
 

Emergence of spacetime in a restricted spin-foam model

Sebastian Steinhaus*

Perimeter Institute for Theoretical Physics, 31 Caroline Street North, Waterloo, N2L 2Y5 Ontario, Canada

Johannes Thürigen†

Department of Physics, Department of Mathematics, Humboldt-Universität zu Berlin,
Unter den Linden 6,10099 Berlin, Germany

(Received 16 April 2018; published 9 July 2018)

The spectral dimension has proven to be a very informative observable to understand the properties of
quantum geometries in approaches to quantum gravity. In loop quantum gravity and its spin-foam
description, it has not been possible so far to calculate the spectral dimension of spacetime. As a first step
towards this goal, here we determine the spacetime spectral dimension in the simplified spin-foam model
restricted to hypercuboids. Using Monte Carlo methods we compute the spectral dimension for state sums
over periodic spin-foam configurations on infinite lattices. For given periodicity, i.e. number of degrees of
freedom, we find a range of scale where an intermediate spectral dimension between 0 and 4 can be found,
continuously depending on the parameter of the model. Under an assumption on the statistical behavior of
the Laplacian we can explain these results analytically. This allows us to take the thermodynamic limit of
large periodicity and find a phase transition from a regime of effectively zero-dimensional to four-
dimensional spacetime. At the point of phase transition, dynamics of the model are scale invariant which
can be seen as restoration of diffeomorphism invariance of flat space. Considering the spectral dimension as
an order parameter for renormalization we find a renormalization group flow to this point as well. Being the
first instance of an emergence of four-dimensional spacetime in a spin-foam model, the properties
responsible for this result seem to be rather generic. We thus expect similar results for more general, less
restricted spin-foam models.
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I. INTRODUCTION

Any approach of quantum gravity that replaces the
continuous metric for a postulated fundamental, often dis-
crete, structure has to face the challenge to connect back to
well-known continuum physics, in particular, a smooth
four-dimensional spacetime. Often it is argued that such a
spacetime should “emerge” from this quantum theory in a
suitable continuum limit [1–4]. While this is an appealing
picture, defining and performing such a continuum limit is
the essential point of ongoing research. Moreover, a theory
of quantum gravity may allow for many different phases
resulting in very different continuum spacetimes. To gain
an insight and better understanding of the dynamics of such
a theory, studying observables related to a notion of
continuous spacetime is indispensable.
One observable ideally suited for this task is the spectral

dimension Ds of spacetime, since it can be calculated both
for discrete and continuous spacetimes and thus straight-
forwardly compared in various scenarios. In a nutshell, the
spectral dimension is an effective dimension as seen by a

free scalar field diffusing on the spacetime. From this
diffusion process one can deduce a dimension, which in flat
(continuum) spacetime agrees with the topological dimen-
sion D. Interestingly, this effective dimension can change
depending on the length scale at which spacetime is probed.
In many approaches to quantum gravity such a behavior

has been observed, strikingly in a similar way [5]: a flow of
the spectral dimension to a value smaller thanD ¼ 4 occurs
at short length scales [6–17]. Crane and Smolin studied the
distribution of virtual black holes and found a dimensional
reduction at short scales depending on the distribution
[6,7]. In causal dynamical triangulations (CDT) [18] a
dimensional flow from Ds ¼ 4 to Ds ¼ 2 is found at short
scales in a phase resembling a de Sitter spacetime (though
more recent CDT calculations [10] rather hint atDs ≃ 3=2).
Modified dispersion relations effect a similar dimension
flow in the asymptotic safety scenario [11], Horava-Lifshitz
gravity [12] or noncommutative field theory [13–15]. In
causal set theory [19], a causal spectral dimension [20] is
defined essentially taking into account the causal structure
fundamental to a causal set and a dimensional reduction is
found at short scales [21]. Also in loop quantum gravity
there exist indications for a dimensional flow, either in
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terms of the scaling of the area spectrum [16] or due to a
particular superposition of spin network states [22].
Naturally the question arises whether this behavior is a
universal feature of quantum gravity [5] and what obser-
vational consequences might exist [23].
Explicit evaluation of physically relevant observables

like the spectral dimension remains one of the most
pressing issues in the spin-foam approach to quantum
gravity [24]. The idea of spin-foam models is to give a
rigorous definition of the quantum-gravity path integral
based on the first-order formalism for general relativity as a
constrained topological BF theory [25,26]. There are
various proposals on how to implement these constraints
on the quantum level [27–33]. While they can be justified
by giving the right semiclassical limit to the amplitudes of
Regge calculus locally [34], it remains an open issue to
understand and control the quantum dynamics of extended
spacetimes. The dependence of the spin-foam amplitude on
a given cell complex can be removed either by a summation
rule as provided by group field theory [35–38] or by a
renormalization procedure based on coarse graining
[39–42]. Only then is it possible to define the quantum
expectation value of observables.
In this work we attack the challenge to compute the

spectral dimension in spin-foam models, more precisely
in the well-studied Engle-Pereira-Rovelli-Livine and
Freidel-Krasnov (EPRL-FK) model for four-dimensional
Euclidean gravity. Studying the spectral dimension for this
model in full generality is currently out of reach due to the
complexity of spin-foam models in general. Thus we
restrict ourselves to a subset of the full gravitational path
integral, so-called quantum cuboids [43–45]. This model
encodes two major approximations. The first is a restriction
of the combinatorics to hypercubic lattices. Note that this
does not restrict the geometry to a hypercubic lattice as it is
encoded not in the 2-complex but the group theoretic data.
In a second step we furthermore restrict these data to be of
hypercuboid form by restricting the path integral to specific
coherent Livine-Speziale intertwiners [46] that are of
cuboid form. Analogous to the calculations for the
4-simplex, the spin-foam amplitude was calculated using
a stationary phase approximation, often called the large-j
limit, in [43] resulting in a rational function of irreducible
representations of SU(2). The associated Regge action
evaluated on the stationary and critical points vanishes,
which implies that the internally flat hypercuboids are
glued together in a flat way resulting in flat discrete
spacetime. Thus, quantum cuboids represent a superposi-
tion of flat discrete geometries of different shapes and sizes.
Despite its simplicity this model revealed a few interest-

ing properties. An Abelian subgroup of diffeomorphisms
which corresponds to moving an entire hyperplane of the
cuboid lattice merely changes the subdivision of flat
spacetime into flat building blocks [43]. However cuboid
spin foams are not invariant under this transformation; yet

for a specific choice of parameters this symmetry is almost
realized. Furthermore the renormalization of cuboid spin
foams [44,47] has been studied in detail following the
refinement approach via embedding maps [39,40,48].
Remarkably indications for a phase transition and a
UV-attractive fixed point were found for the single param-
eter of the model in a similar regime as for the displacement
symmetry. As we see later on this regime is relevant for the
spectral dimension as well.
In this article we study the spectral dimension of such

quantum cuboids, first numerically and then extending the
results analytically. In order to perform the numerical
simulations efficiently while avoiding artifacts coming
from compactness of the studied lattice, we consider
N -periodic spin foams, i.e. spin foams whose labels repeat
themselves after N steps in any of the four (combinatorial)
directions. We calculate the spectrum of the Laplace
operator via Fourier transform on an infinite spin foam,
prescribed by finitely many variables. Still, the numerical
investigation is costly and cannot be extended to arbitrary
large periodicitiesN . For any finiteN we find a regime (in
between the minimal and maximal cutoffs) in which Ds

changes continuously and can take any value between 0
and 4 (for specific values of the parameter).
Using a conjecture on the Laplace operator inspired by

