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We consider the effect of including a nonminimal coupling between a Uð1Þ vector gauge field and the
graviton Regge trajectory in holographic QCD models. This coupling describes the QCD interaction
between the quark bilinear electromagnetic current and the Pomeron. We test this new coupling against DIS
data at low Bjorken x and obtain an excellent fit with a chi squared of 1.1 over a very large kinematical
range in the photon virtuality Q2 < 400 GeV2 and for x < 10−2. The scale of the new dimension full
coupling, which arises from integrating higher spin fields, is of order 1–10 GeV. This value matches
precisely the expectations from effective field theory, which indicate that such corrections are controlled by
the mass gap between the spin two and spin four glueballs that are described holographically by the
graviton and spin four field in the graviton Regge trajectory, respectively.

DOI: 10.1103/PhysRevD.98.026016

I. INTRODUCTION

The observation that the Pomeron is dual to the graviton
Regge trajectory [1] opened an entirely new approach to the
analysis of QCD processes dominated by Pomeron
exchange. This fact has been explored in diffractive proc-
esses, like low-x deep inelastic scattering (DIS) [2–25],
deeply virtual Compton scattering [26], vector meson
production [27], double diffractive Higgs production [28],
central production of mesons [29] and other inclusive
processes [30]. It is now clear that holographic QCD is a
valuable tool to model the physics of gluon rich medium,
where standard perturbative techniques like the BFKL
pomeron [31–33] breakdown.
In this paper we focus on low x DIS, extending the

previous work [25]. The basic idea is to construct the
holographic Regge theory for the glueball exchange asso-
ciated with the Pomeron trajectory. In DIS the Pomeron
couples to the quark bilinear electromagnetic current
Jμ ¼ ψ̄γμψ , which is described holographically by the
interaction between a bulk Uð1Þ vector gauge field and
the graviton Regge trajectory. Here we shall extend the
analysis of [25] by allowing for a non-minimal coupling
between this gauge field and the higher spin fields in the
graviton Regge trajectory.We shall fit the same set of data as
in [25], more concretely we fit 249 data points, covering
the very large kinematical range of x < 10−2 and

Q2 < 400 GeV2, where x is the Bjorken x and Q2 the
photon virtuality. As a result, we manage to improve the
quality of our fit from a chi squared per degree of freedom of
1.7 in [25] to an excellent value of 1.1 in the present work.
The existence of such nonminimal coupling between the

bulk Uð1Þ gauge field and the graviton Regge trajectory is
expected. Starting from the UV high energy limit, the OPE
expansion of the two currents, JμðxÞJνðyÞ, contains two
OPE coefficients for each spin J symmetric traceless
operator associated with the glueballs on the pomeron
trajectory, OJ ∼ trðFμα1Dα2…DαJ−1F

μ
αJÞ. Holographically,

and for pure AdS space, this amounts to precisely the same
counting when coupling a vector gauge field to the
graviton, or to the higher spin fields in the gravity
Regge trajectory. Thus we shall consider such non-minimal
coupling. In fact, since QCD is not a conformal theory,
there is actually more freedom in the choice of such
couplings in holographic QCD which, as we shall see,
are very much model dependent. For concreteness we shall
consider one such coupling, which arises in an effective
field theory expansion in the dual QCD string tension. After
obtaining the new expression for the DIS structure function
F2ðx;Q2Þ in generic AdS/QCD models, we focus on the
specify holographic QCD model of [34–36]. This allows us
to put numbers in our expressions that are then tested
against available low x DIS data.

