ ¼ xI with its integral

counterpart
R
M fðzÞδnðy − zÞdnz ¼ fðyÞ.

12If the indices ðA; BÞ are formed from the indices of the
coordinate basis ði; jÞ, then I require thatHAB transforms as a tensor.
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I split the second functional derivative into a distributional
part and a nondistributional part,

δ2F
δφA

x δφ
B
y
¼ DS⟦ δ2F

δφA
x δφ

B
y
⟧þ ND⟦ δ2F

δφA
x δφ

B
y
⟧; ð2:20Þ

where the distributional part DS⟦ · ⟧ is the part of a quantity
containing a factor of a delta function δ̃ðy; zÞ or its derivatives,
and the nondistributional ND⟦ · ⟧ is the part of the second
functional derivative that does not contain delta functions
δ̃ðy; zÞ or its derivatives.
By analogy to (2.18), I construct the following

regularization for the second functional derivative (with
the equivalence relation ≅ indicating the regularized
expression),

HABðxÞ δ2F
δφA

x δφ
B
x
≅

ffiffiffiffiffi
gx

p
V

Z
M

�
HABðx; yÞDS⟦ δ2F

δφA
x δφ

B
y
⟧
�
dny

þHABðxÞND⟦ δ2F
δφA

x δφ
B
y
⟧
����
y¼x

; ð2:21Þ

where HABðxÞ ≔ HABðx; xÞ and V is a volume parameter.
The inverse volume factor of 1=V in front of the first term
must be included so that Eq. (2.21) is dimensionally
correct; DS⟦ · ⟧ has the same units as its argument, and
one must compensate for the volume element dny with a
factor of 1=V. The factor of ffiffiffiffiffigyp in front of the first term is
put in so that the first term satisfies the same transformation
properties as the second term; the second functional
derivative contains a factor of

ffiffiffiffiffi
gx

p ffiffiffiffiffigyp (also note that

the covariant delta function δ̃ðx; yÞ eliminates a factor offfiffiffiffiffigyp in the integral). One might recognize the integral in the
first term of (2.21) as an average of the second functional
derivative over some volume V.

D. The regularized Wheeler-DeWitt equation

Equation (2.21) suggests the following regularization for
the second derivative operator in the Wheeler-DeWitt
equation,

G̃abmnðyÞ δ2Ψ
δgaby δgmn

y

≅
ffiffiffiffiffigyp
V

Z
Σ

�
fG̃abmngðy;zÞDS⟦ δ2Ψ

δgaby δgmn
z
⟧
�
d3z

þ G̃abmnðyÞND⟦ δ2Ψ
δgaby δgmn

z
⟧
����
z¼y

; ð2:22Þ

where G̃abmn is the following tensor, constructed from
Gabmn (1.2):

G̃abmn ¼
ffiffiffi
g

p
2κ2

Gabmn ¼ gabgmn − gamgbn − gangbm: ð2:23Þ

The regularized Wheeler-DeWitt equation is then

2ℏ2κ2

V

Z
Σ

�
fG̃abmngðy;zÞDS⟦ δ2Ψ

δgaby δgmn
z
⟧
�
d3z

þ ℏ2GabmnðyÞND⟦ δ2Ψ
δgaby δgmn

z
⟧
����
z¼y

þ ðRðyÞ − 2ΛÞ ffiffiffiffiffi
gy

p Ψ ¼ 0: ð2:24Þ

In the limit V → 0, the above expression diverges, as one
might expect—as discussed earlier, the second functional
derivative operator in the Wheeler-DeWitt equation is
formally divergent, since it is naively the limit of a
distributionally valued quantity.
For compact three-manifoldsΣwith finite volumeVΣ½g··�,

it is tempting (one might even say that it is “natural”) to
chooseV ¼ VΣ½g··� in Eq. (2.21). Formanifoldswith infinite
volumeVΣ½g··� → ∞, the first term in (2.21) vanishes; this is
the sense in which a volume averaging regularization can be
viewed as a generalization of DeWitt’s ad hoc regularization
[2]: δ3ð0Þ ¼ 0. One might imagine formulating a model for
quantum gravity with the replacement (by fiat) of the second
functional derivative by the expression (2.22) where
V ¼ VΣ½g··�; in this case, the distributional part of (2.21)
is nonvanishing for small volumes, but vanishes in the
large-volume limit. Assuming certain properties13 for the
wavefunctional, one recovers the Einstein-Hamilton-Jacobi
equation in the large-volume limit, irrespective of the value
for ℏ; this behavior suggests a possible mechanism in which
this V ¼ VΣ½g··� quantum gravity model “classicalizes” in
the large-volume limit.
On the other hand, if one imagines quantum geometro-

dynamics to be the result of some low-energy gravitational
effective field theory, then it may be appropriate to perform a
volume averaging that corresponds to integrating out short
distance degrees of freedom. In the context of effective field
theory, it is appropriate to choose V ¼ v0, where v0 is a
fixed, finite volume determined by the length scale corre-
sponding to the high frequency modes that have been
integrated out in the effective field theory; for quantum
gravity, it is natural to choose v0 to be the Planck volume
ðℏκÞ3=2. Since effective field theory provides a clear physical
justification for the choiceV ¼ v0 (the physical justification
forV ¼ VΣ½g··� is less clear tome at present), I shall focus on
the effective field theory viewpoint and the choice V ¼ v0
for the remainder of this article.

13In particular, one assumesΨ½g··� ¼ expðS½g··�Þ, where S½g··� is
a local functional of gij (by local, I mean that S½g··� can be written
as an integral over Σ with an integrand that depends only on gij
and its derivatives at a single point).
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III. WAVEFUNCTIONALS AND HESSIANS OF
INVARIANT INTEGRALS

A. Wavefunctionals and the chain rule

In this section, I will derive expressions for the second
functional derivative of the volume functional and the
Einstein-Hilbert functional. This is a long section, and
the calculations are tedious, so I wish to first provide some
motivation for deriving the second functional derivative of
these functionals. Recall the momentum constraint (1.3),
which I rewrite here:

gik∇k

�
2κffiffiffi
g

p δΨ
δgij

�
¼ 0: ð3:1Þ

If the functional Ψ½g··� is constructed from integrals over a
compact three-manifold Σ, then the momentum constraint
(3.1) implies that the integrals must be invariant under
coordinate transformations [6]. The integrals themselves
must be constructed out of curvature invariants, since they
are the only scalar quantities that can be constructed from
the three-metric [20,21]. Under the assumption that any
covariant multiple integral constructed from the three-
metric can be expanded in terms of products of single
integrals of a curvature invariant, it follows that the wave-
functional can be written as a function of (single) integrals
of curvature invariants. If the three-manifold has finite
volume, the wavefunctional will also depend on the volume
functional of the manifold:

VΣ½g··� ¼
Z
Σ

ffiffiffi
g

p
d3y: ð3:2Þ

The simplest nontrivial curvature invariant is the Ricci
scalar R, and its integral is the (three-dimensional) Einstein-
Hilbert action:

SEH½g··� ¼
Z
Σ
R

ffiffiffi
g

p
d3y: ð3:3Þ

A simple ansatz for the wavefunctional is one in which the
wavefunctional is a function of the following functional:

Sλ ≔ SEH½g··� − 2λVΣ½g··� ¼
Z
Σ
ðR − 2λÞ ffiffiffi

g
p

d3y: ð3:4Þ

In particular, I write:

Ψ½g··� ¼ ΨðSλ½g··�Þ: ð3:5Þ

I now perform the variation of the wavefunctional:

ΔΨ½g··� ≔ Ψ½g·· þ δg··� − Ψ½g··�
¼ ΨðS½gij� þ ΔSÞ −ΨðS½gij�Þ

¼ ∂Ψ
∂S ΔSþ 1

2

∂2Ψ
∂S2 ΔS

2 þOðΔS3Þ; ð3:6Þ

whereΔS≔S½gijþδgij�−S½gij�. Upon performing a Taylor
expansion of ΔS in δgij to second order [cf., Eq. (2.2)],
Eq. (3.6) becomes