[49] we derive a general law for the spectral dimension
depending on the periodicity N , which is in good agree-
ment with our numerical results. Given this relation we
perform the N → ∞ limit and find a discontinuous phase
transition between two phases, one given by spectral
dimension Ds ¼ 0 and Ds ¼ 4, where the point of the
phase transition is given by the scale-invariant spin-foam
amplitude.1 In this sense we observe the emergence of four-
dimensional spacetime. At the same time the scale-invariant
amplitude hints at a potential restoration of (an Abelian
subgroup of) diffeomorphism invariance, where the param-
eter is again in a similar regime as the UV-attractive fixed
point found in the renormalization group flow.
This article is organized as follows: we describe the basic

setup of our calculations in Sec. II introducing the quantum
cuboids, the spectral dimension, the setup of periodic spin
foams and briefly discuss the numerical methods used. In
Sec. II B we present the numerical results for various
periodicities and provide an analytical explanation for
the results derived from a conjecture of the Laplace
operator. Section IVA deals with the N → ∞ limit show-
ing the discontinuous phase transition in Ds and we
furthermore discuss the possibility of using the spectral
dimension as a condition to define a renormalization group
flow. We conclude in Sec. V and give a brief outlook on
which models to study in the future and which qualitative
features we expect to carry over.

1By scale-invariant we here mean invariant under uniform
scaling of all spins; i.e. the shape of the cuboid remains the same.
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II. CUBOID SPIN FOAMS AND THE
SPECTRAL DIMENSION

In this section we provide the definition of the spectral
dimension as a spin-foam observable. We recall the general
notion of spectral dimension and discuss how it can be
understood as an observable in a path integral for quantum
gravity. We explain how this is defined in spin-foam gravity
and derive an explicit formula in the restricted case of
cuboid spin-foam dynamics. Finally we illustrate how we
address such dynamics using N -periodic configurations
and explain the use of numerical methods.

A. Cuboid spin-foam dynamics

Spin-foam models provide a definition of the quantum-
gravity path integral. Here we give a concise outline of the
ideas underlying the spin-foam approach to quantum
gravity and the particular restriction we use in this work.
Spin foams are defined on discrete spacetime, more

precisely the 2-skeleton Γ of a four-dimensional combina-
torial (pseudo) manifold, which is a collection of V vertices
v, E edges e and F faces f. This 2-complex is labeled by
data from a Lie group G: Irreducible representations jf on
the faces and intertwiners ιe on the edges, i.e. elements in
the invariant subspace of the tensor product of representa-
tions meeting at this edge. A spin-foam model defines an
amplitude to a given labeled 2-complex by assigning an
amplitude Av to vertices, Ae to edges and Af to faces. The
partition function is then given as a sum over all these
labelings,

Z ¼
X
fιe;jfg

Y
f

AfðjfÞ
Y
e

Aeðιe; fjfgf⊃eÞ

×
Y
v

Avðfιege⊃v; fjfgf⊃vÞ: ð1Þ

For the four-dimensional Euclidean theory, which we
use in this article, the underlying symmetry group is
G ¼ Spinð4Þ, while G ¼ SLð2;CÞ in the Lorentzian
theory. The form of the amplitudes depends on the used
spin-foam model.
In this article we are working with the Euclidean EPRL-

FK spin-foam model [29–31], more precisely its generali-
zation to arbitrary 2-complexes [50]. The idea underlying
its construction is identifying SU(2) representations
and intertwiners with Spinð4Þ ≃ SUð2Þ × SUð2Þ represen-
tations and intertwiners. The identification of irreducible
representations depends on the Barbero-Immirzi parameter
γBI ∈ Rnf0;�1g,

j�f ≔
1

2
j1� γBIjjf; ð2Þ

with jf, j�f ∈ 1
2
N. For this map to be nonempty, the

parameter γ must be a rational number. For the rest of
the article we choose γBI < 1.

For the intertwiners, which are essential for defining the
edge and vertex amplitude of the spin-foam model, we
introduce the so-called EPRL map YγBI

e for each edge e of
the 2-complex,

YγBI
e ∶ InvSUð2ÞðVj1 ⊗ … ⊗ VjnÞ

→ InvSUð2Þ×SUð2ÞðVjþ
1
;j−
1
⊗ … ⊗ Vjþn ;j−n Þ: ð3Þ

It maps an n-valent SU(2) intertwiner, where n faces
carrying representations jf meet at the edge e, into an
SUð2Þ × SUð2Þ intertwiner and consists of two parts.
The map

βγBIj ∶ Vj → Vjþ;j− ð4Þ

is defined via the unique isometric embedding of Vj into
the factor of the Clebsch-Gordan decomposition of
Vjþ;j− ≃ Vjþ ⊗ Vj− . This map is applied to all faces
containing that edge. To make sure the resulting vector
is in the SUð2Þ × SUð2Þ-gauge-invariant subspace of
Vjþ

1
;j−
1
⊗ … ⊗ Vjþn ;j−n , we project onto that subspace with

the projector P. Hence, the EPRL map is

YγBI
e ≔ PðβγBIj1

⊗ … ⊗ βγBIjn
Þ: ð5Þ

We now have all the necessary ingredients to define the
amplitudes. The face amplitude is given as

AðαÞ
f ≔ ðð2jþf þ 1Þð2j−f þ 1ÞÞα; ð6Þ

which is just the dimension of the ðjþf ; j−f Þ representation to
the power α. As proposed in [43], we have introduced the
additional parameter α ∈ R, which turns out to be crucial in
our analysis of the spectral dimension. To motivate it
briefly, in spin foams it is commonly chosen to be either
α ¼ 1

2
or α ¼ 1. The former assigns the dimension of the

SU(2) spin jf to a face, the latter the respective SUð2Þ ×
SUð2Þ representation. However, beyond kinematical argu-
ments, e.g. requiring invariance under the trivial subdivision
of a face, this exponent is not fixed by dynamical arguments.
Its choice essentially translates into a choice of the path-
integral measure and is also present in other approaches to
quantum gravity, e.g. Regge calculus [51–53].
The edge amplitude is simply introduced to normalize

the intertwiners,

Ae ≔
1

kYγBI
e ιek2

: ð7Þ

The vertex amplitude Av is given by

Av ≔ Trvð⨂
e⊃v

ðYγBI
e ιeÞÞ; ð8Þ
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where Trv denotes the vertex trace acting on the tensor
product of all intertwiners ιe meeting at the vertex v in the
following way. Each face f that contains the vertex v is
shared exactly by two edges meeting at v. The indices of
the respective intertwiners are then contracted with one
another according to the combinatorics of the 2-complex.
A spin-foam configuration has a geometric interpretation

in the following way. The intertwiners ιe describe a
quantum polyhedron, a chunk of three-dimensional space
dual to the edge e whose boundary areas are given by the
adjacent spins jf. The combinatorics of the 2-complex
then determine how these three-dimensional chunks of
space are glued together to form a four-dimensional
geometry. Summing over the areas of faces and shapes
of three-dimensional polyhedra then implements a discrete
sum over four-dimensional geometries.
Note that the 2-complex Γ is a choice. Several possibil-

ities have been suggested in the literature to account for the
dependence on this choice. A straightforward idea is to sum
over all 2-complexes of a certain class, thus capturing all
possible discretizations permitting a transition between
boundary states. The most systematic implementation of
this idea is group field theory [36–38] where spin-foam
amplitudes appear as amplitudes in the perturbative sum
labeled by Feynman diagrams Γ. There the question of
consistency is addressed in terms of renormalizability of
the theory. Alternatively it is possible to start with a fixed 2-
complex Γ, yet one has to make sure that the calculated
results are consistent with choosing a finer 2-complex Γ0.
To this end one has to relate amplitudes across 2-complexes
guaranteeing the same physical transitions. This is done by
identifying states across boundary Hilbert spaces (via so-
called embedding maps) akin to the construction of the

kinematical Ashtekar-Lewandoswki vacuum in loop quan-
tum gravity [54,55].

