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The membrane paradigm is a powerful tool to study the properties of black hole horizons. We first
explore the properties of the nonlinear electromagnetic membrane of black holes. For a general nonlinear
electrodynamics field, we show that the conductivities of the horizon usually have off-diagonal components
and depend on the normal electric and magnetic fields on the horizon. Via the holographic duality, we find a
model-independent expression for the holographic DC conductivities of the conserved current dual to a
probe nonlinear electrodynamics field in a neutral and static black brane background. It shows that these
DC conductivities only depend on the geometric and electromagnetic quantities evaluated at the horizon.
We can also express the DC conductivities in terms of the temperature, charge density, and magnetic field in
the boundary theory, as well as the values of the couplings in the nonlinear electrodynamics at the horizon.
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I. INTRODUCTION

Black holes are among the most intriguing concepts of
general relativity. The event horizon of a black hole is a
puzzling and fascinating object, in that natural descriptions
of physics often have trouble accommodating the horizon.
One of the challenges of extending theories to the horizon
is defining boundary conditions on the horizon. The
horizon is a null hypersurface, which possesses a singular
Jacobian and both a normal and tangential vector field. If
one believes that (1) the effective number of degrees of
freedomwithin a few Planck lengths away from the horizon
is very small and (2) the interior of the black hole is a
classically inaccessible region to an outside observer, an
effective timelike membrane can be put just outside the
horizon to have boundary conditions defined on it, instead
of the horizon. These observations form the basis of the
membrane paradigm for black holes.
The membrane paradigm was proposed and developed

by Thorne and his Caltech colleagues in a series of papers
[1–5]. Later, a more systematic action-based derivation was

obtained by Parikh and Wilczek in [6], which could
determine membrane properties for various field theories.
The membrane paradigm was originally developed to
serve as an efficient computational tool useful in dealing
with some astrophysical physics in black hole backgrounds
[7–9]. On the other hand, the membrane paradigm is also
useful to study microscopic properties of black hole
horizons. For example, the membrane paradigm predicts
that black hole horizons are the fastest scramblers in nature
[10,11]. In particular, the authors of [12] studied the
electromagnetic membrane properties of the horizon and
considered a charged particle dropping onto the horizon in
the framework of Maxwell-Chern-Simons theory. They
found that the black hole horizon behaved as a Hall
conductor, and there were vortices introduced to the way
perturbations scramble on the horizon.
The AdS=CFT duality [13,14] conjectures a connection

between a strongly coupled gauge theory in d dimensions
on the boundary and a dual weakly coupled gravity in
(dþ 1)-dimensional bulk spacetime. Recently, a renewed
interest has emerged in the study of the membrane
paradigm in the context of the AdS=CFT duality. It has
been shown that the membrane paradigm fluid on the black
hole horizon is conjectured to give the low-frequency limit
of linear response of a strongly coupled quantum field
theory at a finite temperature [15–18]. In particular, by
identifying the currents in the boundary theory with radially
independent quantities in the bulk, the authors of [17]
showed that the low-frequency limit of the boundary theory
transport coefficients could be expressed in terms of
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geometric quantities evaluated at the horizon. This method
was later extended to calculate the DC conductivity in the
presence of momentum dissipation [19–22], where the zero
mode of the current, not the current itself, did not evolve in
the radial direction. Specifically, the DC thermoelectric
conductivity has recently been obtained by solving a
system of Stokes equations on the black hole horizon
for a charged fluid in Einstein-Maxwell theory [23]. Later,
the technology of [23] was extended to various theories,
e.g., Einstein-Maxwell-scalar theory [24] and including a
θF ∧ F term in the Lagrangian [25].
Nonlinear electrodynamics (NLED) are effective models

incorporating quantum corrections to Maxwell electromag-
netic theory. Among the various NLED, there are two well-
known ones. The first is the Heisenberg-Euler effective
Lagrangian that contains logarithmic terms [26]. These
terms describe the vacuum polarization effects and take into
account one-loop quantum corrections to QED. The second
is Born-Infeld electrodynamics that incorporates maximal
electric fields and smooths divergences of the electrostatic
self-energy of point charges [27]. Coupling NLED to
gravity, various NLED charged black holes were derived
in a number of papers [28–32]. Some of these black
holes are nonsingular exact black hole solutions [29].
In the framework of AdS=CFT duality, the shear viscosity
was calculated in Einstein-Born-Infeld gravity [33].
Holographic superconductors were studied in several
NLED-gravity theories [34–37]. In [38], the holographic
conductivity for the black brane solutions in the massive
gravity with a power-law Maxwell field was numerically
investigated. A class of holographic models for Mott
insulators, whose gravity dual contains NLED, was studied
in [39]. The authors of [40,41] used the AdS=CFT
correspondence to compute the DC conductivities holo-
graphically from a probe Born-Infeld action. Recently,
the properties of magnetotransport in holographic Dirac-
Born-Infeld models were discussed in a probe case [42],
taking into account the effects of backreaction on the
geometry [43].
In this paper, we will consider a neutral and static black

