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We propose an algorithm of extracting Schrödinger theories under all viable physical time from the
Einstein-Hilbert path integral, formulated as the timeless transition amplitudes P̂∶ K → K� between the
boundary states in a kinematic Hilbert space K. Each of these Schrödinger theories refers to a certain set of
quantum degrees of freedom in K as a background, with their given values specifying moments of the
physical time. Restricted to these specified background values, the relevant elements of P̂ are transformed
by the algorithm into the unitary propagator of a corresponding reduced phase space Schrödinger theory.
The algorithm embodies the fundamental principle of quantum Cauchy surfaces, such that all the derived
Schrödinger theories emerge from one timeless canonical theory defined by P̂ as a rigging map, via the
relational Dirac observables referring to the corresponding backgrounds. We demonstrate its application to
a Friedmann-Robertson-Walker loop quantum cosmology (FRW loop quantum cosmology) model with a
massless Klein-Gordon scalar field. Recovering the famous singularity-free quantum gravitational
dynamics with the background of the scalar field, we also obtain in another reference frame a modified
Klein-Gordon field quantum dynamics with the background of the spatial (quantum) geometry.
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I. INTRODUCTION

The Fadeev-Popov path integral of the Einstein-Hilbert
action plays a conceptually central role in background-
independent quantum gravity, for both the covariant [1–3]
and canonical [4,5] formulations.
Remarkably, recent works [6–8] have reached beyond

formal definitions of this path integral, prescribing it
rigorously in either calculable analytic forms or perturba-
tion expansions. In such exact prescriptions, the integral
becomes an operator P̂∶ K → K� from a kinematic Hilbert
space K to its algebraic dual space. It has Hermitian matrix
elements Pðjψfi;jψ iiÞ≡hP̂·ψfjψ ii giving the value of the
integral between the boundary states ψf, ψ i ∈ K. It satisfies
the quantum constraint equations PðĈμjψfi; jψ iiÞ ¼
Pðjψfi; Ĉμjψ iiÞ ¼ 0 imposed by a set of quantum con-
straint (field) operators fĈμ∶ K → Kg representing the
system of scalar and momentum constraints in canonical
general relativity. Particularly, the constraint equation
corresponding to the scalar constraints Ĉ0 is known as
the Wheeler-DeWitt equations [9]. In both of the covariant
and canonical formulations, the unitary quantum dynamics
is expected to emerge from this operator P̂.

Based on the idea of the quantum reference frames
developed in a previous line of works [10–12], this paper
is devoted to finding a fundamental relation between the
unitary dynamics and the elements of P̂, the precise values of
which are becoming accessible to us. Let us now introduce
such an idea by viewing the roles of P̂ in the two formulations.
In the covariant formulation [1–3], the operator P̂ plays

the role of the “superspace transition amplitudes” [13],
which differ from the usual propagators in a given physical
time. In the quantization of a usual Hamiltonian theory with
a fixed background spacetime decoupled from the dynami-
cal fields, the corresponding path integral would satisfy a
Schrödinger equation and yield the unitary propagator for
the dynamics. This is not the case with the path integral of
the Einstein-Hilbert action [14], which is for the fully
interacting gravity and matter fields. Without a fixed
background spacetime, the notion of physical time here
has to come from a chosen proper set of the interacting
degrees of freedom inK serving as a relational background.
This background would be represented by a set of operators
we denote as fT̂μg. Accordingly, the rest of the degrees of
freedom are then treated as dynamical and are represented
by a set of operators we denote as fX̂Ig (conjugate to
fP̂Ig). A physical time tmay be fully specified by referring
to the background values at each moment as a set of
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given functions fTμðtÞg. This way, we expect the
evolution along t to be given by the relevant elements
PðjTμðt0Þ; X0

Ii; jTμðtÞ; XIiÞ, as a transformation in the XI

sector of K. However, according to the Wheeler-DeWitt
equation, this transformation turns out to be nonunitary [14]
except for very few special cases. On the other hand, if
fTμðtÞg properly gauge fixes a sector of the physical states,
such that they become coordinatized by ðXI; PIÞ at each t, it
is known that general relativity in this sector can be
formulated as a usual Hamiltonian theory in the reduced
phase space ðXI; PIÞ under one fixed notion of physical time
t. In the reduced phase space quantization approach [15], one
simply quantizes this Hamiltonian theory with the physical
time specified at classical level. There exist many studies
[14,16,17] relating the Fadeev-Popov path integral
PðjTμðt0Þ; X0

Ii; jTμðtÞ; XIiÞ to the corresponding reduced
phase space path integral, which gives a unitary propagator.
From detailed semiclassical analysis [14,18], it is known that
the former may be converted into the latter through multi-
plying the former’s integrand by certain boundary factors, in
the form of path functionals ΛðX0

I; P
0
I; t

0Þ and ΛðXI; PI; tÞ
depending only on the end point variables at t0 and t. A
desirable goal in this line is to go beyond semiclassical level,
for a general rule of such conversions, which would then
generate from P̂ exact Schrödinger theories in the various
choices of the physical time.
In the canonical formulation via the refined algebraic

quantization [4,5,19], P̂ is called the rigging map, and it
serves as a generalized kernel projector for the quantum
constraints fĈμg. Its image H ⊂ K� gives the physical
Hilbert space, and its elements naturally define the physical
inner product in H. Explicitly, the inner product between
two physical states fjΨ1Þ ≡ P̂jψ1i; jΨ2Þ ≡ P̂jψ2ig ⊂ H is
defined by [19]

ðΨ1jΨ2Þ ≡ Pðjψ1i; jψ2iÞ: ð1:1Þ
Note that the dynamics has to emerge from these physical
states which are constructed without any notion of time [20].
Perhaps one of the most predominant and persuasive
methods for dealing with this problem is through the rela-
tional observables [21–25]. In a proper region of the classical
phase spacewhere thementioned reduced phase space theory
can be defined, one can define the gauge-invariant phase
space functions fXIðTμðtÞÞg as the relational observables
having the values of fXIg taken at the point with Tμ ¼ TμðtÞ
in each constraint orbit. If treated correctly, the dynamics
described by fXIðTμðtÞÞg should be the same [15] as the one
given by the reduced phase space Hamiltonian theory. For
our timeless canonical quantum theory, one may expect the
quantum dynamics to be given by the quantized relational

observables dXIðTμðtÞÞ∶ H → H. Here, the difficult task is in
the explicit construction of these quantum observables. At
the classical level, the relational observables are highly
nonlinear in the phase space coordinates, and so their

quantization faces complicated ambiguities. The existing
literature [16,25] for constructing these quantumobservables
mainly follows the two guidelines to constrain the ambi-
guities, namely, the requirements of the commutativity with
fĈμg and the self-adjointness inH.While much progress has
been achieved in the existing works, we note that the
“elementary” relational observables for a Schrödinger theory

demand stronger properties; particularly, f dXIðTμðtÞÞg
togetherwithf dPIðTμðtÞÞg have to satisfy a time-independent
elementary algebra, in order to provide the fixed complete
set for a Schrödinger theory. Such stronger demands call
for a deep quantum construction principle for the relational
observables.
We now observe that the covariant and canonical for-

mulations complement each other in the described perspec-
tives, such that the problem of unitary evolution can be
resolved by reconciling the two formulations. In the canoni-
cal formulation, for the moment, assume that for each value
of t we have f dXIðTμðtÞÞg as a complete set of relational
observables for some subspace D ⊂ H so that we have an
orthonormal eigenbasis fjXIðTμðtÞÞg for D. Recalling thatdXIðTμðtÞÞ represents XI taken at the moment when the
background has the values fTμðtÞg, we naturally expect its

eigenstate to be of the form fjXIðTμðtÞÞ ≡ P̂ Λ̂ jXI; TμðtÞig,
where the possible correction Λ̂ ≡ Λ̂ðX̂i; P̂i; T̂μÞ would
commute with T̂μ so as not to disturb the specified value
of the background. Since by assumption fjXiðTμðtÞÞg of
each t gives an orthonarmal basis for D, we immediately
obtain a unitary evolution (in a generalized Heisenberg
picture) describing any physical state Ψ ∈ D. The elements
of this unitary propagator according to (1.1) are given by
PðΛ̂jTμðt0Þ; X0

Ii; Λ̂jTμðtÞ; XIiÞ. From our previous discus-
sion, this propagator should be obtainable from the reduced
phase space path integrals for the chosen background.
Indeed, it agrees with the mentioned semiclassical relation
with the corresponding Fadeev-Popov path integral
PðjTμðt0Þ; X0