1. Quantum cuboids

In the present work we study the spectral dimension of
spin foams restricted to hypercuboid geometries [43]. We
choose the combinatorial 2-complex Γ to be hypercubic in
the sense that it is the 2-skeleton of (the combinatorial dual
complex of) a hypercubic lattice. In general, such a choice
does not imply that also the geometry is hypercubic as this
is encoded by the group representation data labeling the
foam. To specify hypercuboid geometries, we consider the
state sum Eq. (1) not for all possible intertwiners ιe but only
for a specific one which is sharply peaked on the shape of a
cuboid. We define a cuboid intertwiner ιj1;j2;j3 as the six-
valent coherent Livine-Speziale intertwiner [46]

jιj1;j2;j3i ¼
Z
SUð2Þ

dg g ⊳ ⊗
3

i¼1
jji; eiijji;−eii ð9Þ

that is the group-averaged tensor product of six coherent
SU(2) states peaked on the directions given by the
(orthogonal) unit vectors e1 ¼ expð−iπσ2=4Þ ⊳ e3, e2 ¼
expð−iπσ1=4Þ ⊳ e3 and e3 in R3. Note that the spins on
opposite faces are chosen to be equal and the associated
normal vectors are antiparallel. The normal vectors ei
assigned to adjacent faces are orthogonal matching the
cuboid geometry (see Fig. 1). This intertwiner exists for all
choices of spins j1, j2 and j3 and is always nonvanishing.
The cuboid intertwiner defines the amplitudes of this

restricted EPRL model. First the intertwiner is boosted by
the previously introduced EPRL map YBI

e . For a Barbero-
Immirzi parameter γBI < 1 the vertex amplitude factorizes

FIG. 1. Left: The six-valent cuboid intertwiner. Spins ji on opposite edges of the vertex are the same and the corresponding unit
vectors �ei are antiparallel. In the semiclassical limit the spins are the areas and the unit vectors the normals of the cuboid faces. Right:
The spin network dual to a hypercuboid. Because of the translation invariance of spins along each cuboid’s face direction inD ¼ 4 there
are ðD

2
Þ ¼ 6 spins.
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as Av ¼ Aþ
v A−

v ; i.e. each of them only depends on the
spins fjþg or fj−g respectively. These amplitudes are
given by

A�
v ¼

Z
SUð2Þ8

dga eS
�½ga� ð10Þ

with the complex action

S�½ga� ¼
1� γ

2

X
l

2jl lnh−n⃗abjg−1a gbjn⃗bai; ð11Þ

where a, b denote the intertwiners, l the (oriented) links
connecting them in the vertex trace and jn⃗abi the SU(2)
coherent state peaked on the directions given by n⃗ab in the
fundamental representation j ¼ 1

2
.

For the remainder of the article, we work in the large-j
limit, usually understood as the semiclassical limit when
keeping areas Af ∼ ℏjf fixed, which was computed first for
the EPRL-FK model for boundary data corresponding to a
generic, nondegenerate 4-simplex [56–58]. This limit
allows us to perform a stationary-phase analysis of the
vertex amplitude Eq. (10) by simultaneously scaling up all
spins at once. For hypercuboid intertwiners the calculation

was performed in [43], and here we only review the basic
steps and present the results.
The vertex amplitude A�

v is given as an integral over
eight copies of SU(2), where one integration is obsolete due
to the invariance of the Haar measure. The remaining
integral has several isolated critical points which are related
by the 27-fold symmetry under changing ga → −ga.
Modulo this symmetry the two critical and stationary
points satisfy the following equations for all links ðabÞ,

ga ⊳ n⃗ab ¼ −gb ⊳ n⃗ba: ð12Þ

The two distinct solutions and more details can be found in
[43]. The solution reads

A�
v ¼

�
1� γBI

2

�21
2

Bv ð13Þ

with

Bvðj1;…; j6Þ ¼
1ffiffiffiffiffiffiffiffiffiffiffi
detH

p þ c:c: ð14Þ

H denotes the matrix of second derivatives of S, and its
determinant is given by

detH ¼ 2
Y
fijklg¼

f1256g;f1346g;f2345g

� X
fabcg⊂fijklg

jajbjc

� Y
fiklg¼

f124g;f135g;f236g;f456g

�
ð1þ iÞjijkjl þ

X
fabg⊂fiklg

ðj2ajb þ jaj2bÞ
�

ð15Þ

where the first product is over all but two opposite edges in a tetrahedron with edges labeled 1,2,3,4,5,6 as is a multiple
subgraph in the hypercuboid spin network (Fig. 1); the second product runs over the tetrahedron’s faces. Note that the action
S� evaluated on the critical and stationary points vanishes exactly. This shows, at least in the large-j limit, that the dynamics
demand the quantum cuboids to be glued together in a flat way. Furthermore we can readily see that the vertex amplitude is a
purely rational function and does not contain any oscillating parts.
In a similar way one calculates the asymptotic expansion of the edge and face amplitudes. Here we simply present the

results,

kYγBI
e ιj1;j2;j3k ∼

8ð1 − γ2BIÞ−
3
2

ðj1 þ j2Þðj1 þ j3Þðj2 þ j3Þ
; ð16Þ

and

AðαÞ
f ∼ j2αf : ð17Þ

Combining these results, we obtain the partition function Eq. (1) in the large-j limit,

Z ∼
�
1 − γ2

4

�
αF−3

2
Eþ21

2
VX

jf

Y
f

j2αf
Y
e

ðj1 þ j2Þðj2 þ j3Þðj1 þ j3Þ
Y
v

B2
v

≕
�
1 − γ2

4

�ð6α−9=2ÞVX
jf

Y
v

ÂðαÞ
v : ð18Þ
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In the last step we have combined the vertex, edge and face
amplitudes into single amplitude ÂðαÞ

v assigned to each
vertex thanks to the regular combinatorics of the hyper-
cubic lattice.
Let us briefly recall some properties of the amplitude