brane background with a probe NLED field and its dual
theory. The aim of the paper is to study the NLED
electromagnetic membrane properties and find a model-
independent expression for the holographic DC conductiv-
ities of the dual conserved current in the boundary theory.
Specifically, we give a quick review of nonlinear electro-
magnetic fields in the curved spacetime in Sec. II. In
Sec. III, we use the membrane paradigm to compute the
conductivities of the stretched horizon. Unlike Maxwell or
Maxwell-Chern-Simons theories, we find that, for a general
NLED field, the conductivities would usually depend on
the normal electric and magnetic fields on the stretched
horizon. In Sec. IV, we consider a charged point particle
infalling into the horizon in Rindler space. It shows that
effects of NLED do not affect the charge density on the

stretched horizon or the scrambling time, but only change
the way the charge scrambles. In Sec. V, the DC con-
ductivities of the dual conserved current are calculated
in the framework of gauge/gravity duality. We show that
these DC conductivities usually depend on both the
geometry and values of the couplings in NLED at the
black hole horizon as well as the probe charge density
and magnetic field in the boundary theory. In Sec. VI, we
conclude with a brief discussion of our results. We use the
convention that the Minkowski metric has the signature of
the metric ð−þþþÞ in this paper.

II. NONLINEAR ELECTRODYNAMICS

In this section, we will briefly review nonlinear electro-
magnetic fields in the curved spacetime, mainly in order to
define terms and notation and derive formulas for later use.
Let us consider the action of a nonlinear electromagnetic
field Aa in a (3þ 1)-dimensional manifold M,

S ¼
Z
M

d4x
ffiffiffiffiffiffi
−g

p ½Lðs; pÞ þ JaAa�; ð1Þ

where we build two independent nontrivial scalars using
Fab and none of its derivatives:

s ¼ −
1

4
FabFab;

p ¼ −
1

8
ϵabcdFabFcd; ð2Þ

the field strength is defined by Fab ¼ ∂aAb−∂bAa; ϵabcd≡
−½a b c d�= ffiffiffiffiffiffi−gp

is a totally antisymmetric Lorentz tensor,
and ½a b c d� is the permutation symbol; the Lagrangian
density Lðs; pÞ is an arbitrary function of s and p; and Ja is
the external current. We also assume that the NLED
Lagrangian would reduce to the form of a Maxwell-
Chern-Simons Lagrangian for small fields:

Lðs; pÞ ≈ gðxÞsþ θðxÞp; ð3Þ

where, for later convenience, we define

gðxÞ≡ Lð1;0Þð0; 0Þ and θðxÞ≡ Lð0;1Þð0; 0Þ: ð4Þ

Here we allow coordinate-dependent couplings in Lðs; pÞ.
The equations of motion obtained from the action (1) are

∇aGab þ Jb ¼ 0; ð5Þ

where we define

Gab ¼ −
∂Lðs; pÞ
∂Fab

¼ ∂Lðs; pÞ
∂s Fab þ 1

2

∂Lðs; pÞ
∂p ϵabcdFcd:

ð6Þ
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Meanwhile, from the definition of Fab, the field strength
also satisfies the Bianchi identity

F½ab;c� ¼
1

3
ðFab;c þ Fbc;a þ Fca;bÞ ¼ 0: ð7Þ

The electric and magnetic fields measured by an
observer with four-velocity Ua are given by

Ea ¼ FabUb;

Ba ¼ 1

2
ϵbacdFcdUb; ð8Þ

Note that the fields Ea and Ba are three-vectors since
EaUa ¼ BaUa ¼ 0. The variables s and p can be rewritten
in terms of Ea and Ba:

s ¼ 1

2
ðEaEa − BaBaÞ;

p ¼ −EaBa: ð9Þ

Similarly for Gab, we can define auxiliary fields Da

and Ha:

Da ¼ GabUb;

Ha ¼ 1

2
ϵbacdGcdUb; ð10Þ

which are related to Ea and Ba by

Da ¼ ∂Lðs; pÞ
∂s Ea −

∂Lðs; pÞ
∂p Ba;

Ha ¼ ∂Lðs; pÞ
∂s Ba þ ∂Lðs; pÞ

∂p Ea: ð11Þ

The electromagnetic four-current Ja can be split into the
charge density ρ and current density Ja measured by the
observer:

ρ ¼ −JaUa;

Ja ¼ Ja − σUa; ð12Þ

where Ja is a two-vector since JaUa ¼ Jana ¼ 0.
Born-Infeld electrodynamics is described by the

Lagrangian density

LBIðs; pÞ ¼ −b2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2s
b2

−
p2

b4

s
þ b2; ð13Þ

where the coupling parameter b is related to the string
tension α0 as b ¼ 1=2πα0. For small fields s; p ≪ b2, we
can recover the Maxwell Lagrangian. A simple example of
an electrodynamics Lagrangian with a logarithmic term has
the form

LLogðs; pÞ ¼ −b2 log
�
1 −

s
b2

�
: ð14Þ

This Lagrangian also reduces to the Maxwell case in the
limit b → ∞.
As a simple example, let us calculate the electric and

magnetic fields of a point charge in four-dimensional
Minkowski space. In Minkowski space, Eqs. (5) and (7)
become