II. HOLOGRAPHIC COMPUTATION OF F2
STRUCTURE FUNCTION

The structure function F2ðx;Q2Þ is related to the total
cross section of the inelastic γ�p → X process. As discuss
in the standard literature (see for instance [37]), defining σT
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and σL to be the cross sections for transverse and
longitudinal polarizations, we have

σT þ σL ¼ 4π2α

Q2
F2ðx;Q2Þ; ð1Þ

where α is the fine structure constant. The structure
function depends on the photon virtuality Q2 and on the
Bjorken x ≪ 1, which we take to be small. Through the
optical theorem, this total cross section can be related to
the imaginary part of the amplitude A for elastic forward
scattering γ�p → γ�p, with the appropriate polarizations.
Thus

F2ðx;Q2Þ ¼ Q2

4π2α

1

s
ImAðs; t ¼ 0Þ; ð2Þ

where s and t are the usual Mandelstam variables (in the
low x regime, s ¼ Q2=x). We will compute this amplitude
using the AdS/QCD prescription as described below.
First let us define our kinematic variables. We use light-

cone coordinates (þ, −,⊥), with the flat space metric given
by ds2 ¼ −dxþdx− þ dx2⊥, where x⊥ ∈ R2 is a vector in
impact parameter space. We take for the large s kinematics
of 12 → 34 scattering the following

k1 ¼
� ffiffiffi

s
p

;−
Q2ffiffiffi
s

p ;0

�
; k3 ¼−

� ffiffiffi
s

p
;
q2⊥−Q2ffiffiffi

s
p ;q⊥

�
;

k2 ¼
�
M2ffiffiffi
s

p ;
ffiffiffi
s

p
;0

�
; k4¼−

�
M2þq2⊥ffiffiffi

s
p ;

ffiffiffi
s

p
;−q⊥

�
: ð3Þ

where k1 and k3 are respectively the incoming and outgoing
photon momenta. The proton target has mass M and
incoming and outgoing momenta k2 and k4, respectively.
For the forward scattering considered in the optical theorem
we set q⊥ ¼ 0, so that k1 ¼ −k3, and we take the same
polarization for the incoming and outgoing photon. The
possible polarization vectors are

nμðλÞ ¼
� ð0; 0; ϵλÞ; λ ¼ 1; 2;

ð ffiffiffi
s

p
=Q;Q=

ffiffiffi
s

p
; 0Þ; λ ¼ 3;

ð4Þ

where ϵλ is just the usual transverse polarization vector.

A. AdS/QCD

We shall compute the above scattering amplitude using
the framework of AdS/QCD. First we present general
formulae and then specify to a particular model. As
explained in the introduction, we are interested in the
Regge limit where the amplitude is dominated by the
exchange of the graviton Regge trajectory, which includes
fields of even spin J. We also need to define our holo-
graphic external states. The corresponding Witten diagram
is shown in Fig. 1. The upper part of the diagram is related

to the incoming and outgoing virtual photons, whereas the
bottom part to the proton target.
The holographic dual of QCD will have a dilaton field

and a five-dimensional metric, which in the vacuum will
have the form

ds2 ¼ e2AðzÞ½dz2 þ ημνdxμdxν�; Φ ¼ ΦðzÞ; ð5Þ

for some unknown functions AðzÞ and ΦðzÞ. The dilaton is
dual to the Lagrangian and the metric to the energy-
momentum tensor. We shall use greek indices in the
boundary, with flat metric ημν. We will work with the string
frame metric.
In DIS the external photon is a source for the conserved

Uð1Þ current ψ̄γμψ , where the quark field ψ is associated to
the open string sector. The five dimensional dual of this
current is a massless Uð1Þ gauge field A. We shall assume
that this field is made out of open strings and that is
nonminimally coupled to the metric, with the following
action

SA ¼ −
1

4

Z
d5X

ffiffiffiffiffiffi
−g

p
e−ΦðFabFab þ βRabcdFabFcdÞ; ð6Þ

where F ¼ dA and we use the notation Xa ¼ ðz; xαÞ for
five-dimensional points. The corresponding equation of
motion can be easily derived to be

∇a½e−ΦðFab þ βRab
cdFcdÞ� ¼ 0: ð7Þ

The coupling β has dimensions of length squared. At this
order in derivatives of the fields, we could have other
couplings to the Riemann tensor, to derivatives of the dilaton
field and also higher derivative terms in the field strength F.
As we shall see bellow, we will be mostly interested in the
coupling to the graviton in the linearised theory, in which
case there are only two possible local couplings. Thus, for
our purposes the above action is rather general.
We will fix the gauge of the Uð1Þ bulk field to be

