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We define the stretched future light cone, a timelike hypersurface composed of the worldlines of radially
accelerating observers with constant and uniform proper acceleration. By attributing temperature and
entropy to this hypersurface, we derive Einstein’s equations from the Clausius theorem. Moreover, we
show that the gravitational equations of motion for a broad class of diffeomorphism-invariant theories of
gravity can be obtained from thermodynamics on the stretched future light cone, provided the Bekenstein-
Hawking entropy is replaced by the Wald entropy.
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I. INTRODUCTION

In the laws of black hole mechanics [1], the area and
surface gravity of a black hole event horizon are associated
with entropy and temperature. These laws point to a
relation between classical geometry and thermodynamics,
using global equations applicable to stationary spacetimes
that contain black holes. However, the fact that de Sitter and
Rindler horizons—which are observer dependent and
therefore could be anywhere—also have thermodynamic
properties suggests that holographic entropy and temper-
ature are actually more generally applicable concepts in
spacetime. Taking this idea significantly further, Jacobson
[2] attributed thermodynamic properties even to local
Rindler horizons, which are essentially just planar patches
of certain null congruences passing through arbitrary points
in spacetime, and are not event horizons in any global
sense. The locality of local Rindler “horizons” has the
effect that local equations follow from thermodynamic
equations. Specifically, Einstein’s equations follow from
the Clausius theorem, Q ¼ TΔS; more recently [3,4], the
null energy condition has been obtained from the second
law of thermodynamics.
Here we present a new formulation: we attribute thermo-

dynamic properties to the future light cone of any point, p,
in an arbitrary spacetime. A future light cone can be
regarded as a kind of spherical Rindler horizon because
the worldlines of observers with constant outward radial
acceleration asymptote to it. In fact, it will be more
convenient to consider the stretched future light cone, a

timelike codimension-one hypersurface. Indeed, we will
define our stretched future light cone as a timelike con-
gruence of worldlines with approximately constant and
uniform radial acceleration. By constant, we mean that the
proper acceleration of any single worldline does not change
along the worldline; by uniform, we mean that all world-
lines share the same proper acceleration.
Given the relation between temperature and acceleration,

it then seems natural to attribute a constant and uniform
temperature to this surface. In fact, entropy is also a
somewhat better-motivated property of our surface than
of local Rindler horizons. This is because a future light
cone separates its interior from the exterior spacetime; the
interior is causally disconnected from the exterior, in the
same sense that the interior of a black hole is. It seems
therefore plausible that we might associate entropy to
spacelike sections of the light cone, for example as the
entanglement entropy between the interior and exterior
regions. By contrast, a finite strip of Rindler horizon (unlike
an infinite global Rindler horizon) does not separate space
into two disconnected regions, and it is not obvious that it
should possess an entropy. Another appealing feature of our
formulation is that the interior of a future light cone
resembles that of black holes or de Sitter space in that it
admits compact spatial sections.
These geometric aspects motivate the premise of this

paper, which is that holographic thermodynamic properties
can be attributed locally to the stretched future light cone
emanating from an arbitrary point p in an arbitrary
spacetime. We will then show that the Clausius theorem,
properly understood, yields Einstein’s equation at p,

Q ¼ TΔS ⇒ Rab −
1

2
Rgab þ Λgab ¼ 8πGTab; ð1Þ

much as the attribution of thermodynamics to local Rindler
horizons leads to Einstein’s equation emerging as an
equation of state [2].
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Besides its conceptual appeal, the stretched future light
cone formulation of local holographic thermodynamics
also offers a significant new result: it permits the extension
of Jacobson’s result to a wide class of theories of gravity.
It has been a longstanding challenge to obtain the gravi-
tational equations of motion for general, higher-curvature
theories of gravity from thermodynamics. Broadly, we can
divide earlier attempts into two categories: (i) those that aim
to derive the equations of motion for fðRÞ theories of
gravity via a nonequilibrium modification of the Clausius
theorem to account for internal entropy production terms
[5–7], and (ii) those that aim to derive the gravitational
equations for general theories of gravity [8–12]. The
approaches that fall into category (i) have been critically
reviewed in [10], which points out that this nonequilibrium
approach can never lead to theories beyond fðRÞ gravity.
The attempts that fall into category (ii) mainly use a
“Noetheresque” approach, in which the local entropy is
expressed as an integral of a Noether current [8–11] over
spacelike sections of a local Rindler plane. Unfortunately,
all the early papers using the Noetheresque approach
contained technical errors, as reviewed by Guedens et al.
[10]. Although the authors of [10] fixed the technical
problems, the derivation nonetheless appears quite unphys-
ical, with the entropy not always proportional to the area
even for Einstein gravity. The present work applies the
Noetheresque approach of Parikh and Sarkar [9] to the
setting of a stretched future light cone, rather than to local
Rindler planes. As we shall see, the geometry of the new
setup allows the technical problems in earlier derivations to
be overcome while still preserving an entropy proportional
to the area for Einstein gravity. We will describe the earlier
literature of the Noetheresque approach, as well as its
technical challenges, in more detail in Sec. IV.
In this work, we consider those gravitational theories

whose Lagrangian consists of a polynomial in the Riemann
tensor (with no derivatives of the Riemann tensor, for
simplicity). For all such theories, after replacing the
Bekenstein-Hawking entropy with the Wald entropy, we
find that Clausius’ theorem again implies the field equa-
tions of classical gravity,

Q ¼ TΔS ⇒ Pa
cdeRbcde − 2∇c∇dPacdb −

1

2
Lgab

¼ 8πGTab; ð2Þ

where the equation on the right is, as we shall describe, the
generalization of Einstein’s equations for these higher-
curvature gravitational theories, up to an undetermined
cosmological constant term.
In summary, the main goals of this paper are, first, to

formulate a definition of the stretched future light cone and,
second, to derive the (generalized) Einstein equations from
the premise that local holographic thermodynamic proper-
ties can be attributed to stretched future light cones.

II. CONSTRUCTION

Our first task is to carefully define what we mean by a
stretched future light cone. We also need to be precise in
defining its thermodynamic properties. We begin by
adapting the notion of approximate Killing vectors for
the construction of spherical Rindler horizons.

A. Approximate Killing vectors

In the vicinity of any point, p, spacetime is locally flat.
Components of the metric tensor can therefore be expanded
in Riemann normal coordinates,

gabðxÞ ¼ ηab −
1

3
RacbdðpÞxcxd þ � � � ; ð3Þ

where the Riemann tensor is evaluated at the point p, which
lies at the origin of the Riemann normal coordinate system.
Here the xa are Cartesian coordinates and ηab is the
Cartesian Minkowski metric; in Riemann normal coordi-
nates, the Christoffel symbols vanish at p and the metric
expansion has no piece that is linear in x.
The local flatness of spacetime means that there exist

D-choose-two independent vectors ξa in the tangent plane,
Tp, which are the Killing vectors of D-dimensional
Minkowski space and correspond to local translations
and local Lorentz symmetries. When spacetime is not
exactly Minkowski space, these vectors are not exactly
Killing vectors; call them approximate Killing vectors.
More precisely, in a generic spacetime, the presence of
quadratic terms ofOðx2Þ in the Riemann normal coordinate
expansion, Eq. (3), indicates that Killing’s equation for
these vectors will fail at some order in x. The order depends
on the nature of the approximate Killing vector: for trans-
lations the components of the Killing vector are constants,
whereas for Lorentz transformations, xμ∂a

ν − xν∂a
μ, the

components themselves are of OðxÞ. Thus for the
generators of local Lorentz transformations, Killing’s
equation fails in a generic spacetime at Oðx2Þ. Note also
that Killing’s identity,

∇a∇bξc ¼ Rd
abcξd; ð4Þ

which is a consequence of Killing’s equation, fails for these
vectors at OðxÞ. That is, we have

∇aξb þ∇bξa ≈Oðx2Þ; ð5Þ

and

∇a∇bξc − Rd
abcξd ≈OðxÞ; ð6Þ

for approximate Killing vectors generating local Lorentz
transformations.
Now, the integral curves (flow lines) of Cartesian boosts

trace the worldlines of Rindler observers—observers
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with constant acceleration in some Cartesian direction.
Here, however, we are interested in considering a con-
gruence of observers that sweep out a stretched future light
cone. Regarding the future light cone as a spherical Rindler
horizon, we are motivated to define the stretched future
light cone as a congruence of worldlines generated by
spherical boosts. Hence we define ξa as follows:

ξa ≡ −rδta þ tδra ¼ −
ffiffiffiffiffiffiffiffi
xixi

q
δta þ

tffiffiffiffiffiffiffiffi
xixi

p xjδja; ð7Þ

where r is the radial coordinate while xi are spatial
Cartesian coordinates, in some split of spacetime into
space and time. (In Appendix A, we will refine this
somewhat by allowing ξa to have small subleading mod-
ifications that are quadratic and higher in Riemann normal
coordinates, with constant coefficients that depend on the
Riemann tensor and its derivatives at p; these subleading
terms, which vanish in Minkowski space, will play a useful
role in our derivation of the field equations.)
Note that ξa is not a Killing vector. This is because ξa

generates radial boosts but radial boosts are not isometries
even of Minkowski space. More precisely, the symmetric
covariant derivatives ∇aξb þ∇bξa are

∇tξt ¼ 0þOðx2Þ; ∇tξi þ∇iξt ¼ 0þOðx2Þ;

∇iξj þ∇jξi ¼
2t
r

�
δij −

xixj
r2

�
þOðx2Þ: ð8Þ

Notice that the t − t and t − i components satisfy Killing’s
equation atOð1Þ, whereas the i − j components fail to obey
Killing’s equation even at that leading order. (In spherical
coordinates, the i − j terms correspond to angle-angle
components of the symmetric covariant derivatives.) The
Oðx2Þ corrections generically appear from Christoffel
symbols multiplying the linear pieces of ξa, as in (5).