∇ × E⃗ ¼ −
∂B⃗
∂t ;

∇ · B⃗ ¼ 0;

∇ · D⃗ ¼ ρ;

∇ × H⃗ ¼ j⃗þ ∂D⃗
∂t ; ð15Þ

where ρ ¼ Qδ3ðr⃗Þ and j⃗ ¼ 0 for a point charge sitting at
r⃗ ¼ 0. Since ∂E⃗=∂t ¼ ∂B⃗=∂t ¼ 0 in this case, Eqs. (15)
lead to

D⃗ ¼ Q
4πr2

r̂ and B ¼ 0: ð16Þ

Considering s ¼ E2=2 and p ¼ 0, we can solve Eqs. (11)
for E⃗ and find that

E⃗ ¼ Q
4πr2

F

�
Q

4πr2

�
r̂; ð17Þ

where yðxÞ ¼ xFðxÞ is the inverse of the function

xðyÞ ¼ Lð1;0Þðy2
2
; 0Þy. For example, one has

FðxÞ¼

8>><
>>:

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þx2=b2

p Born-Infeld electrodynamics

−1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ2x2=b2

p
x2=b2

Logarithmic electrodynamics

:

ð18Þ

III. MEMBRANE PARADIGM

In this section, we will begin with a brief discussion of
the action formulation of the black hole membrane para-
digm and then examine the electromagnetic membrane in
the framework of NLED. The interested reader can find a
detailed discussion of the action formulation of the mem-
brane paradigm in [6].
The black hole has an event horizon,H, which is a three-

dimensional null hypersurface with a null geodesic gen-
erator la. We then choose a timelike surface just outsideH,
which is called the stretched horizon and denoted by S. We
regard S as the world tube of a family of fiducial observers,
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which have world lines Ua. The stretched horizon also
possesses a spacelike outward-pointing normal vector na,
which satisfies na∇anc ¼ 0 on S. Since the region inside
the black hole cannot classically affect an outside observer
O, the classical equations of motion forOmust be obtained
by extremizing the action restricted to the spacetime
outside the black hole, Sout. However, Sout is not stationary
on its own because there are no boundary conditions fixed
at H. To have the correct Euler-Lagrange equations, it is
necessary to add a surface term Ssurf to Sout to exactly
cancel all the boundary terms. In practice, it is often more
convenient to define Ssurf on S. Consequently, the total
action can be rewritten as

Stot ¼ ðSout þ SsurfÞ þ ðSin − SsurfÞ; ð19Þ

where δSout þ δSsurf ¼ 0 will give the correct equations of
motion outside S. For the Maxwell action, the surface term
can be interpreted as sources such as surface electric
charges and currents [6].
For a nonlinear electromagnetic field Aa, the external

action is given by Eq. (1):

Sout ¼
Z

d4x
ffiffiffiffiffiffi
−g

p ½Lðs; pÞ þ JaAa�: ð20Þ

Integration by parts on the kinetic term of the nonlinear
electromagnetic field leads to a variation at the boundary,

−
Z
S
d3x

ffiffiffiffiffiffi
−h

p
nbGabδAa; ð21Þ

where hab ¼ gab − nanb is the induced metric on S.
To cancel this boundary contribution, we add a surface
term Ssurf ,

Ssurf ¼
Z
S
d3x

ffiffiffiffiffiffi
jhj

p
jasAa; ð22Þ

where we define the membrane current as

jas ¼ Gabnb: ð23Þ

The current jas is on the stretched horizon since najas ¼ 0.
As in the Maxwell case, this surface term corresponds to
the surface electric charge density ρ ¼ −jasUa and current
density jas ¼ jas − σUa. From Eq. (5), one can find a
continuity equation for the membrane current jas :

∇ajas ¼ −Jana; ð24Þ

where −Jana describes the charges crossing the stretched
horizon.
We now consider a general black brane background, the

metric of which takes the form

ds2 ¼ gabdxadxb ¼ grrðrÞdr2 þ gμνðrÞdxμdxν
¼ −gttðrÞdt2 þ grrðrÞdr2 þ gABðrÞdxAdxB
¼ −gttðrÞdt2 þ grrðrÞdr2 þ gzzðrÞðdy2 þ dz2Þ; ð25Þ

where indices fa; bg run over the (3þ 1)-dimensional bulk
space; fμ; νg over a three-dimensional constant-r hyper-
surface; and fA;Bg over spatial coordinates. We assume
that there is an event horizon at r ¼ rh, where gttðrÞ has a
first order zero, grrðrÞ has a first order pole, and gzzðrÞ is
nonzero and finite. The Hawking temperature of the metric
(25) is

T ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g0ttðrhÞgrr0ðrhÞ

p
4π

: ð26Þ

We also assume that the couplings in Lðs; pÞ only depend
on r.
Now put the stretched horizon at r ¼ r0 with

r0 − rh ≪ rh. This stretched horizon would have

na ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
grrðr0Þ

p
δar and Ua ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffi
gttðr0Þ

p
δat: ð27Þ

Thus, the membrane current (23) reduces to

jμs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
grrðr0Þ

p
Gμr: ð28Þ

To find relations among Fabðr0Þ, we consider a radially
freely falling observer in our background. It is easy to
obtain the four-velocity vector of this infalling observer:

Ua
FFO ¼

�
Ẽg−1tt ;−Ẽg−1tt

ffiffiffiffiffiffi
gtt
grr

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Ẽ−2gtt

q
; 0; 0

�
; ð29Þ

where Ẽ is the conserved energy per unit mass. The fact that
τ is the proper time along the infalling world lines means
that UFFO;a is equal to the gradient of τ,

UFFO;a ¼ −∂μτ; ð30Þ
from which one finds

∂τ
∂t ¼ Ẽ and

∂τ
∂r ¼ Ẽ

ffiffiffiffiffiffi
grr
gtt

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Ẽ−2gtt

q
: ð31Þ

Since this freely falling observer does not see the coor-
dinate singularity at the horizon, the field strength observed
by this observer must be regular. Relating FτA to FrA and
FtA, we obtain

FτA ¼ ∂τ
∂rF

rAþ∂τ
∂t F

tA

⇒ Ẽð ffiffiffiffiffiffi
grr

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− Ẽ−2gtt

q
FrAþ ffiffiffiffiffi

gtt
p

FtAÞ¼FτA ffiffiffiffiffi
gtt

p
;

ð32Þ
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where FτA is finite at r ¼ rh. On the stretched horizon,ffiffiffiffiffi
gtt

p
FtA is the electric field measured by the fiducial

observers; hence, it would not go to zero as r0 → rh.
Since FτA ffiffiffiffiffi

gtt
p

goes to zero as r0 → rh, Eq. (32) leads to

FrAðr0Þ ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gttðr0Þ
grrðr0Þ

s
FtAðr0Þ; ð33Þ

for r0 − rh ≪ rh.
Using Eqs. (6), (28), and (33), we find that

jAs ¼ Lð1;0Þðs; pÞjr¼r0E
A − ½AB�Lð0;1Þðs; pÞjr¼r0E

B; ð34Þ

where Lð1;0Þðs; pÞ ¼ ∂Lðs; pÞ=∂s and Lð0;1Þðs;pÞ¼
∂Lðs;pÞ=∂p; the electric and magnetic fields measured
by the fiducial observers on the stretched horizon are

Ea ¼ Ftaðr0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
gttðr0Þ

p
and

Baðr0Þ ¼
1

2

½ t a c d �ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
grrðr0Þ

p
gzzðr0Þ

Fcdðr0Þ; respectively;

two variables s and p on the stretched horizon become

sðr0Þ ¼
1

2
ðErEr − BrBrÞ and pðr0Þ ¼ −ErBr: ð35Þ

Since s and p are scalars and the field strength observed by
the freely falling observer is regular on the horizon, sðr0Þ
and pðr0Þ stay finite as r0 → rh.
The conductivities of the stretched horizon can be read

off from Eq. (34):

σyys ¼ σzzs ¼ Lð1;0Þðs; pÞjr¼r0 and

σzys ¼ −σyzs ¼ Lð0;1Þðs; pÞjr¼r0 ; ð36Þ

where σzy is the surface Hall conductance. In Maxwell-
Chern-Simons theory with Lðs; pÞ ¼ sþ θp, one has

σyys ¼ σzzs ¼ 1 and σzys ¼ −σyzs ¼ θ; ð37Þ

which agree with what was found in [12]. However, in
NLED models, the conductivities of the stretched horizon
usually depend on the external fields through sðr0Þ and
pðr0Þ. In particular, the conductivities only depend on the
normal electric and magnetic fields measured by the
fiducial observers on the stretched horizon. Note that
the normal components of the electric and magnetic fields
in an orthonormal frame of fiducial observers are the same

as in those of freely falling observers. It is noteworthy that
the surface charge density ρs of the stretched horizon can be
related to Er and Br via

ρs ¼ naDa

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
grrðr0Þ

p
½Lð1;0Þðs;pÞjr¼r0Er−Lð0;1Þðs;pÞjr¼r0Br�:

ð38Þ

Using this equation, we can rewrite the conductivities in
terms of the surface charge density and normal mag-
netic field.