ΔΨ½g··� ¼ ∂Ψ
∂Sλ δSλ þ

1

2

∂Ψ
∂Sλ

Z
Σ

Z
Σ

δ2Sλ
δgaby δgmn

z
δgaby δgmn

z d3yd3z

þ 1

2

∂2Ψ
∂S2λ δS

2
λ þOð½δg··�3Þ; ð3:7Þ

where δgaby ¼ δgabðyÞ and δgmn
z ¼ δgmnðzÞ. The variation

δSλ can be written in terms of a functional derivative,

δSλ ¼
Z
Σ

δSλ
δgab

d3y; ð3:8Þ

and δS2λ may be written as

δS2λ ¼
Z
Σ

Z
Σ

δSλ
δgaby

δSλ
δgmn

z
d3yd3z: ð3:9Þ

The variation of the functional derivative (3.7) may then be
rewritten as:

ΔΨ½g··� ¼ ∂Ψ
∂Sλ δSλ þ

1

2

Z
Σ

Z
Σ

�∂Ψ
∂Sλ

δ2Sλ
δgaby δgmn

z

þ ∂2Ψ
∂S2λ

δSλ
δgaby

δSλ
δgmn

z

�
δgaby δgmn

z d3yd3z: ð3:10Þ

From the above expression, I identify the second functional
derivative:

δ2Ψ
δgaby δgmn

z
¼ ∂Ψ

∂Sλ
δ2Sλ

δgaby δgmn
z

þ ∂2Ψ
∂S2

δSλ
δgaby

δSλ
δgmn

z
: ð3:11Þ

The above expression depends on the second functional
derivative (the functional “Hessian”) of the functional Sλ½g··�;
in the remainder of this section, I will derive expressions for
the second functional derivative of Sλ.

B. The Hessian of the volume functional

First, I compute the second functional derivative (the
functional Hessian) for the volume functional VΣ½g··�. I first
work out a few useful expressions. Since I am expanding to
second order in δgij, it does not suffice to work in terms of
the first order variation δgij ¼ −giagjbδgab for the metric.
In general, what is needed is the second order expression
for the change in the metric Δgij:

Δgij ¼−giagjbδgabþgaigjmgbnδgabδgmnþOð½δg··�3Þ:
ð3:12Þ

The second order expression follows from the property
gijgjn ¼ δin; in particular, Eq. (3.12) follows from demand-
ing that the following expression holds to second order:
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ðgab þ δgabÞðgbj þ ΔgbjÞ ¼ δaj : ð3:13Þ

The property gijgjn ¼ δin may also be used to derive the
following expressions for the derivatives of gij and gij:

∂gmn

∂s ¼ −gmignj
∂gij
∂s ð3:14Þ

gmn ∂gmn

∂s ¼ −gmn
∂gmn

∂s : ð3:15Þ

Using the Jacobi determinant formula with (3.15), I obtain
the following result:

∂ ffiffiffi
g

p
∂s ¼ 1

2
ffiffiffi
g

p ∂g
∂s ¼

1

2

ffiffiffi
g

p
gij

∂gij
∂s ¼ −

1

2

ffiffiffi
g

p
gij

∂gij
∂s : ð3:16Þ

Another result is the following:

∂gij
∂gmn ¼

1

2
ðδimδjn þ δinδ

j
mÞ: ð3:17Þ

Using (3.14), (3.16), and (3.17), I compute the change in
the volume element, keeping terms to second order:

Δ
ffiffiffi
g

p
≔

�∂ ffiffiffi
g

p
∂gmn

�
δgmn þ 1

2

� ∂2 ffiffiffi
g

p
∂gab∂gmn

�
δgabδgmn

þOð½δg··�3Þ

¼ −
1

2

ffiffiffi
g

p
gabδgab þ

1

2

ffiffiffi
g

p
Yabmnδgabδgmn þOð½δg··�3Þ

ð3:18Þ

where Yabmn is defined as

Yabmn ≔
1

4
ðgabgmn þ gmagnb þ gmbgnaÞ: ð3:19Þ

The change in the volume functional may be written as

ΔVΣ ¼ VΣ½g·· þ δg··� − VΣ½g··� ¼
Z
Σ
Δ

ffiffiffi
g

p
d3y: ð3:20Þ

Using the result (3.18) and inserting a delta function δðy; zÞ
into the integral, I obtain

ΔVΣ ¼ −
1

2

Z
Σ
gabδgab

ffiffiffi
g

p
d3y

þ 1

2

Z
Σ
Yabmnδgabδgmn ffiffiffi

g
p

d3yþOð½δg··�3Þ

¼ −
1

2

Z
Σ
gabδgab

ffiffiffi
g

p
d3y

þ 1

2

Z
Σ
fYabmngy;zδgaby δgmn

z δ̃ðy; zÞ ffiffiffiffiffi
gy

p ffiffiffiffi
gz

p
d3yd3z

þOð½δg··�3Þ: ð3:21Þ

I can read off the first and second functional derivatives
from the above by comparing it with the functional Taylor
expansion (2.2):

δVΣ

δgab
¼ −

1

2
gab

ffiffiffi
g

p
; ð3:22Þ

δ2VΣ

δgaby δgmn
z

¼ fYabmngy;zδ̃ðy; zÞ ffiffiffiffiffi
gy

p ffiffiffiffi
gz

p
: ð3:23Þ

C. The Hessian of the Einstein-Hilbert action

I now compute the second functional derivative (the
functional Hessian) for the Einstein-Hilbert action SEH½g··�
itself. Expressions for the Hessian of the Einstein-Hilbert
action do appear in the literature (particularly in work which
makes use of the saddle-point approximation for quantum
gravity—see for instance [22,23]). I present for the benefit of
the reader an explicit derivation of the Hessian. For the
remainder of this article, I assume that the manifold Σ is
compact and without boundary.
I begin by writing down an expression for the change in

the Ricci scalar. Though it may be strange to do so before
performing variations of the Christoffel symbols, the varia-
tion of the Christoffel symbols is rather complicated at
second order (later, I show that the first-order expressions for
the Christoffel symbols suffice). If I obtain a variation in the
Ricci scalar first, I can identify the places where second-
order terms in the variation of the Christoffel symbols are
needed, if at all. In fact, I show that the second variation of
the Einstein-Hilbert action does involve second-order var-
iations in the Christoffel symbols.
The change in the Ricci curvature is worked out in the

Appendix [see Eq. (A7)],

ΔRab ¼∇iΔΓi
ba−∇bΔΓi

iaþΔΓi
isΔΓs

ba−ΔΓi
bsΔΓs

ia;

ð3:24Þ

where ΔΓi
jk [Eq. (A1)] is the change in the Christoffel

symbols. In terms ofΔRab and δgab, the change in the Ricci
scalar is

ΔR ¼ δgabRab þ gabΔRab þ δgabΔRab: ð3:25Þ

One can combine equations (3.18), (3.24), and (3.25) to
obtain the following expression for the variation of the
Einstein-Hilbert action [see Appendix for the algebra
leading up to Eq. (A20)]:
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ΔSEH ≔ SEH½g·· þ δg··� − SEH½g··� ¼
Z
Σ
ðΔR ffiffiffi

g
p þ RΔ

ffiffiffi
g

p þ ΔRΔ
ffiffiffi
g

p Þd3y

¼ δSEH þ
Z
Σ

�
gabð∇iΔΓi

ba −∇bΔΓi
iaÞ þ

1

2
ðRYabmn − RabgmnÞδgabδgmn þ gabðΔΓi

isΔΓs
ba − ΔΓi

bsΔΓs
iaÞ

þ
�
δgab −

1

2
gabgmnδgmn

�
ð∇iΔΓi

ba −∇bΔΓi
iaÞ þOð½δg··�3Þ

� ffiffiffi
g

p
d3y; ð3:26Þ

where δSEH is the first-order variation of the action given by

δSEH ≔
Z
Σ

�
Rab −

1

2
gabR

�
δgab

ffiffiffi
g

p
d3y: ð3:27Þ

I recognize that the term gabð∇iΔΓi
ba −∇bΔΓi

iaÞ in (3.26) is a total divergence–it is a boundary term. Since the manifold Σ
is assumed to be compact and without boundary, I eliminate this boundary term. The variation of the Einstein-Hilbert action
becomes (A35)