B. Definition of the stretched future light cone

We are now ready to define the stretched future light
cone. To gain some intuition, let us first define the stretched
future light cone in Minkowski space. As in (7), define

ξaMink ≡ −rδta þ tδra. ð9Þ

The flow lines of ξaMink trace out hyperbolas. Define a
codimension-one timelike hyperboloid by the set of curves
that obey

r2Mink − t2 ¼ α2; ð10Þ

where t ≥ 0 and α is some given scale with dimensions of
length. In Minkowski space, this hyperboloid is a stretched
future light cone because, as t → þ∞, it asymptotes to the
future light cone emanating from the point p at the origin.

In ðD − 2Þ-dimensional spacetime, the constant-t sections
of the hyperboloid are D − 2 spheres with area

AMinkðtÞ ¼ ΩD−2ðα2 þ t2ÞD−2
2 : ð11Þ

On this hyperboloid, we have

ξ2Mink ¼ −α2: ð12Þ

We can regard ξa as the unnormalized tangent vector to the
worldlines of our Rindler observers. These have normal-
ized velocity vector

uaMink ≡ ξaMink

α
; ð13Þ

where u2 ¼ −1. The proper acceleration of such observers,
acMink ≡ ubMink∇bucMink, has magnitude

aMink ¼
1

α
: ð14Þ

The hyperboloid therefore is a congruence of worldlines of
a set of constant radially accelerating observers all with the
same uniform acceleration 1=α.
Now let us think about how to define our stretched future

light cone when p lies in a general curved spacetime. In
Minkowski space, the locus of points defined by (10), (12),
and (14) are all the same. However, in curved spacetime,
these three expressions are no longer equivalent. A
straightforward calculation shows that

ξ2 ¼ −α2 þOðx4Þ ð15Þ

and

a ¼ 1

α

�
1þOðx4Þ

�
: ð16Þ

How then should we choose our stretched future light cone?
(A previous proposal [13] considered equigeodesic surfa-
ces, the locus of points a fixed finite geodesic distance from
p. Although such surfaces agree with the hyperboloid in
Minkowski space, this is not how we will define our
stretched future light cone in a general curved spacetime.)
Our choice is motivated by the stretched horizon of the
black hole membrane paradigm, which is a congruence of
the worldlines of fiducial observers. Call our stretched
future light cone Σ. Since we are interested in thermody-
namics, we would like Σ to be a surface of constant and
uniform temperature. Then, since temperature is related to
acceleration, we would like our surface to be composed of a
congruence of timelike worldlines of constant proper
acceleration; a similar construction was proposed by
[14]. That suggests using a ¼ 1=α as our definition of
Σ. However, there is a slight problem: as a result of
spacetime curvature, none of the flow lines of (7) typically
correspond to worldlines with constant acceleration.
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We therefore defineΣ as follows. First, pick a small length
scale, α. By small, wemean that themetric should be roughly
flat to a coordinate distance α from the origin of Riemann
normal coordinates or thatα ismuch smaller than the smallest
curvature scale atp. Next, imagine that the radial boost vector
field ξa, as defined by (7), consists of the (unnormalized)
tangent vectors to theworldlines of a set of observers.Among
this set, select the subset of observerswho, at time t ¼ 0, have
instantaneous proper acceleration 1=α. [If spacetime were
flat, this subset of observers would describe a codimension-
two sphere of radius α at t ¼ 0, as given by (10). However,
since spacetime is not exactly flat, the subset forms a
codimension-two surfaceωð0Þ, which is a small deformation
of the r ¼ α surface; that deformation will play no further
role.] Now, as already mentioned, if we were to follow the
worldlines of these observers, they would generically not
have the same proper acceleration 1=α at some later time. To
avoid this problem, choose a timescale ϵ. If ϵ is very short,

ϵ ≪ α; ð17Þ

then we can regard the proper acceleration of our initially
accelerating observers to be approximately constant over that
timescale. We therefore restrict our calculations to the range

0 ≤ t ≤ ϵ: ð18Þ

Over this interval, we can regard our stretched future light
coneΣ to be theworld tube of a congruence of observerswith
the same nearly constant approximately outward radial
acceleration 1=α (Fig. 1).
The overall effect of spacetime curvature is to make Σ a

small deformation of the hyperboloid r2 ¼ α2 þ t2 and to
restrict the time interval to the range 0 ≤ t ≤ ϵ ≪ α. From
(15), the normalized velocity vectors are

ua ≡ ξaffiffiffiffiffiffiffiffiffiffiffiffi
−ξaξa

p ≈
ξa

α
; ð19Þ

while the normal to Σ is a small correction to the normal to
the hyperboloid,

na ≈
t
α
∂a
t þ

r
α
∂a
r þ � � � : ð20Þ

The proper acceleration of our observers is

ab ¼ ua∇aub ¼
1

α
nb ð21Þ

and has magnitude 1=α on Σ.
The reason for choosing Σ to be a hypersurface com-

posed of constant acceleration worldlines is that, by the
relation between temperature and acceleration, Σ then
becomes an isothermal surface. However, a rigorous
identification of temperature with acceleration applies only
to eternally accelerating observers in Minkowski space with
a Poincaré-invariant vacuum, whereas here we have tran-
sient acceleration in an only approximately locally flat
patch of spacetime. We therefore need to justify, first, why
the existence of an approximately Poincaré-invariant vac-
uum state can be assumed and, second, why even granted
the existence of such a state, it is possible to associate a
temperature with transient acceleration.
The existence of an approximately Poincaré-invariant

vacuum state is a consequence of the strong principle of
equivalence. If we assume that free-falling observers should
see the same physics locally as inertial observers in
Minkowski space, then we are naturally led to assume that
the quantum state responsible for local physics should be
approximately the Poincaré-invariant state of Minkowski
space; any other coherent state would have a stress tensor
whose vacuum expectation value would be singular some-
where. The same prescription is used to select theUnruh state
in the black hole case, ensuring that an observer falling along
a geodesic sees no Hawking radiation. The validity of using
the Poincaré-invariant state locally even has experimental
support in that high-energy physics at accelerators is per-
fectly captured by quantum field theory inMinkowski space,
even though on larger scales our spacetime is not well
described by Minkowski space.
Having justified our choice of the Poincaré-invariant

vacuum state, we automatically find that eternally accel-
erating Rindler observers will detect particles with a
thermal spectrum. Transient acceleration in Minkowski
space was studied by Barbado and Visser [15] who found
that a thermal spectrum is still obtained provided the
duration of acceleration is sufficiently long compared with
the inverse acceleration. This condition is easy to arrange in
our construction. We need to extend the worldlines of the
accelerating observers over a longer time, τ, much greater
than the inverse acceleration, α (but still short enough that
curvature effects are negligible). Since there is no limit to
how small α can be, we can always do this. Our surface Σ
is then a brief segment, 0 < t < ϵ ≪ α ≪ τ of a more
extended surface traced by a congruence of such observers.
Temperature and acceleration can now be rigorously
identified on the extended surface, and therefore also on

FIG. 1. A congruence of radially accelerating worldlines ξa

with the same uniform proper acceleration 1=α generates the
stretched future light cone of p and describes a timelike hyper-
surface, Σ, with unit outward-pointing normal na. The boundary
of Σ consists of the two codimension-two surfaces ωð0Þ and ωðϵÞ
given by the constant-time slices of Σ at t ¼ 0 and t ¼ ϵ,
respectively.
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Σ, so that both are isothermal surfaces. In general, the
worldlines of the observers will not be integral curves of
our approximate Killing vector ξa before t ¼ 0 or after
t ¼ ϵ. We therefore restrict our calculation to Σ because
we need a congruence generated by the flow lines of ξa.
With this rationale, Σ is an isothermal surface with

Davies-Unruh temperature

T ≡ ℏa
2π

¼ ℏ
2πα

: ð22Þ

In particular, this means that in any integration over Σ, we
can move the temperature outside the integral.

C. Definition of S

Having defined our stretched future light cone, Σ, and
having associated to uniform temperature with it, we next
need to define the entropy. The underlying premise of the
“thermodynamics of spacetime” is that gravitational
entropy can be attributed not just to global event horizons,
but also to local Rindler horizons. In the same vein, we
attribute a local entropy to spacelike sections of the future
light cone [16]. We also attribute entropy to sections of
our timelike stretched horizon, Σ. This is consistent with
the black hole membrane paradigm in which the timelike
stretched horizon can also be thought of as having
thermodynamic properties [17].
The form of the entropy depends on the gravitational

theory under consideration. For Einstein gravity, the
entropy is the Bekenstein-Hawking entropy, one quarter
of the area measured in Planck units:

S ¼ A
4Gℏ

: ð23Þ

We will first rewrite this in a useful form using the vectors
na and ξa on Σ. Let ωðtÞ be the codimension-two section of
Σ at time t. Its area is

AðtÞ≡
Z
ωðtÞ

dA ¼ α

Z
ωðtÞ

dAnb
1

α
nb ¼ α

Z
dAnbua∇aub

¼
Z

dAnbua∇aξb: ð24Þ

Here we have used (19) and (21). Next we make use of
the fact that ∇aξb ¼ −∇bξa for the projection of ∇aξb in
the n − ξ plane, as we see from the first line of (8). Then
defining

dSab ≡ 1

2
ðnaub − nbuaÞdA; ð25Þ

we see that the Bekenstein-Hawking entropy at time t can
be expressed as

SðtÞ ¼ −
1

4Gℏ

Z
ωðtÞ

dSab∇aξb

¼ −
1

4Gℏ

Z
ωðtÞ

dSab
1

2
ðgacgbd − gadgbcÞ∇cξd: ð26Þ

Here we have written the entropy in the form
R
dSabMab,

where Mab is an antisymmetric tensor; this form will be
helpful in deriving Einstein’s equations and will generalize
readily to other theories of gravity.