IV. INFALLING CHARGE IN RINDLER SPACE

In this section, we will consider dropping a charged
point particle into the horizon in Rindler space. Rindler
space is a good approximation to the Schwarzschild
geometry in the near-horizon region r − 2M ≪ 2M and
ignores the spatial curvature there. The metric of Rindler
space takes the form

ds2 ¼ −r2dω2 þ dr2 þ dy2 þ dz2; ð39Þ

which describes a portion of Minkowski space, namely,
the Rindler wedge. Minkowski coordinates t and x can be
defined by

t ¼ r sinhω and x ¼ r coshω ð40Þ

to get the familiar Minkowski metric

ds2 ¼ −dt2 þ dx2 þ dy2 þ dz2: ð41Þ

The Rindler coordinate has a coordinate singularity at
r ¼ 0, where the determinant of the metric tensor becomes
zero. In fact, there is an event horizon at r ¼ 0, which
becomes x ¼ jtj in Minkowski coordinates and is the edge
of the Rindler wedge. We will put the stretched horizon at
r ¼ r0 ≪ 1, which has

na ¼ ð0; 1; 0; 0Þ and Ua ¼ ðr−10 ; 0; 0; 0Þ: ð42Þ

Without loss of generality, we can take a single charge
to be static at position x ¼ a in Minkowski coordinates.
In the Rindler coordinates, the charge is freely falling
into the horizon. In this case, the magnetic and electric
fields in Minkowski coordinates have been obtained in
Sec. II and are given by Eqs. (16) and (17) with
r2 ¼ ðx − aÞ2 þ y2 þ z2, respectively. In Minkowski
coordinates, the field strength is
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Ftx
M ¼ −Fxt

M ¼ Qðx − aÞ
4π½ðx − aÞ2 þ y2 þ z2�32 F

�
Q

4π½ðx − aÞ2 þ y2 þ z2�
�
;

Fty
M ¼ −Fyt

M ¼ Qy

4π½ðx − aÞ2 þ y2 þ z2�32 F
�

Q
4π½ðx − aÞ2 þ y2 þ z2�

�
;

Ftz
M ¼ −Fzt

M ¼ Qz

4π½ðx − aÞ2 þ y2 þ z2�32 F
�

Q
4π½ðx − aÞ2 þ y2 þ z2�

�
; ð43Þ

and all the other components are zero. Performing the change of coordinates to calculate Fab
R leads to

jωs ¼ Qðr0 coshω − aÞ
4πr0½ðr0 coshω − aÞ2 þ y2 þ z2�32 ;

jρs ¼ 0;

jys ¼ Q

4π½ðr0 coshω − aÞ2 þ y2 þ z2�32
�
y sinhω − z coshω

Lð0;1Þðs; 0Þ
Lð1;0Þðs; 0Þ

����
r¼r0

	
;

jzs ¼
Q

4π½ðr0 coshω − aÞ2 þ y2 þ z2�32
�
z sinhωþ y coshω

Lð0;1Þðs; 0Þ
Lð1;0Þðs; 0Þ

����
r¼r0

	
ð44Þ

where we use FðXÞLð1;0ÞðX2

2
F2ðXÞ; 0Þ ¼ 1 to eliminate the function FðXÞ, and

sðr0Þ ¼
Q2

32π2½ðr0 coshω − aÞ2 þ y2 þ z2�2 F
2

�
Q

4π½ðr0 coshω − aÞ2 þ y2 þ z2�
�
: ð45Þ

For Maxwell-Chern-Simons theory, we also reproduce the
results in [12]. A fiducial observer will measure a surface
charge density ρs ¼ −jasUa ¼ r0jωs . In NLED, the surface
charge density ρs of the stretched horizon is exactly the same
as inMaxwell theory. InNLED, there are no corrections toρs,
but the surface currents jys and jzs could receive corrections.
Let us study the scrambling of point charges on the

stretched horizon for large Rindler time. When ω ≫ 1, we
obtain

ρs ¼
r0Qe−2ω

πðr20 þ r2⊥Þ
3
2

;

jys ¼ Q

πðr20 þ r2⊥Þ
3
2

�
y −

θðr0Þ
gðr0Þ

z

	

jzs ¼
Q

πðr20 þ r2⊥Þ
3
2

�
zþ θðr0Þ

gðr0Þ
y

	
;

where r2⊥ ¼ 4e−2ωðy2 þ z2Þ, andwe use sðr0Þ ∼ e−2ω in this
limit. Whenever θðr0Þ≡ Lð0;1Þð0; 0Þjr¼r0 ≠ 0, effects of
NLED would change the way the charge scrambles but
not the scrambling time. In this case, there is the presence of
vortices on the stretched horizon [12].

V. DC CONDUCTIVITY FROM
GAUGE/GRAVITY DUALITY

Under the long-wavelength and low-frequency limit, it is
expected that there are connections between the near-horizon

region geometry of the bulk gravity and the dual field theory
living on the boundary. Observing that the currents in the
boundary theory could be identified with radially indepen-
dent quantities in the bulk, the authors of [17] found that the
low-frequency limit of linear response of the boundary
theory could be determined by the membrane paradigm
fluid on the stretched horizon. In particular, they derived an
expression for theDC conductivity of the boundary theory in
terms of geometric quantities evaluated at the horizon. In
[17], the conserved current in the boundary theory was dual
to a Maxwell field in the bulk. In this section, we will follow
the method in [17] to calculate the DC conductivities of the
conserved current in the boundary theory, which is dual to a
NLED field in bulk.
We now consider a probe NLED field in the background

of a (3þ 1)-dimensional black brane with the metric (25).
For simplicity, we assume that this black brane is electri-
cally neutral with trivial background configuration of the
NLED field. This black brane describes an equilibrium
state at finite temperature T, which is given by Eq. (26).
The action of the NLED field is