DaAa ¼ 0, which gives Az ¼ 0 and ∂μAμ ¼ 0. The solution
of the equation of motion (7) in this gauge is then

Aλ
μðX; k; λÞ ¼ nμðλÞfkðzÞeik·x; ð8Þ

FIG. 1. Tree level Witten diagram representing spin J exchange
in a 12 → 34 scattering.
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where fkðzÞ solves the differential equation

½−Q2 þ eΦ−A∂zðeA−Φ∂zÞ þ βΔβ�fQðzÞ ¼ 0; ð9Þ

with

Δβ ¼ −2e−2A½ð− _A Ä− _Φ Äþ ⃛AÞ∂z þ Ä∂2
z − _A2Q2�: ð10Þ

Notice that here, and in the remainder of this paper, we shall
denote derivatives with respect to z with a dot. The
momentum k and the polarization vector nðλÞ satisfy

k2 ¼ Q2; nzðλÞ ¼ 0; k · nðλÞ ¼ 0; ð11Þ

where the boundary polarization is given by (4). We choose
as UV boundary condition fð0Þ ¼ 1 which gives the non-
normalizable solution, since the off-shell photon acts as a
source for the quark bilinear current ψ̄γμψ . Finally, let us
note that, for the computation of the Witten diagram in
Fig. 1, it is convenient to compute the field strength of a
given mode

FμνðX; k; λÞ ¼ 2ik½μnν�ðλÞfQðzÞeik·x;
FzμðX; k; λÞ ¼ nμðλÞ _fQðzÞeik·x; ð12Þ

where Q2 ¼ k2.
For the proton target we consider a scalar field ϒ that

represents an unpolarized proton described by a normal-
izable mode of the form

ϒðX;pÞ ¼ υmðzÞeip·x; ð13Þ

where p is the momentum and m2 ¼ −p2. As explained in
detail in [25], the specific details of the function will not be
important because it will appear in an integral that can be
absorbed in the coupling between the Pomeron and the
proton.

B. Nonminimal coupling

To compute the Witten diagram of Fig. 1, we need to
consider the interaction between the external scattering
states and the spin J fields in the graviton Regge trajectory.
Thus, the higher spin field comes from the closed string
sector while the external fields come from the open sector.
First we consider the coupling between the Uð1Þ gauge

field and the graviton. In Einstein-Maxwell theory, and for
AdS or flat space, it is well known that there are only two
possible cubic couplings between these fields, namely

FacFb
chab; FacFbd∇c∇dhab; ð14Þ

where hab is the metric fluctuation. The present case,
however, is less restrictive because we have an additional
scalar field and also because space-time is not maximally

symmetric. To understand this better, let us linearize the
action (6) around the background metric, that is, we write
gab ¼ ḡab þ hab. Setting h ¼ haa ¼ 0 we have the cubic
couplings

δS ¼ −
1

2

Z
d5X

ffiffiffiffiffiffi
−ḡ

p
e−Φ

�
FabFc

bhac þ
β

2
hapR̄

p
bcdF

abFcd

− βFacFbd∇̄a∇̄bhcd

�
: ð15Þ

To study the graviton Regge trajectory in the background (5)
we need to decompose the metric in SOð1; 3Þ irreducible
representations. We will be only interested in the graviton
TT components hαβ, satisfying ∂αhαβ ¼ 0 and hαα ¼ 0, and

we set hzα ¼ 0 ¼ hzz. Using that Rαμβν ¼ _A2e2Aðηανημβ −
ηαβημνÞ and Rαzβz ¼ −Äe2Aηαβ in the background (5), and
computing the covariant derivatives, we obtain