III. EINSTEIN’S EQUATIONS

Now let us calculate the total change in the Bekenstein-
Hawking entropy ΔStot ¼ SðϵÞ − Sð0Þ, between t ¼ 0 and
t ¼ ϵ. To that end, note that the codimension-two surfaces
ωðϵÞ and ωð0Þ are the boundaries of the stretched future
light cone, Σ (Fig. 1). We can therefore make use of Stokes’
theorem for an antisymmetric tensor field Mab,

Z
Σ
dΣa∇bMab ¼−

Z
ωðϵÞ

dSabMabþ
Z
ωð0Þ

dSabMab; ð27Þ

where the overall minus sign arises because Σ is a timelike
surface. From (26), we find

ΔStot¼
1

4Gℏ

Z
dΣa

1

2
ðgacgbd−gadgbcÞðRe

bcdðpÞξeþfbcdÞ;

ð28Þ

where we have approximated the Riemann tensor by its
value at the point p, which we can do to leading order in x.
To obtain (28), we have written the Killing identity for ξa as

∇b∇cξd ¼ Re
bcdξe þ fbcd: ð29Þ

The term fbcd accounts for the failure of Killing’s
identity to hold; for a true Killing vector, fbcd would be
zero. As we see from (8), ξa fails to obey Killing’s equation
in two ways. First, because of spacetime curvature,
Killing’s equation generically fails at quadratic order in
Riemann normal coordinates. These quadratic terms con-
tribute terms of order x to fbcd. But second, even if
spacetime were exactly Minkowski space, our ξa generates
not planar boosts, but radial boosts; these are not true
isometries, as indicated by the leading-order failure of
Killing’s equation to hold for the i − j components. This
contributes terms of order Oðx−1Þ to fbcd. [In addition to
these, there will also be terms Oð1Þ in fbcd coming from
modifications to ξa, as detailed in Appendix A.] We cannot
discard either of these pieces of fbcd because they are not
higher order than theRe

bcdðpÞξe term wewould like to keep,
which is of order x. Fortunately, we do not need fbcd to
vanish: as we shall see, we only need its integral to vanish.
This distinction makes a tremendous difference. We note
that because the constant-t sections of Σ are spheres (to
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leading approximation), any odd power of a spatial
Cartesian coordinate xi integrates to zero over Σ. As shown
in Appendix A this results in the vast majority of terms of
order x [and Oð1Þ] in fbcd integrating to zero. The handful
of surviving terms can be canceled by including quadratic
and cubic terms in the expansion of ξa. The same is not true
for the term of order 1=x in fbcd, which neither vanishes
upon integration nor can be canceled by redefinitions. To
leading order, we can evaluate it in D-dimensional
Minkowski space, where we find

1

4Gℏ

Z
dΣa

1

2
ðηacηbd − ηadηbcÞfOðx−1Þ

bcd ¼ ΩD−2

4Gℏ
αD−4ϵ2:

ð30Þ

Remarkably, this term actually has a physical interpretation.
Recall that we would like to equate our entropy change

to the heat flux. However, as we have defined it,ΔStot is the
total change in the area of our stretched future light cone.
Not all of this change in area can be attributed to the influx
of heat. This is because Σ is generated by a congruence
of outwardly accelerating worldlines whose area would
increase even in the absence of heat. Indeed, even in
Minkowski space with no heat flux whatsoever, the area of
the hyperboloid of outwardly accelerating observers
increases in time, Eq. (11). Therefore, before identifying
the change in entropy with T−1Q, we should first subtract
this background expansion of the hyperboloid, ΔShyp, from
ΔStot:

ΔSrev ≡ ΔStot − ΔShyp: ð31Þ

We call the difference ΔSrev, the reversible change in
entropy, in analogue with ordinary thermodynamics for
which we have Q ¼ TΔSrev (the general formula in the
presence of irreversible processes is ΔS ≥ Q=T, with
saturation only for the reversible component of ΔS).
Now the change in the Bekenstein-Hawking entropy

from the natural expansion of the stretched future light cone
can be read off from (11). It is

ΔShyp¼
ΩD−2

4Gℏ

�
rD−2
MinkðϵÞ− rD−2

Minkð0Þ
�
≈
ΩD−2

4Gℏ
αD−4ϵ2; ð32Þ

which is precisely equal to (30). Evidently we can interpret
(30) as the natural increase in the entropy of the hyper-
boloid in the absence of heat flux, an increase that is
eliminated by considering only the reversible part of the
entropy change, Eq. (31).
We therefore have

ΔSrev ¼
1

4Gℏ

Z
Σ
dΣaRabðpÞξb: ð33Þ

Now we use the fact that Σ was constructed to be a surface
of constant and uniform acceleration. We can therefore
associate with it a constant and uniform temperature,
Eq. (22). Then we have

TΔSrev ¼
1

8παG

Z
Σ
dΣaRabðpÞξb: ð34Þ

Meanwhile, the integrated energy flux into Σ as measured
by our accelerating observers is

Q ¼
Z
Σ
dΣaTabub ≈

1

α

Z
Σ
dΣaTabðpÞξb; ð35Þ

where the energy-momentum tensor can again be approxi-
mated to leading order by its value at p. Now, in
thermodynamics, heat is the energy that goes into macro-
scopically unobservable degrees of freedom. Since the
interior of the future light of p is fundamentally unobserv-
able (being causally disconnected from the exterior), we
identify the integrated energy flux, Eq. (35), as heat [2].
Clausius’ theorem, Q ¼ TΔSrev, then tells us to equate

the integrals in (35) and (34). But note that this equality
holds for all choices of Σ. For example, we could have
chosen a different surface Σ by having a different choice
of α or by varying ϵ. In particular, since the surface Σ is
capped off by constant-time slices, we can also obtain a
different Σ by performing a Lorentz boost on our Riemann
normal coordinate system. It is shown in Appendix B that
this implies that the tensors contracted with na and ξb in the
integrands of (34) and (35) must match, up to a term that
always vanishes when contracted with na and ξb. Since
naξa ¼ 0, the unknown term must be proportional to the
metric. We therefore have

Rab þ φgab ¼ 8πGTab; ð36Þ

where φ is some scalar function of spacetime. We may
determine this function by demanding that the Bianchi
identity hold, leading finally to Einstein’s equations:

Rab −
1

2
Rgab þ Λgab ¼ 8πGTab: ð37Þ

Thus, gravitational equations emerge out of Clausius’
theorem, Q ¼ ΔSrev=T, when we attribute thermodynamic
properties to stretched future light cones. The cosmological
constant appears as an integration constant. We have
reproduced Jacobson’s famous result, but using a con-
struction based on the stretched future light cone.
It is instructive to ask why ΔSrev had to be positive. In

fact, this follows intuitively from the way we have defined
Σ as a surface of constant acceleration, a setup that is
motivated by black hole physics. Consider a sphere of
observers at some radius r, outside some spherically
symmetric body, such as a black hole. The observers stay
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at r, firing their rockets to not fall in, and are therefore all
subject to the same, constant acceleration. Now suppose
more matter accretes on to the source, increasing its
gravitational pull. Heuristically, the observers have to move
outwards in order to maintain their original acceleration.
Therefore a surface of constant accelerating observers
increases its area when matter falls in; this is why ΔSrev
is positive when Q > 0. More precisely, explicit evaluation
of Q from its definition, Eq. (35), yields

Q ¼ ΩD−2

2
αD−3ϵ2

�
ρþ 1

D − 1

X
i

Pi

�
; ð38Þ

where ρ ¼ −TttðpÞ and Pi ¼ TiiðpÞ. We see that Q is
positive when the null energy condition is obeyed. Thus our
stretched future light cone has ΔSrev ≥ 0 when the null
energy condition holds, analogous to the area theorem for
black holes. Our stretched future light cone evidently also
obeys the second law of thermodynamics.

IV. GENERALIZED EQUATIONS OF GRAVITY

In the stretched light cone formulation, this result can be
extended to more general theories of gravity. Extending the
thermodynamic derivation of the gravitational equations to
other theories of gravity has been a long-standing chal-
lenge. Many previous attempts have been made, both for
specific theories of gravity, such as fðRÞ theories, and for
more general diffeomorphism-invariant theories. However,
all previous attempts at general derivations have been
marred by errors, or appear unphysical (or both). Four
early papers, which come close, deserve special mention.
Padmanabhan [12] attempts to rewrite the field equations

in terms of thermodynamics (rather than obtaining them
from thermodynamics). The author claims, without show-
ing any calculations, that the steps can be reversed to obtain
the equations from the thermodynamics. However, he uses
Killing’s identity for approximate Killing vectors, without
apparently realizing that it fails at the same order as the
equations he would be trying to derive. Moreover, his
expression for the entropy appears to depend on volume,
rather than area. Parikh and Sarkar [9] attempt a derivation
from thermodynamics, using the Noether charge. The
authors recognize that Killing’s identity is invalid for
approximate Killing vectors, but have no convincing
justification for their use of it. They consider a rectangular
spacelike patch of a (stretched) local Rindler horizon and
equate the difference in area between two such patches
using Stokes’ theorem on a timelike surface joining them.
However, that timelike surface has additional boundaries
that connect the edges of the rectangles (which is easiest to
visualize in (2þ 1)-dimensional spacetime); this contribu-
tion was missed. Brustein and Hadad [11] also attempt a
Noether-charge derivation from thermodynamics. The
authors write some equations that do not appear correct,
expressing the entropy as a volume, for example. They also

appear to have used Killing’s identity without realizing that
it fails. In their use of Stokes’ theorem, they also appear to
have missed the existence of extra boundary terms. Finally,
Guedens et al. [10] recognize both the issues (failure of
Killing’s identity, existence of extra boundary terms) that
have tripped up previous attempts at derivations. The
authors deal the Killing’s identity problem by restricting
integration to a very narrow strip of the Rindler horizon
plane using the observation [18] that Killing’s identity can
be made to hold approximately near a single null generator.
However, they deal with the boundary term by choosing the
second surface to have the same edges as the first one,
while dipping down in a nearly null test-tube shape.
Although they formally succeed in obtaining the gravita-
tional equations from the variation of a Noether charge,
their derivation appears unphysical, as they themselves
note. For example, even for Einstein gravity, the entropy on
the looping part of the test-tube shape is no longer
proportional to its area.
The success of the approach in the present work, which

is based on the paper by Parikh and Sarkar [9], is directly
related to our use of a stretched future light cone. Because a
stretched future light cone has closed spacelike sections
(spheres, which, unlike the rectangular sections of Rindler
planes, have no edges), there are no extra boundary terms in
Stokes’ theorem. And the failure of Killing’s identity is not
fatal because the vast majority of problematic terms
integrate to zero over a sphere; the few remaining terms
can be dealt with, as shown in detail in Appendix A.
Consider then the action, I, of a diffeomorphism-invariant

theory of gravity in D dimensions of the form

I ¼ 1

16πG

Z
dDx

ffiffiffiffiffiffi
−g

p
L
�
gab; Rabcd

�
þ Imatter: ð39Þ

Here we have written the gravitational Lagrangian, L, as a
function of the inverse metric gab and the curvature tensor
Rabcd separately. Cast in this way, the action encompasses a
wide class consisting of all diffeomorphism-invariant
Lagrangian-based theories of gravity that do not involve
derivatives of the Riemann tensor. We then define [19]