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p
Lðs; pÞ: ð46Þ

This NLED field is a U(1) gauge field and dual to a
conserved current J μ in the boundary theory. The corre-
sponding AC conductivities are given by
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hJ AðkμÞi ¼ σABðkμÞFBtðrBÞ; ð47Þ

where the boundary theory lives at r ¼ rB → ∞. The DC
conductivity is obtained in the long-wavelength and low-
frequency limit:

σAB ¼ lim
ω→0

lim
k⃗→0

σABðkμÞ: ð48Þ

Apart from varying the action, we can also derive the
equations of motion using Hamiltonian formulation. Using
gauge choice Ar ¼ 0, we will find the equations of motion
for Aμ in a Hamiltonian form. From the action (46), the
conjugate momentum of the field Aμ with respect to r-
foliation is given by

Πμ ¼ δS
δð∂rAμÞ

¼ −
ffiffiffiffiffiffi
−g

p
Grμ; ð49Þ

whereGrμ are defined in Eq. (6). Since Grμ are functions of
Frμ and Fμν, one could solve Eq. (49) to find an expression
for Frμ in terms of Πμ and Fμν:

Frμ ¼ FrμðΠν; FρσÞ; ð50Þ

where, as will be shown later, the exact form of the function
FrμðΠν; FρσÞ is not important for our discussion. So the
Hamiltonian is given by

H ¼
Z

d4x
ffiffiffiffiffiffi
−g

p
HðΠν; FρσÞ

¼
Z

d4x
ffiffiffiffiffiffi
−g

p ½FrμðΠν; FρσÞΠμ − Lðs; pÞ�; ð51Þ

where we use Eq. (50) to rewrite s and p in terms of Πν and
Fρσ. Varying the Hamiltonian with respect to Aμ, we write
the equations of motion for Aμ in a Hamiltonian form as

∂rΠμ ¼ −2
ffiffiffiffiffiffi
−g

p ∂ν

�∂HðΠη; FρσÞ
∂Fνμ

	
: ð52Þ

Moreover, the Bianchi identity gives

∂rFμν þ ∂μFνrðΠη; FρσÞ þ ∂νFrμðΠη; FρσÞ ¼ 0: ð53Þ

In the long-wavelength and low-frequency limit, i.e., ω →

0 and k⃗ → 0 with Fρσ and Πη fixed, Eqs. (52) and (53)
become

∂rΠμ ¼ 0 and ∂rFμν ¼ 0: ð54Þ

Now we discuss boundary conditions for Fab on the
stretched horizon at r ¼ r0 → rh and the boundary of bulk
at r ¼ rB → ∞. On the stretched horizon, s and p become

sðr0Þ ¼
1

2

�
grrðr0Þgttðr0ÞFrtðr0Þ2 −

F2
yz

g2zzðr0Þ
	
;

pðr0Þ ¼
grrðr0Þgttðr0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−gðr0Þ
p Frtðr0ÞFyz; ð55Þ

where we use Eq. (33) to express FrAðr0Þ in terms of
FtAðr0Þ, and Fyz is an r-independent quantity. Using
Eqs. (28) and (49), one can relate ΠAðr0Þ to jAs :

ΠAðr0Þ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
gttðr0Þ

p
gzzðr0ÞjAs

¼Lð1;0Þðs;pÞjr¼r0FAt− ½AB�Lð0;1Þðs;pÞjr¼r0FBt;

ð56Þ

where FAt is also r-independent. On the boundary of the
bulk, it was shown in [17,44] that a one-point function of
J A in the presence of source Fμv can be written as

hJ μi ¼ ΠμðrBÞ: ð57Þ

Since ΠA and FAt are r-independent in the zero-momentum
limit, we can use Eqs. (56) and (57) to show that

hJ Aðkμ → 0Þi¼Lð1;0Þðs;pÞjr¼r0FAtðkμ → 0Þ
− ½AB�Lð0;1Þðs;pÞjr¼r0FBtðkμ → 0Þ: ð58Þ

Comparing Eq. (47) with Eq. (58), we can read off the DC
conductivities in the dual theory:

σyy ¼ σzz ¼ Lð1;0Þðs; pÞjr¼rh and

σzy ¼ −σyz ¼ Lð0;1Þðs; pÞjr¼rh ; ð59Þ

where we take the limit r → rh. Note that the DC
conductivity in NLED just with s was also obtained in
[39], where their Eq. (30) in the probe case agrees with our
expression for σyy in Eqs. (59).
To express FrtðrhÞ in terms of quantities in the boundary

theory, we can use the following formula,

ΠtðrhÞ ¼ Πtðr → ∞Þ ¼ hJ 0i ¼ ρ; ð60Þ

where ρ can be interpreted as the charge density in the dual
field theory. Equation (60) becomes

ffiffiffi
η

p
gzzðrhÞLð1;0Þðs; pÞjr¼rhF

rtðrhÞ
þ Lð0;1Þðs; pÞjr¼rhFyz ¼ −ρ; ð61Þ

where Eqs. (55) give
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sðrhÞ ¼
1