ΔSEH ¼ δSEH þ
Z
Σ

�
gabðΔΓi

isΔΓs
ba − ΔΓi

bsΔΓs
iaÞ þ

�
δgab −

1

2
gabgmnδgmn

�
ð∇iΔΓi

ba −∇bΔΓi
iaÞ

þ 1

2
ðRYabmn − RabgmnÞδgabδgmn þOð½δg··�3Þ

� ffiffiffi
g

p
d3y: ð3:28Þ

Note that each time ΔΓi
ab appears in the above expression, it is either accompanied by a factor of δgab or another factor of

ΔΓi
ab. It follows that only the first-order part of ΔΓi

ab contributes to second-order terms in (3.28). To obtain an expression
for ΔS that is second order in the variations of the inverse metric δgab, it suffices to use an expression for ΔΓi

ab to first order
in δgab. Recalling the definition of the Christoffel symbol,

Γa
ij ¼

1

2
gakð∂igkj þ ∂jgik − ∂kgijÞ; ð3:29Þ

it is not difficult to show that, to first order, the variation of the Christoffel symbol takes the covariant form

δΓa
ij ¼

1

2
gakð∇iΔgkj þ∇jΔgik −∇kΔgijÞ þOð½δg··�2Þ; ð3:30Þ

where Δgij is defined in (3.12). To first order, one may use (3.12) to rewrite Eq. (3.30) in terms of variations of the inverse
metric:

δΓa
ij ¼

1

2
ðgmignjgak∇kδgmn − gnj∇iδgan − gmi∇jδgmaÞ þOð½δg··�2Þ: ð3:31Þ

Given (3.31), I may then rewrite the variation of the Einstein-Hilbert action (3.28) in terms of the first-order
expressions δΓa

ij,

ΔSEH ¼ δSEH þ
Z
Σ

�
gabδΓi

isδΓs
ba − gabδΓi

bsδΓs
ia þ

�
δgab −

1

2
gabgmnδgmn

�
ð∇iδΓi

ba −∇bδΓi
iaÞ

þ 1

2
ðRYabmn − RabgmnÞδgabδgmn þOð½δg··�3Þ

� ffiffiffi
g

p
d3y; ð3:32Þ

where δΓa
ij is given by (3.31). After an application of the divergence theorem, Eq. (3.32) for the variation of the Einstein-

Hilbert action takes the following form [Eq. (A35)],

ΔSEH ¼ δSEH þ
Z
Σ

�
Zij
abmn∇iδgab∇jδgmn þ 1

2
ðRYabmn − RabgmnÞδgabδgmn þOð½δg··�3Þ

� ffiffiffi
g

p
d3y; ð3:33Þ
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where Zij
abmn is a tensor formed from terms containing

products of gij, gij, and δij. From metric compatibility, it

follows that Zij
abmn satisfies the property

∇kZ
ij
abmn ¼ 0: ð3:34Þ

Ultimately, the explicit form for Zij
abmn is not important for

the results in this paper; what matters is that it satisfies the

property (3.34). Nevertheless, I have derived the following
explicit expression for Zij

abmn in the Appendix [Eq. (A36)]:

Zij
abmn ≔

1

4
ð4gnaδimδjb − 2gmbδ

j
aδin − gmbgangij

þ gijgmngab − 2gmnδ
i
bδ

j
aÞ: ð3:35Þ

Equation (3.33) may be converted into the following
multiple integral,

ΔSEH ≈ δSEH þ
Z
Σ

Z
Σ

�
fZij

abmngðy;zÞ∇y
i δg

ab
y ∇z

jδg
mn
z þ 1

2
fRYabmn − Rabgmngðy;zÞδgaby δgmn

z

�
δ̃ðy; zÞ ffiffiffiffiffi

gy
p ffiffiffiffi

gz
p

d3yd3z; ð3:36Þ

where ∇y
k and ∇z

k, respectively, denote covariant derivatives taken with respect to yi and zi, δgaby ≔ δgabðyÞ, and
δgmn

z ≔ δgmnðzÞ. Recall (2.7), where the brackets fgðy;zÞ denote the operation

fTIgðy;zÞ ¼
1

2
ðTIðyÞ þ TIðzÞÞ; ð3:37Þ

for some tensor TI ¼ TIðyÞ. δ̃ðy; zÞ is the covariant three-dimensional delta function, defined by the property
Z
Σ
φðzÞδ̃ðy; zÞ ffiffiffiffi

gz
p

d3z ¼ φðzÞ ⇒ δ̃ðy; zÞ ¼ δ3ðy − zÞffiffiffiffi
gz

p ; ð3:38Þ

where φðzÞ is a scalar and δnðy − zÞ is the n-dimensional Dirac delta function.
Applying the divergence theorem, I obtain

ΔSEH ≈ δSEH þ
Z
Σ

Z
Σ

�
fZij

abmngðy;zÞð∇y
i∇z

jδ̃ðy; zÞÞδgaby δgmn
z þ 1

2
fRYabmn − Rabgmngðy;zÞδgaby δgmn

z δ̃ðy; zÞ
� ffiffiffiffiffi

gy
p ffiffiffiffi

gz
p

d3yd3z;

ð3:39Þ
where I have used the fact that ∇kZ

ij
abmn ¼ 0, since Zij

abmn is constructed from Kronecker deltas and the metric gmn. By
comparison with Eq. (2.2), I may write down the following expression for the second functional derivative (Hessian) as:

δ2SEH
δgaby δgmn

z
¼ 2

�
fZij

abmngðy;zÞð∇y
i∇z

jδ̃ðy; zÞÞ þ
1

2
fRYabmn − Rabgmngðy;zÞδ̃ðy; zÞ

� ffiffiffiffiffi
gy

p ffiffiffiffi
gz

p
: ð3:40Þ

IV. AN APPROXIMATE SOLUTION TO THE
WHEELER-DEWITT EQUATION

In this section, I obtain approximate solutions to the
Wheeler-DeWitt equation, using the results obtained in the
preceding sections.

A. Second functional derivatives of the wavefunctional

I now compute the regularized operator [Eq. (2.22)]:

G̃abmnðyÞ δ2Ψ
δgaby δgmn

y

≅
ffiffiffiffiffigyp
V

Z
Σ

�
fG̃abmngðy;zÞDS⟦ δ2Ψ

δgaby δgmn
z
⟧
�
d3z

þ G̃abmnðyÞND⟦ δ2Ψ
δgaby δgmn

z
⟧
����
z¼y

: ð4:1Þ

for wavefunctionals of the form Ψ ¼ ΨðSλÞ. I now recall
Eq. (3.11):

δ2Ψ
δgaby δgmn

z
¼ ∂Ψ

∂Sλ
δ2Sλ

δgaby δgmn
z

þ ∂2Ψ
∂S2λ

δSλ
δgaby

δSλ
δgmn

z
: ð4:2Þ

From Eqs. (3.22) and (3.27), the first functional derivative
of Sλ ¼ SEH − 2λVΣ (3.4) is

δSλ
δgab

¼
�
Rab −

1

2
gabR̃

� ffiffiffi
g

p
; ð4:3Þ

where I have defined

R̃ ≔ R − 2λ: ð4:4Þ

From Eq. (4.3), one can infer that the second term in (4.2)
is nondistributional. Using (3.23) and (3.40), one can
construct the Hessian of Sλ ¼ SEH − 2λVΣ:
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δ2Sλ
δgaby δgmn

z
¼ ½2fZij

abmngðy;zÞð∇y
i∇z

jδ̃ðy; zÞÞ

þ fðR − λ=2ÞYabmn − Rabgmngðy;zÞδ̃ðy; zÞ�
×

ffiffiffiffiffi
gy

p ffiffiffiffi
gz

p
: ð4:5Þ

Every term in the Hessian (4.5) contains a factor of the delta
function or its derivatives. I can now identify the distribu-
tional part of the second functional derivative:

DS⟦ δ2Ψ
δgaby δgmn

z
⟧¼ ∂Ψ

∂Sλ
δ2Sλ

δgaby δgmn
z

¼ ∂Ψ
∂Sλ ½2fZ

ij
abmngðy;zÞð∇y

i∇z
jδ̃ðy;zÞÞ

þfðR−λ=2ÞYabmn−Rabgmngðy;zÞδ̃ðy;zÞ�
×

ffiffiffiffiffi
gy

p ffiffiffiffi
gz

p
: ð4:6Þ

To work out the explicit expression for (4.6), I begin by
constructing the following integral:

Z
Σ

�
fG̃abmngðy;zÞ

δ2Sλ
δgaby δgmn

z

�
d3z

¼
Z
Σ
½2fZij

abmnG̃
abmngðy;zÞð∇y

i∇z
jδ̃ðy; zÞÞ�

ffiffiffiffiffi
gy

p ffiffiffiffi
gz

p
d3z

þ
Z
Σ
½fG̃abmnððR − λ=2ÞYabmn − RabgmnÞgðy;zÞδ̃ðy; zÞ�

×
ffiffiffiffiffi
gy

p ffiffiffiffi
gz

p
d3z: ð4:7Þ

It is straightforward to derive the following result for the
two quantities δ ¼ δðy; zÞ and Qij ¼ Qijðy; zÞ:

∇y
i ðQij∇z

jδÞ −∇z
jðδ∇y

i Q
ijÞ ¼ Qij∇y

i∇z
jδ − δ∇z

j∇y
i Q

ij:

ð4:8Þ

Using the above result, I may rewrite (4.7) as

Z
Σ

�
fG̃abmngðy;zÞ

δ2Sλ
δgaby δgmn

z

�
d3z

¼
Z
Σ
½2∇y

i∇z
jfZij

abmnG̃
abmngðy;zÞ�δ̃ðy; zÞ ffiffiffiffiffi

gy
p ffiffiffiffi

gz
p

d3z

þ
Z
Σ
½fG̃abmnððR − 2=λÞYabmn − RabgmnÞgðy;zÞδ̃ðy; zÞ�

×
ffiffiffiffiffi
gy

p ffiffiffiffi
gz

p
d3z; ð4:9Þ

which becomes

Z
Σ

�
fG̃abmngðy;zÞ

δ2Sλ
δgaby δgmn

z

�
d3z

¼ 2½∇y
i∇z

jfZij
abmnG̃

abmngðy;zÞ�z¼y
ffiffiffi
g

p

þ G̃abmnððR − 2=λÞYabmn − RabgmnÞ
ffiffiffi
g

p
: ð4:10Þ

Note that Zij
abmn (3.35) is a quadratic expression in gij and

δij, and G̃
abmn is a quadratic expression in gij. It follows that

covariant derivatives of Zij
abmnG̃

abmn vanishes by virtue of
metric compatibility [∇kgij ¼ 0 and ∇kgij ¼ 0; cf. (3.34)].
From the definition of Yabmn (3.19):

Z
Σ

�
fG̃abmngðy;zÞ

δ2Sλ
δgaby δgmn

z

�
d3z

¼ G̃abmn

�
1

4
ðR−λ=2Þðgabgmnþ2gamgbnÞ−Rabgmn

� ffiffiffi
g

p
:

ð4:11Þ

Using the definition (2.23) for G̃abmn, I work out the
following quantities:

G̃abmngamgbn ¼ −9

G̃abmngabgmn ¼ 3

G̃abmnRabgmn ¼ G̃abmngabRmn ¼ R

G̃abmnRmnRab ¼ R2 − 2RmnRmn: ð4:12Þ

I then use Eqs. (4.11) and (4.12) to obtain the following
expression:

Z
Σ

�
fG̃abmngðy;zÞDS⟦ δ2Ψ

δgaby δgmn
z
⟧
�
d3z

¼ ∂Ψ
∂Sλ

Z
Σ

�
fG̃abmngðy;zÞ

δ2SEH
δgaby δgmn

z

�
d3z

¼ ∂Ψ
∂Sλ G̃

abmn

�
1

4

�
R −

λ

2

�
ðgabgmn þ 2gamgbnÞ−Rabgmn

� ffiffiffi
g

p

¼ −
1

8

∂Ψ
∂Sλ ð38R − 15λÞ ffiffiffi

g
p

: ð4:13Þ

I now work out the nondistributional part of the second
functional derivative ofΨ in Eq. (4.15). It is not too difficult
to show that

δSλ
δgaby

δSλ
δgmn

z
¼

�
Ry
ab −

1

2
gyabR̃

y

��
Rz
mn −

1

2
gzmnR̃z

� ffiffiffiffiffi
gy

p ffiffiffiffi
gz

p

¼
�
Ry
abR

z
mn −

1

2
R̃zgzmnR

y
ab −

1

2
R̃ygyabR

z
mn

þ 1

4
gyabg

z
mnR̃yR̃z

� ffiffiffiffiffi
gy

p ffiffiffiffi
gz

p
; ð4:14Þ
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again, recalling the definition R̃ ≔ R − 2λ [Eq. (4.4)]. Since Eq. (4.14) contains no delta functions, I write down the
nondistributional part of the second functional derivative of Ψ:

ND⟦ δ2Ψ
δgaby δgmn

z
⟧ ¼ ∂2Ψ

∂S2λ
δSλ
δgaby

δSλ
δgmn

z
¼ ∂2Ψ

∂S2λ
�
Ry
abR

z
mn −

1

2
R̃zgzmnR

y
ab −

1

2
R̃ygyabR

z
mn þ

1

4
gyabg

z
mnR̃yR̃z

� ffiffiffiffiffi
gy

p ffiffiffiffi
gz

p
: ð4:15Þ

Making use of the symmetry in G̃abmn [recall that it is symmetric in the indices ða; bÞ and ðm; nÞ], Eq. (4.15) yields the
result:

G̃abmnðyÞND⟦ δ2Ψ
δgaby δgmn

z
⟧
����
z¼y

¼ G̃abmn ∂2Ψ
∂S2λ

�
RabRmn − R̃gmnRab þ

1

4
gabgmnR̃2

�
g: ð4:16Þ

Using (4.12), the nondistributional term (4.16) simplifies to

G̃abmnðyÞND⟦ δ2Ψ
δgaby δgmn

z
⟧
����
z¼y

¼ 1

4

∂2Ψ
∂S2λ ð3R

2 − 8RmnRmn − 4Rλþ 12λ2Þg: ð4:17Þ

Finally, plugging Eqs. (4.13) and (4.17) into Eq. (4.1), I obtain the following result,

Gabmn δ2Ψ
δgaby δgmn

y
≅
κ2

2

�
−

1

2V
∂Ψ
∂Sλ ð38R − 15λÞ ffiffiffi

g
p þ ∂2Ψ

∂S2λ ð3R
2 − 8RmnRmn − 4Rλþ 12λ2Þ ffiffiffi

g
p �

; ð4:18Þ

where [recalling Eq. (2.23)] I have made use of the relation
2κ2G̃abmn ¼ ffiffiffi

g
p

Gabmn.

B. An approximate solution to the
Wheeler-DeWitt equation

The result (4.18) may be used to obtain approximate
solutions to the regularized Wheeler-DeWitt equa-
tion (2.24). First, I set V ¼ v0, where v0 is a constant.
For later convenience, I wish to work in terms of a
dimensionless parameter; since v0 has units of volume,
it is helpful to write v0 in terms of the Planck volume
ðℏκÞ3=2 and a dimensionless parameter b:

v0 ¼ b3ðℏκÞ3=2: ð4:19Þ
To solve the regularized Wheeler-DeWitt equation, I take a
low-curvature limit and neglect terms to second order in the
Ricci curvature,14 so that Eq. (4.18) yields

Gijkl δ2Ψ
δgijy δgkly

≈
κ2

2

�
−

1

2b3ðℏκÞ3=2
∂Ψ
∂Sλ ð38R − 15λÞ

−
∂2Ψ
∂S2λ ð4Rλ − 12λ2Þ

� ffiffiffi
g

p
: ð4:20Þ

With some algebra, the regularized Wheeler-DeWitt equa-
tion (2.24) becomes

−
�
2ℏ2κ2λ

∂2Ψ
∂S2λ þ 19

ffiffiffiffiffiffi
ℏκ

p

2b3
∂Ψ
∂Sλ − Ψ

�
R

ffiffiffi
g

p

þ 1

2

�
15λ

ffiffiffiffiffiffi
ℏκ

p

2b3
∂Ψ
∂Sλ þ 12ℏ2κ2λ2

∂2Ψ
∂S2λ − 4ΛΨ

� ffiffiffi
g

p ¼ 0:

ð4:21Þ

For simplicity, I first consider the λ ¼ Λ ¼ 0 case; here,
the Wheeler-DeWitt equation simplifies considerably:

−
�
19

ffiffiffiffiffiffi
ℏκ

p

2b3
∂Ψ
∂SEH − Ψ

�
R

ffiffiffi
g

p ¼ 0: ð4:22Þ

Equation (4.22) admits the following solution:

Ψ0½g··� ¼ C0 exp

�
2b3

19
ffiffiffiffiffiffi
ℏκ

p SEH½g··�
�
: ð4:23Þ

Before proceeding to the λ ≠ 0, Λ ≠ 0 case, I argue for the
necessity of taking the low-curvature limit, in which I
neglect terms quadratic in the Ricci curvature. Recall that
the volume average regularization used to obtain
Eqs. (4.18) and (4.24) is based on the assumption that
the Wheeler-DeWitt equation is a low energy description
for the effective field theory that results after one has
integrated out short distance (large curvature) modes for
some theory of quantum gravity. If I reinsert (4.23) into
(4.18) and multiply through by ℏ3κ, I obtain (setting λ ¼ 0)

14This is essentially a small curvature expansion for the
Wheeler-DeWitt equation, which was introduced in [21].
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ℏ3κGabmn δ2Ψ
δgaby δgmn

y
≅
1

2

�
−2ℏκR

ffiffiffi
g

p þ 4

192
b6ℏ2κ2ð3R2

− 8RmnRmnÞ
ffiffiffi
g

p �
Ψ½g··�: ð4:24Þ

If b is on the order of unity (which corresponds to choosing
v0 to be on the order of the Planck volume), the limit in
which one can neglect the quadratic curvature terms
corresponds to the limit ℏκjRabj ≪ 1, or when the Ricci
curvature is much less than the inverse Planck area ðℏκÞ−1.
Curvatures on the order of the inverse Planck area corre-
spond to short distance behavior, and it follows that the
low-curvature limit is necessary if one chooses the averag-
ing volume v0 to be on the order of the Planck volume
ðℏκÞ3=2.
For the λ ≠ 0, Λ ≠ 0 case, I can solve the Wheeler-

DeWitt equation (4.21) by seeking a function ΨðSλÞ that
satisfies the following set of ordinary differential equations:

2ℏ2κ2λ
∂2Ψ
∂S2λ þ 19

ffiffiffiffiffiffi
ℏκ

p

2b3
∂Ψ
∂Sλ − Ψ ¼ 0 ð4:25Þ

5λ
ffiffiffiffiffiffi
ℏκ

p

b3
∂Ψ
∂Sλ þ 8ℏ2κ2λ2

∂2Ψ
∂S2λ −

8

3
ΛΨ ¼ 0: ð4:26Þ

The first equation (4.25) admits solutions of the following
form:

Ψ�ðSλÞ¼C� exp
��

−19�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
361þ32λb6ℏκ

p

8λb3ðℏκÞ3=2
�
Sλ

�
ð4:27Þ

where Cþ and C− are complex constants. In the λ → 0
limit, Ψþ becomes the λ ¼ 0 solution Ψ0 (4.23). Inserting
Ψ� (4.27) into Eq. (4.26), I obtain the following condition
on the parameter λ:

99ð19 −Q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
361þ 32b6ℏκλ

p
Þ þ 32b6ℏκð3λ − 2ΛÞ ¼ 0:

ð4:28Þ

where Q ¼ þ1 for Ψþ and Q ¼ −1 for Ψ−. Solving for λ, I
find that for both Q ¼ 1 and Q ¼ −1, I obtain the
following values for λ:

λ ¼ 128b6ℏκΛ − 33ð15�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
768b6ℏκΛþ 225

p
Þ

192b6ℏκ
: ð4:29Þ

Though Eqs. (4.27) and (4.29) describe a solution to the
regularized Wheeler-DeWitt equation, they are unsatisfac-
tory in their present form due to their dependence on the
regularization parameter b. While one might expect b ∼ 1,
so that v0 is on the order of the Planck volume, the precise
value for b is dependent on the details of the short distance
physics. On the other hand, the viewpoint here is that

quantum general relativity (and by extension quantum
geometrodynamics) is a low energy effective field theory,
which can be formulated without reference to the details of
short distance physics; it is, therefore, appropriate to seek
results that are independent of the value for the regulari-
zation parameter b.
To obtain a regularization independent result, I recall that

the volume averaging regularization was introduced to
avoid a delta function divergence, and note that divergences
reappear in the Wheeler-DeWitt equation when taking the
limit b → 0, which corresponds to the limit in which the
averaging volume goes to zero. I also recall that in
perturbative quantum field theory, the coupling constants
in the (unrenormalized) action are bare constants that do
not correspond to physically meaningful quantities and that
in renormalization, one absorbs the divergences into the
coupling constants by replacing the bare coupling constants
with coupling constants that depend on the regularization
parameter (which is effectively what is done with the
addition of counterterms in the action). With this in mind,
I imagine that κ represents a “bare” quantity, and introduce
a dependence on the regularization parameter b. I then
require that for small b, κ has the following leading-order
dependence on b:

κ ¼ κ̃b6 þOðb7Þ ð4:30Þ

For the λ ¼ Λ ¼ 0 solution (4.23), it is straightforward to
see that in the limit b → 0, Eq. (4.30) for κ yields the
result15:

lim
b→0

Ψ0½g··� ¼ C0 exp

�
2

19
ffiffiffiffiffiffi
ℏκ̃

p SEH½g··�
�
: ð4:31Þ

For the λ ≠ 0, Λ ≠ 0 solution Ψþ (4.27), the limit b → 0
yields a similar result16:

lim
b→0

Ψþ½g··� ¼ Cþ exp

�
2

19
ffiffiffiffiffiffi
ℏκ̃

p Sλ½g··�
�
: ð4:32Þ

Taking the same limit for the expression for λ in Eq. (4.29),
I find that in the “−” case, I obtain a finite result that is
independent of κ̃:

λ ¼ 76Λ
15

ð4:33Þ

Thus, in the long-distance limit (b → 0), Ψþ has the
explicit form:

15Note that the limit b → 0 provides further justification
for dropping the curvature squared terms in (4.24).

16The exponent becomes infinite in the Ψ− case.
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Ψ½g··� ¼ A exp

�
2

19
ffiffiffiffiffiffi
ℏκ̃

p
�
SEH½g··� −

152

15
ΛV½g··�

��
: ð4:34Þ

Eq. (4.34) forms the main result of this article; it describes a
solution of the regularized Wheeler-DeWitt equation in the
low-curvature, long-distance limit.
One may note that the solution (4.34) has a form similar

to the that proposed in Eq. (107) of [21] for the large-
volume limit. Unfortunately, the solution (4.34), obtained
from a Regge simplicial lattice regularization, is distinct
from the large-volume solution presented in Eqs. (107),
(117), and (118) of [21], so a direct comparison cannot be
made. In particular, the coefficients (Eq. (118) of [21]) in
front of the volume functional and the Einstein-Hilbert
functional in their solution differ by a factor of i, and have a
different dependence on the value of Λ; in the large-volume
the solution presented in [21], the coefficient for the volume
functional vanishes in the limit Λ → 0, the coefficient in
front of the Einstein-Hilbert functional diverges.17

C. A three-sphere universe

I conclude this article with a brief investigation of the
solution described in Eq. (4.34) for a minisuperspace
restriction to the “round” geometry for a three-sphere,
given by the line element

ds2 ¼ r2½dψ2 þ sin2ψðdθ2 þ sin2θdϕ2Þ�: ð4:35Þ

For the round metric (4.35) on the three-sphere, SEH¼
12π2r, andV ¼ 2π2r3. Thewavefunctional (4.34) evaluated
for the geometry (4.35) is given by