δS ¼ −
1

2

Z
d5X

ffiffiffiffiffiffi
−ḡ

p
e−Φ½FαμFβ

μð1 − βe−2A _A∂zÞ

− βFαμFβν∂μ∂ν − 2βFαzFβνð∂z − 2 _AÞ∂ν

þ FαzFβ
zð1 − βe−2Að∂2

z − 3 _A∂z þ 2 _A2ÞÞ�hαβ: ð16Þ

Notice that in the AdS case (A ¼ − log z) these couplings
reduce to the two allowed couplings in (14). However, in the
present case there are more possibilities. For example, other
contractions with the Riemann tensor will give different
functions multiplying the same tensor structures in the
couplings. We may also use derivatives of the scalar field
to contract with the field strength. For simplicity, the
approach we follow in this work will be to focus on the
coupling given by the action (6). Our aim is to test whether
this type of corrections are important in describing DIS
using holographic QCD.
Next we wish to generalize the previous coupling to case

of the cubic interaction between the gauge field and a
symmetric, transverse and traceless spin J field, ha1…aJ .
The Pomeron trajectory includes such higher spin fields of
even J. Again there are several possibilities, but we shall
focus on the simplest extension of the two couplings to the
graviton considered above. The first term is the minimal
coupling term, which can be generalized to

κJ

Z
d5X

ffiffiffiffiffiffi
−ḡ

p
e−ΦFa1b∇̄a2…∇̄aJ−1FaJ

bha1…aJ : ð17Þ

The transverse condition of ha1…aJ guarantees that this term
is unique up to dilaton derivatives. For the nonminimal
coupling we will write
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βJ

Z
d5X

ffiffiffiffiffiffi
−ḡ

p
e−Φ

�
Fca1∇̄a2…∇̄aJ−1FaJd∇̄c∇̄d

þ 1

2
Fa1b∇̄a2…∇̄aJ−1FcdRaJ

bcd

�
ha1…aJ : ð18Þ

We remark that in both expressions (17) and (18) the way
we distribute the covariant derivatives acting on the field
strength is important. After integrating by parts such a
covariant derivative, we are left with an extra term in the
derivative of the background dilaton field. However, these
terms will have a component of the higher spin field along
the z direction, which can be dropped in the case of the
Pomeron.
Next we need to decompose the spin J fields in SOð1; 3Þ

irreducible representations. In the Regge limit we are only
interested in the TT components of these fields, that is in
hα1…αJ with ∂νhνα2…αJ ¼ 0 and hννα3…αJ ¼ 0. From now on
we will assume these two conditions. Thus for the minimal
coupling (17) we obtain simply

κJ

Z
d5X

ffiffiffiffiffiffi
−ḡ

p
e−ΦðFα1μ∂α2…∂αJ−1FαJ

μ

þ Fα1z∂α2…∂αJ−1FαJ
zÞhα1…αJ : ð19Þ

For the nonminimal coupling (18) we obtain after a
cumbersome computation

βJ

Z
d5X

ffiffiffiffiffiffi
−ḡ

p
e−Φ½Fzα1∂α2 � � � ∂αJ−1FαJ

zDJ
k

þ Fμα1∂α2 � � � ∂αJ−1FαJνðe2ADJ⊥ημν þ ∂μ∂νÞ
þ 2Fμα1∂α2 � � � ∂αJ−1FαJzð∂z − J _AÞ∂μ�hα1���αJ ; ð20Þ

where

DJ⊥ ¼ e−2A _Að∂z − ðJ − 2Þ _AÞ;
DJ

k ¼ e−2Að∂2
z − ð2J − 1Þ _A∂z

− ðJ − 2ÞÄþ JðJ − 1Þ _A2Þ: ð21Þ
For J ¼ 2 this coupling reduces to the graviton nonminimal
coupling given in (16).
For the scalar field ϒ we will consider a minimal

coupling with spin J closed string fields

κ̄J

Z
d5X

ffiffiffiffiffiffi
−ḡ

p
e−Φðϒ∇a1…∇aJϒÞha1…aJ : ð22Þ

Again, this coupling is unique up to derivatives of the
dilaton field that are subleading in the Regge limit.
Focusing on the TT part of the spin J field, we are left
with the single coupling