Ii; jTμðtÞ; XIiÞ; only here, the boundary factors
are represented by the exact operators Λ̂. From this point of
view, obtaining the Schrödinger propagator in the covariant
formulation may be equivalent to finding the elementary
relational Dirac observables in the canonical formulation.
They would both be solving for the same operator Λ̂.
In this paper, we present a calculation algorithm for

this framework [10–12] and demonstrate its fundamental
principle. Under a choice of fT̂μg and fTμðtÞg, the input
of the algorithm is just the relevant elements fPðjTμðt0Þ;
X0
Ii; jTμðtÞ; XIiÞg assumed to be calculable. The output of

the algorithm gives us (1) whether the specified background
provides a valid notion of time and, (2) if yes, the space
D ⊂ H and theSchrödingerwave functionsΨ½XI�ðtÞ describ-
ing the evolution of each Ψ ∈ D in this physical time.
Particularly, the output 1 contains the formulation of the
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exact criteria of a physical time at the deep quantum level,
and the output 2 implicitly determines the exact forms of the

observables f dXIðTμðtÞÞ; dPIðTμðtÞÞg and of the physical
Hamiltonian. Subsequently, the outputs also yield trans-
formations between two Schrödinger representations of the
same physical state. From these, we obtain the notion of
variable quantum reference frames.
We will illustrate this algorithm by applying it to the well-

known FRW loop quantum cosmology [26,27] with a
massless Klein-Gordon scalar field. We will first derive the
famous singularity-free quantum evolution of gravity in the
scalar field background; then, for a new result, we will show
that the same model also gives quantum dynamics of the
Klein-Gordon field in the background of the quantum spatial
geometry. In their overlaping domain, the two dynamics are
equivalent through a transformation of the quantum reference
frames.

II. CALCULATION ALGORITHM AND
UNDERLYING PRINCIPLE

Suppose we have the transition amplitudes P̂∶ K → K�

that solve the quantum constraints fĈμg and we denote a
complete set of self-adjoint operators for K as fX̂ig with
their conjugate momenta being fP̂ig.
Depending on the type of dynamics one wishes to

describe, one first divides the degrees of freedom in K
into two commuting sectors: a background sector and a
dynamical sector. Explicitly, if one wishes to derive the
quantum dynamics of the sector fðX̂I; P̂IÞg ⊂ fðX̂i; P̂iÞg,
one is led to choose the remaining set fðX̂μ; P̂μÞg ≡
fðX̂i; P̂iÞg − fðX̂I; P̂IÞg as the background sector. A physi-
cal time t defined using this background sector is specified
by a chosen set of background field operators fT̂μ ¼
T̂μðX̂ν; P̂νÞg and a given set of functions fTμðtÞg over t
taking values in the spectra of fT̂μg. The set of functions
fTμðtÞg then specifies a one-parameter family of kinematic
eigenspaces fStg ≡ SpanfjTμðtÞ; XIig, among which the
relevant transition amplitudes are to be taken.
To extract the dynamics in this background time, we

introduce a general St-preserving operator Λ̂ðX̂I; P̂I; T̂μÞ∶
St → St and look for the assumed reduced phase space
propagator

T t0;tðX0Λ
I ; XΛ

I Þ ≡ PðΛ̂jTμðt0Þ; X0
Ii; Λ̂jTμðtÞ; XIiÞ:

For more transparent expressions, we introduce three
square matrices Pt0;t, Λt, and K with their matrix elements
defined by

Pt0;tðX0
I; XIÞ ≡ PðjTμðt0Þ; X0

Ii; jTμðtÞ; XIiÞ;
ΛtðX0

I; XIÞ ≡ hTμðtÞ; X0
IjΛ̂jTμðtÞ; XIi and

KðX0
I; XIÞ ≡ hX0

IjXIi:
Here, K represents the dynamical part of the factorized
kinematic inner product hX0

I; T
0
μjXI; Tμi ≡ hX0

IjXIihT 0
μjTμi.

Using these matrix notations, we perform the following
steps:
(1) Calculate the relevant transition amplitudes

fPt0;tðX0
I; XIÞg with arbitrary t0 and t.

(2) Use thePt;t to solve for a Λ̂ satisfying T t;tðX0Λ
I ;XΛ

I Þ¼
hX0

IjXIi, which in our matrix notation can be
written as

Λ†
tPt;tΛt ¼ K: ð2:1Þ

A specific solution Λt for every t then yields one
specific solution for Λ̂. If there is no solution for Λt,
the t cannot be a physical time, and the assumed
Schrödinger theory does not exist.

(3) Use a found solution Λ̂, and check if the assumed
propagator T t1;t2ðX0Λ

I ; XΛ
I Þ gives a unitary evolution

along t in the dynamical sector of K, that is, whether

ðΛ†
t0Pt0;tΛtÞ† · ðΛ†

t0Pt0;tΛtÞ ¼ I ð2:2Þ
holds for the matrices. When the unitarity condition
above is not satisfied, the assumed Schrödinger
theory does not exist, and the t cannot be a physical
time. When the unitarity is satisfied, one obtains the
reduced phase space propagator of a Schrödinger
theory with the physical time t, with fðX̂I; P̂IÞg as a
conjugate pair of complete set observables. One
may then derive from the propagator the physical
Hamiltonian in terms of fðX̂I; P̂IÞg.

We now show that all the Schrödinger theories obtained
through the above algorithm are unified in a single
(generalized) Heisenberg picture. This Heisenberg picture
is provided by the Dirac theory constructed through the
refined algebraic quantization procedure, with P̂∶ K →
H ⊂ K� serving as the rigging map.
The images of fStg under the rigging map correspond to

a family of physical subspaces fDt ≡ Image½P̂jSt �g. It can
be shown easily that St1 is in one-to-one correspondence
with Dt1 under the map P̂jSt1 , if and only if a solution for
Λt1 exists. When this happens, there is a right-inverse map
Π̂t1∶ Dt1 → St1 satisfying P̂Π̂t1 ¼ Î, called a quantum
Cauchy surface. Clearly, the quantum Cauchy surface
Π̂t1 represents each physical state of the quantum spacetime
in Dt1 with a unique element in St1 , which describes the
spatial slice of the quantum spacetime where the back-
ground fields take the values fTμðt1Þg. When such a
solution does not exist, the map P̂jSt1 is degenerate, and
the background sector needs to be extended to provide
sufficient gauge fixing conditions.
For each quantum Cauchy surface, our algorithm also

identifies a special isometry map P̂ Λ̂ ∶ St1 → Dt1 , which
preserves the inner products in the two Hilbert spaces.
Through this isometry, the self-adjoint complete sets
fX̂I; P̂Ig in St1 naturally induce the corresponding self-
adjoint complete sets of Dirac observables fX̂Λ

I ðt1Þ; P̂Λ
I ðt1Þg
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in Dt1 . These complete sets of Heisenberg observables in Dt

induced by the quantum Cauchy surfaces take the explicit
form of

ðX̂Λ
I ðtÞ; P̂Λ

I ðtÞÞ ≡ P̂ΛðX̂I; P̂IÞΛ−1Π̂t∶ Dt → Dt: ð2:3Þ

This desirable form is such that

FðX̂Λ
I ðtÞ; P̂Λ

I ðtÞÞ ¼ FðX̂I; P̂IÞΛðtÞ and

½X̂Λ
I ðtÞ; P̂Λ

I ðtÞ� ¼ ½X̂I; P̂I�ΛðtÞ; ð2:4Þ

thus, the observables have the algebra and spectrum identical
to their kinematic counterparts’. Further, an orthonormal
eigenbasis for Dt of these Dirac observables, satisfying
X̂Λ
I ðtÞjXΛ

I ðtÞÞ ¼ XIjXΛ
I ðtÞÞ and ðX0Λ

I ðtÞjXΛ
I ðtÞÞ ¼ hX0

IjXIi,
is given by

jXΛ
I ðtÞÞ ≡ P̂ΛjTμðtÞ; XIi: ð2:5Þ

Therefore, we have

T t2;t1ðX0Λ
I ; XΛ

I Þ ¼ ðX0Λ
I ðt2ÞjXΛ

I ðt1ÞÞ: ð2:6Þ

In the last step of the algorithm, we examine the unitarity
of the matrices ðX0Λ

I ðt2ÞjXΛ
I ðt1ÞÞ. Now, it is clear that this

unitarity implies Dt1 ¼ Dt2 ≡ D. When this happens, the
spaceD provides the generalized Heisenberg state space for
the physical time t. This unitarity can thus be viewed as a
global hyperbolicity condition for the quantum spacetimes
in D, realized by the foliation of the quantum Cauchy
surfaces associated with t. Each physical state ΨD ∈ D is
described by a Schrödinger wave function ΨD½XΛ

I �ðtÞ ≡
ðXΛ

I ðtÞjΨDÞ evolving in the physical time t with the propa-
gator given by (2.2). Lastly, a breakdown of the unitarity in
ðX0Λ

I ðt2ÞjXΛ
I ðt1ÞÞ implies Dt1 ≠ Dt2 and that the quantum

Cauchy surfaces along t do not provide a global hyperbolic
foliation to a fixed set of quantum spacetimes.
The full set of solutions for (2.1) and (2.2) is given by the

“left-unitary” class of any given solution Λ̂; the set is
generated by Λ̂0 ¼ Û Λ̂ with an arbitrary left-unitary trans-
formation ÛðX̂I; P̂I; T̂μÞ∶ St → St. These transformations
really are the canonical transformations in a usual quantum
theory. To see this, suppose we switch from using the Λ̂ to
using the Λ̂0 for our observables (2.3). It follows from (2.4)
that the replacement is equivalent to a unitary redefinition
of observables because we have

ðX̂Λ0
I ðtÞ; P̂Λ0

I ðtÞÞ ¼ Û†ðX̂Λ
I ðtÞ; P̂Λ

I ðtÞ; TμðtÞÞðX̂Λ
I ðtÞ;

P̂Λ
I ðtÞÞÛðX̂Λ

I ðtÞ; P̂Λ
I ðtÞ; TμðtÞÞ:

The real task here is to understand the physical meaning of
ðX̂Λ

I ðtÞ; P̂Λ
I ðtÞÞ given by a particular Λ̂, such as the classical

limits of these observables.