2

�
ηFrtðrhÞ2 −

F2
yz

g2zzðrhÞ
	
;

pðrhÞ ¼
ffiffiffi
η

p
gzzðrhÞ

FrtðrhÞFyz: ð62Þ

One could solve Eq. (61) to express FrtðrhÞ in terms of ρ
and Fyz and plug this expression into Eq. (59) to write σAB

in terms of ρ and Fyz. Note that Fyz can be treated as the
magnetic field in the (2þ 1)-dimensional boundary theory,
in which the magnetic field is a scalar field.
Let us consider σAB in the Born-Infeld and logarithmic

electrodynamics discussed above. We find that, for Born-
Infeld electrodynamics,

σyy ¼ σzz ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ F2

yz=½b2g2zzðrhÞ� þ ρ2=½b2g2zzðrhÞ�
q

1þ F2
yz=½b2g2zzðrhÞ�

;

σyz ¼ −σzy ¼ ρFyz=½b2g2zzðrhÞ�
1þ F2

yz=½b2g2zzðrhÞ�
; ð63Þ

and for logarithmic electrodynamics

σyy¼ σzz ¼
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þf2þF2

yz=½b2g2zzðrhÞ�gρ2=½g2zzðrhÞb2�
q

2þF2
yz=½b2g2zzðrhÞ�

;

σzy¼−σyz¼ 0: ð64Þ

Note that the DC conductivity matrix of a holographic
Dirac-Born-Infeld model in the probe limit has been
calculated in [42]. Equations (3.1) and (3.2) with S ¼ 0
in [42] turn out to be the same as our results in (63). In
Fig. 1, we plot the DC conductivities versus ρ and Fyz, of
the conserved current dual to the bulk electromagnetic field
in both Born-Infeld and logarithmic electrodynamics. The
parameter b2g2zzðrhÞ sets a scale in the dual field theory.
When ρ2, F2

yz ≪ b2g2zzðrhÞ, we practically reproduce the

results for Maxwell theory. On the other hand, effects of
nonlinearity of the electromagnetic fields start to play an
important role when ρ2 or F2

yz is around the scale b2g2zzðrhÞ.
At zero charge density, the diagonal components of the DC
conductivities in both Born-Infeld and logarithmic electro-
dynamics are nonzero. These nonzero values can be
interpreted as incoherent contributions [45], known as
the charge conjugation symmetric terms, which are inde-
pendent of the charge density ρ. As shown in Fig. 1, the
diagonal DC conductivity σyy increases with increasing jρj
at constant Fyz, which is a feature similar to the Drude
metal. For the Drude metal, a larger charge density provides
more available mobile charge carriers to efficiently trans-
port charge. At constant ρ, σyy decreases with increasing
jFyzj, which means a positive magnetoresistance.
Since rh is related to the Hawking temperature T by

Eq. (26), we can now discuss the temperature dependence
of the conductivities. For simplicity and concreteness, we
consider the Schwarzschild AdS black brane

ds2 ¼ −ðr2 − r3h=rÞdt2 þ
dr2

ðr2 − r3h=rÞ
þ r2ðdy2 þ dz2Þ;

ð65Þ
where we take the AdS radius L ¼ 1, and rh determines the
Hawking temperature of the black brane:

T ¼ 3rh
4π

: ð66Þ

Therefore, we obtain that, for Born-Infeld electrodynamics,

σyy ¼ σzz ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ λF2

yz=T4 þ λρ2=T4
q

λF2
yz=T4 þ 1

ð67Þ

σyz ¼ −σzy ¼ λρFyz=T4

1þ λF2
yz=T4

; ð68Þ

FIG. 1. Plots of the DC conductivities of the conserved current dual to the bulk electromagnetic field in Born-Infeld and Logarithmic
electrodynamics. Here we set b2g2zzðrhÞ ¼ 1.
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and for logarithmic electrodynamics,

σyy ¼ σzz ¼
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð2þ λF2

yz=T4Þλρ2=T4
q

2þ λF2
yz=T4

; ð69Þ

where λ≡ b−2ð4π=3Þ−4 is a parameter associated with the
conserved current J μ in the boundary theory. In the high
temperature limit, we would recover the results for
Maxwell theory. When T4 ≪ ρ2=b2 and F2

yz=b2, the low
temperature behavior of σAB is

σyy ¼ σzz ∼ T2 and

σzy ¼ −σyz ∼ T0 for Born-Infeld electrodynamics; ð70Þ

and

σyy ¼ σzz ∼ T0 for logarithmic electrodynamics: ð71Þ

One can define a metal and an insulator for dρyy=dT > 0
and dρyy=dT < 0, respectively, where the resistivity matrix
fρABg is the inverse of the conductivity matrix fσABg. The
metal-insulator transition in Born-Infeld electrodynamics
has been discussed in [43]. So we here focus on logarithmic
electrodynamics. In Fig. 2, we plot ρyy versus T=

ffiffiffi
ρ

p
for

various values of Fyz=
ffiffiffi
ρ

p
. The temperature dependence of

ρyy is similar to the case with a larger value of the
momentum dissipation parameter in [43]. One has an
insulator phase for Fyz < ρ and a metal one for Fyz > ρ.
A metal-insulator transition could occur at Fyz ¼ ρ, where
ρyy ¼ 1 is independent of the temperature.