ÂðαÞ
v . It is a homogeneous function of degree 12α − 9 in all

spins,

ÂðαÞ
v ðfλjigÞ ¼ λ12α−9ÂðαÞ

v ðfjigÞ: ð19Þ

This scaling property plays an important role later on.
Furthermore, ÂðαÞ

v depends on six SU(2) spins ji giving the
area of the faces of the hypercuboid. These are two more
degrees of freedom than the four edge lengths prescribing a
hypercuboid allowing for nongeometric configurations.
Nongeometricity here refers to a nonmatching of shapes
of faces [59], reminiscent of the twisted geometries para-
metrization of the loop quantum gravity phase space [60].
For hypercuboid spin foams to be purely geometric, the

six spins prescribing it have to satisfy three conditions,

j1j6 ¼ j2j5 ¼ j3j4; ð20Þ

which state that the 4-volume calculated from these spins is
the same no matter which two faces (only sharing a vertex
in the dual discretization) of the hypercuboid are chosen.
Then the areas of faces can be unambiguously expressed in
terms of four edge lengths. Note that if two of the above
equations are satisfied the third follows automatically.2

These conditions are closely related to volume simplicity
constraints [61].
Restricting the spin-foam state sum to geometric con-

figurations implies integrating over edge lengths instead of
SU(2) spins. Besides the Jacobian picked up due to the
change of variables, we have to take into account that we
integrate over a submanifold of the original integration
domain. The necessary Fadeev-Popov determinant taking
care of the additional spins being gauge fixed is derived in
detail in Appendix B of [45].
After this restriction the only configurations that are

allowed are irregular lattices, yet all angles are right angles;
i.e. the hypercuboids can take any shape as long as they
remain hypercuboids. As a result all internal deficit angles
vanish, such that these geometries are flat. Thus nontrivial
effects on the spectral dimension of the quantum geometry
can only stem from the way these geometries are super-
posed. In turn this is solely determined by the weight
assigned to them by the spin-foam amplitudes, in particular,
geometries of different scale.

The function ÂðαÞ
v as a function of edge lengths has a

different scaling behavior compared to the spin case due to
the restriction to purely geometric geometries (encoded in
the Fadeev-Popov determinant). It is still a homogeneous
function in all edge lengths, but of degree 24α − 14,

ÂðαÞ
v ðfλligÞ ¼ λ24α−14ÂðαÞ

v ðfligÞ: ð21Þ
Again, this behavior becomes important in our analysis of
the results below.

B. Spectral dimension and Laplacian
on spin-foam geometry

The spectral dimension on a geometry is the dimension
as seen by a fictitious field propagating on that geometry.
The standard case is a Riemannian manifold ðM; gÞ where
the spectral dimension is defined as the scaling

DsðτÞ ≔ −2
∂ lnPðτÞ
∂ ln τ ð22Þ

of the trace

PðτÞ ¼ TrMKðx; x0; τÞ ¼
Z
M

dx0
ffiffiffi
g

p
Kðx0; x0; τÞ ð23Þ

of the heat kernel Kðx; x0; τÞ solving
∂τKðx; x0; τÞ − ΔxKðx; x0; τÞ ¼ 0 ð24Þ

with appropriate boundary conditions [usually Kðx; y; 0Þ ¼
δðx − yÞ]. Thus, the heat-kernel trace PðτÞ depends on the
geometry via the Laplacian operator Δ acting on functions,
i.e. scalar fields ϕ.
We consider the spectral dimension of quantum space-

time as the scaling of the quantum expectation value of the
heat-kernel trace and focus on path-integral formalism here.
Conceptually, suppose there is a definition of a gravity path
integral as a sum over geometries g,

Z ¼
Z
M

Dg eiSGR½g�: ð25Þ

Then, the according quantum spectral dimension should be
defined in terms of the expectation value of the heat kernel
as an insertion into the path integral,

hPðτÞi ¼ 1

Z

Z
M

Dg PðτÞeiSGR½g�; ð26Þ

that is,

Ds ¼ −2
∂ lnhPðτÞi

∂ ln τ : ð27Þ

Here we consider the precise definition of a path-integral
proposal as given by the spin-foam dynamics defined in the
previous section. This is a discrete path integral. Thus the

2Each three-dimensional cuboid is prescribed by three areas,
which are in 1-to-1 correspondence to three edge lengths unless
one of the areas vanishes. Equation (20) ensures that these edge
lengths from individual cuboids agree for all cuboids of the
hypercuboid, ensuring shape matching of faces.
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main remaining task for the definition of the quantum
spectral dimension is the definition of the Laplacian in the
heat equation Eq. (24) on spin-foam configurations. Then
the heat kernel and its trace PðτÞ, the observable to be
inserted in the state sum, follow as solutions to this
equation.
The Laplace operator on spin configuration can be

defined using a proper definition on discrete geometries.
The Laplacian acting on a function ϕ defined on the dual
vertices vn of a four-dimensional combinatorial complex
with attached geometry depends on the four-volumes Vn

ð4Þ
dual to vn, the boundary three-volumes Vmn between dual
vertices vn and vm as well as the lengths lmn⋆ of the edges
dual to these three-volumes [62],

−ðΔϕÞm ¼ −
X
n∼m

Δmnðϕm − ϕnÞ

¼ 1

Vm
ð4Þ

X
n∼m

Vmn

lmn⋆
ðϕm − ϕnÞ; ð28Þ

where n ∼m indicates adjacency of the vertices vm, vn.
There are various ways to define these volumes and dual
lengths in terms of spin-foam degrees of freedom [62]. Area
variables are most natural as they are directly related to the
spins j labeling the configurations [63], but they might be
insufficient to uniquely determine discrete geometry [64].
This issue can be overcome using flux or area-angle
variables [65,66]. For the present purpose area variables
given by spins are sufficient because all angles are
considered as right angles in the hypercuboid restriction.
The Laplacian on cuboid spin foams can be expressed in

terms of spins. A semiclassical configuration has a geo-
metric interpretation in terms of an assignment of areas

Af ¼ l2
γjf ð29Þ

to the squares of the hypercubic lattice (where the dimen-
sionfull constant lγ is of the order of the Planck length and
might depend further on the Barbero-Immirzi parameter
γBI). Due to the form of cuboid intertwiners Eq. (9), two
areas agree whenever they are parallel and one is reached
from the other by a translation perpendicular to them. That
is, denoting directions on the lattice μ; ν;… ∈ f0; 1; 2; 3g
and lattice sites n⃗ ∈ Z4,

A
n⃗þreρþseσ
μν ¼ An⃗

μν; ð30Þ

where μ, ν, ρ, σ are all different directions, eμ are unit
vectors in the μ direction, and r; s ∈ Z.
Areas uniquely determine three-dimensional cuboid

geometry but not four-dimensional hypercuboid geometry.
A cuboid is equally determined by its three edge lengths l1,
l2, l3 or square areas Aij ¼ lilj in terms of the inverse
relation

l2i ¼
AijAik

Ajk
: ð31Þ

A semiclassical quantum hypercuboid dual to a vertex
n⃗ ∈ Γ is the four-dimensional geometry determined by the
six areas An⃗

μν, μ < ν. It has two extra degrees of freedom
compared to the four edge lengths lμ of classical hyper-
cuboid in R4. Accordingly, it is generically not geometric
in the sense that using edge-area relations Eq. (31) on each
cuboid face does not lead to a consistent set of edges, an
instance of “twisted geometry” [60]. This is only the case if
the geometricity conditions Eq. (20) are fulfilled, that is for
areas