Indeed, our algorithm is based on quantum-level con-
siderations; in order to find a Schrödinger theory with a
certain desired classical limit, we need to choose the
background fields fT̂μg such that the corresponding
observables (2.3) can truly represent the needed classical
relational observables. Such a choice of the background
fields requires instructional guidance based on classical
intuitions. Here, let us put forth one such guidance coming
from the following simple consideration. Suppose the
Schrödinger theory with the physical time t discussed
above has a classical limit of a Hamiltonian dynamics in
the reduced phase space fðXI; PIÞg, under the assigned
background value TμðtÞ. This means at any moment t1 the
observable’s values ðXI; PIÞðt1Þ together with the back-
ground value Tμðt1Þ must correspond to a unique point
ðXI; PI; Xμ; PμÞðt1Þ on the constraint surface in the original
phase space, thereby resolving the well-known Gribov
ambiguity. Suppose we have specifically chosen the frame
in which fXμg has certain specified values fXμðtÞg; then,
our consideration implies that the background field should
be chosen as TμðXν; PνÞ ¼ ΘðgðXν; PνÞÞXμ. Here, theΘðxÞ
is the Heaviside step function, and gðXν; PνÞ is a phase
space function satisfying g > 0 on the constraint surface
only in the region where the mentioned one-to-one corre-
spondence holds. Clearly, the proper function gðXν; PνÞ can
be determined by studying the constraints fCμg, and this
way, the condition TμðtÞ ¼ t excludes (except at the
isolated value of t ¼ 0) automatically the regions of the
constraint surface containing the additional Gribov copies.
We are thus instructed to choose our quantum background
fields to be T̂μ ¼ ΘðĝðX̂ν; P̂νÞÞX̂μ þOðℏÞ. Note that the
above consideration is based on the uniqueness of the
dynamical trajectory, a form of the “classical unitarity”
condition. Thus, we expect the quantum unitarity (2.2)
imposed by our algorithm to agree with this choice of T̂μ

up to an error of OðℏÞ, and then the exact quantum
unitarity should serve to further constrain the form of T̂μ

in the quantum level.
For the Schrödinger dynamics of a different set of fields

fðX I;PIÞg, we would use the physical time based on
another complete set decomposition fðX i;PiÞg ≡
fðX I;PIÞg ∪ fðXμ;PμÞg for K. Again, we choose the
reference frame by choosing the background fields
fT̂ μðX̂μ; P̂μÞg with the values fT μðτÞg over the physical
time τ. This may lead to another Schrödinger theory
describing the physical states inD0 ⊂ H. Then, any physical
stateΨ ∈ D0 ∩ D can be described in both reference frames
and represented as either Ψ½XI�ΛðtÞ or Ψ½X I�Λ̄ðτÞ. The
transformation between the two wave functions is the
transformation between the two quantum reference frames,
associated with the two families of quantum Cauchy
surfaces.
Lastly, we note that the background field operators T̂μ

coordinatize a physical time with the specified values TμðtÞ.
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They thus play a role fundamentally different from that of
the operators X̂I, which represent the dynamical observ-
ables at each moment of time. Consequently, these oper-
ators are not required to be self-adjoint, but instead they
have to satisfy the condition of capturing a true physical
time. Concretely, the condition is the solvability of
Eqs. (2.1) and (2.2) for the Λ̂. Indeed, we have seen its
physical meaning: the background field values must specify
quantum Cauchy surfaces that provide globally hyperbolic
foliations to the set of quantum spacetimes fluctuating in
the dynamical degrees of freedom.

III. REFERENCE FRAMES IN SPATIALLY FLAT
FRW LOOP QUANTUM COSMOLOGY

We now demonstrate the algorithm by applying it to the
FRW loop quantum cosmology [26,27]—a quantum cos-
mological model on the homogeneous and isotropic sector
of general relativity incorporating the essential features of
loop quantum gravity. We will work in the spatially flat
case with zero cosmological constant and with a minimally
coupled massless Klein-Gordon scalar field.
Restricting to the homogeneous and isotropic sector of

general relativity described in the comoving frames that
manifest the symmetry, we obtain our kinematic phase
space canonically coordinatized by ðc; p;ϕ; PϕÞ, with all
the components taking values from R. The gravitational
sector is described by ðc; pÞ, the symmetrically reduced
Ashtekar variables [28], which provide the extrinsic cur-
vature K and the scale factor a of space through γK ¼
V−1=3c and a ¼ V−1=3

ffiffiffiffiffiffijpjp
; here, V is the coordinate

volume of a chosen spatial comoving cell, and the real
number γ is known as the Barbero-Immirzi parameter [28].
Note that a change in the value of γ corresponds to a
rescaling of the Ashtekar variables. For the scalar field
sector, ϕ and Pϕ represent the field value in the comoving
space and the field’s total conjugate momentum in V. The
nontrivial Poisson brackets among these variables are given
by fc; pg ¼ 8πGγ

3
and fϕ; Pϕg ¼ 1. Under the partial gauge

fixing with the comoving frames, the full diffeomorphism
symmetry of general relativity is reduced to the one-
dimensional diffeomorphism invariance in the comoving
temporal coordinate. Consistently, the full constraint sys-
tem is also simplified to just one reduced scalar constraint:

C0¼ Cgðc;pÞþCϕðϕ;PϕÞ¼−
6

γ2
c2p2þ8πGP2

ϕ: ð3:1Þ

Here and in the following, we set the speed of light to be
unity. The constraint governs both the initial data and the
dynamics and predicts the initial bigbang singularity
whenever the conserved Pϕ is nonzero.

A. Kinematic setting

Inspired by loop quantum gravity, the FRW loop
quantum cosmology starts by reformulating the standard

classical theory above, describing the extrinsic curvature
using a holonomy variable, [26,27]

N 2μ̄ðc; pÞ ≡ eiμ̄c; μ̄ðpÞ ≡
ffiffiffiffiffiffi
Δ
jpj

s
: ð3:2Þ

This variable carries the meaning of the integral of the
extrinsic curvature along an arbitrary geodesic in the space,
which has the given physical length

ffiffiffiffi
Δ

p
. The Δ represents

the minimum nonzero value of the spatial area spectrum
predicted by loop quantum gravity, and so this variable has
the natural meaning of a holonomy over a minimal geodesic
in the quantum geometry of space. The new conjugate
pair for the gravitational sector is then chosen to be
ðN 2μ̄; vÞ, where vðpÞ ≡ ð2πγl2p

ffiffiffiffi
Δ

p Þ−1sgnðpÞjpj3=2. This
formulation provides a direct analogy to the full theory of
loop quantum gravity, which then suggests treating the
original constraint Cgðc; pÞ as given by Cgðc; pÞ, with
Cgðc; pÞ ≡ Cgðsinðμ̄cÞ=μ̄; pÞmimicking the regularized sca-
lar constraint in the full theory [28] and the value of Δ set to
be Δ ∼ l2p. Given that limlp→0Cgðc; pÞ ¼ Cgðc; pÞ, Cg is
chosen to be the classical scalar constraint we quantize in the
FRW loop quantum cosmology.
Standard canonical quantization of the model formulated

with the holonomy variable leads to our kinematic Hilbert
space; in this paper, we follow the specific prescription
given in Ref. [27]. The holonomy variable is quantized into
an excitation operator N̂ 2μ̄ acting on the eigenstates of v̂ as

N̂ 2μ̄jv; Pϕi ¼ jvþ 2; Pϕi; N̂ †
2μ̄jv; Pϕi ¼ jv − 2; Pϕi:

ð3:3Þ

This crucial algebra allows a superselected kinematic sector
with a discretized volume spectrum characterizing the
quantum spatial geometry similar to the one in the full
theory. Another gravitational operator Ω̂ is introduced for
giving Ĉg ≡ −6