ΨðrÞ ¼ A exp

�
24π2

19
ffiffiffiffiffiffi
ℏκ̃

p
�
r −

76

45
Λr3

��
: ð4:36Þ

I note that for Λ > 0, limr→∞ΨðrÞ ¼ 0, and that ΨðrÞ has a
maximum at r ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

15=76Λ
p

; in a DeSitter universe with a
closed slicing, this three-geometry corresponds to a time t
satisfying r2 ¼ 3 cosh2ðt ffiffiffiffiffiffiffiffiffi

3=Λ
p Þ=Λ. In the minisuperspace

restriction, one can normalizeΨðrÞ, as long as κ̃ and Λ have
finite values; the integral (performed with Mathematica
[24]) of the square of Ψ has the following form:

jAj2
Z

∞

0

exp

�
μr−

ν

3
r3
�
dr

¼ jAj2
6ν

ð4πν2=3Biðμ=ν1=3Þþ3μ21F2ð1;4=3;5=3;μ3=9νÞÞ
ð4:37Þ

where BiðxÞ is an Airy function of the second kind, and
pFqðr1;…rp; s1;…sq; xÞ is a generalized hypergeometric
function. Though the result diverges for ν → 0 (which
corresponds to taking Λ → 0), the above remains finite
for finite values of the parameters μ and ν. The divergence in
the limit ν → 0 corresponds to setting Λ ¼ 0; in this case,
one can see that limr→∞ΨðrÞ ¼ ∞. This suggests that for the
three-sphere manifold, the state Ψ½g··� (4.34) is not normal-
izable forΛ ¼ 0. Onemight observe that the unboundedness
for ΨðrÞ when Λ ¼ 0 corresponds to the limit in which the
volume becomes infinite. In minisuperspace models, the
scale factor of the FRW metric, which controls the volume
for spatial slices, often plays the role of a time parameter
[1,4,25]. One may attempt to resolve the unboundedness in
the (nonminisuperspace) functional Ψ½g··� by treating the
volume VΣ of the three-manifold Σ as a time parameter;
however, while this might lead to a normalizable state at a
fixed volume, it does so at the cost of nonunitary time
evolution [26].

V. FINAL REMARKS

In this article, I have examined a volume average
regularization for the second functional derivative operator
in the Wheeler-DeWitt equation. I have argued that such a
regularization is natural for studying quantum geometro-
dynamics if one regards quantum general relativity to be a
low energy effective field theory of quantum gravity. In the
low-curvature, long-distance limit, I have found a solution
[Eq. (4.34)] to the regularized Wheeler-DeWitt equation.
An important question is whether the solution Ψ½g··�

Eq. (4.34) describes a physically meaningful state for
quantum geometrodynamics. I have briefly studied the
features of Ψ½g··� Eq. (4.34) for three-sphere geometries,
and have found that for finite κ̃ and finite Λ > 0, the
solution is normalizable on the minisuperspace restriction
to metrics of the form (4.36). It is curious that the
minisuperspace state ΨðrÞ (4.36) is peaked at the geometry
corresponding to a particular time in the closed slicing of
DeSitter spacetime; this seems to suggest that the state
described by Ψ½g··� Eq. (4.34) contains some information
about the temporal placement of the three-geometry in
spacetime which in turn suggests that a more complete
account of the dynamics requires solutions with a more
complicated dependence on the three-geometry. One diffi-
culty, as discussed earlier is the unboundedness ofΨ½g··� for
geometries on the three-sphere manifold when Λ ¼ 0. One
can, however, place an upper bound on SEH½g··� with certain
choices of topology on compact manifolds; in fact, it has
been shown [27] that SEH½g··� always has a negative value
for the three-torus.18

17This remark is not meant to be a criticism; I am merely
pointing out the differences between the solution presented in this
article and the solution presented in [21] that preclude a direct
comparison.

18An interesting question is whether one can identify
other three-manifolds that have this property—in particular,
one seeks three-manifolds with a negative or vanishing Yamabe
(topological) invariant [28], which implies SEH½g··� ≤ 0.
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There are some general issues that have not been
addressed in this article, some which have been discussed
elsewhere in the literature, and some which I leave for
future work. A particularly intriguing line of investigation,
which I leave for future work, concerns the V ¼ VΣ
quantum gravity model briefly described in Sec. II D.
Another question of interest is whether it is appropriate
to replace the second functional derivative operator in the
Wheeler-DeWitt equation (1.1) with a Laplace-Beltrami
operator, such as those described in [2,5]. Though the
methods presented in this article are motivated by effective
field theory considerations and inspired by renormalization
theory, the precise relationship between the methods
presented here and perturbative quantum field theory is
presently unclear. In particular, the methods presented here
are formally nonperturbative and gauge/slicing depen-
dent,19 which complicate the task of establishing the
relationship between the results presented in this article
and relativistic quantum field theory. One difficulty in
particular concerns the fact that the volume averaging is
performed over a spatial volume, rather than a spacetime
volume; to fully establish the relationship between the
regularization presented in this article to a covariant
regularization, one may be required to perform an addi-
tional temporal averaging, in which one must confront the
problem of time. Furthermore, one must take into consid-
eration the fact that Ψα½g··� are approximate20 solutions to
an equation that is only valid in a low-energy limit—in the
effective field theory framework, the Wheeler-DeWitt
equation itself is only valid at scales in which quantum
general relativity remains valid; in particular, the solution is
only expected to be valid at scales where one can ignore the
effects of curvature-squared terms in the bulk (four-dimen-
sional) action. Since the approximate solutions Ψα½g··� are
functionals of gij, they automatically contain information at
all scales [17]. This may require the suppression of
information contained in Ψα½g··� for 3-geometries corre-
sponding to scales where the Wheeler-DeWitt equation is
no longer expected to be valid.
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Note added in proof.—I recently became aware of another
set of approaches in the literature which regularize the
Wheeler-DeWitt equation. I am referring in particular to the
heat kernel and point splitting regularizations described in
[29–33], which are related to those described in the present
article; the volume average regularization may be inte-
preted as an average over the displacement in the point
splitting regularization.

APPENDIX: THE VARIATION OF THE
EINSTEIN-HILBERT ACTION

1. The change in the Ricci tensor

In this section, I review the variation of the Ricci tensor.
In particular, I work out the change in the curvature tensor
under the following transformation of the connection
coefficients,

Γ̃a
ij ¼ Γa

ij þQa
ij ⇒ Qa

ij ¼ ΔΓa
ij; ðA1Þ

where Qa
ij are components of a tensor. The transformed

Riemann curvature tensor may be written

R̃i
jab ¼ Ri

jab þ ∂aQi
bj − ∂bQi

aj þQi
asΓs

bj þ Γi
asQs

bj

−Qi
bsΓs

aj − Γi
bsQ

s
aj þQi

asQs
bj −Qi

bsQ
s
aj: ðA2Þ

Comparing this with the covariant derivatives of Qa
ij,

∇aQi
bj ¼ ∂aQi

bj þ Γi
asQs

bj − Γs
abQ

i
sj − Γs

ajQ
i
bs

∇bQi
aj ¼ ∂bQi

aj þ Γi
bsQ

s
aj − Γs

baQ
i
sj − Γs

bjQ
i
as; ðA3Þ

I find that

R̃i
jab − Ri

jab þ SsabQ
i
sj

¼ ∇aQi
bj −∇bQi

aj þQi
asQs

bj −Qi
bsQ

s
aj; ðA4Þ

where Ssab ≔ Γs
ab − Γs

ba is the torsion tensor. The torsion
tensor comes from the fact that the terms Γs

abQ
i
sj and

Γs
baQ

i
sj in the covariant derivatives (A3) do not appear in

the expression (A2) and must be added in when converting
the partial derivatives of the connection variations to
covariant derivatives. I contract indices to also obtain the
transformation of the Ricci tensor:

R̃ab−RabþSsibQ
i
sa¼∇iQi

ba−∇bQi
iaþQi

isQ
s
ba−Qi

bsQ
s
ia:

ðA5Þ

Recalling Qa
ij ¼ ΔΓa

ij (A1), I may rewrite the above as

19of particular concern is the fact that low 3-curvature
limit used to obtain the approximate solutions is gauge/
slicing dependent.