A01A34 ¼ A13A24 ¼ A14A23: ð32Þ
The three terms are simply the possible expressions of the
4-volume in terms of areas. One can check that if these
agree, all expressions for edge lengths agree as well.
Edge lengths and 4-volumes of a semiclassical quantum

hypercuboid can be defined naturally as averages over their
distinct expressions in area. Thus, the generalized 4-volume
of such a hypercuboid dual to n⃗ is

Vn⃗
ð4Þ ≔

�Y
μ<ν

An⃗
μν

�1
3

: ð33Þ

This allows us to define the generalized length of an edge in
direction μ in this hypercuboid as

ln⃗μ ≔
Vn⃗
ð4Þ

ðAn⃗
νρAn⃗

νσAn⃗
ρσÞ12

¼ ðAn⃗
μνAn⃗

μρAn⃗
μσÞ13

ðAn⃗
νρAn⃗

νσAn⃗
ρσÞ16

: ð34Þ

With these definitions one has Vð4Þ ¼ l0l1l2l3 even for
nongeometric configurations.
Similar to the generalized 4-volume, Eq. (33), we define

three-dimensional volumes for neighboring vertices m⃗ and
n⃗ ¼ m⃗þ eμ,

Vm⃗ n⃗ ≔ Vm⃗
νρσ ¼ lm⃗ν lm⃗ρ lm⃗σ ¼ ðAm⃗

νρAm⃗
νσAm⃗

ρσÞ12 ð35Þ
using that areas on the boundary between m⃗ and n⃗ match
due to the translation invariance Eq. (30). Finally, a simple
way to define the dual lengths l⋆ is in terms of a geometric
mean,

lm⃗ n⃗⋆ ¼
ffiffiffiffiffiffiffiffi
lm⃗μ ln⃗μ

q
¼Eq: ð34Þ ðAm⃗

μνAm⃗
μρAm⃗

μσÞ16
ðAm⃗

νρAm⃗
νσAm⃗

ρσÞ 1
12

ðAn⃗
μνAn⃗

μρAn⃗
μσÞ16

ðAn⃗
νρAn⃗

νσAn⃗
ρσÞ 1

12

: ð36Þ

With these definitions, the matrix elements of the Laplacian
as functions of areas are

Δm⃗ n⃗ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Am⃗
μνAm⃗

μρAm⃗
μσ

q ðAn⃗
νρAn⃗

νσAn⃗
ρσÞ13

ðAn⃗
μνAn⃗

μρAn⃗
μσÞ16

: ð37Þ

EMERGENCE OF SPACETIME IN A RESTRICTED SPIN- … PHYS. REV. D 98, 026013 (2018)

026013-7



With this Laplacian, the heat equation Eq. (24) becomes a
difference equation solved by the heat kernel Kðn⃗; m⃗; τÞ
on the semiclassical spin-foam configuration. Its trace
analogous to Eq. (23) is simply the sum over vertices in
the 2-complex Γ [62,67],

PðτÞ ¼ TrKðn⃗; m⃗; τÞ ¼
X
n⃗∈Γ

Kðn⃗; n⃗; τÞ: ð38Þ

This completes the definition of the spectral dimension on a
single semiclassical spin-foam configuration as the scaling
Eq. (27) of PðτÞ. Inserting this expression in the spin-foam
state sum yields corresponding quantum expectation value.
While the given definitions of semiclassical geometry

entering the Laplacian, though natural, might allow also for
alternatives, results on the spectral dimension of discrete
geometries [67,68] suggest that it is not sensitive to details
of the precise definition of local geometry. For example,
from the perspective of discrete geometry of the dual
complex, a dual-length definition in terms of the arithmetic
mean lm⃗ n⃗⋆ ¼ ðlm⃗μ þ ln⃗μÞ=2 might be more appropriate [62].
While the resulting expression for Laplacian coefficients
Δm⃗ n⃗ is slightly more involved, this is irrelevant for all
practical purposes. In particular, we have cross-checked
that the calculations presented in this paper with either
definition show no significant differences.

C. Approaching the full dynamics in terms
of periodic configurations

Evaluating the quantum spectral dimension remains an
intriguing challenge even after restricting the spin-foam
path integral to the asymptotic regime of quantum cuboids
Eq. (18). This challenge is posed by both ingredients of the
calculation, the spectral dimension and computing the spin-
foam state sum. To clarify this point, let us disentangle
the two and discuss first the evaluation of the spectral
dimension of one lattice.
Consider a discrete geometry, for simplicity with peri-

odic boundary conditions, i.e. a D-dimensional torus, on
which the discrete Laplace operator Eq. (28) is well
defined. Its spectral dimension can be reliably determined
in a certain regime of the diffusion time τ, namely
a ≪

ffiffiffi
τ

p
≪ aNlattice. Here a denotes the lattice scale and

Nlattice is the number of lattice sites in each direction.3 If τ is
smaller or similar to the lattice scale a, the return prob-
ability remains constant or only changes slightly as we
cannot resolve the geometry below the lattice scale,
resulting in a spectral dimensionDs ¼ 0. Seen by a random
walker the diffusion time is too small for the randomwalker
to explore the surrounding geometry or for it to even leave
the initial lattice site. Conversely when τ goes beyond the
size Nlattice of the lattice the return probability becomes

constant again due to the compactness of the geometry, and
thus Ds ¼ 0. Again for a random walker the diffusion time
was long enough for the walker to travel through the entire
geometry to arrive back at the starting point. Hence in order
to observe a nontrivial spectral dimension the lattice size
must be large enough, which is determined by the number
of lattice sites in each direction. Typically Nlattice should be
at least of the order ∼103. However it might be necessary
that the number of lattice sites is a few orders of magnitude
larger than this such that the compactness is not seen too
early. An example could be a 2-torus with a small and a
large radius: If the lattice scale is too large, one cannot
resolve the small radius.
Given such a lattice, for concreteness in D ¼ 4, it is

numerically challenging to compute the spectral dimen-
sion. In order to derive the return probability at all scales τ,
in particular at the intermediate ones between the lattice and
compactness scale, we have to know the entire spectrum of
the Laplace operator Δ. For Nlattice ∼ 103 in each direction,
Δ is a 1012 × 1012 matrix that needs to be diagonalized.
Already memory cost in defining such a matrix is very
high, not to mention the computational cost in computing
its complete spectrum.4

Instead of diagonalizing the entire matrix one can study
the return probability of a discrete geometry via a random
walker, similar to the studies in causal dynamical triangu-
lations [18]. The random walker randomly jumps from
lattice site to lattice site, where the jump probabilities are
related to the entries of Δ. The return probability literally is
the probability of the random walker to return to the lattice
site it started from after σ steps, where σ can be related to
the diffusion scale τ. This probability is then averaged over
each lattice site as a possible starting point of the random
walker. Particular care must be given to the implementation
of the algorithm as soon as cells can vary in their respective
volume, which we detail in a companion article. In order to
correctly estimate the return probability a random walk
must be frequently repeated. While it is very efficient in
memory consumption and thus can be straightforwardly
implemented, the number of possible paths grows expo-
nentially requiring a similarly growing number of repeti-
tions to allow for accurate results. Hence the computational
cost grows quickly when large lattice distances are con-
sidered. Since each random walk is independent of the
others, this process is straightforwardly parallelizable.
Conversely the formal requirements to accurately cal-

culate the spectral dimension pose a serious challenge to
the spin-foam approach. So far most studies of spin-foam

3For simplicity we assume the lattice to be of equal size in all
dimensional directions.