Pabcd ≡ ∂L
∂Rabcd

; ð40Þ

where the tensor Pabcd can be shown to have all of the
algebraic symmetries of the Riemann tensor. The gravita-
tional equation of motion of such theories is

Pa
cdeRbcde − 2∇c∇dPacdb −

1

2
Lgab ¼ 8πGTab: ð41Þ

In particular, for Einstein gravity, we have L ¼ R, and
therefore
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Pabcd
E ¼ 1

2
ðgacgbd − gadgbcÞ: ð42Þ

Substituting this in (41), we recover Einstein’s equation.
Our goal is to derive (41) from local holographic

thermodynamics. Here we will see that our stretched future
light cone derivation of Einstein’s equations extends
naturally to higher-curvature theories of gravity. Our
Noetheresque approach will be based on an earlier paper
by one of us [9]. In that work, Σ was a planar strip of a
Rindler horizon, rather than a spherical Rindler horizon. As
already mentioned, this resulted in two technical problems:
(i) in Stokes’ theorem, ΔS did not account for all con-
tributions from the surface Σ because there were also extra
contributions from the edges of the strip, and (ii) the failure
of Killing’s identity, which does not hold for approximate
symmetries, led to unwanted terms that could not be
eliminated over the strip. As we have already seen,
choosing a spherical Rindler horizon for Σ resolves both
these issues: since a sphere has no boundaries, the problem
of extra contributions in Stokes’ theorem does not arise. In
addition, most of the unwanted terms arising from the
failure of Killing’s identity integrate to zero on a sphere. Of
the remaining terms, as shown in Appendix A, the leading
one precisely cancels the natural expansion of the hyper-
boloid, and the few remaining ones can be dealt with by
redefining ξa, as in the case of Einstein gravity.
Now, information about the underlying gravitational

theory is encoded within the thermodynamic formula for
entropy. For Einstein gravity, the entropy is one quarter of
the horizon area, but for more general theories of gravity we
have to generalize the Bekenstein-Hawking entropy to
something else. We will take that generalization to be
the Wald entropy [20]. To obtain the Wald entropy, one first
defines the antisymmetric Noether potential Jab, associated
with the diffeomorphism xa → xa þ ξa. For theories that do
not contain derivatives of the Riemann tensor, the Noether
potential is

Jab ¼ −2Pabcd∇cξd þ 4ξd∇cPabcd: ð43Þ

Then, when ξa is a timelike Killing vector, the Wald
entropy, S, associated with a stationary black hole event
horizon is proportional to the Noether charge [20]:

S ¼ 1

8Gℏ

Z
dSabJab: ð44Þ

Substituting (43) and (42), we indeed recover the
Bekenstein-Hawking entropy, Eq. (23), for the case of
Einstein gravity.
Wald’s construction was designed to yield an expression

for the entropy of a stationary black hole in an asymptoti-
cally flat spacetime in generalized theories of gravity.
As before, we will make the nontrivial assumption of
local holography, meaning that this gravitational entropy

can also be attributed locally to the future light cones of
arbitrary points, and even to their timelike stretched
horizons, Σ. Consider then a stretched future light cone
generated by ξa. Analogous to (26), the Wald entropy at
time t is

SðtÞ¼−
1

4Gℏ

Z
ωðtÞ

dSab
�
Pabcd∇cξd−2ξd∇cPabcd

�
: ð45Þ

The total change in entropy between t ¼ 0 and t ¼ ϵ is
ΔStot ¼ SðϵÞ − Sð0Þ, or

ΔStot ¼
1

4Gℏ

Z
Σ
dΣa∇b

�
Pabcd∇cξd − 2ξd∇cPabcd

�
; ð46Þ

where we have again invoked Stokes’ theorem, Eq. (27), for
an antisymmetric tensor field. Then

ΔStot ¼
1

4Gℏ

Z
Σ
dΣa

h
−∇bðPadbc þ PacbdÞ∇cξd

þ Pabcd∇b∇cξd − 2ξd∇b∇cPabcd
i
: ð47Þ

For Lovelock theories of gravity, which include Einstein
gravity and Gauss-Bonnet gravity, it can be shown that
∇bPabcd ¼ 0 identically and so the first two terms vanish.
For other theories of gravity, however, these terms do not
generically vanish. By symmetry, only the contraction with
the symmetric part of ∇cξd survives. As seen from (8), ξa
satisfies Killing’s equation to Oðx2Þ, except for the i, j
indices, which means that the term cannot generically be
discarded. Define

qa ≡∇b

�
Padbc þ Pacbd

�
∇cξd: ð48Þ

We therefore have

ΔStot ¼
1

4Gℏ

Z
Σ
dΣa

�
−qa þ PabcdðRdcbeξ

e þ fbcdÞ

− 2ξd∇b∇cPabcd
�
; ð49Þ

where we have again taken into account the fact that ξa
does not satisfy Killing’s identity, Eq. (29). This general-
izes (28). As shown in Appendix A, just as for the case of
Einstein gravity, the unwanted term

R
Σ dΣaPabcdfbcd can

be dropped by redefining ξa and subtracting the natural
entropy increase of the hyperboloid, Eq. (31). In
Appendix A, we show that the same redefinition of ξa
can also be used to eliminate qa for the non-Lovelock
theories for which it does not identically vanish.
Defining the locally measured energy as before, Eq. (35),

Q ¼
Z
Σ
dΣaTa

eue ¼
1

α

Z
Σ
dΣaTa

eξ
e; ð50Þ
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we see that TΔSrev ¼ Q can be written as

1

8παG

Z
Σ
dΣa

�
PabcdRdcbe − 2∇b∇cPabc

e

�
ξe

¼ 1

α

Z
Σ
dΣaTa

eξ
e: ð51Þ

As shown in Appendix B, the equality of these integrals
under variations of Σ implies a stronger equality of the
integrands,

Pa
cdeRbcde − 2∇c∇dPacdb þ φgab ¼ 8πGTab; ð52Þ

where φ is an undetermined scalar function. The require-
ment that the energy-momentum tensor be conserved then
implies that φ ¼ − 1

2
Lþ Λ0, where L is the Lagrangian and

Λ0 is an integration constant. Altogether,

Pa
cdeRbcde − 2∇c∇dPacdb −

1

2
gabLþ Λ0gab ¼ 8πGTab;

ð53Þ
which we recognize as having the form of the generalized
Einstein’s equation for our theory of gravity, Eq. (41). Note,
however, that the cosmological constant term does not
match that in (41), unless the integration constantΛ0 is zero.
For example, if the Lagrangian L already includes a
cosmological term −2Λ, then the equation of motion
derived from the action will have a term Λgab, whereas
the equation we derived from thermodynamics has a term
ðΛþ Λ0Þgab. This discrepancy can be traced to the fact that
the Wald entropy is unaffected by the cosmological con-
stant which does not contribute to Pabcd.
To summarize, in this paper we have defined the

stretched future light cone, argued that it is natural to
associate temperature and holographic entropy to it, and
shown that a thermodynamic equation—the Clausius theo-
rem Q ¼ ΔSrev=T—directly leads to the generalized
Einstein equations for all diffeomorphism-invariant theo-
ries of gravity whose Lagrangian contains no derivatives of
the Riemann tensor.
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APPENDIX A: FAILURE OF KILLING’S
IDENTITY

In our derivation of the gravitational equations, we made
critical use of the Killing identity even though we have only
an approximate Killing vector. The purpose of this appen-
dix is to justify that step, as well as to eliminate the

R
dΣaqa

term in (49). We denote the failure of ξa to satisfy Killing’s
identity via the tensor

fbcd ≡∇b∇cξd − Re
bcdξe ¼

1

2
ð∇dSbc −∇cSdb −∇bScdÞ;

ðA1Þ
where Sab ¼ ∇ðaξbÞ [21]. From this we see that fbdc ¼
−fbcd.
In evaluating ΔStot, we encounter integrals of the formR
dΣaPabcdðRdcbeξ

e þ fbcdÞ, as in (49). [For Einstein
gravity, Pabcd ¼ 1

2
ðgacgbd − gadgbcÞ.] We would like to

discard naPabcdfbcd but retain naPabcdRe
bcdξe. This latter

quantity is, to lowest order,Oðx2Þ, since ξa and na are both
of order x. Hence all terms in fbcd of OðxÞ and lower are
problematic.
In general, fbcd has two types of contributions because

our ξa fails to be a Killing vector in two ways. First, ξa

generates radial boosts. These are not true isometries even
of Minkowski space. This contributes a term to fbcd of
Oðx−1Þ in Riemann normal coordinates. Second, we will
see that in a general curved spacetime, ξa will have to be
redefined to include quadratic and higher terms. These
contribute terms to fbcd at Oð1Þ and OðxÞ. Therefore, in
general, fbcd does not vanish at the required order.
Fortunately, we do not actually need fbcd to vanish, as in