κ̄J

Z
d5X

ffiffiffiffiffiffi
−ḡ

p
e−Φðϒ∂α1…∂αJϒÞhα1…αJ : ð23Þ

C. Witten diagram in Regge limit

The scattering amplitude will have a contribution from
the minimal and the nonminimal coupling. The contribu-
tion of the minimal coupling to the structure function F2 is
presented and described in [25]. Here we shall compute the
contribution of the nonminimal coupling (20) to the
exchange of a spin J field, corresponding to the Witten
diagram in Fig. 1. Using the Regge kinematics (3) and
taking as external states Fab

i ðXÞ for i ¼ 1, 3 and ϒjðX̄Þ for
j ¼ 2, 4, we obtain for forward scattering the expression

βJ κ̄J
X3
λ¼1

Z
d5Xd5X̄

ffiffiffiffiffiffi
−g

p ffiffiffiffiffiffi
−ḡ

p
e−Φe−Φ̄ϒ2ð∂̄−ÞJϒ4

× ½Fþz
1 ð∂þÞJ−2Fþ

3zD
J
k þ Fþμ

1 ð∂þÞJ−2Fþ
3μD

J⊥�
× Πþ���þ;−���−ðX; X̄Þ; ð24Þ

where bars denote quantities evaluated at X̄. Notice that the
couplings involving derivatives along the boundary in (20)
vanish for forward scattering. Using (12) and (13) for the
external states and performing the sum over polarisations
we find

− βJ κ̄JsJ
Z

d5Xd5X̄
ffiffiffiffiffiffi
−g

p ffiffiffiffiffiffi
−ḡ

p
e−Φ−Φ̄−2ðJþ1ÞA−2JĀ

× υ2mðz̄Þ
�
f2QðzÞDJ⊥ þ

_f2QðzÞ
Q2

DJ
k

�
Πþ���þ;−���−: ð25Þ

We remark that the terms with DJ⊥ and with DJ
k are,

respectively, the leading contribution arising from the
transverse and longitudinal polarizations, therefore justify-
ing our notation.
Performing the change of variable w ¼ x − x̄, setting

l⊥ ¼ x⊥ − x̄⊥, t ¼ −q2⊥ and defining the transverse propa-
gator at zero momentum transfer by

Z
dwþdw−d2l⊥

2
Πþ���þ;−���−ðw; z; z̄Þ

¼ −
i
2J

eðJ−1ÞðAþĀÞGJðz; z̄; t ¼ 0Þ; ð26Þ

we finally obtain

i
βJ κ̄JsJ

2J
V
Z

dzdz̄e−Φ−Φ̄−2JðAþĀÞþ3Aþ5Āυ2mðz̄Þ

×

�
f2QðzÞDJ⊥þ

_f2QðzÞ
Q2

DJ
k

�
½eðJ−1ÞðAþĀÞGJðz; z̄;0Þ�: ð27Þ

where the space-time volume V comes from the delta
function momentum conservation that we imposed from
the beginning on the external states. Now we proceed as in
[25] and write a spectral representation for the transverse
propagator

AMORIM, QUEVEDO, and COSTA PHYS. REV. D 98, 026016 (2018)

026016-4



GJðz; z̄; tÞ ¼ eBþB̄
X
n

ψnðJ; zÞψ�
nðJ; z̄Þ

tnðJÞ − t
; ð28Þ

where ψnðJ; zÞ are the normalizable modes associated to
the spin J fields. The function BðzÞ depends on the
particular holographic QCD model. We will fix it later
in order to perform fits to data.