4Since Δ is proportional to the adjacency matrix many of its
entries are empty. Thus one might be tempted to work with sparse
matrices instead. However, algorithms computing eigenvalues of
sparse matrices are only efficient for a small number of
eigenvalues, usually its largest or smallest. Such an approach
is hence only feasible when studying small or large scales
respectively.
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models did not exceed a few spin-foam vertices; in fact
most calculations were actually performed for a single
4-simplex in the so-called large-j limit. Going beyond this
asymptotic expansion has recently been explored in [59],
see also [69] concerning the Barrett-Crane spin-foam
model [27,28], but it has not yet been used to study the
spin-foam partition function for discretizations consisting
of several building blocks. One of the authors studied the
restricted partition function of hypercubic spin foams for
slightly larger discretizations in the large-j limit in [44,45].
However at the current stage studying the spectral dimen-
sion of spin foams in full generality is out of reach.
To make matters worse, a dynamical quantum geometry

might require even larger lattice if one intends to study the
quantum spectral dimension. Without imposing restrictions
onto the spin-foam state sum, we superimpose geometries
of varying size since we are summing over spins, which
can range over many orders of magnitude.5 Hence it is
straightforward to conceive a scenario where we super-
impose a small and a comparatively large geometry. In a
foam with a fixed number of vertices this can result in a
situation where we run into the compactness scale of the
small geometry, which can result in a biased result.
Naturally the question arises how we can reconcile the

need of studying small lattice in order to keep the spin-foam
state sum tractable with the imperative to make the lattice as
large as possible (if not infinite) in order to reliably
compute the spectral dimension. To kill two birds with
one stone we introduceN -periodic lattice; i.e. we introduce
an internal N periodicity to the lattice: after N steps the
geometric labels of the foam are the same, in any of the four
dimensions. On the one hand this greatly simplifies the
calculation of the spectrum of the Laplacian: instead of
diagonalizing a matrix of the size of the entire lattice we
perform a Fourier transform and calculate the spectrum of
the Brillouin zone from a N D ×N D matrix. The total
lattice size then merely determines which discrete frequen-
cies of this spectrum are allowed. In the limit of an infinite
lattice we simply integrate over the entire spectrum when
calculating the return probability.
On the other hand, the spin-foam state sum gets

drastically simplified, since the dynamical variables have
to respect the N periodicity. Hence the summation is only
over the variables associated to an “N -cell.” This N -cell
then determines the geometry of the entire lattice, where the
configuration of this cell is weighted by the spin-foam
amplitudes of the entire lattice. Increasing the total lattice
site implies weighing the configuration with a higher power
of spin-foam amplitudes. The latter fact makes numerical
simulations increasingly difficult and thus obstructs us
from taking the limit of large lattices, such that we have
to introduce an additional approximation: We assume the

N -cell to be weighted only by the spin-foam amplitudes
associated with that N -cell. Let us justify this
approximation:
As we have discussed above the N periodicity greatly

simplifies our calculation: the entire spectrum is readily
available and the spin-foam state sum is much more
tractable. The choice to take the infinite lattice limit is
solely introduced to avoid the compactness scale of some
quantum geometries and does not qualitatively affect the
spectrum otherwise. Furthermore increasing the power of
the spin-foam amplitudes changes the behavior only
slightly, which we discuss below in more detail. The
crucial limit indispensable for computing the spectral
dimension is taking N → ∞. Using a conjecture about
the scaling behavior of Δ inspired by [49] and in agreement
with our numerical results, we calculate that limit.
Calculating the return probability for N -periodic hyper-

cubic spin foams (in the large-j limit) boils down to
performing several integrations: on the one hand we have
to integrate over spin-foam labels, i.e. SU(2) spins, on the
other hand over the eigenvalues of the Laplacian operator,
here captured in branches of frequencies. The number of
spins to integrate over increases with growingN , while the
number of integrations over eigenvalues remains 4 for four
spacetime dimensions.
We perform the numerical integrations in Julia6 using

the Cuba7 package [70], a set of adaptive algorithms using
Monte Carlo techniques suited for higher dimensional
integration. Instead of performing all integrations at once,
we integrate over the eigenvalues of the Laplacian first.
Hence the separate integrations are lower dimensional
improving convergence of the algorithms.

III. DIMENSIONAL FLOW IN SPIN FOAMS

Before we present our results on the spectral dimension
of hypercuboid spin foams, in particular how it changes
with the scale at which the geometry is probed, we would
like to briefly recall the key geometric properties of these
configurations.
In the large-j limit hypercuboid spin foams are essen-

tially peaked on flat building blocks that are glued together
in a flat way. The spins solely determine the size of faces,
the 3-volume of cuboids and the 4-volume of hyper-
cuboids. Thus they affect the entries of the Laplacian,
but spacetime in itself remains flat.
The main effect on the spectral dimension comes from

the superposition of geometries of different size, more
concretely how geometries of different size are weighted in
the path integral depending on the parameter α. Indeed this
determines which spectral dimension we observe. We first
present the results for geometric configurations where each

5Whether this actually is the case and which geometries are
preferred depends crucially on the spin-foam amplitudes.

6https://julialang.org/.
7See http://www.feynarts.de/cuba/ for the original version and

https://github.com/giordano/Cuba.jl for the Julia package.
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hypercuboid is given by four edge lengths before briefly
discussing the spin case. For all numerical simulations we
have chosen the same minimal and maximal cutoff to make
the results comparable. For length variables we choose
lmin ¼ 10−3 and lmax ¼ 103; for spins it is jmin ¼ 10−6 and
jmax ¼ 106 accordingly. We observe qualitatively similar
results for various values of periodicity N justifying the
finite-N computations.

A. Restriction to geometric configurations

1. 1-periodic configurations

The simplest example we can study is the 1-periodic
case: the entire geometry is determined by a single hyper-
cuboid and its four edge lengths li. Computing the return
probability in this case is rather simple, since the spectrum

of the four-dimensional Laplace operator can be computed
from the spectra of four one-dimensional Laplace operators
(for equilateral one-dimensional lattices) with edge lengths
li. This is straightforward to recognize from Eq. (28) as the
components of the four-dimensional Laplace operator in
one direction only depend on the length associated with
that direction; the dependence on the other lengths in the
3- and 4-volume cancels, since all angles are right angles.
Thus the one-dimensional spectra associated to each of the
four dimensions are

ω2
i ðli; kiÞ ¼

2

l2i
ð1 − cosðkiÞÞ; ki ∈ ð−π; π�: ð39Þ

The full four-dimensional spectrum is the sum of one-
dimensional spectra in each direction such that the heat
trace factorizes and is solved analytically [67],

Pðτ; fligÞ ¼
Y4
j¼1

�Z
π

−π
dkj exp

�
−
2τ

l2j
ð1 − cosðkjÞÞ

��
¼

Y4
j¼1

�
2πe

−2τ
l2
j I0

�
2τ

l2j

��
ð40Þ

where I0 denotes the modified Bessel function of first kind.
While the heat trace takes this simple product form, the amplitude ÂðαÞ

v does not factorize into a product of amplitudes
associated to a single dimension. Hence the integration over length variables must be performed simultaneously,

hPðτÞiα ¼
1

Z

Z Y4
i¼1

dli Â
ðαÞ
v ðfligÞPðτ; fligÞ ¼

1

Z

Z Y4
i¼1

dli Â
ðαÞ
v ðfligÞ

Y4
j¼1

�
2πe

−2τ
l2
j I0

�
2τ

l2j

��
: ð41Þ

We perform the remaining integral over lengths numeri-
cally. The spectral dimension DsðτÞ ¼ Dsðτ; αÞ is again
defined as the logarithmic derivative,