[10,18]; rather we require only a much weaker condition,
namely that the integral of the contraction naPabcdfbcd
vanish to Oðx2Þ. We shall use several tricks to deal with
nonzero terms in fbcd. First, some terms give zero when
contracted with Pabcd, because of symmetry. Second, the
vast majority of terms integrate to zero over the spherical
spatial sections of Σ, since the integral of any odd power of
a Cartesian spatial coordinate over a sphere is zero. The
remaining terms are of two types: there is the fbcd term of
Oðx−1Þ that exists even in Minkowski space, and there are a
small handful of leftover fbcd terms of Oð1Þ and OðxÞ in
curved space. The integral of the first term does not vanish.
However, as we show, it is precisely canceled by sub-
tracting the component of TΔS that comes from the natural
expansion of Σ. The other terms can be eliminated by
redefining the higher-order terms in ξa, as we will show.
Our integrand

ffiffiffi
g

p
naPabcdfbcd will have various order

pieces ranging from Oð1Þ to Oðx2Þ, with higher orders
negligible. We need to show that the integral at each order
either vanishes or can be canceled. Let us first classify each
of the terms. We do this by expanding

na≈nð1Þa þnð2Þa þnð3Þa ; Pabcd≈Pabcd
ð0Þ þPabcd

ð1Þ þPabcd
ð2Þ ;

fbcd≈fOð−1Þ
bcd þfð0Þbcdþfð1Þbcd; ðA2Þ

where the subscript or superscript indicates the order, in x,
of the given quantity. We also note that for the integration
measurewehave

ffiffiffi
g

p ≈ ffiffiffi
η

p þ ffiffiffi
h

p
which is ofOð1Þ þOðx2Þ.
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Then the lowest order contribution to the offending
term is

1

4Gℏ

Z
Σ
dAdτnð1Þa Pabcd

ð0Þ fOð−1Þ
bcd ; ðA3Þ

which is of Oð1Þ. The next order terms, of OðxÞ, are
given by

1

4Gℏ

Z
Σ
dAdτ

�
nð1Þa Pabcd

ð1Þ fOð−1Þ
bcd þ nð2Þa Pabcd

ð0Þ fOð−1Þ
bcd

þ nð1Þa Pabcd
ð0Þ fð0Þbcd

�
: ðA4Þ

Finally, the highest order term we need consider is

1

4Gℏ

Z
Σ
dAdτ

n ffiffiffi
h

p
nð1Þa Pabcd

ð0Þ fOð−1Þ
bcd þ nð1Þa Pabcd

ð2Þ fOð−1Þ
bcd

þ nð1Þa Pabcd
ð1Þ fð0Þbcd þ nð1Þa Pabcd

ð0Þ fð1Þbcd þ nð2Þa Pabcd
ð1Þ fOð−1Þ

bcd

þ nð2Þa Pabcd
ð0Þ fð0Þbcd þ nð3Þa Pabcd

ð0Þ fOð−1Þ
bcd

o
; ðA5Þ

which is clearly ofOðx2Þ. We therefore need to show (A3),
(A4), and (A5) vanish for an arbitrary Pabcd. Let us begin
with (A3).

1. Removing the natural expansion of the hyperboloid

Writing out fbcd explicitly, we have

fbcd ¼ ∂b∂cξd þ
�
2Γf

bðcΓe
dÞf − ∂bΓe

cd

�
ξe

−
�
Γe

bc∂eξd þ 2Γe
dðc∂bÞξe

�
− Re

bcdξe: ðA6Þ

Note that ξa, na, and the Christoffel symbols are all of
OðxÞ. Therefore the term na2Γf

bðcΓe
dÞfξe is of much

higher order than the rest of the terms and we can neglect
it. Moreover, given that Pabcd is antisymmetric in its final
two indices and Γe

cd;b is symmetric in c and d, it will not
contribute to naPabcdfbcd. Therefore, we need only con-
sider the reduced expression,

fbcd ≈ ∂b∂cξd − 2Γe
bc∂ ½eξd� − Re

bcdξe: ðA7Þ

To lowest order, we have

fOð−1Þ
bcd ¼ ∂b∂cξ

Oð1Þ
d : ðA8Þ

From (8), we find that Killing’s identity, at Oðx−1Þ, fails as

fOð−1Þ
tij ¼ fOð−1Þ

itj ¼ −fOð−1Þ
ijt ¼ 1

r

�
δij −

xixj
r2

�
;

fOð−1Þ
ijk ¼ −

t
r3
ðxiδjk þ xjδik þ xkδijÞ þ

3t
r5

xixjxk: ðA9Þ

Using the algebraic symmetries of Pabcd and fOð−1Þ
bcd , we

have

PabcdfOð−1Þ
bcd ¼ PaijkfOð−1Þ

ijk þ PatijfOð−1Þ
tij þ PaitjfOð−1Þ

itj

þ PaijtfOð−1Þ
ijt ¼ 2PaitjfOð−1Þ

itj : ðA10Þ

The undesired term then becomes

1

4Gℏ

Z
Σ
dAdτnaPabcdfOð−1Þ

bcd

¼ 1

4Gℏ

Z
Σ
dAdτ

�
2ntPtitjfOð−1Þ

itj þ 2niPtkijfOð−1Þ
jtk

�

¼ −
1

4Gℏ

Z
Σ
dAdτ

2t
αr

Ptitj

�
δij −

xixj
r2

�
; ðA11Þ

where in the last step we used spherical symmetry killing
off all integrals with parity. Moreover, by parity, this term
will vanish for all terms i ≠ j, keeping only terms with
i ¼ j. With this fact in mind, and using that dτ ¼ dtα=r andP

x2i ¼ r2, we have

1

4Gℏ

Z
Σ
dAdτnaPabcdfOð−1Þ

bcd

¼−
1

4Gℏ
ðD−2Þ2

P
iP

titi

αðD−1Þ
�Z

dΩD−2

�Z
t0

0

dt
α

r
rD−3t

¼−
1

2ðD−1ÞGℏðD−2Þ
X
i

PtitiΩD−2

×
Z

t0

0

dtðα2þt2ÞðD−4Þ=2t

¼−
1

2ðD−1ÞGℏ
X
i

PtitiΩD−2

h�
α2þt20

�ðD−2Þ=2
−αðD−2Þ

i
:

ðA12Þ

Recall that we are applying Clausius’ theorem,
TΔSrev ¼ Q, to derive the equations of motion for an
arbitrary theory of gravity. But ΔStot includes all change in
the entropy, not just the change in entropy due to the heat
flow through Σ. In particular, even in the absence of heat
flow, the entropy increases because of the natural increase
in the area of a congruence of outwardly accelerating
observers.
Let us calculate the increase in entropy from the natural

background expansion of the hyperboloid. Begin with the
Wald entropy,
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S ¼ 1

8Gℏ

Z
S
dSabJab

¼ −
1

4Gℏ

Z
S
dSabðPabcd∇cξd − 2ξd∇cPabcdÞ: ðA13Þ

To leading order we can neglect the ∇cPabcd term.
Substituting in our leading-order expressions for the out-
ward pointing normal na, and ua ¼ ξa=α, we find

S ¼ −
1

4Gℏ

Z
S
dAðntui − niutÞ

h
Ptitj2∂tξj þ Ptijk∂jξk

i

¼ −
1

4Gℏ

Z
S
dA

xi
r
½2Ptitj∂tξj þ Ptijk∂jξk�

¼ −
1

4Gℏ

Z
S
dA

�
2Ptitj xixj

r2

�

¼ −
1

2ðD − 1ÞGℏ
X
i

PtitiΩD−2rD−2ðt0Þ; ðA14Þ

where we used parity to move to the final line. We are
interested in the change in entropy, ΔShyp, due to the
expansion of the hyperboloid. Using rhypðtÞ¼ðα2þt2Þ1=2,
we find

ΔShyp ≡ Shypðt0Þ − Shypð0Þ

¼ −
1

2ðD − 1ÞGℏ
X
i

PtitiΩD−2

h
rD−2
hyp ðt0Þ − rD−2

hyp ð0Þ
i

¼ −
1

2ðD − 1ÞGℏ
X
i

PtitiΩD−2

× ½ðα2 þ t20ÞðD−2Þ=2 − αðD−2Þ�; ðA15Þ

which precisely matches the leading-order part of the term,
Eq. (A12), we are trying to eliminate:

ΔShyp ¼
1

4Gℏ

Z
Σ
dAdτnaPabcdfOð−1Þ

bcd : ðA16Þ

That is, the unwanted term is exactly equal to the entropy
due to the natural expansion of the hyperboloid. This term
should be subtracted from ΔStot before equating it to Q.
Moreover, note that here we did not specify the exact form
of Pabcd, and therefore this subtraction holds for arbitrary
theories of gravity.

2. Eliminating higher order contributions

Now we must deal with the higher order contributions,
namely OðxÞ and Oðx2Þ. As alluded to above, in order to
eliminate the higher order contributions to naPabcdfbcd, we
consider a more generic ξa and na, namely,

ξa ¼ ξð1Þa þ ξð2Þa þ ξð3Þa þ � � �

¼ −rδta þ
txi

r
δia þ

1

2!
Cμνaxμxν þ C̃νarxν

þ 1

3!
Dμνρaxμxνxρ þ

1

2!
D̃μνarxμxν þ � � � ; ðA17Þ

αna ¼ α
�
nð1Þa þnð2Þa þnð3Þa þ���

�

¼−tδatþxiδaiþ
1

2!
C0
μνaxμxνþ

1

3!
D0

μνρaxμxνxρþ��� :
ðA18Þ

Here we adopt the notation that μ; ν; ρ;…, represent the full
spacetime index while i, j, k, l, h represent spatial

components, and where ξð·Þa denotes the order of the

component; e.g., ξð1Þa ¼ −rδta þ txi
r δia is of order OðxÞ.

Let us substitute our modified ξa into our expression for
fbcd, for which we reproduce the simplified version here
for convenience:

fbcd ¼ ∂b∂cξd − Γe
bc∂eξd − Re

bcdξe: ðA19Þ

We have already worked out the fOð−1Þ
bcd terms (A9).