γ2
Ω̂2, and it is defined as

Ω̂ ≡
−i

2
ffiffiffiffi
Δ

p jp̂j3=4½ðN̂ 2μ̄ − N̂ †
2μ̄Þ dsignðpÞ

þ dsignðpÞðN̂ 2μ̄ − N̂ †
2μ̄Þ�jp̂j3=4: ð3:4Þ

We also introduce the operator b̂ canonically conjugate to
v̂, which satisfies

b̂ ≡ ℏμ̄ðp̂Þĉ and ½b̂; v̂� ¼ 2ℏ:

It has normalized eigenstates of the discrete Fourier modes
over v given by

jbi ¼ 1ffiffiffiffiffiffiffiffi
2πℏ

p
X
v

e−ibv=2ℏjvi: ð3:5Þ
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Lastly, the operators in the Klein-Gordon sector are
constructed in the conventional Fock representation, with
ϕ̂ and P̂ϕ being, respectively, a multiplicative and a
differential operator on a wave function over R that is
the spectrum of ϕ̂.
Our kinematic Hilbert spaceK is then chosen to be a self-

adjointness domain of the operators fp̂; Ω̂; ϕ̂; P̂ϕg, and it is
given by1

K ≡ Spanfjv ¼ 1þ 2n;ϕi; n ∈ Zþ;ϕ ∈ Rg
¼ Spanfjb;ϕi; b ∈ ½0; 2πℏ�;ϕ ∈ Rg
¼ SpanfjΩ; Pϕi;Ω ∈ R; Pϕ ∈ Rg; ð3:6Þ

with the inner product given by

hv;ϕjv0;ϕ0i ≡ δv;v0δðϕ − ϕ0Þ;
hb;ϕjb0;ϕ0i ¼ δðb − b0Þδðϕ − ϕ0Þ and

hΩ; PϕjΩ0; P0
ϕi ≡ δðΩ − Ω0ÞδðPϕ − P0

ϕÞ: ð3:7Þ
In our algorithm’s notation, we may write, for example,
fX̂ig ¼ fp̂; ϕ̂g and fP̂ig ¼ fΩ̂; P̂ϕg.
The self-adjoint quantum scalar constraint operator is

constructed to be

Ĉ0 ≡ −
6

γ2
Ω̂2 þ 8πGP̂2

ϕ; ð3:8Þ

and the rigging mapP∶ K → K�, as a precise formulation of
the Fadeev-Popov path integral for this model, is given by

P̂ ≡
Z

∞

−∞
dλeiλĈ ¼ δ

�
−

6

γ2
Ω̂2 þ 8πGP̂2

ϕ

�
: ð3:9Þ

The “minisuperspace” transition amplitudes given by this P̂
satisfy the symmetry-reducedWheeler-DeWitt equations, so
the path integral faces the same problem of unitary physical
evolution just like in the full theory.
A prevailing approach for obtaining Schrödinger dynam-

ics from Wheeler-DeWitt cosmological models is intro-
ducing the physical inner product via a conserved current
operator [29], which has zero divergence in the minisuper-
space according to the reduced Wheeler-DeWitt equation.
With each choice of a certain quantum variable as the
background labeling the physical time, the corresponding
“time component” of the current operator can be used to
construct a time -independent inner product between the
solutions having proper boundary conditions. Just as
in a usual quantum theory, the ambiguities of fixing the
inner product in this approach are constrained by the
requirements of the physical inner product: it should be
Hermitian and giving non-negative norms, and it should

promote the dynamical complete set in K into physical
observables at an instant of time. The paradigmatic treat-
ment of loop quantum cosmological models essentially
adopts this approach [26,27,30] while focusing on the
gravitational dynamics. Particularly in our FRW setting, the
scalar field has been used as the background, and the time
component of the conserved current defining the inner
product is just the canonical momentum of the scalar field
[30]. The obtained results, with anisotropic and inhomo-
geneous generalizations, show important and robust quan-
tum gravitational corrections [26,27] to the dynamics
which dominate the early Universe and replace the initial
singularity with a regular bouncing at a characteristic
minimal spatial volume.
The issue of reference frames becomes relevant when we

need various frames for different types of interesting quan-
tum dynamics of the same system. In our example case, one
may wish to explore the quantum dynamics of the Klein-
Gordon field in the background of the quantum spacetime.
For this dynamics, however, one must choose the gravita-
tional sector to provide the background labeling the time. In
the paradigmatic treatment, the new choice of physical time
changes the inner product between the physical wave
functions, into the one given by the new time component
of the conserved current. The set of physical wave functions
itself, selected from the general solutions by the new
boundary conditions, may also be different. In this way,
there is generally no reference frame–independent physical
Hilbert space [29] unifying the Schrödinger dynamics. In
pursuit of the general covariance at the quantum level, there
are alternative approaches [31–33] aiming to extract the
dynamics under various notions of time, either from the
single timeless physical Hilbert spaceH or from the elements
of P̂ as the timeless transition amplitudes. Particularly, in the
context of the Bianchi-I loop quantum cosmology model, a
method [31] that is very similar to ours has been proposed.
For this particular line of ideas in quantum cosmology, our
work may provide a complete generalization with a funda-
mental principle at the level of the full theory.
In the following, we will use our approach to recover the

existing results and also obtain the unexplored dynamics
with a reference frame–independent physical Hilbert space.
For this goal, we now apply our algorithm using the
transition amplitudes given by (3.9) as the input.

1. Rigging map matrix elements

With α ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
48πG=γ2

p
and β ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πGγ2=3

p
, the rigging

map (3.9) can be written as

P̂ ¼
Z

dPϕ

2αjPϕj
½jΩðPϕÞ; PϕihΩðPϕÞ; Pϕj

− j−ΩðPϕÞ; Pϕih−ΩðPϕÞ; Pϕj�;
ΩðPϕÞ ≡ jβPϕj: ð3:10Þ

1For the gravitation sector, we have chosen a superselected
sector, which is a positive lattice in v with gaps of two units and
starting from v ¼ 1.
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Thus, the values of this rigging map’s matrix elements
in an arbitrary basis such as fjv;ϕig or fjb;ϕig are
given by hv;ϕjΩ; Pϕi ≡ hvjΩihϕjPϕi or hb;ϕjΩ; Pϕi≡
hbjΩihϕjPϕi. They are already provided by the existing
analytic calculations [27] in the form

hϕjPϕi ¼ eiPϕϕ=ℏ;

hbjΩi ¼ 1ffiffiffiffiffiffiffiffi
2πℏ

p
X
v

eibv=2ℏhvjΩi and

hvj � jΩji ≡
ffiffiffiffiffiffiffi
jΩj

p
½FjΩjðvÞ ∓ iGjΩjðvÞ�;

where the FjΩjðvÞ and GjΩjðvÞ are real and exactly solved
in Ref. [27].
Still, the perturbative expansions of hbjΩi and hvjΩi in

terms of ℏ and lp are important for understanding the results
of our computations, and here we will simply take a look at
the few lowest orders. First, according to (3.4), we have

Ω̂ ¼ 2πγGℏ
ffiffiffî
v

p
sin

�
b̂
ℏ

� ffiffiffî
v

p
;

and it is straightforward to show that the normalized
eigenstates of Ω̂ are given by

jΩi ¼
ffiffiffî
v

p
·
1ffiffiffiffi
Ω

p
Z

db exp
−i
ℏ

�
Ω

4πγG
ln

���� tan� b
2ℏ

������
× jbi ≡

ffiffiffî
v

p
· j � Ωi: ð3:11Þ

Then, we may find the value of hvjΩi ¼ ffiffiffi
v

p hvj �Ωi as
given by

hΩjvi ¼ ffiffiffi
v

p Z
Iþ

dbh�Ωjbihbjvi þ ffiffiffi
v

p Z
I−

dbh�Ωjbihbjvi;

I� ≡
�
b;� cos

b
ℏ
> 0

	
; ð3:12Þ

which can be evaluated using (3.5) and (3.11). In doing so,
one can see that for any givenΩ and v there is always a pair of
values fbþðΩ;VÞ ∈ Iþ; b−ðΩ;VÞ ∈ I−g for b giving the points
of the stationary phase via satisfying

∂
∂b θðb;Ω; VÞ

���
b¼b�ðΩ;VÞ

¼ 0;

with θðb;Ω; VÞ ≡ i ln

� hΩjbihbjvi
jhΩjbihbjvij

�
¼ −γ

3β2ℏ

�
Ω ln

���� tan� b
2ℏ

����� − bVffiffiffiffi
Δ

p
�
:

ð3:13Þ

The solutions are given by the expected semiclassical relation

Vffiffiffiffi
Δ

p
���� sin b�ðΩ;VÞ

ℏ

���� ¼ jΩj: ð3:14Þ

Since ∂bθ is of the order of Oðβ−2ℏ−1Þ ¼ Oðl−2p Þ, we may
apply the stationary phase expansion to (3.12) and obtainZ
I�
dbfðbÞhΩjbihbjVi¼ fðb�ðΩ;VÞÞB�ðΩ;VÞe−iθ�ðΩ;VÞ

þOðl2pÞ;
with θ�ðΩ;VÞ≡θðb�ðΩ;VÞ;Ω;VÞ�

π

4
and

B�ðΩ;VÞ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2πv
Ωj∂2

bθjðb�ðΩ;VÞ;Ω;VÞ

s
: ð3:15Þ

Here, fðbÞ can be any smooth function with ∂bf being of the
order of Oðl0pÞ. This finally leads to

Z
I�
dbhΩjbihbjVi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6πβ2ℏv

γΩ2j∂2 ln j tanðb�=2ℏÞjj

s

× exp i

�
γ

3β2ℏ

�
Ω ln

���� tan�b�2ℏ
�����

−
b�Vffiffiffiffi
Δ

p
�
� π

4

�
þOðl2pÞ: ð3:16Þ

Having enough control over the matrix elements of P̂, we
are ready to apply our algorithm. To derive a Schrödinger
theory for the gravitation and scalar field, we will be using,
respectively, the scalar field sector and the gravitational
sector as the background sector. Since there is only one scalar
constraint, we expect to choose only one background field
operator to define a proposed physical time.