DsðτÞ ¼ −2
∂ lnhPðτÞiα

∂ ln τ : ð42Þ

In Fig. 2 we plot respectively the return probability and
the spectral dimension as a function of τ over several orders

of magnitude for different values of α. Table I contains the
results (with error estimates) from finding the best linear fit
for lnhPðτÞiα for the middle plateau. Let us describe some
general features of the results.
For τ ≪ l2min, we only find Ds ¼ 0 as we are probing

spacetime below (the smallest allowed) lattice scale. Seen
from a random walker, this just means that the random
walker was not able to leave the starting 4-cell at all and is
thus unable to probe spacetime; hence the return probability

FIG. 2. Numerical results of hPðτÞi (left) and Ds (right) for periodicityN ¼ 1 for various values of α. The individual points of Ds are
calculated by taking the difference quotient of hPðτÞi.
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is constantly 1. For τ ≫ l2max, we always find Ds ¼ 4. This
is straightforward to explain as well because we are probing
a superposition of four-dimensional lattices at a scale where
all these geometries possess Ds ¼ 4. As we do not add any
geometries of larger lattice scale, we can only find Ds ¼ 4

if we increase τ further. Thus we omit results for τ > 106.
The behavior of Ds for l2min < τ < l2max depends crucially

on α; namely there is an interval ½αmin; αmax� in which Ds

changes continuously from Ds ¼ 4 at αmin and Ds ¼ 0 at
αmax. Outside this interval Ds ¼ 0 for α > αmax and Ds ¼ 4
for α < αmin. It is difficult to find αmin and αmax numeri-
cally; below we provide an analytical derivation for these
parameters, which also estimates them remarkably well in
more complicated cases. We comment on the implications
of this result later on.
A brief note on the cutoffs is in order: if we remove the

minimal cutoff, we do not observe a drop toDs ¼ 0 to small
scales unless α > αmax. Instead the plateau we observe
extends to smallest scales. Similarly if we remove the
maximal cutoff we do not observe an increase toDs ¼ 4 for
large τ unless α < αmin.

2. 2-periodic configurations

The next logical step is to study a 2-periodic spin foam,
that is a spin-foam completely prescribed by a block of 16
spin-foam vertices glued together. In the geometric case that
we are studying here, each vertex amplitude depends on four
edge lengths which are identified across the amplitudes via
the gluing. As one would expect, the block of 16 vertex
amplitudes then depends on eight edge lengths in total, two
associated to each dimension. The scaling properties of each
individual vertex amplitude are the same as before, such that
the entire amplitude A scales according to Eq. (21) as
follows (under uniform scaling of all edge lengths),

AðαÞ
N¼2

∝
Y
v

ÂðαÞ
v ðfλligÞ ¼ λ16ð24α−14Þ

Y
v

ÂðαÞ
v ðfligÞ: ð43Þ

The Laplace operator is slightly more intricate than in the
1-periodic case, but crucially it still possesses the “factori-
zation” property across dimensions. To see this let us
consider one of its nonzero components in the x-direction,

−Δx;xþ1 ¼
1

Vð4Þ
Vð3Þ

l�x
¼ 1

lð1Þx lð1Þy lð1Þz lð1Þt

lð1Þy lð1Þz lð1Þt

1
2
ðlð1Þx þ lð2Þx Þ

¼ 2

lð1Þx ðlð1Þx þ lð2Þx Þ
: ð44Þ

As in the previous cases, the components of the Laplace
operator in one direction only depend on the edge lengths in
that particular direction. For the geometric cuboid con-
figurations this generalizes to arbitrary periodicity N . So,
the spectrum of the Laplace operator can be computed
again via computing the spectra for four one-dimensional
lattices of periodicity N , which consist of N eigenvalues.
The Laplace operator of a 2-periodic one-dimensional

lattice comes with two off-diagonal entries, here (for
example in the x-direction)

w1 ¼
2

lð1Þx ðlð1Þx þ lð2Þx Þ
and w2 ¼

2

lð2Þx ðlð2Þx þ lð1Þx Þ
: ð45Þ

This can be seen by swapping lð1Þ for lð2Þ in Eq. (44). The
spectrum is then derived by Fourier transform exploiting
the periodicity of the lattice,

ω2
�ðkÞ ¼ w1 þ w2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2
1 þ w2

2 þ 2w1w2 cosðkÞ
q

;

k ∈ ð−π; π�: ð46Þ

Due to the 2 periodicity the spectrum has two branches. The
branch ω− goes to 0 for k → 0.
Having defined all necessary ingredients we compute

hPðτÞiα in the 2-periodic case,

hPðτÞiα ¼
1

Z

Z Y8
i¼1

dliA
ðαÞ
N¼2

ðfligÞ

×
Y4
j¼1

� X
s∈fþ;−g

Z
dkj exp ð−τωsðkjÞÞ

�
: ð47Þ

Analogous to the 1-periodic case we find the same
qualitative features, in particular, an interval in α for which
we can produce any value of Ds in [0, 4]. We present the
numerical results in Fig. 3 and Table II.
While the qualitative features are the same, we observe a

change in the α-dependence of the spectral dimension.
First, the interesting interval in α has shifted towards larger
values in α. Second, the size of the interval is considerably
smaller compared to the 1-periodic case. Both effects can
be explained by the fact that in the 2-periodic case the
geometry is weighted by 16 vertex amplitudes, which
results in a more “spiked” scaling behavior Eq. (43)
compared to Eq. (21) in the 1-periodic case. Since the
occurrence of a spectral dimension 0 < Ds < 4 crucially
depends on the superposition of discrete geometries, the
suitable range of α shrinks. Furthermore this changed
scaling behavior also pushes the interval to larger α.

3. 3-periodic case

We conclude the numerical study of geometric quantum
cuboids with the 3-periodic case. This case is fairly

TABLE I. Values of spectral dimension Ds in the 1-periodic
case for the plateau l2min < τ < l2max obtained from a linear fit to
hPðτÞiα.
α 0.42 0.4 0.38 0.35

Ds 0. 0.50� 0.02 0.97� 0.02 1.64� 0.02
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analogous to the 2-periodic case, but it is already consid-
erably more costly in computational costs.
The spin foam is determined by 81 spin-foam vertices,

whose geometry is prescribed by 12 edge lengths. The
scaling of this collection of amplitudes changes accord-
ingly. The spectrum of the Laplace operator is still
computed from four one-dimensional spectra, which we
compute again via a Fourier transform. Its characteristic
polynomial has three solutions ω2

aðkjÞ, i.e. three branches.8
Thus the return probability is computed as follows:

hPðτÞiα ¼
1

Z

Z Y12
i¼1

dliA
ðαÞ
N¼3

ðfligÞ

×
Y4
j¼1

�X2
a¼0

Z
dkj exp ð−τωaðkjÞÞ

�
: ð48Þ

The numerical results are presented in Fig. 4 and
Table III. They confirm the observations from the 1- and
2-periodic cases: Under increasing the α-interval in which
Ds changes continuously (for the plateau l2min < τ < l2max)
between 0 and 4 gets significantly smaller and it is moved
to larger values of α. However the shift of the interval in α
from 2 to 3 periodic is significantly smaller than from 1 to 2
periodic. This indicates that the α interval might shrink and

converge to a specific value in theN → ∞ limit, which we
discuss later on.
Since the results only change quantitatively under

increasing the periodicity N we do not expect qualitative
changes. For this reason and the growing computational
costs, we refrain from studying periodicities N > 3
numerically. Later we give an analytical argument that
this is indeed not necessary. Before that we briefly study the
spectral dimension in the spin case.