Next, the only possible term in fbcd of order Oð1Þ is

fOð0Þ
bcd ≡ ∂b∂cξ

ð2Þ
d ¼ Cbcd: ðA20Þ

Now let us work out the term in fbcd of order OðxÞ. This
will include a combination of terms including ∂b∂cξ

Oð3Þ
d

and the remaining terms in (A19) of order OðxÞ, namely,

∂b∂cξ
ð3Þ
d ¼ Dνbcdxν þ rD̃bcd þ D̃νcdð∂brÞxν

þ D̃νbdð∂crÞxν þ
1

2!
D̃μνdxμxνð∂b∂crÞ ðA21Þ

− 2Γe
bcðhÞ∂ ½eξ

Oð1Þ
d� þOðx2Þ ðA22Þ

Re
bcdðpÞξð1Þe þOðx2Þ; ðA23Þ

where

Γe
bcðhÞ≡ 1

2
ηefð∂bhcf þ ∂chbf − ∂fhbcÞ

¼ −
xμ

3
ηefðRcμfb þ RbμfcÞ ðA24Þ

and we used hab ¼ − 1
3
Raμbνxμxν. Moreover, since

∂iξ
Oð1Þ
t ¼ −

xi
r
¼ −∂tξ

Oð1Þ
i ; ðA25Þ

the only nonvanishing contribution to ∂ ½eξd� is ∂ ½iξt� ¼ − xi
r .

Altogether, one finds
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fOð1Þ
bcd ¼ ∂b∂cξ

Oð3Þ
d − 2Γe

bcðhÞ∂ ½eξ
Oð1Þ
d� − Re

bcdξ
Oð1Þ
e :

ðA26Þ

Note that this is the highest order of fbcd we need to keep
since any higher order would give at least an Oðx3Þ
contribution to the integrand of the offending term, which
we neglect.
Recall that we need to eliminate (A3), (A4), and (A5) for

an arbitrary Pabcd. We have already dealt with (A3). Before
we go through the minutiae of these calculations, let us first
explain the aim of the next two subsections providing us
with a tether to hold onto as we work through the details.
The general prescription in eliminating the higher order

contributions tonaPabcdfbcd is as follows.The integrandwill
include all sorts of monomial contributions, e.g., t3xixj=r3.
Since we care about the integral

R
Σ naP

abcdfbcd vanishing—
not the integrand—we see that several of the monomials do
not end up contributing to the final result; for example,
t3xixj=r3 will vanish for all i ≠ j as we are integrating over a
sphere. Therefore we need only concern ourselves with,
e.g., t3ðxiÞ2=r3.
While this greatly reduces the number of monomial

contributions, we still cannot fully eliminate the entireR
Σ naP

abcdfbcd. This is why we modify ξa and na. More
specifically, there are only a select few combinations of
monomials which will appear in the integrand that do not
vanish upon integration over the sphere. By modifying ξa
and na we do not change the number of monomial
contributions. Instead we find our modifications to ξa
and na give us sets of coefficients that allow us the freedom
to eliminate all other monomials, provided we have enough
coefficients to do so. In short, we have a counting argu-
ment: If the number of nonvanishing monomials is less than
the number of coefficients contributing to the same mono-
mial, we can potentially force each monomial contribution
to zero, i.e.,

R
Σ naP

abcdfbcd → 0 with a judicious choice of
coefficients.
In what follows we use this general prescription to

separately eliminate monomials of order OðxÞ and Oðx2Þ.
With the benefit of hindsight, we realize that only certain
modifications to ξa and na will aid us, particularly,

ξa ¼ ξð1Þa þ ξð2Þa þ ξð3Þa þ � � �

¼ −rδta þ
txi

r
δia þ C̃νarxν þ

1

3!
Dμνρaxμxνxρ; ðA27Þ

αna ¼ α
�
nð1Þa þ nð3Þa þ � � �

�

¼ −tδat þ xiδai þ
1

3!
D0

μνρaxμxνxρ: ðA28Þ

As we will now explicitly show, this will be enough
to cancel all undesired contributions coming from

R
Σ naP

abcdfbcd through Oðx2Þ. [Note that although we

have set nð2Þa to zero, if we insist that na be orthogonal to ξa

at order Oðx3Þ, we should include an nð2Þa contribution of
the form C̃0

νatxν. It can be tediously verified that adding
such terms to na does not affect the counting argument,
allowing us to leave them off in what follows.]

a. OðxÞ contributions
With the nOð2Þ

a term being set to zero, theOðxÞ term to be
eliminated becomes

1

4

Z
Σ
dAdτ

�
nOð1Þ
a Pabcd

Oð1Þf
Oð−1Þ
bcd þ nOð1Þ

a Pabcd
Oð0Þf

Oð0Þ
bcd

�
: ðA29Þ

Let us first list the various types of monomial contributions
which might appear in the integrand:

OðxÞ∶ t; r;
ðxiÞ2
r

;
t2ðxiÞ2
r3

;
ðxiÞ2ðxjÞ2

r3
;
ðxiÞ4
r3

: ðA30Þ

As we will verify explicitly in a moment, only a subset
of these monomials appear. Following the outlined pre-
scription above, we need to check that we have enough
coefficients to remove each of the monomial contributions.
The only coefficients which will appear are those coming

from the fOð0Þ
bcd contribution, specifically C̃na, for which we

have D2 coefficients. The number of problematic mono-
mials which might appear is 1þ1þ1þðD−2Þ þ
ðD−2Þþ1

2
ðD−1ÞðD−2Þ¼DðDþ1Þ=2<D2, for D ≥ 3.

Therefore it already seems plausible that we will in fact
have far more than enough coefficients to eliminate all of
the monomial contributions appearing in the integrand. Let
us now verify this in detail.
As was worked out in the previous section, we have

PabcdfOð−1Þ
bcd ¼ 2PaitjfOð−1Þ

itj ¼ 2

r
Paitj

�
δij −

xixj
r2

�
:

ðA31Þ

Hence

nOð1Þ
a Pabcd

Oð1Þf
Oð−1Þ
bcd ¼ 2

r

�
δij −

xixj
r2

��
−
t
α
Ptitj
Oð1Þ þ

xk
α
Pkitj
Oð1Þ

�

¼ 2

αr
xkδijP

kitj
Oð1Þ −

2t
αr

�
δij −

xixj
r2

�
Ptitj
Oð1Þ:

ðA32Þ
Defining

Ptitj
Oð1Þ ≡ Ptitj

Oð1Þ;μx
μ Pkitj

Oð1Þ ¼ Pkitj
Oð1Þ;μx

μ; ðA33Þ

we find that the only contributing terms to the integrand,
i.e., those which do not vanish via parity arguments, are
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nOð1Þ
a Pabcd

Oð1Þf
Oð−1Þ
bcd ¼ −

2

αr

�
δij −

xixj
r2

�
t2Ptitj

Oð1Þ;t

þ 2

αr
δijxkxlP

kitj
Oð1Þ;l; ðA34Þ

where we have used xkxiPikcd ¼ 0 using the symmetries
of Pabcd.
Generally, then, we see that only certain monomials

appear which need to be removed. Specifically,

nOð1Þ
a Pabcd

Oð1Þf
Oð−1Þ
bcd ¼ A

α

t2

r
þ Aii

α

t2ðxiÞ2
r3

þ Bii

α

ðxiÞ2
r

; ðA35Þ

where we have defined

A≡−2δijP
titj
Oð1Þ;t; Aii≡ 2Ptiti

Oð1Þ;t; Bk
l≡ 2δijP

kitj
Oð1Þ;l:

ðA36Þ

We now show that modifying ξa via

ξOð2Þ
a ¼ rC̃μaxμ ðA37Þ

will eliminate all the above undesired contributions.We have

∂b∂cξ
Oð2Þ
d ¼ ∂b½C̃μdð∂crÞxμ þ C̃cdr�

¼ C̃μdð∂b∂crÞxμ þ C̃bdð∂crÞ þ C̃cdð∂brÞ:
ðA38Þ

Then, using

∂ir ¼
xi
r
; ∂i∂j ¼

1

r

�
δij −

xixj
r2

�
; ðA39Þ

we find

∂i∂jξ
Oð2Þ
d ¼ C̃μd

xμ

r

�
δij −

xixj
r2

�
þ C̃id

xj
r
þ C̃jd

xi
r
;

ðA40Þ

∂i∂tξ
Oð2Þ
d ¼ C̃td

xi
r
; ∂2

t ξ
Oð2Þ
d ¼ 0: ðA41Þ

Using these relations we find that

nOð1Þ
a Pabcd

Oð0Þf
Oð0Þ
bcd ¼ 1

α

n
−tPtitj

Oð0Þð∂t∂tξ
Oð2Þ
j Þ − tPtijk

Oð0Þð∂i∂jξ
Oð2Þ
k Þ − tPtijt

Oð0Þð∂i∂jξ
Oð2Þ
t Þ þ xiP

ijtk
Oð0Þð∂j∂iξ

Oð2Þ
k Þ

þ xiP
ijkl
Oð0Þð∂j∂kξ

Oð2Þ
l Þ þ xiP

ijkt
Oð0Þð∂i∂jξ

Oð2Þ
t Þ

o

¼ 1

αr

	
−t2

�
δij −

xixj
r2

�h
C̃tkP

tijk
Oð0Þ þ C̃ttP

tijt
Oð0Þ

i
þ
h
C̃hlP

ijkl
Oð0Þ þ C̃htP

ijkt
Oð0Þ

i
δjkxixh

þ
h
C̃jlP

ijkl
Oð0Þ þ C̃jtP

ijkt
Oð0Þ

i
xkxi



: ðA42Þ

Combining this with the term we wish to eliminate gives

�
A
α
−
δij
α

�
Ptijt
Oð0ÞC̃tt þ C̃tkP

tijk
Oð0Þ

�� t2
r

ðA43Þ

and

�
Aii

α
þ 1

α
ðC̃ttPtiit

Oð0Þ þ C̃tkPtiik
Oð0ÞÞ

�
t2

r3
ðxiÞ2; ðA44Þ

as well as

�
Bii

α
þ 1

α
ðC̃i

lP
ijkl
Oð0Þ þ C̃i

tP
ijkt
Oð0ÞÞδjk

þ 1

α
ðC̃jlP

ijil
Oð0Þ þ C̃jtP

ijit
Oð0ÞÞ

� ðxiÞ2
r

: ðA45Þ

The first two of these gives us 1þ ðD − 2Þ ¼ ðD − 1Þ
monomials to cancel. But to remove these monomials, we
have 1þ ðD − 1Þ ¼ D coefficients to work with, giving us

enough coefficients to cancel all of the undesired terms.
Studying the problem at this level has provided us with
insight that will prove useful when we study the elimination
of Oðx2Þ terms: (i) Not all of the possible monomials
appear, and (ii) not all of the possible coefficients we have
to work with will appear. Despite this we will still have
enough coefficients to achieve our goal of removingR
Σ naP

abcdfbcd.