D. Regge theory

In order to get the total amplitude we need to sum over
even spin J fields with J ≥ 2. Then we can apply a
Sommerfeld-Watson transform

1

2

X
J≥2

ðsJ þ ð−sÞJÞ ¼ −
π

2

Z
dJ
2πi

sJ þ ð−sÞJ
sin πJ

; ð29Þ

which requires analytic continuation of the amplitude for
spin J exchange to the complex J-plane. We assume that the
J-plane integral can be deformed from the poles at even J, to
the poles J ¼ jnðtÞ defined by tnðJÞ ¼ t. The scattering
domain of negative t contains these poles along the real axis
for J < 2. The scattering amplitude for t ¼ 0 is then

Aðs;0Þ¼
X
n

hnsjn
Z

dze−ΦeAð−2jnþ3Þ

×

�
f2QD

jnð0Þ⊥ þ
_f2Q
Q2

Djnð0Þ
k

�
½eAðjnð0Þ−1ÞeBψnðjnð0Þ;zÞ�;

ð30Þ

with hn defined as

hn ¼ −
π

2

βjnð0Þκ̄jnð0Þ
2jnð0Þ

�
iþ cot

πjnð0Þ
2

�
j0nð0Þ ð31Þ

×
Z

dz̄eĀð4−jnð0ÞÞe−Φ̄eB̄υ2mðz̄Þψ�
nðjnð0Þ; z̄Þ: ð32Þ

Finally, the action of the differential operators on the
functions of z allows us to rewrite the forward scattering
amplitude as

Aðs; 0Þ ¼
X
n

hnsjn
Z

dze−ðj−2ÞAþB−Φ

×

�
f2QD̃

jnð0Þ⊥ þ
_f2Q
Q2

D̃jnð0Þ
k

�
ψnðjnð0Þ; zÞ; ð33Þ

with

D̃⊥¼ e−2Að _A∂zþ _A2þ _A _BÞ;
D̃k ¼ e−2Að∂2

z − ð _A−2 _BÞ∂zþ B̈þ Äþ _B2− _A _BÞ: ð34Þ

E. F2 structure function

The DIS structure function can be written in Regge
theory in the following form

F2ðx;Q2Þ ¼
X
n

ðfMC
n ðQ2Þ þ fNMC

n ðQ2ÞÞx1−jn ; ð35Þ

where we separated the contributions from the minimal and
nonminimal couplings between the graviton trajectory and
the Uð1Þ current that arise from the holographic compu-
tation. In [25], for B ¼ Φ − A=2, we showed that

fMC
n ðQ2Þ ¼ gnQ2jn

Z
dze−ðjn−3

2
ÞA
�
f2Q þ

_f2Q
Q2

�
ψn: ð36Þ

Using the definitions (1) and (2), we may take the
imaginary part of the forward scattering (33), to obtain
the contribution from the nonminimal coupling

fNMC
n ðQ2Þ ¼ g̃nQ2jn

Z
dze−ðjn−3

2
ÞA
�
f2QD̃⊥ þ

_f2Q
Q2

D̃k

�
ψn;

ð37Þ

where g̃n ¼ ImðhnÞ=ð4π2αÞ. Both constants gn and g̃n are
used as fitting parameters in our setup, thus the details of
holographic wave function for the proton are not important
in the fit. Notice that the gn and g̃n do not have the same
dimensions, indeed comparing both complings we see that
½g̃n=gn� ¼ L2. Formula (37) is one of the main results of
this paper.

F. Improved holographic QCD

To test the above ideas against experimental data we
need to consider a concrete QCD holographic model. As in
our previous work [25], we shall consider the improved
holographic QCD model introduced in [34–36]. This fixes
the background fields AðzÞ and ΦðzÞ, which give an
approximate dual description of the QCD vacuum.
Next we need to consider the equation of motion for the

spin J fields that are dual to the twist two operators, whose
exchange gives the dominate contribution in DIS at low x.
This equation is then analytically continue in J, in order to
do the Sommerfeld-Watson transform in Regge theory.
This procedure was described in detail in [25], so we will
not repeat it here. The upshot is that the function B
introduced in (28) to define the transverse propagator is
given by B ¼ Φ − A=2 and the normalizable modes of the
spin J field ψnðzÞ solve a Schrödinger problem