20Though as argued in Sec. IV B, such an approximation is
necessary if one considers the reasoning used to justify the
volume average regularization.
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R̃ab − Rab þ SsibΔΓi
sa ¼ ∇iΔΓi

ba −∇bΔΓi
ia

þ ΔΓi
isΔΓs

ba − ΔΓi
bsΔΓs

ia: ðA6Þ

For a torsion-free connection, Ssib ¼ 0, I may rewrite
(A6) as

ΔRab ≔ R̃ab − Rab ¼ ∇iΔΓi
ba −∇bΔΓi

ia

þ ΔΓi
isΔΓs

ba − ΔΓi
bsΔΓs

ia: ðA7Þ

2. The variation of the Einstein-Hilbert
action to first order

I now review the first-order variation of the Einstein-
Hilbert action, which may be found in a standard
text on general relativity [34–36]. The variation of the
Ricci tensor is

δRab ¼ ∇iδΓi
ba −∇bδΓi

ia; ðA8Þ
where

δΓi
ia ¼

1

2
gisð∇iδgsa þ∇aδgis −∇sδgiaÞ

δΓi
ba ¼

1

2
gisð∇bδgsa þ∇aδgbs −∇sδgbaÞ: ðA9Þ

The variation of the Ricci tensor takes the following form,

2δRab ¼ gijð∇i∇bδgja þ∇i∇aδgbj

−∇i∇jδgba −∇b∇aδgijÞ; ðA10Þ

and it follows that the variation of the Ricci scalar is

δR ≔ gabδRab þ Rabδgab

¼ gijgab∇ið∇bδgja −∇jδgabÞ þ Rabδgab: ðA11Þ

To first order, the variation of the metric and its inverse are
related in the following manner:

δgab ¼ −gamgbnδgmn: ðA12Þ

I use the above (A12) to rewrite equations (A10) and
(A11) as

2δRab ¼ −gijðgjmgan∇i∇bδgmn þ gbmgjn∇i∇aδgmn − gamgbn∇i∇jδgmn − gimgjn∇b∇aδgmnÞ; ðA13Þ

δR ¼ −ð∇i∇jδgij − gmngij∇i∇jδgmnÞ þ Rabδgab: ðA14Þ

Using (3.18), the variation of the volume element is, to first order,

δ
ffiffiffi
g

p ¼ 1

2

ffiffiffi
g

p
gnmδgmn ¼ −

1

2

ffiffiffi
g

p
gmnδgmn: ðA15Þ

I now present the algebra for the first variation of the Einstein-Hilbert action,

δSEH ¼
Z
Σ
ðδR ffiffiffi

g
p þRδ

ffiffiffi
g

p Þd3y¼
Z
Σ

�
ð−gijgab∇iðgjmgan∇bδgmn − gamgbn∇jδgmnÞ þRabδgabÞ

ffiffiffi
g

p
−
1

2

ffiffiffi
g

p
gabδgabR

�
d3y

¼
Z
Σ

�
Rab −

1

2
gabR

�
δgab

ffiffiffi
g

p
d3y; ðA16Þ

where a boundary term has been dropped in the second equality due to the fact that the manifold Σ is compact and without
boundary (recall the metric compatibility condition ∇kgij ¼ 0, ∇kgij ¼ 0).

3. The variation of the Einstein-Hilbert action to second order

Here, I present some algebra for the variation of the Einstein-Hilbert action leading up to Eq. (3.26). First, I expand the
variation of the Einstein-Hilbert action,
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ΔSEH ≔ SEH½g·· þ δg··� − SEH½g··� ¼
Z
Σ
ðΔR ffiffiffi

g
p þ RΔ

ffiffiffi
g

p þ ΔRΔ
ffiffiffi
g

p Þd3y

¼
Z
Σ

�
½δgabRab þ gabΔRab þ δgabΔRab� −

1

2
R½gabδgab − Yabmnδgabδgmn� − 1

2
gmnΔRδgmn þOð½δg··�3Þ

� ffiffiffi
g

p
d3y

¼
Z
Σ

�
½δgabRab þ gabΔRab þ δgabΔRab� −

1

2
Rgabδgab þ

1

2
RYabmnδgabδgmn

−
1

2
gmnδgmnfδgabRab þ gabΔRabg þOð½δg··�3Þ

� ffiffiffi
g

p
d3y: ðA17Þ

Next, I substitute the expression forΔRab in Eq. (A7) into Eq. (A17) to obtain (keeping terms to second order in variations):

ΔSEH ¼
Z
Σ

�
fδgabRabþðgabþδgabÞ½∇iΔΓi

ba−∇bΔΓi
iaþΔΓi

isΔΓs
ba−ΔΓi

bsΔΓs
ia�g−

1

2
Rgabδgab

þ1

2
RYabmnδgabδgmn−

1

2
gmnδgmnfδgabRabþgab½∇iΔΓi

ba−∇bΔΓi
iaþΔΓi

isΔΓs
ba−ΔΓi

bsΔΓs
ia�gþOð½δg··�3Þ

� ffiffiffi
g

p
d3y

¼
Z
Σ

�
fδgabRabþgab½∇iΔΓi

ba−∇bΔΓi
iaþΔΓi

isΔΓs
ba−ΔΓi

bsΔΓs
ia�þδgabð∇iΔΓi

ba−∇bΔΓi
iaÞg

−
1

2
Rgabδgabþ

1

2
RYabmnδgabδgmn−

1

2
gmnδgmnδgabRab−

1

2
gmnδgmngabð∇iΔΓi

ba−∇bΔΓi
iaÞþOð½δg··�3Þ

� ffiffiffi
g

p
d3y:

ðA18Þ

A rearrangement of terms yields the result [Eq. (3.26)]:

ΔSEH ¼
Z
Σ

��
Rab −

1

2
Rgab

�
δgab þ gabð∇iΔΓi

ba −∇bΔΓi
iaÞ þ gabΔΓi

isΔΓs
ba − gabΔΓi

bsΔΓs
ia

þ δgabð∇iΔΓi
ba −∇bΔΓi

iaÞ þ
1

2
RYabmnδgabδgmn −

1

2
Rabgmnδgmnδgab

−
1

2
gabgmnδgmnð∇iΔΓi

ba −∇bΔΓi
iaÞ þOð½δg··�3Þ

� ffiffiffi
g

p
d3y: ðA19Þ

Using Eq. (A16), I may further simplify this to obtain the result

ΔSEH ¼ δSEH þ
Z
Σ

�
gabð∇iΔΓi

ba −∇bΔΓi
iaÞ þ

1

2
ðRYabmn − RabgmnÞδgabδgmn þ gabðΔΓi

isΔΓs
ba − ΔΓi

bsΔΓs
iaÞ

þ
�
δgab −

1

2
gabgmnδgmn

�
ð∇iΔΓi

ba −∇bΔΓi
iaÞ þOð½δg··�3Þ

� ffiffiffi
g

p
d3y: ðA20Þ

4. Simplifying terms in the second-order variation of the Einstein-Hilbert action

In this section, I present the algebra for obtaining Eq. (3.33) from Eq. (3.32). First, I rewrite Eq. (3.32):

ΔSEH ¼ δSEH þ
Z
Σ

�
gabδΓi

isδΓs
ba − gabδΓi

bsδΓs
ia þ

�
δgab −

1

2
gabgmnδgmn

�
ð∇iδΓi

ba −∇bδΓi
iaÞ

þ 1

2
ðRYabmn − RabgmnÞδgabδgmn

� ffiffiffi
g

p
d3y: ðA21Þ

I apply the divergence theorem to obtain
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ΔSEH ¼ δSEH þ
Z
Σ

�
gabδΓi

isδΓs
ba − gabδΓi

bsδΓs
ia −

�
∇iδgab −

1

2
gabgmn∇iδgmn

�
δΓi

ba

þ
�
∇bδgab −

1

2
gabgmn∇bδgmn

�
δΓi

ia þ
1

2
ðRYabmn − RabgmnÞδgabδgmn

� ffiffiffi
g

p
d3y

¼ δSEH þ
Z
Σ

�
gabδΓi

isδΓs
ba − gabδΓi

bsδΓs
ia −∇iδgabδΓi

ba þ
1

2
gabgmn∇iδgmnδΓi

ba þ∇bδgabδΓi
ia

−
1

2
gabgmn∇bδgmnδΓi

ia þ
1

2
ðRYabmn − RabgmnÞδgabδgmn

� ffiffiffi
g

p
d3y: ðA22Þ

Now the first-order variation of the Christoffel symbols (3.31) may be used to obtain the following expressions, which
will be useful for working out expressions for (A27):