b. (2 + 1)-Dimensional f(R) gravity:
A restrictive case

Based on the above calculation, however, it is clear that if
one of the quantities multiplying a set of the coefficients
vanishes, e.g., Ptijk, then we might be in trouble as we can
no longer use these coefficients. This is precisely the case
for fðRÞ theories of gravity (except Einstein gravity, for
which there is no Pabcd

Oð1Þ contribution to be canceled and we

can set all C̃ coefficients to zero). Thus, the most restrictive
case is (2þ 1)-dimensional fðRÞ gravity. Let us study this
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particular example explicitly and verify that we still have
enough coefficients to eliminate all monomials.
In fðRÞ gravity one has

Pabcd
fðRÞ ¼

f0ðRÞ
2

ðgacgbd − gadgbcÞ: ðA46Þ

So,

Pabcd
fðRÞ;Oð0Þ ¼

f0ðRÞðpÞ
2

ðηacηbd − ηadηbcÞ;

Pabcd
fðRÞ;Oð1Þ ¼

f0ðRÞðxÞ
2

ðηacηbd − ηadηbcÞ≡ Pabcd
Oð1Þ;μx

μ;

ðA47Þ

where p is the spacetime point where these expressions are
being evaluated. This tells us that Bii ¼ 0, leaving

�
A
α
−
δij
α
Ptijt
Oð0ÞC̃tt

�
t2

r
ðA48Þ

and

�
Aii

α
þ 1

α
C̃ttPtiit

Oð0Þ

�
t2

r3
ðxiÞ2; ðA49Þ

where

A ¼ −2δijP
titj
Oð1Þ;t; Aii ¼ Ptiti

Oð1Þ;t: ðA50Þ

Expanding our above expressions in a (2þ 1)-dimensional
spacetime yields

1

α

h
−2ðPtxtx

Oð1Þ;t þ Ptyty
Oð1Þ;tÞ þ C̃ttðPtxtx

Oð0Þ þ Ptyty
Oð0ÞÞ

i t2
r

ðA51Þ

and

1

α

h
2ðPtxtx

Oð1Þ;tx
2 þ Ptyty

Oð1Þ;ty
2Þ − C̃ttðPtxtx

Oð0Þx
2 þ Ptyty

Oð0Þy
2Þ
i t2
r3
:

ðA52Þ

Each of these must vanish separately. Using that

Ptxtx
Oð0Þ ¼ Ptyty

Oð0Þ; Ptxtx
Oð1Þ;t ¼ Ptyty

Oð1Þ;t; ðA53Þ

we are led to

1

α

�
−4Ptiti

Oð1Þ;t þ 2C̃ttPtiti
Oð0Þ

� t2

r
; ðA54Þ

1

α

�
2Ptiti

Oð1Þ;t − C̃ttPtiti
Oð0Þ

� t2ðx2 þ y2Þ
r3

: ðA55Þ

Since x2 þ y2 ¼ r2, we find that the above two conditions
are in fact the same; miraculously the monomials add in
such a way that we need only a single coefficient. [In fact,
this feature of two seemingly different conditions becoming
one can readily be obtained in this case if one uses the fact

that Ptitj
Oð0Þðδij −

xixj
r2 Þ ¼ − f0ðRÞðpÞ

2
ðD − 2Þ from the start.]

Finally, it is possible in principle that, say, Ptiti
Oð0Þ vanishes

while Ptiti
Oð1Þ;t does not, preventing (A54) from being set to

zero. However, inspecting (A54), it is easy to see that this
can happen at most on a set of measure zero.

c. O(x2) contributions

Let us now move on to the Oðx2Þ contribution to
naPabcdfbcd where the story and prescription are the same,

though far more tedious to work out. Setting nOð2Þ
a to zero

means that we must eliminate

1

4

Z
Σ
dAdτ

n ffiffiffi
h

p
nOð1Þ
a Pabcd

Oð0Þf
Oð−1Þ
bcd þ nOð1Þ

a Pabcd
Oð2Þf

Oð−1Þ
bcd

þ nOð1Þ
a Pabcd

Oð1Þf
Oð0Þ
bcd þ nOð1Þ

a Pabcd
Oð0Þf

ð1Þ
bcd

þ nOð3Þ
a Pabcd

Oð0Þf
Oð−1Þ
bcd

o
: ðA56Þ

At theOðx2Þ level, the only monomials which might appear
are

t2; ðxiÞ2;
tðxiÞ2
r

;
t5

r3
;

t3ðxiÞ2
r3

;

tðxiÞ4
r3

;
tðxiÞ2ðxjÞ2

r3
; ðA57Þ

giving us a total of 1þðD−1ÞþðD−1Þþ1þðD−1Þ þ
1=2ðD−1ÞðD−2Þ¼DðDþ3Þ=2. Naively we have far more
coefficients to work with; e.g., in D̃μνa alone we have D3

coefficients to use. However, as observed at the OðxÞ level,
only a subset of the monomials and coefficients will appear.
After much tedious algebra, one finds that the

naPabcdfbcd terms at the Oðx2Þ level are

naPabcdfbcd ¼
1

α

	
X þ 1

2
Ptitj
Oð0ÞδijD̃ttt −

1

2
Ptijk
Oð0ÞD̃ttk þ

1

3
ðD0

ttttP
titj
Oð0Þδij þD0

tttkP
kitj
Oð0ÞδijÞ



t3

r

þ 1

α

	
Yii þ 1

2
Ptiik
Oð0ÞD̃ttk −

1

2
Ptiti
Oð0ÞD̃ttt −

1

3
ðD0

ttttPtiti
Oð0Þ þD0

tttkP
kiti
Oð0ÞÞ


 ðxiÞ2t3
r3
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þ 1

α

	
Ziikk −

1

2
D̃kk

tPtiti
Oð0Þ − 2D̃ki

tPtitk
Oð0Þ

− 2ðD0kk
ttPtiti

Oð0Þ þ 2D0ik
ttPtitk

Oð0Þ þD0kk
tlP

liti
Oð0Þ þ 2D0ik

tlP
litk
Oð0ÞÞ


 ðxkÞ2ðxiÞ2t
r3

þ 1

α
ðX − Ptijk

Oð0ÞD̃ijk − Ptitj
Oð0ÞðD̃itj − D̃ijtÞÞrtþ

1

α

	
Wkk þ Pkjkl

Oð0ÞD̃tjl

þ Pkjil
Oð0ÞδijD̃

k
tl − Ptktk

Oð0ÞD̃ttt − ðPtkij
Oð0Þ þ Ptikj

Oð0ÞÞD̃k
ij − Ptktj

Oð0ÞðD̃k
tj − D̃k

jtÞ

þ 1

2
Ptitj
Oð0ÞδijD̃

kk
t þ 2ðD0kk

ttP
titj
Oð0Þδij þD0kk

tlP
litj
Oð0ÞδijÞ


 ðxkÞ2t
r

; (A58)

where X, Yii, Ziikk, X , and Wkk are some messy collection of constants independent of the D̃ and D0 coefficients.
From counting one finds that there are more than enough coefficients to remove all of the undesired monomial

expressions for arbitrary theories of gravity, and, even in the most restrictive case of (2þ 1)-dimensional fðRÞ gravity, we
will still find that we have just enough coefficients to remove all of the undesired monomials.
To see how even the most restrictive case is satisfied, it suffices to study only a single contribution from

nOð1Þ
a Pabcd

Oð0Þf
Oð1Þ
bcd ,

nOð1Þ
a Pabcd

Oð0Þf
Oð1Þ
bcd ¼ −

t
α

h
Ptijk
Oð0Þf

Oð1Þ
ijk þ Ptitj

Oð0ÞðfOð1Þ
itj − fOð1Þ

ijt Þ
i

þ xi
α

h
Pijkl
Oð0Þf

Oð1Þ
jkl þ Pitkt

Oð0ÞðfOð1Þ
tkt − fOð1Þ

ttk Þ þ Pijtk
Oð0ÞðfOð1Þ

jtk − fOð1Þ
jkt Þ

i
: ðA59Þ

In particular, we need only study the first line. After much algebra we find

−
t
α
Ptitj
Oð0ÞðfOð1Þ

itj − fOð1Þ
ijt Þ ¼ 1

α
½F − Ptitj

Oð0ÞðD̃itj − D̃ijtÞ�rtþ
1

2α
D̃tttP

titj
Oð0Þδij

t3

r
−

1

2α
Ptiti
Oð0ÞD̃ttt

ðxiÞ2t3
r3

−
1

α

�
Mkk þ Ptktj

Oð0ÞðD̃k
tj − D̃k

jtÞ −
1

2
Ptitj
Oð0ÞδijD̃

kk
t

� ðxkÞ2t
r

−
1

2α
ðD̃kk

t Ptiti
Oð0Þ þ 4D̃ki

tPtitk
Oð0ÞÞ

ðxkÞ2ðxiÞ2t
r3

; ðA60Þ

where we have defined

Mkk ≡ 4

3
Ptitj
Oð0ÞRi

kk
jðpÞ;