2. Quantum gravity with T̂ ≡ ϕ̂+

We first study the gravitational quantum dynamics in the
model using the scalar field sector as the background
sector, and so we set fðX̂I; P̂IÞg ≡ fðV̂; Ω̂Þg and
fðX̂μ; P̂μÞg ≡ fðϕ̂; P̂ϕÞg. Following the paradigmatic set-
ting for comparisons, we look for a Schrödinger theory that
has the semiclassical limits of a Hamiltonian theory in the
reduced phase space ðV;ΩÞ, with the background sector
satisfying ϕðtÞ ¼ t under the physical time t.
We now use the guidance proposed earlier for choosing

the background operator T̂. Clearly, according to the form
of the classical scalar constraint (3.1), each given set of
values to ðV;ΩÞðtÞ and ϕðtÞ ¼ t corresponds to two points
on the constraint surface given by the two constraint
solutions �PϕðtÞ > 0. Therefore, we are instructed to
use T ≡ ΘðPϕÞϕ ≡ ϕþ. For a natural quantization of this
T, we construct T̂ðϕ̂; P̂ϕÞ ≡ ϕ̂þ such that
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jϕþi ≡ ΘðP̂ϕÞjϕijϕ¼ϕþ ;

ϕ̂þ ≡ ΘðP̂ϕÞϕ̂Θ−1
L ðP̂ϕÞ

¼ ϕ̂ΘðP̂ϕÞ þ ℏδðP̂ϕÞΘ−1
L ðP̂ϕÞ: ð3:17Þ

Here, the linear operator Θ−1
L ðx̂Þ is the “left inverse” of

Θðx̂Þ, defined by its operation on the basis of “stepped
Fourier modes” as

Θ−1
L ðx̂Þ

Z �∞

0

dxe−ipxjxi ≡ δþ;�

Z þ∞

−∞
dxe−ipxjxi: ð3:18Þ

We now set TðtÞ ¼ t with t being the proposed physical
time. Introducing the abbreviated notation jxjti ≡ jxijx¼t,
we have St ¼ SpanfjΩ;ϕþjtig. The relevant transition
amplitudes can be computed as

Pt0;tðΩ0;ΩÞ ¼ hΩ0;ϕjt0 jΘðP̂ϕÞP̂ΘðP̂ϕÞjΩ;ϕjti

¼ δðΩ0 −ΩÞeijΩjðt−t0Þ=βℏ
2αjΩj : ð3:19Þ

We then try to solve Eq. (2.1), which now takes the form

ðΛ†
tPt;tΛtÞðΩ0;ΩÞ ¼

Z
dΩ̄Λ�

t ðΩ̄;ΩÞΛtðΩ̄;Ω0Þð2αjΩ̄jÞ−1

¼ δðΩ0;ΩÞ ð3:20Þ

and has an obvious solution:

ΛtðΩ0;ΩÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2αjΩj

p
δðΩ0 −ΩÞ; or

Λ̂ ≡
ffiffiffiffiffiffiffiffiffiffiffiffi
2αjΩ̂j

q
: ð3:21Þ

Next, we examine the condition (2.2) using this solution for
Λt and (3.19), and we find

ðΛ†
tPt0;tΛtÞðΩ0;ΩÞ ¼ δðΩ0 −ΩÞe−ijΩjðt0−tÞ=βℏ: ð3:22Þ

The result indeed satisfies (2.2), and therefore we have
Dt ¼ Dt0>t ≡ Dþ, and so the proposed t serves as a physical
time for a Schrödinger theory of gravity.
We have thus identified a Schrödinger theory with the

physical time t associated with the background ϕþðtÞ ¼ t;
the theory represents each of the physical states ΨDþ ∈ Dþ

with the wave functions of the forms ΨDþ½ΩΛ�ðtÞ and
ΨDþ½pΛ�ðtÞ, respectively, using the eigenbasis of the
complete sets of observables Ω̂ΛðtÞ and p̂ΛðtÞ.
From the elements of the propagator T t0;tðΩ0Λ;ΩΛÞ ¼

ðΩ0Λðt0ÞjΩΛðtÞÞ ¼ ðΛ†
t0Pt0;tΛtÞðΩ0;ΩÞ and T t0;tðp0Λ; pΛÞ ¼

ðp0Λðt0ÞjpΛðtÞÞ ¼ ðΛ†
t0Pt0;tΛtÞðp0; pÞ, we finally extract the

physical Hamiltonian

ĤðtÞ ¼ β−1jΩ̂Λð0Þj ð3:23Þ

governing the evolution of these wave functions. Therefore,
this Schrödinger theory truly has the semiclassical limits
of the Hamiltonian dynamics in the reduced phase
space ðV;ΩÞ, governed by the effective Hamiltonian

HðtÞ ¼ β−1jΩj ¼ β−1jΔ−1=2p3=2 sinð
ffiffiffi
Δ

p
cffiffiffi
p

p Þj, under the back-

ground described by the assigned ϕðtÞ ¼ t and the depen-
dent PϕðtÞ ¼ HðtÞ. Actually, this result exactly agrees with
the physical Hamiltonian obtained from applying the
paradigmatic quantization to this same model [27].
All the established results [26,27] in the paradigmatic

FRW loop quantum cosmology are thus reproduced
through our approach. Particularly, in our Heisenberg
picture, a physical state Ψ0 ∈ Dþ sharply peaked in the
pair ðΩ̂Λ; p̂ΛÞðt1Þ around a large value of p will remain
sharply peaked in ðΩ̂Λ; p̂ΛÞðtÞ for the remaining values of t.
These peaks define a trajectory of semiclassical cosmology,
which agrees with the FRW universe in the large p limits
with limp→∞HðtÞ ¼ β−1jcpj. The holonomy corrections as
the higher-order terms in the curvature c become important
in the small p region, such that the familiar initial
singularity is replaced by a cosmic big bounce of the scale
factor. Indeed, one can see easily that each trajectory
consists of a branch of the collapsing universe with ∂tp ∝
cosðb=ℏÞ < 0 and another branch of the expanding uni-
verse with ∂tp ∝ cosðb=ℏÞ > 0; the two are joined at the
bouncing point where sinðb=ℏÞ ¼ 1, where the energy
density reaches a universal maximal value β−1Δ−1=2.
Lastly, let us notice the significance of the proper choice

of the background. Observe that the quantum global
hyperbolicity, just as in the classical cases, is sensitive to
the choice of the background specifying the quantum
Cauchy surfaces. Had we chosen the background operator
to be T̂ ≡ ϕ̂ instead of T̂ ≡ ϕ̂þ, and with the assigned values
of TðsÞ ¼ ϕðsÞ ≡ s, we would have instead Ss ¼
SpanfjΩ;ϕðsÞig, corresponding to Ds ⊂ H. Going through
our algorithm, one would find that Eq. (2.1) is again
solvable for this background, which thus defines one
quantum Cauchy surface Π̂s∶ Ds → Ss for each value in
s. However, Eq. (2.2) in this case is not satisfied, and
therefore Ds0>s ≠ Ds and the global hyperbolicity is vio-
lated. Therefore, the operator factor ΘðP̂ϕÞ, enforcing the
classical hyperbolicity in the classical limits, is also
necessary for the quantum hyperbolicity at the purely
quantum level.