�
−

d2

dz2
þ UJðzÞ

�
ψnðzÞ ¼ tnψnðzÞ; ð38Þ

where
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UJðzÞ ¼
3

2

�
Ä −

2

3
Φ̈
�
þ 9

4

�
_A −

2

3
_Φ
�

2

þ ðJ − 2Þe−2A
�
2

l2s

�
1þ dffiffiffi

λ
p

�
þ J þ 2

λ4=3

þ e2AðaΦ̈þ bðÄ − _A2Þ þ c _Φ2Þ
�
; ð39Þ

where the first line represents the potential for the graviton
and the remaining proposed terms deform the graviton
potential. This potential is analytically continued in J in
such a way that the value of the intercept J ¼ jn is obtained
when the nth eigenvalue satisfies tnðJÞ ¼ 0.
The constants ls, a, b, c, and d are used as fitting

parameters and will be adjusted such that the best match
with F2ðx;Q2Þ data is achieved. In particular, from the low
energy effective string theory perspective, ls is related to the
string tension; d is related to the anomalous dimension
curve of the twist 2 operators, or it can also be thought as
encoding the information of how the masses of the closed
strings excitations are corrected in a slightly curved back-
ground; the constants a, b, and c encode the first order
derivative expansion of a presumed string field theory
lagrangian; λ ¼ eΦ is the ’t Hooft coupling.

III. DATA ANALYSIS

With the previously described setup we proceed to find
the best values for the potential parameters ls, a, b, c, and d,
as well as for the coupling values β, gn and g̃n that better fit
the data. We look, as usual, for the best set of parameter
values such that the sum of the weighted difference squared
between experimental data and model predicted values is
minimum, using as weight the inverse of the experimental
uncertainty. Since this is a highly nontrivial numerical
optimization problem in which we do not known explicitly
the gradient of the function to be optimized, we use the
Nelder-Mead algorithm, using R language, and try with
different starting points in the parameter space. We have
found that the inclusion of the nonminimal coupling
contribution considerable decreases the convergence ratio
of the minimizing routine compared with the case where
only the minimal coupling case is used, consistent with the
fact that the new function to optimize has a much rougher
landscape. Our best fit results for F2ðx;Q2Þ are presented in
Fig. 2. In this fit we considered values of x in the range
x < 10−2, and of the photon virtuality Q2 < 400 GeV2.
This gives a total number of 249 data points. The χ2d:o:f for
this fit is 1.13. As in our previous work, aiming to make a
consistent model for the soft Pomeron, we have forced the
intercept of the second trajectory to be around j1 ¼ 1.09.
This is achieved penalizing those set of parameters which
give a different second intercept by adding a term of the
type 104ðj1 − 1.09Þ2 to the function to be optimized. The
correspondent Regge trajectories can be seen in Fig. 3.

The values of the parameters that give the best fit are
summarized in Table I. We would like to understand the
scale defined by the nonminimal coupling. The best fit fixes
the value of this coupling in the equation of motion (7) for
the Uð1Þ gauge field to be β ¼ 0.026 GeV−2. This numeri-
cal value correspond to an energy of 6 GeV and therefore
the energy scale associated with this correction is in the
range of 1–10 GeV. We may also look at the ratio between
the constants gn and g̃n, given by,
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FIG. 2. Structure function F2ðQ2; xÞ. Experimental points vs
prediction of this work with a χ2d:o:f ¼ 1.1. Each line corresponds
to a given Q2ðGeV2Þ as indicated.
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FIG. 3. Regge trajectories compared with glueball masses from
lattice simulations [38,39]. Shown are also the values we obtained
for the intercept of each trajectory. Configurations that give the
soft Pomeron intercept j1 ¼ 1.09 were favored in the fitting
process.
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g̃n
gn

¼ βjnð0Þ
κjnð0Þ

; ð40Þ

which has dimensions length2. This follows from taking the
imaginary part of (32) and from the fact that gn has a similar
expression [25]. Looking at Table I it is simple to see
that the ratio g̃n=gn, for each n, is also in the energy
range of 1–10 GeV. The scale of the nonminimal coupling
should be associated with the mass gap between the spin 2
and spin 4 glueballs, that arise from the spectrum of the
bulk graviton and spin 4 field, respectively. Indeed this is
precisely the size of the gap observed in the glueball
spectrum in Fig. 3.