δΓs
ia ¼

1

2
ðgmignagsk∇kδgmn − gna∇iδgsn − gmi∇aδgmsÞ

δΓs
ba ¼

1

2
ðgmbgnagsk∇kδgmn − gna∇bδgsn − gmb∇aδgmsÞ

δΓi
bs ¼

1

2
ðgmbgnsgik∇kδgmn − gns∇bδgin − gmb∇sδgmiÞ

δΓi
ia ¼ −

1

2
ðgmi∇aδgmiÞ: ðA23Þ

I use the last one (δΓi
ia ¼ − 1

2
gij∇aδgij) to simplify some terms in (A22):

ΔSEH ¼ δSEH þ
Z
Σ

�
−
1

2
gabgij∇sδgijδΓs

ba − gabδΓi
bsδΓs

ia −∇iδgabδΓi
ba þ

1

2
gabgmn∇iδgmnδΓi

ba

−
1

2
gij∇bδgab∇aδgij þ

1

4
gabgmngij∇bδgmn∇aδgij þ

1

2
ðRYabmn − RabgmnÞδgabδgmn

� ffiffiffi
g

p
d3y: ðA24Þ

Now I insert some Kronecker deltas and change index labels so that I can combine terms:

ΔSEH ¼ δSEH þ
Z
Σ

�
−
1

2
gabgmn∇sδgmnδΓs

ba − gabδΓi
bsδΓs

ia −∇sδgabδΓs
ba þ

1

2
gabgmn∇sδgmnδΓs

ba

−
1

2
gij∇bδgab∇aδgij þ

1

4
gabgmngij∇bδgmn∇aδgij þ

1

2
ðRYabmn − RabgmnÞδgabδgmn

� ffiffiffi
g

p
d3y

¼ δSEH þ
Z
Σ

��
1

2
gabgmn∇sδgmn −

1

2
gabgmn∇sδgmn −∇sδgab

�
δΓs

ba − gabδΓi
bsδΓs

ia

−
1

2
gij∇bδgab∇aδgij þ

1

4
gabgmngij∇bδgmn∇aδgij þ

1

2
ðRYabmn − RabgmnÞδgabδgmn

� ffiffiffi
g

p
d3y

¼ δSEH þ
Z
Σ

�
−∇sδgabδΓs

ba − gabδΓi
bsδΓs

ia −
1

2
gij∇bδgab∇aδgij þ

1

4
gabgmngij∇bδgmn∇aδgij

þ 1

2
ðRYabmn − RabgmnÞδgabδgmn

� ffiffiffi
g

p
d3y: ðA25Þ

I again change index labels and insert Kronecker deltas to simplify further:

ΔSEH ¼ δSEH þ
Z
Σ

�
−∇sδgabδΓs

ba − gabδΓi
bsδΓs

ia −
1

2
gmnδ

b
i δ

a
j∇iδgab∇jδgmn þ 1

4
gijgmngab∇jδgmn∇iδgab

þ 1

2
ðRYabmn − RabgmnÞδgabδgmn

� ffiffiffi
g

p
d3y: ðA26Þ

I now define the following two scalar quantities:
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A1 ¼ ∇sδgabδΓs
ba

A2 ¼ gabδΓi
bsδΓs

ia; ðA27Þ

so that the variation of the action becomes [after collecting terms in (A26)]:

ΔSEH ¼ δSEHþ
Z
Σ

�
−ðA1þA2Þþ

�
1

4
gijgmngab−

1

2
gmnδ

b
i δ

a
j

�
∇iδgab∇jδgmnþ1

2
ðRYabmn−RabgmnÞδgabδgmn

� ffiffiffi
g

p
d3y:

ðA28Þ

I now work out explicit expressions for A1 and A2, using the expressions Eq. (A23). A1 is relatively simple to work out:

A1 ¼ ∇sδgabδΓs
ba

¼ 1

2
∇sδgabðgmbgnagsk∇kδgmn − gna∇bδgsn − gmb∇aδgmsÞ

¼ 1

2
ðgmbgnagij∇iδgab∇jδgmn − 2gna∇mδgab∇bδgmnÞ: ðA29Þ

I perform additional index relabelings and insert Kronecker deltas to obtain

A1 ¼
1

2
ðgmbgnagij − 2gnaδimδ

j
bÞ∇iδgab∇jδgmn: ðA30Þ

The computation of A2 is more involved [again, I use Eq. (A23)]:

A2 ¼ gabδΓi
bsδΓs

ia

¼ 1

4
gabðgmbgnsgik∇kδgmn − gns∇bδgin − gmb∇sδgmiÞðgpigqagsk∇kδgpq − gqa∇iδgsq − gpi∇aδgpsÞ

¼ 1

4
gabðgmbgnsgir∇rδgmngpigqagsk∇kδgpq − gmbgnsgir∇rδgmngqa∇iδgsq − gmbgnsgir∇rδgmngpi∇aδgps

− gns∇bδgingpigqagsk∇kδgpq þ gns∇bδgingqa∇iδgsq þ gns∇bδgingpi∇aδgps

− gmb∇sδgmigpigqagsk∇kδgpq þ gmb∇sδgmigqa∇iδgsq þ gmb∇sδgmigpi∇aδgpsÞ: ðA31Þ

After performing some contractions and index relabeling, the above becomes

A2 ¼
1

4
ðgmb∇aδgmn∇nδgab − gmbgnsgir∇rδgmn∇iδgsb − gns∇rδgan∇aδgrs − gpi∇bδgin∇nδgpb þ gns∇rδgan∇aδgsr

þ gbmgnsgir∇rδgmn∇iδgbs − gmbgpigsk∇sδgmi∇kδgpb þ gmb∇aδgmn∇nδgab þ gpi∇bδgni∇nδgpbÞ: ðA32Þ

The underlined terms cancel and I obtain the following expression:

A2 ¼
1

4
ð2gmb∇aδgmn∇nδgab − gmbgpigsk∇sδgmi∇kδgpbÞ

¼ 1

4
ð2gmbδ

j
aδin∇jδgmn∇iδgab − gmbgangij∇jδgmn∇iδgabÞ

¼ 1

4
ð2gmbδ

j
aδin − gmbgangijÞ∇iδgab∇jδgmn: ðA33Þ
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I now insert Eqs. (A30) and (A33) into Eq. (A28) to obtain the following expression for ΔSEH, which I simplify as

ΔSEH ¼ δSEH þ
Z
Σ

��
gnaδimδ

j
b −

1

2
gmbgnagij −

1

2
gmbδ

j
aδin þ

1

4
gmbgangij

�
∇iδgab∇jδgmn

þ
�
1

4
gijgmngab −

1

2
gmnδ

i
bδ

j
a

�
∇iδgab∇jδgmn þ 1

2
ðRYabmn − RabgmnÞδgabδgmn

� ffiffiffi
g

p
d3y

¼ δSEH þ
Z
Σ

�
1

4
ð4gnaδimδjb − 2gmbδ

j
aδin − gmbgangij þ gijgmngab − 2gmnδ

i
bδ

j
aÞ∇iδgab∇jδgmn

þ 1

2
ðRYabmn − RabgmnÞδgabδgmn

� ffiffiffi
g

p
d3y: ðA34Þ

Finally, I write

ΔSEH ¼ δSEH þ
Z
Σ

�
Zij
abmn∇iδgab∇jδgmn þ 1

2
ðRYabmn − RabgmnÞδgabδgmn

� ffiffiffi
g

p
d3y; ðA35Þ

where I define the following quantity:

Zij
abmn ≔

1

4
ð4gnaδimδjb − 2gmbδ

j
aδin − gmbgangij þ gijgmngab − 2gmnδ

i
bδ

j
aÞ: ðA36Þ
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