3. Quantum modified Klein-Gordon theory with T̂0 ≡ V̂ +

We now switch to another type of dynamics not covered
by the paradigmatic FRW loop quantum cosmology
(LQC): the quantum dynamics of the scalar field under
the gravitational background. For this, we set fðX̂I; P̂IÞg ≡
fðϕ̂; P̂ϕÞg and fðX̂μ; P̂μÞg ≡ fðV̂; Ω̂Þg. Since the volume
scale of the space is often used to label cosmic time for
many cosmological models, we will look for a Schrödinger
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theory that has the semiclassical limits of the Hamiltonian
theory in the reduced phase space ðϕ; PϕÞ, with the back-
ground sector satisfying VðτÞ ¼ τ under the physical
time τ.
Again, we first look at the form of the classical scalar

constraint (3.1) for guidance on the background operator
T̂ 0; it is clear that each given set of values for ðϕ; PϕÞðτÞ and
VðτÞ ¼ τ corresponds to four points on the constraint
surface given by the constraint solutions with the four
combinations between �ΩðtÞ > 0 and � cosðb=ℏÞðtÞ > 0.
Therefore, we are instructed to select only one of
these combinations, and here we choose to set T 0≡
ΘðΩÞΘðcosðbℏÞÞV ≡ Vþ. For a natural quantization of this
T 0, we construct T̂ 0ðϕ̂; P̂ϕÞ ≡ V̂þ such that

jVþi ≡ Θ̂jVijV¼Vþ with

Θ̂ ≡ ΘðΩ̂ÞΘðcosðb̂=ℏÞÞ;
V̂þ ≡ Θ̂ V̂ Θ̂−1

L ¼ V̂ Θ̂þOðℏÞ:

We now set VþðτÞ ¼ τ for the proposed physical time τ.
Note that the V̂þ and V̂ share the same eigenspectrum, so τ
takes values in the discrete set fτn ¼ 2πγl2p

ffiffiffiffi
Δ

p ð1þ 2nÞg.
Using Sτ ¼ SpanfjVþjτ; Pϕig, we then calculate the cor-
responding relevant transition amplitudes via (3.10) and
(3.11), and we obtain

Pτ0;τðP0
ϕ; PϕÞ ¼ hV jτ0 ; P0

ϕjΘðcosðb̂=ℏÞÞΘðΩ̂ÞP̂ΘðΩ̂ÞΘðcosðb̂=ℏÞÞjV jτ; Pϕi

¼ δðP0
ϕ − PϕÞ

hΩðPϕÞjΘðcosðb̂=ℏÞÞjV jτ0 i�hΩðPϕÞjΘðcosðb̂=ℏÞÞjV jτi
2αjPϕj

: ð3:24Þ

We then solve Eq. (2.1) and find a solution:

ΛτðP0
ϕ; PϕÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2αjPϕj

jFðPϕ; V jτÞj2
s

δðP0
ϕ − PϕÞ; or

Λ̂ ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2αjP̂ϕj

q
jFðP̂ϕ; V̂þÞj

;

with FðPϕ; VÞ ≡ hΩðPϕÞjΘðcosðb̂=ℏÞÞjVi: ð3:25Þ

Next, we examine the condition (2.2) using (3.24) and
(3.25), and we find

ðΛ†
τ0Pτ0;τΛτÞðP0

ϕ; PϕÞ ¼ δðP0
ϕ − PϕÞe−i½θ̄þðP

0
ϕ;τ

0Þ−θ̄þðPϕ;τÞ�;

with e−iθ̄þðPϕ;τÞ ≡
FðPϕ; V jτÞ
jFðPϕ; V jτÞj

; ð3:26Þ

and the condition (2.2) is indeed satisfied. So, we have
Dτ ¼ Dτ0>τ ≡ D̃þ, and this τ serves as a physical time for a
Schrödinger theory of the scalar field.
We have thus identified a Schrödinger theory with the

physical time τ associated with the background VþðτÞ ¼ τ;
the theory represents each of the physical states ΨD̃þ ∈ D̃þ

with the wave functions of the form ΨD̃þ½PΛ
ϕ �ðτÞ and

ΨD̃þ½ϕΛ�ðτÞ, respectively, using the eigenbasis of the
complete sets of observables P̂Λ

ϕðτÞ and ϕ̂ΛðτÞ.
We now have the elements of the propagator

T τ0;τðP0Λ
ϕ ; Pϕ

ΛÞ ¼ ðP0Λ
ϕ ðτ0ÞjPΛ

ϕðτÞÞ ¼ ðΛ†
τ0Pτ0;τΛτÞðPϕ

0; PϕÞ
and T τ0;τðϕ0Λ;ϕΛÞ¼ðϕ0Λðτ0ÞjϕΛðτÞÞ¼ðΛ†

τ0Pτ0;τΛτÞðϕ0;ϕÞ.

Defined with a discretized notion of time, the propagator
takes the form

T̂ τn0 ;τn ¼ e−
i
ℏ

P
n0
m¼n

ΔτĤðτmÞ ;

ĤðτnÞ ¼
ℏ
Δτ

½θ̄þðP̂Λ
ϕðτ0Þ; τnþ1Þ − θ̄þðP̂Λ

ϕðτ0Þ; τnÞ�; ð3:27Þ

where Δτ ≡ τmþ1 − τm ¼ 4πγl2p
ffiffiffiffi
Δ

p
. The corresponding

physical Hamiltonian ĤðτÞ can thus be obtained by the
values of θ̄þðPϕ; τÞ already obtained analytically, which
according to (3.16) satisfies

θ̄þðPϕ; τÞ ¼ θþðΩðPϕÞ; τÞ þOðl2pÞ

¼
�

γ

3β2ℏ

�
Ω ln

���� tan bþðΩðPϕÞ;τÞ
2ℏ

����
−
bþðΩðPϕÞ;τÞτffiffiffiffi

Δ
p

�
þ π

4

�
þOðl2pÞ: ð3:28Þ

Thus, the physical Hamiltonian satisfies

ĤðτÞ ¼ ℏ
∂
∂τ θ̄þðP̂

Λ
ϕðτ0Þ; τÞ þOðl2p

ffiffiffiffi
Δ

p
Þ

¼ −γ
3β2ℏ

ffiffiffiffi
Δ

p bþðΩðP̂Λ
ϕ ðτ0ÞÞ; τÞ þOðl2pÞ: ð3:29Þ

Note that this Hamiltonian governs the quantum theory of
the scalar field, which has the quantum fluctuations of
OðℏÞ, and so the much smaller error term of Oðl2pÞ may be
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thought of as a part of the quantum gravitational effect
which we may ignore here. Further, for a given moment
τ ¼ VðτÞ, we can introduce a physical state of which the
energy is bounded by a dimensionless parameter ϵ, and it is
given by

Ψðτ;ϵÞ
D̃þ ≡

Z
ϵ τffiffi

Δ
p

β

−ϵ τffiffi
Δ

p
β

dPϕΨ
ðτ;ϵÞ
D̃þ ½PΛ

ϕ �ðτÞjPΛ
ϕðτÞÞ: ð3:30Þ

According to (3.14), this state satisfies

bþðΩðP̂Λ
ϕ ðτ0ÞÞ;τÞ
ℏ

Ψðτ;ϵÞ
D̃þ ¼ sin

�bþðΩðP̂Λ
ϕ ðτ0ÞÞ;τÞ
ℏ

�
Ψðτ;ϵÞ

D̃þ þOðϵ2Þ

¼β
ffiffiffiffi
Δ

p jP̂Λ
ϕðτ0Þj

τ
Ψðτ;ϵÞ

D̃þ þOðϵ2Þ:
ð3:31Þ

It is then straightforward to check that we have

Ĥðτ0ÞΨ
ðτ0;ϵÞ
D̃þ ¼

ffiffiffiffiffiffiffiffiffiffiffi
1

12πG

r jP̂Λ
ϕðτ0Þj
τ

Ψðτ;ϵÞ
D̃þ þOðϵ2Þ þOðl2pÞ:

ð3:32Þ

Now, we can see the following. The semiclassical limits of
this Schrödinger theory are a reduced phase space
Hamiltonian theory governed byHðτÞðPϕ;ϕÞ. Each moment
of time τ is associated with a growing energy scale, above
which the scalar field starts detecting the quantum nature of
the gravitation background. Indeed, for a low-energy state at
τ, given by ϵ ≪ 1, the reduced phase space Hamiltonian

becomes
ffiffiffiffiffiffiffiffi
1

12πG

q jPϕj
τ , which is for the standard homogeneous

Klein-Gordon theory in the smooth FRWuniverse, under the
background with the assigned VðτÞ ¼ p3=2ðτÞ ¼ τ and the
dependent ΩðτÞ ¼ pðτÞcðτÞ ¼ βjPϕðτÞj. The high-energy
states with ϵ > 1 at the moment τ would receive holonomy
corrections of Oðϵ2Þ, in two different ways. First, the
dispersion relation of the modes is drastically corrected,
leading to the ultraviolet cutoff in energy as can be seen from
the boundedness of bþðΩðPϕ

; τÞ=ℏ. Second, the gravitation
background also deviates from the smooth FRW spacetime,
now with the assigned VðτÞ ¼ p3=2ðτÞ ¼ τ and the depen-

dent jΔ−1=2p3=2ðτÞ sinð
ffiffiffi
Δ

p
cðτÞffiffiffiffiffiffiffi
pðτÞ

p Þj ¼ βjPϕðτÞj.
Lastly, let us again observe that the exact form of the

quantum background T̂ 0–which shapes the precise details
of the above dynamics—interlocks tightly with the demand
of the quantum unitarity. Without using the guiding
principle in the beginning, we may have instead chosen
T̂ 0 ≡ V̂ and set T 0ðρÞ ¼ VðρÞ ≡ ρ with ρ as a proposed
physical time. One can check that Eq. (2.1) is solvable for
this background. However, the condition (2.2) again fails to
hold for the solutions. Moreover, when following the

guidance, we may have instead used T̂ ≡ Θ̂0V̂Θ̂0−1
L , with

Θ̂0 ≡ Θðcosðb̂=ℏÞÞΘðΩ̂Þ. Yet this choice will also fail the
condition (2.2) of unitarity, which then asks us to put
Θðcosðb̂=ℏÞÞ to the right of ΘðΩ̂Þ for the Θ̂ that gives our
particular T̂ 0.