F ≡ Ptitj
Oð0ÞðRtitjðpÞ − RtijtðpÞÞ: ðA61Þ

Consider a (2þ 1)-dimensional spacetime. We immedi-
ately see that

1

2α
D̃tttP

titj
Oð0Þδij

t3

r
−

1

2α
Ptiti
Oð0ÞD̃ttt

ðxiÞ2t3
r3

ðA62Þ

cancel each other. This is fine as it only depends on a single
coefficient D̃ttt. We have

1

α

h
F −Ptitj

Oð0ÞðD̃itj − D̃ijtÞ
i
rt

¼ 1

α

h
F −Ptiti

Oð0ÞðD̃xtx − D̃xxt þ D̃yty − D̃yytÞ
i
rt; ðA63Þ

−
1

2α
ðD̃kk

t Ptiti
Oð0Þ þ 4D̃ki

tPtitk
Oð0ÞÞ

ðxkÞ2ðxiÞ2t
r3

¼ −
1

2α

n
5D̃xxtx4 þ 5D̃yyty4 þ ðD̃xxt þ D̃yytÞx2y2

o t
r3
;

ðA64Þ

and

−
1

α

�
Mkk þ Ptktj

Oð0ÞðD̃k
tj − D̃k

jtÞ −
1

2
Ptitj
Oð0ÞδijD̃

kk
t

� ðxkÞ2t
r

¼ −
1

α

�
4

3
Ptiti
Oð0ÞRyxxyðpÞ

�
rt;

−
1

α
Ptiti
Oð0Þ

�
ðD̃xtx − D̃xxtÞ

x2t
r

þ ðD̃yty − D̃yytÞ
y2t
r

�
:

ðA65Þ
Let us now set D̃kkt ¼ 0. This choice yields the two
expressions
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1

α

h
F −Ptitj

Oð0ÞðD̃itj−D̃ijtÞ
i
rt¼ 1

α

h
F −Ptiti

Oð0ÞðD̃xtxþD̃ytyÞ
i
rt

ðA66Þ

and

−
1

α

�
MkkþPtktj

Oð0ÞðD̃k
tj−D̃k

jtÞ−
1

2
Ptitj
Oð0ÞδijD̃

kk
t

�ðxkÞ2t
r

¼−
1

α

�
4

3
Ptiti
Oð0ÞRyxxyðpÞ

�
rt−

1

α
Ptiti
Oð0Þ

�
D̃xtx

x2t
r
þD̃yty

y2t
r

�
:

ðA67Þ

Let us further choose that D̃xtx ¼ D̃yty ≡ D̃. The second
expression then becomes

−
1

α

�
4

3
Ptiti
Oð0ÞRyxxyðpÞ

�
rt −

1

α
Ptiti
Oð0ÞD̃rt: ðA68Þ

Defining 4=3Ptiti
Oð0ÞRyxxyðpÞ≡M, we find that the follow-

ing combination must be made to vanish:

−
1

α

h
M − F þ 3Ptiti

Oð0ÞD̃
i
rt: ðA69Þ

We have the freedom to choose D̃ such that this monomial
vanishes.
The reason this specific case is enough to show that there

are enough coefficients to remove all of the Oðx2Þ mono-
mial contributions to

R
Σ naP

abcdfbcd is that every type of
possible monomial is present. Any additional contributions
which come into play can easily be handled by (i) altering
the choice of D̃μνa, and (ii) using the D̃0

μνρa coefficients. The
only monomial which might give us pause is that propor-
tional to tðxiÞ2=r, as the D̃ttt happened to exactly cancel. It
turns out, however, that there are enough D0 coefficients to
deal with these monomials.
In summary, by modifying ξa and na, we have more than

enough coefficients to remove all of the monomial contri-
butions to naPabcdfbcd that do not vanish due to integration
over the sphere, through the Oðx2Þ level. Therefore, while
there might be Oðx3Þ contributions to the integrand, these
terms are sufficiently smaller than those we wish to keep in
the equations ofmotion, allowingus to effectively neglect the
undesired contribution

R
Σ naP

abcdfbcd.

3. Eliminating qa

Last, let us discuss how to eliminate another unwanted
term,

−
1

4Gℏ

Z
Σ
dAdτnaqa; ðA70Þ

where qa ¼ ∇bðPadbc þ PacbdÞ∇cξd. This term is only
present for non-Lovelock theories of gravity, such as

non-Einstein fðRÞ gravity. Only the symmetric parts of
∇cξd survive the contraction. From (8), we see that the
symmetric parts have both Oðx2Þ and Oð1Þ parts. Since na
is of order x, the Oðx2Þ part of qa gives a term in naqa of
order x3, and we can therefore neglect it. But theOð1Þ i − j
contributions cannot be neglected outright:

−
1

4Gℏ

Z
Σ
dΣa∇bðPaibjÞð∇iξj þ∇jξiÞ: ðA71Þ

To match our approximations we must therefore eliminate
this contribution for non-Lovelock theories of gravity. This
is indeed possible, as we now show. Because of the form,
Eq. (8), of ∇ðiξjÞ, terms with i ≠ j integrate to zero in
(A71). When i ¼ j, the integrand is of OðxÞ for the

combination nð1Þt ð∇bPtibi
Oð0ÞÞ∇iξi. This yields two types of

monomials:

t2

r
;

t2ðxiÞ2
r3

: ðA72Þ

However, precisely these monomials already appear in
(A30). They can therefore be absorbed in the OðxÞ
contributions to naPabcdfbcd that have already been shown
to be eliminated; the counting argument discussed at length
above is not altered. The integrand of (A71) will be of

Oðx2Þ in two ways: (i) nð2Þa ð∇bPaibjÞð0Þ∇ðiξjÞ, or

(ii) nð1Þa ð∇bPaibjÞð1Þ∇ðiξjÞ. Together, the only monomials
that appear are

t3

r
;

t3ðxiÞ2
r3

;
tðxiÞ2
r

;
tðxiÞ2ðxjÞ2

r3
ðA73Þ

matching the monomials already appearing in (A57). In
summary, the terms appearing in (A71) can be readily
eliminated by the coefficients we use to dispose of similar
terms in naPabcdfbcd, without altering the counting.

APPENDIX B: EQUATING INTEGRANDS

Let us discuss how Clausius’ theorem, Q ¼ ΔSrev=T,
leads to an equality between integrals of the formZ

Σ
dAdτAabξ

anb ¼
Z
Σ
dAdτTabξ

anb: ðB1Þ

For Einstein gravity, Aab ¼ 1
8πGRab, while for general

theories of gravity, Aab can be read off from the left-hand
side of (51). In this appendix, we show that the equality of
integrals (B1) implies the equality of their integrands:

Aabξ
anb ¼ Tabξ

anb: ðB2Þ
Ordinarily, the equality of integrands follows from the
equality of integrals if the boundaries of the domain of
integration can be suitably varied without affecting the
equality of the integrals.
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Defining the symmetric matrix Mab ≡ Aab − Tab, and
with the proper time element on the hyperboloid given by
dτ ¼ dtα=r, we can write (B1) as

0 ¼
Z

ϵ

0

dt
α

rðtÞ
Z
ωðtÞ

dAMabξ
anb: ðB3Þ

We would like to conclude from this that Mabξ
anb ¼ 0.

Because ϵ is arbitrary, for this integral to vanish for all
values of ϵ, the standard argument from calculus implies
that the integrand must itself be zero:

0 ¼
Z
ωðtÞ

dAMabξ
anb; ðB4Þ

for all spheres ωðtÞ. However, we cannot apply the same
argument to this integral because a sphere has no boundary
to vary.
Expanding the integrand gives

0 ¼
Z

dA

�
M00rtþM0itxi

�
1þ t

r

�
þMii

tðxiÞ2
r

þMij;i≠j
txixj

r

�
: ðB5Þ

Integration over the sphere causes the terms in the integrand
proportional to odd powers of xi to automatically vanish,
telling us nothing about Mij;i≠j and M0i. We see, however,
that the other components must obey the condition

M00 þ
1

ðD − 1Þ
X
i

Mii ¼ 0: ðB6Þ

To proceed, note that (B1) also holds for a different
hyperboloid, Σ0, obtained by an active Lorentz transforma-
tion of Σ. This active transformation does not affect the
matrix M, whose elements are evaluated at p, but trans-
forms the vectors ξ and n to ξ0 and n0. We then follow this

with a passive Lorentz transformation on the coordinates
such that the components of the new ξ0 and n0 are the same
as the original components of the old ξ and n. Under a
passive Lorentz transformation, M transforms as a matrix,
and we have

0 ¼
Z
Σ0
dAdt

α

r
M0

abξ
anb ⇒ 0

¼
Z

dA

�
M0

00rtþM0
0itx

i

�
1þ t

r

�

þM0
ii
tðxiÞ2
r

þM0
ij;i≠j

txixj

r

�
ðB7Þ

from which we find

M0
00 þ

1

ðD − 1Þ
X
i

M0
ii ¼ 0: ðB8Þ

We now show that (B6) and (B8) are enough to claim
Mab ∝ ηab. Perform a Lorentz transformation in the 0–1
plane. Then applying (B6) and (B8) leads to

M00 ¼ −M11 −
2βγ2

ð1 − γ2ÞM01: ðB9Þ

For this to hold for all β, we conclude that M01 ¼ 0.
Moreover, M00 ¼ −M11. A similar argument holds for
Lorentz boosts in other planes, and therefore, M00 ¼
−M11 ¼ −M22 ¼ � � �, and M0i ¼ 0. It is also straightfor-
ward to show that Mij ¼ 0 for i ≠ j by first performing a
rotation onMab, and then a Lorentz boost. In summary, we
find thatMab is a diagonal matrix withM00 ¼ −Mii. Hence
Mab ∝ ηab. But since ηabξ

anb ¼ 0, we find

Mabξ
anb ¼ 0 ðB10Þ

as desired.
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