VI. DISCUSSION AND CONCLUSION

In the first part of this paper, we have used the membrane
paradigm to study the electromagnetic membrane of black
holes in NLED. In the membrane paradigm, the stretched
horizon is regarded as a boundary hypersurface with the

surface charge and current, which terminate the normal D
and tangentialH fields in the region exterior to the horizon,
and annul them in the interior region. For Maxwell theory,
it is well known that the horizon can be interpreted as an
ohmic conductor with a constant resistivity. It was shown in
[12] that the horizon behaved as a Hall conductor with
surface Hall conductance in Maxwell-Chern-Simons
theory. We derived the conductivities of the surface current
for a general NLED and found that the conductivities
usually depended on the normal electric and magnetic
fields on the stretched horizon. We also showed that there
was Hall conductance for the stretched horizon when
Lð0;1Þðs; pÞ was not zero on the horizon.
To study the effects of NLED on charges scrambling on

the stretched horizon, we considered a simple scenario, in
which a charged point particle freely falls into the horizon
in Rindler space. Our results showed that, during the free
falling, the surface charge density in NLED was the same
as in Maxwell theory. However, the effects of NLED play a
role in the surface current density. In particular, when
Lð0;1Þðs; pÞ did not vanish on the horizon, there would be
the presence of vortices. In the late time limit, NLEDwould
not change the scrambling time. This is expected since the
electric field becomes smaller and smaller in this limit, and
we assume that NLED would reduce to Maxwell-Chern-
Simons theory for small fields. In [12], it was found that the
θ-term only changed the way the charge scrambled but not
the scrambling time in Maxwell-Chern-Simons theory. If
some NLED differs fromMaxwell-Chern-Simons theory in
the IR limit, one would expect the scrambling time to be
changed in this NLED.
In the second part of this paper, we used the membrane

paradigm approach of [17] to calculate DC conductivities of
a conserved current in a field theory living on the boundary
of some black brane.We assumed that this conserved current
was dual to a probe NLED field in the bulk. We found that
the conjugate momentum of the NLED field encoded
the information about the conductivities both on the
stretched horizon and in the boundary theory and, in the
zero frequency limit, did not evolve in the radial direction.
Therefore, we showed that these DC conductivities
depended only on the geometry and NLED fields at the
black hole horizon, not on these of thewhole bulk geometry.
Relating electromagnetic quantities at the horizon to these in
the boundary theory, we also showed that the DC con-
ductivities usually dependedon the probe charge density and
magnetic field in the boundary theory.
We conclude this paper with a few remarks. First, we

showed that the DC conductivities depended on the values
of the couplings in NLED at the horizon. However, the
authors of [17] showed that, in Maxwell-Chern-Simons
theory, the Hall conductivity σyz was determined by the
value of θ coupling at the boundary of the bulk. We think
that the discrepancy comes from the possibility that the
authors of [17] failed to realize that the first term on the

FIG. 2. Plot of ρyy versus T=
ffiffiffi
ρ

p
in logarithmic

electrodynamics.
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left-hand side of Eq. (53) in [17] was no longer r-
independent in Maxwell-Chern-Simons theory. On the
stretched horizon, this term only contributes to the diagonal
components of the conductivities. However, this term is
now r-dependent and would contribute to the off-diagonal
components as well as the diagonal ones on the boundary
of the bulk. In other words, the Hall conductivity of the
boundary theory receives contributions from both terms on
the left-hand side of Eq. (52), not just the first one. These
two contributions indeed make the Hall conductivity
depend on the value of θ coupling at the horizon. This
incorrect statement of [17] has also been noted in [25],
where the authors found that the θ parameter could vanish
on the boundary with nonvanishing values on the horizon,
hence giving rise to nonvanishing Hall conductivity.
Second, one usually only turns on the electric field in

the boundary theory to calculate the holographic con-
ductivities due to difficulties of solving the differential
equations. On the other hand, the membrane paradigm
provides a simple way to obtain the dependence of
holographic DC conductivities on the electromagnetic
quantities in the boundary theory, e.g., the charge density

and magnetic field. Our analysis was carried out in the
long-wavelength and low-frequency limit, which corre-
sponds to an equilibrium and homogeneous state. In
particular, the charge density and magnetic field in the
boundary theory are kept fixed, time independent, and
homogeneous in this limit.
Finally, we only considered a neutral black brane, which

is dual to a boundary theory without a background charge
density. As shown in [19], the low-frequency behavior of
the conductivities depends crucially on whether there is a
background charge density. It is very interesting to study
the behavior of DC conductivities in a boundary theory
with a nonvanishing background charge density, which is
dual to a NLED charged black hole.
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