4. Transformation between the reference frames

A physical state Ψ̄Dþ∩D̃þ ∈ Dþ ∩ D̃þ is described by
both of the two Schrödinger theories we have just derived.
It is then important to study the relation between the two
descriptions.
Let us first compute the matrix ðPΛ

ϕðτÞjΩΛðtÞÞ involving
the relevant transition amplitudes between Sτ and St;
according to (2.5), it is given by

ðPΛ
ϕðτÞjΩΛðtÞÞ ¼

Z
dΩ̄dP̄ϕΛΩ̄;Ω;tΛ�̄

Pϕ;Pϕ;τ
hVþðτÞ;

P̄ϕjP̂jΩ̄;ϕþðtÞi
¼ ΘðPΛ

ϕðτÞÞΘðΩΛðtÞÞe−i½PΛ
ϕ ðτÞt−θ̄þðPΛ

ϕ ðτÞ;τÞ�=ℏ

× δðPΛ
ϕðτÞ − β−1ΩΛðtÞÞ: ð3:33Þ

The subspace Dþ ∩ D̃þ, where ΩΛðtÞ > 0 and PΛ
ϕðτÞ > 0

are satisfied, is clearly where this matrix becomes unitary.
Related by this unitary transformation, the two wave
functions Ψ̄Dþ∩D̃þ½PΛ

ϕ �ðτÞ and Ψ̄Dþ∩D̃þ½ΩΛ�ðtÞ describe

Ψ̄Dþ∩D̃þ in the two quantum reference frames associated
with the backgrounds ϕþðtÞ ¼ t and VþðτÞ ¼ τ.
To study the semiclassical limits of this transformation,

we pick a state that is semiclassical at the moment of time t0
and then study its description in the other frame at the
moment of time τ0. We first choose the physical state
Ψ̄Dþ∩D̃þ to be sharply peaked in the canonical conjugate

observables ð b̂ffiffiffi
Δ

p
ℏ
;ð2πγl2p

ffiffiffiffi
Δ

p Þv̂ÞΛðtÞ¼ðĉp̂−1=2;p̂2=3ÞΛðtÞ≡
ðP̂V;V̂ÞΛðtÞ around some values ðPV0

; V0Þ corresponding
to ðb0=ℏ ∈ Iþ; v0Þ. Since we have ½P̂Λ

VðtÞ; V̂ΛðtÞ� ¼
4πγGℏ, the wave packet has the width of σ ∼ lp. We
denote such a wave packet state as jðPV0

; V0; σÞΛðt0ÞÞ and
express it as (z being an normalization constant)

Ψ̄Dþ∩D̃þ ≡ jðPV0
; V0; σÞΛðt0ÞÞ

≡ z
Z
Iþ
dbe−ðb−b0Þ2=Δℏ2σ2

× ðbΛðt0Þjv0Λðt0ÞÞjbΛðt0ÞÞ

with ðbΛðt0Þjv0Λðt0ÞÞ ¼
1ffiffiffiffiffiffiffiffi
2πℏ

p eibv0=2ℏ: ð3:34Þ

To use the transformation formula (3.33), we make the
following change of basis:
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jðPV0
; V0; σÞΛðt0ÞÞ ¼

Z
∞

0

dΩjΩΛðt0ÞÞðΩΛðt0Þj · jðPV0
; V0; σÞΛðt0ÞÞ

¼ z
Z

∞

0

dΩ
Z
Iþ
dbe−ðb−b0Þ2=Δℏ2σ2ðΩΛðt0ÞjbΛðt0ÞÞðbΛðt0Þjv0Λðt0ÞÞjΩΛðt0ÞÞ

¼ z
Z

∞

0

dΩe−½bþðΩ;V0Þ−bþðΩ0 ;V0Þ�2=Δℏ2σ2BþðΩ; V0Þe−iθþðΩ;V0ÞjΩΛðt0ÞÞ þOðl2pÞ: ð3:35Þ

In the last identity, we set b0 ≡ bþðΩ0;V0Þ and apply the stationary phase approximation given in (3.15), with the fðbÞ being the
Gaussian distribution.
Introducing the quantities βPϕ0 ≡Ω0, ϕ0 ≡ t0, and V0 ≡ τ0 and recalling the fact that θþðΩðPϕÞ;V0Þ¼ θ̄þðPϕ;V0ÞþOðl2pÞ,

we now use (3.33) to perform the frame transformation and obtain the description of the state at the moment τ0 as

jðPV0
;V0;σÞΛðt0ÞÞ¼ zβ

Z
∞

0

dPϕe−½bþðβPϕ;τ0Þ−bþðβPϕ0;τ0Þ�2=Δℏ2σ2BþðβPϕ;τ0Þe−iPϕϕ0=ℏjPΛ
ϕðτ0ÞÞþOðl2pÞ≡ jðPϕ0;ϕ0;σ0ÞΛðτ0ÞÞ:

ð3:36Þ

As shown above, the physical state is also peaked in the
conjugate pair of observables ðP̂ϕ; ϕ̂; ÞΛðτ0Þ around the
values ðPϕ0;ϕ0Þ with the width denoted as σ0. The value of
σ0 can be estimated to be

σ0∼
ffiffiffiffi
Δ

p
ℏσ

� ∂
∂Pϕ

bþðβPϕ;τ0Þ
�
−1
����
Pϕ¼Pϕ0

¼ðβ−1τ0cosðb0=ℏÞÞσ:

ð3:37Þ
We nowmake the following observations. First, in the limit

of ℏ → 0, the above transformation indeed recovers the
corresponding classical reference frame transformation from
ðPV0

; V0; t0Þ to ðPϕ0;ϕ0; τ0Þ. Second, at the late enough
moments with τ0 cosðb0=ℏÞ > 1, we have σ0 ∼ β−1σ ≫ σ.
That is, our physical state Ψ̄Dþ∩D̃þ gives the gravitational
evolution as a sharp trajectory, yet it gives a highly quantum
evolution for the scalar field. This gives a concrete (though
symmetry-reduced) scenario of a quantum field theory in an
effective semiclassical spacetime emerging from a fully
quantized gravity-matter coupling system. Third, the relation
between the magnitudes of the quantum fluctuations in the
gravitation and scalar fields is not constant but evolving
dynamically. Particularly, as suggested by (3.37), in the cases
near the big bounce with τ0 cosðb0=ℏÞ ∼ β, the hierarchical
relation between the two may even be inverted by the loop
corrections. Lastly, the transformation between the quantum
reference frames yields not only the widths and expectation
values of the wave packets in the two frames but also the
valuable details about the shapes of the wave packets. In this
example, the Gaussian wave packet state (3.34) in ðPV; VÞ
transforms to thenon-Gaussianwavepacket state in ðPϕ;ϕÞ of
the form (3.36) with the distortions given by the functions
bþðβPϕ; τÞ and BþðβPϕ; τÞ.