IV. CONCLUSION

In this work we considered the contribution of a non-
minimal coupling between the Uð1Þ gauge field and the
higher spin fields in the graviton Regge trajectory to the
holographic computation of the DIS structure function
F2ðx;Q2Þ. These non-minimal couplings are expected to
be present and to play an important role in theories with
higher spin fields. Such terms are controlled by the gap
between the graviton and the next higher spin field [40].
Our results are consistent with this expectation since the
scale we obtained for the nonminimal coupling has the
correct order of magnitude that reproduces the mass
difference between the spin 2 and spin 4 glueballs.
With the inclusion of the new coupling the quality of our

fit to low x DIS data has improved considerably. In the
previous work [25], that considered only the minimal
coupling, a χ2d:o:f of 1.7 was obtained. With the new
coupling we improved this result to a χ2d:o:f of 1.1. We
believe this is an important improvement that validates the
holographic approach to low x physics. We are reproducing
data over a very large kinematical range in the two variables
x and Q2, fitting a total of 249 points.
One can draw some intuition on how the inclusion of the

nonminimal coupling improves the fit to physical data by
looking at the Reggeon wave functions. These functions are
shown for the hard and soft Pomerons, for the correspond-
ing values of the intercept, in Figs. 4 and 5, respectively.
These waves functions are the ground state and first excited

state of the associated Schrödinger problem. For the
minimal coupling they control the dependence of the
structure function in the photon virtuality Q2 as can be
seen from (36). For the nonminimal coupling they also
control the Q2 dependence but now the action of the
differential operators D̃⊥ and D̃k in (37) changes such
dependence to a more oscillating behavior, as can be seen
from Figs. 4 and 5. What is not a priori trivial is that this
freedom can be used to better fit the data, yielding for the
scale of nonminimal coupling precisely the expected order
of magnitude (due to the oscillations it could be that this
order of magnitude was much smaller, which would seem
to contradict the expected value of the gap for higher spin
glueballs).
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FIG. 4. Hard Pomeron wave function for the best fit found and
for its intercept value J ¼ j0. The dotted and dashed line
represent the action of the operator D̃⊥ and D̃k on the hard
Pomeron wave function ψ0ðzÞ respectively. In this plot all the
functions have been scaled by a factor of 10.

TABLE I. Values of the parameters for the best fit found. All
parameters are dimensionless except for ½ls� ¼ L, ½β� ¼ L2 and
½g̃i� ¼ L2. Numerical values are expressed in GeV units.

Parameter Value Couplings Value Couplings Value ×10

l−1s 6.93 g0 −0.154 g̃0 0.707
a −4.68 g1 −0.424 g̃1 −0.378
b 4.85 g2 2.12 g̃2 −2.48
c 0.665 g3 −0.721 g̃3 3.63
d −0.328
β −0.026
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FIG. 5. Same as Fig. 4 but for the soft Pomeron and for its
intercept value J ¼ j1.

NONMINIMAL COUPLING CONTRIBUTION TO DIS AT … PHYS. REV. D 98, 026016 (2018)

026016-7



It seems we are getting closer to a very satisfactory
holographic description of low x data. There are two
immediate questions that we believe deserve some further
attention. As a working example we have been considering
the improved holographic QCD model of [34–36]. We take
this model as our QCD vacuum, and then introduce higher
spins fields for which we do Regge theory. Clearly we
should study to which extent other models can also be used
to reproduce the data here analysed. Our expectation is that
holography is very appropriate to study processes domi-
nated by Pomeron exchange, so that other models that are
close enough to QCD should give similar results. Another
interesting point is to extend this analysis to other processes
than DIS. Previous studies of deeply virtual Compton
scattering (DVSC) and vector meson production could
now be revisited, including the nonminimal coupling here
considered, to attain better fits. For example, in the

case of DVSC the cross section depends on three kin-
ematical quantities, namely x,Q2 and momentum transfer.
Extending the contribution of the nonminimal coupling
terms to nonvanishing t gives a very nontrivial dependence
that deserves to be looked at.
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