5. Quantum Cauchy surfaces, global hyperbolicity,
and relational Dirac observables

We now explicitly write down the ingredients of the
Dirac theory that have been implicitly determined by our
calculation above. Recall that the rigging map elements
define our physical Hilbert spaceH ⊂ K� and supply it with

the inner products according to (1.1). It is then straightfor-
ward to check that H has an orthonormal basis given by
fjαPϕj−12 hΩ; Pϕj; jβPϕj ¼ jΩjg, which we may denote as
either fj�; PϕÞg or fjΩ;�Þg since the absolute values of
the two arguments are constrained by one another. We have
obtained the quantum Cauchy surfaces Π̂t∶ Dþ → St and
Π̂τ∶D̃þ → Sτ providing a global hyperbolic foliation to,
respectively, the quantum spacetimes in Dþ and D̃þ. In
reverse, one can apply P̂ to St and Sτ and verify that we
have Dþ ¼ SpanfjΩ;þÞg and D̃þ ¼ Spanfjþ; PϕÞg.
According to (2.3), the relational observables

ðΩ̂Λ; p̂ΛÞðtÞ and ðϕ̂Λ; P̂Λ
ϕÞðτÞ are of the forms

ðΩ̂Λ; p̂ΛÞðtÞjDþ ≡ P̂
ffiffiffiffiffiffiffiffiffiffiffiffi
2jαΩ̂j

q
ðΩ̂; p̂Þ 1ffiffiffiffiffiffiffiffiffiffiffiffi

2jαΩ̂j
q Π̂t

ðϕ̂Λ; P̂Λ
ϕÞðτÞjD̃þ ≡ P̂

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2αjP̂ϕj

q
jFðP̂ϕ; V̂þÞj

ðϕ̂; P̂ϕÞ
jFðP̂ϕ; V̂þÞjffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2αjP̂ϕj
q Π̂τ:

ð3:38Þ
One can further express these in terms of the kinematic
complete sets and obtain

ðΩ̂; p̂ÞΛðtÞ ¼
Z

∞

−∞
dλeiλĈ=ℏ

ffiffiffiffiffiffiffiffiffiffiffiffi
2αjΩ̂j

q
ðΩ̂; p̂Þ

×
1ffiffiffiffiffiffiffiffiffiffiffiffi
2αjΩ̂j

q ΘðP̂ϕÞδðϕ̂ − tÞΘðP̂ϕÞj ˆ̇ϕje−iλĈ=ℏ

ðP̂ϕ; ϕ̂ÞΛðτÞ ¼
Z

∞

−∞
dλeiλĈ=ℏ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2αjP̂ϕj

q
jFðP̂ϕ; V̂þÞj

ðP̂ϕ; ϕ̂Þ

×
jFðP̂ϕ; V̂þÞjffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2αjP̂ϕj
q ΘðΩ̂ÞΘðcos b̂=ℏÞ

× dδðV − τÞΘðcos b̂=ℏÞΘðΩ̂Þj _̂Vje−iλĈ=ℏ;
ð3:39Þ

where we have used the notations
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ˆ̇ϕ≡P̂ϕ; _̂V≡
Ω̂

F2ðΩ̂=β;τÞ;
dδðV−τÞ≡ 1

ΔV
jVðτÞihVðτÞj

ð3:40Þ

based on their verifiable semiclassical limits, with the dots
denoting the differentiation with respect to the λ. We can
see now these observables are truly quantum relational
observables representing the gauge-invariant phase space
functions

ðΩ;pÞðtÞ¼
Z

∞

−∞
dλδðϕðλÞ− tÞjϕ̇ðλÞjΘðPϕðλÞÞðΩðλÞ;pðλÞÞ

ðPϕ;ϕÞðτÞ¼
Z

∞

−∞
dλδðVðλÞ− τÞj _VðλÞjΘðΩðλÞÞΘðcosðcðλÞ

×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ=pðλÞ

p
ÞÞðPϕðλÞ;ϕðλÞÞ; ð3:41Þ

where λ serves as the parameter of the group generated by
C. In this form, the quantum Cauchy surfaces serve as
fundamental objects in providing the relational observables
faithfully representing ðΩ̂; p̂Þ and ðϕ̂; P̂ϕÞ. This then allows
the emergence of the Schrödinger theories from the time-
less Dirac theory.
Finally, the full physical Hilbert space H ¼ Dþ ∪ D− ¼

D̃þ ∪ D̃− contains both of the “þ” and “−” branches of the
Schrödinger theories. Thismeans that every quantum state in
either branch of the quantum gravity theories, or in either
branch of the deformed Klein-Gordon theories, represents
exactly one physical state inH. Further, a physical state in any
one of the subspaces fDþ∩D̃þ;D−∩D̃−;Dþ∩D̃−;D−∩D̃þg
is describable by both types of dynamics.

IV. SUMMARY AND CONCLUSION

Based on the foundation of the previous works [10–12],
we proposed an algorithm of transforming the relevant
elements of a well-defined Einstein-Hilbert path integral
P̂∶ K → K�, into the Schrödinger propagator under each
valid notion of physical time. The only input of the algorithm
is the relevant matrix elements of P̂ corresponding to the
transition amplitudes between the eigenspaces fSt ⊂ Kg of
the quantum background fields T̂, the values TðtÞ ¼ t of
which mark the moments of the proposed physical time t.
The operator Λ̂ solved from these matrix elements

provides the transformation from the timeless Fadeev-
Popov path integral into the reduced phase space path
integrals under all viable notions of physical time. Further,
there is a generalized Heisenberg picture unifying the
resulting Schrödinger theories into one timeless theory,
which turns out to be the canonical theory with the physical
Hilbert space H ⊂ K� from the image of P̂ acting as the
rigging map. In this generalized Heisenberg picture, each
moment of physical time is a quantum Cauchy surface
Π̂t∶ Dt → St supplying St as a faithful representation for
the corresponding physical statesDt ⊂ H. Consequentially, a

complete set of observables in Dt can be induced by a
complete set of self-adjoint operators in the “quantum
reduced phase space” St, and these are the elementary
quantum relational observables defined with a specified
background value T ¼ t. Altogether, we have formulated
an exact notion of quantum reference frames for the timeless
canonical quantum gravity, through which the Schrödinger
theories under various notions of physical time can be
calculated from just the elements of P̂.
In this paper, we have demonstrated the algorithm’s

application to the FRW loop quantum cosmology with a
massless Klein-Gordon scalar field. From the transition
amplitudes P̂ of the model, we derived two interesting
Schrödinger theories in two quantum reference frames: the
quantum gravidity theory in the reference frame specified by
the scalar field background and the modified Klein-Gordon
theory in the reference frame specified by the gravitation
background. The descriptions in the different reference
frames reveal a wider and deeper view of the quantum
geometric effects introduced in the loop quantization, and the
effects manifest in different forms of quantum dynamics.
Viewed in the two frames, the quantum geometry causes the
big bounce resolution of the initial singularity in the
gravitation evolution, the time-dependent high-energy defor-
mation of the Klein-Gordon field evolution, and also the
time-dependent correlation between the quantum fluctuation
scales in the two dynamics.
Under the development of increasingly realistic and

sophisticated quantum cosmological models [34–38], we
are starting to confront the cases in which the solution space
of the quantum constraints is not well understood. That
means we are no longer given a clear characterization of the
physical states, such as the mentioned conserved currents, as
the tools for extracting the Schrödinger dynamics. This
situation calls for a fundamental and computable approach
to the emergence of Schrödinger dynamics. Since in most of
thesemodels the transition amplitudesP arewell defined and
can be calculated perturbatively, the quantum Cauchy
surfaces are predominantly meaningful among them.
Therefore, our algorithm may fulfill the demand to extract
these model’s dynamics in a universally manner, describing
them using the elementary relational Dirac observables.
Particularly, the algorithm can be carried out order by order
within a perturbation scheme for the transition amplitudes,
leading to the correspondingperturbation expansionof the Λ̂;
meanwhile, by construction, the elementary observable
algebra (2.4) will remain order-independently exact so that
the perturbation becomes that of the propagator in an
ordinary Schrödinger theory.
Viewed from the full theories’ perspective, our approach

is especially meaningful to loop quantum gravity
[28,39,40]. The theory is built from a robust kinematic
Hilbert spaceKwith a basis given by “spin-network states,”
each of which is defined with a colored graph consisting
of oriented edges and vertices in the spatial manifold.
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This spaceK is equipped with a complete set of self-adjoint
gravitation and matter operators, built from the conjugate
pairs of flux and holonomy variables associated with the
graphs of the states. The flux-holonomy quantum algebra
offers a compelling background independent description of
the system: the gravitational coloring describes the spatial
quantum geometry [41,42], with the quanta of the area and
volume, respectively, carried by the edges and nodes, and
the matter coloring describes the matter content’s flux or
holonomy excitations [43] upon the spatial quantum
geometry. It is thus desirable for this flux-holonomy
algebra to survive in the physical level, so it can take
fundamental roles in the dynamics of the Universe. Also,
the concrete formulations [6–8] of P̂ in loop quantum
gravity advance remarkably in both covariant and canonical
formulations. In the spin-foam models [6,8], each ampli-
tude is formulated as an expansion of the sum over the
“spin foams” connecting the initial and final spin-network
states; each spin foam denotes a product of vertex and face
amplitudes under analogous Feymann rules. In the canoni-
cal approach, the successful construction of the quantum
constraints fĈμg acting on the spin-network states has also
led to a perturbative construction [6,7] of the rigging map

operator P̂, making it possible to calculate the elements and
derive a spin-foam model from the canonical theory. These
developments call for a satisfactory deployment of the P̂ to
obtain the physical dynamics. As demonstrated in our
earlier works [10–12], our proposal may offer such a
universal way to cast the full theory into Schrödinger
theories in variable reference frames, the instantaneous
physical degrees of freedom of which are explicitly
captured by the spin-network states lying in the quantum
Cauchy surfaces, and so the flux-holonomy algebra of
quantum geometry may become the fundamental algebra of
the observables.
We thus invite the reader to make use of this algorithm to

its full conceptual and practical potential.
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