B. Spectral dimension of spin configurations

The restriction to purely geometric configurations is a
strong simplification of spin foams. Indeed it is an
intriguing question whether the nongeometric configura-
tions can leave an imprint on the qualitative behavior of the
spectral dimension. At this point we remind the reader that
it is natural to expect a quantitative difference since the
scaling behavior of spin configurations Eq. (19) differs
from the one of geometric configurations Eq. (21).
As for the geometric case, we start our analysis with the

1-periodic case. This is prescribed by a single hypercuboid
given by six spins. Not surprisingly, the spectrum of the
Laplace operator for spin configurations cannot generically
be expressed any more by the spectra of one-dimensional
Laplace operators, since the variables and weights do not
factorize any more per dimension. Fortunately, due to the 1
periodicity of the configuration, the components of the
Laplacian remain unchanged under translations in any
direction. Hence we compute the spectrum of the four-
dimensional Laplace operator yet again from the spectra of
four one-dimensional operators with spin dependent
weights; e.g. in t-direction,

FIG. 3. Numerical results of hPðτÞi (left) and Ds (right) in the 2-periodic case for several values of α.

TABLE II. Values for the spectral dimension Ds in the 2-
periodic case for the plateau l2min < τ < l2max.

α 0.57 0.56 0.558 0.555 0.553

Ds 0. 0.928� 0.011 1.74� 0.02 2.85� 0.02 3.57� 0.02

8For N ≥ 3 the off-diagonal Laplacian entries wij=Vi consist
of a symmetric part wij ¼ Vij=l⋆ij with 3-volumes Vij and dual
length l⋆ij and the inverse 4-volume Vi (note that this Laplacian
matrix is still symmetrizable [62]). For N ¼ 3 the spectrum x ¼
ω2
aðkÞ is then given by the three real solutions to the cubic

equation

0 ¼ x3 þ
�
w12 þ w13

V1

þ w12 þ w23

V2

þ w13 þ w23

V3

�
x2

þ V1 þ V2 þ V3

V1V2V3

ðw12w13 þ w12w23 þ w13w23Þx

þ 2
w12 þ w13 þ w23

V1V2V3

ð1 − cosðkÞÞ:
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ω2
t ðfjmg; ktÞ ¼

2

l2
γ

ðj1j2j3Þ13
ðj4j5j6Þ23

ð1 − cosðktÞÞ; kt ∈ ð−π; π�;

ð49Þ

where j4, j5 and j6 also span the t-direction, whereas j1, j2
and j3 are purely spatial. Thus the calculation of the return
probability is analogous to the geometric case, but with a
slightly more intricate dependence of the spectrum on the
geometry,

hPðτÞiα ¼
1

Z

Z Y6
i¼1

dji Â
ðαÞ
v ðfjigÞ

×
Y4
m¼1

�Z
dkm exp ð−τω2

mðfjig; kmÞÞ
�
: ð50Þ

We summarize the results in Fig. 5 and Table IV.
Qualitatively we observe a similar behavior to the

geometric case: For τ < jmin we only find Ds ¼ 0 while
for τ > jmax we observe only Ds ¼ 4. For diffusion times τ
in between we again observe that there exists an interval
½αmin; αmax� in which we find plateaus constant inDs, whose
value continuously increases as α is decreased. That is,
Ds ¼ 0 for α > αmax whereas Ds ¼ 4 for α < αmin. Hence
we only observe a quantitative difference to the geometric
case, since this α-interval is found for significantly smaller
α. However the inclusion of nongeometric configurations
does not seem to leave an imprint on the spectral dimen-
sion, at least not in the 1-periodic case.
For periodicity N > 1 the spectrum of the Laplace

operator does not split in directions. Thus, it is necessary
to consider the entire four-dimensional operator. It is still

most convenient to exploit the periodicity of the system and
compute its spectrum after a Fourier transform; e.g. for
N ¼ 2 this amounts to calculating all eigenvalues as
functions of 24 spins and four momenta. Deriving these
formulas analytically in full generality is challenging, not to
mention for larger periodicity, but computing the spectrum
numerically for fixed values of spins and momenta is
efficient. Hence we can in principle continue studying the
spectral dimension for larger periodicity; however the
numerical cost is high. One reason is the fact that we have
to perform the momentum integrations all at once instead of
one by one. Moreover, already for N ¼ 2 we have to
integrate over 24 spins, which is very costly. Thus we leave
this question for future research. Nevertheless, due to the
qualitative similarity of the nongeometric results to the
geometric ones and the robustness of the latter for larger
periodicity, we do not expect vastly different results in the
spin case for larger periodicity.

C. Analytical explanation of numerical results

The numerical result of a dimensional flow in cuboid
spin foams can be explained in terms of the scaling of the
amplitudes and an assumption on the scaling of the
Laplacian.
The amplitude of cuboid spin foams scales in all cases

with an exponent linear in the model’s parameter α. In
general, the vertex amplitude is a homogenous function of
degree −ða − bαÞ. The relevant instances here are ða; bÞ ¼
ð9; 12Þ for spin variables xi ¼ ji according to Eq. (19) and
ða; bÞ ¼ ð14; 24Þ for the restriction to geometric configu-
rations and a transformation to edge-length variables
xi ¼ li, Eq. (21). Thus, expectation values in such a spin
foam with V vertex amplitudes are sums over spin
configurations weighted by

A ∝
Y
v

ÂðαÞ
v ðλx⃗Þ ¼ λ−ða−bαÞV

Y
v

ÂðαÞ
v ðx⃗Þ: ð51Þ

In [17], a generic dimensional flow has been found for
such superpositions weighted by a power-function measure
x−γ in the case of a single variable x, summing from some

TABLE III. Values for the spectral dimension Ds in the
3-periodic case for the plateau l2min < τ < l2max.

α 0.577 0.5765 0.576 0.5755

Ds 0.50� 0.01 1.40� 0.03 2.27� 0.02 3.17� 0.02

FIG. 4. Numerical results of hPðτÞi (left) and Ds (right) in the 3-periodic case for several values of α.
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xmin to xmax. If the Laplacian is a power function in this
variable,

ΔðxÞ ¼ x−2βΔ; ð52Þ

where Δ is the purely combinatorial Laplacian on the
hypercubic lattice, then one finds a dimensional flow from
the topological dimension D at large scales, τ ≫ x2βmax, to a
spectral dimension,

Ds ¼

8>>><
>>>:

0; γ−1
β ≤ 0

γ−1
β ; 0 < γ−1

β < D

D; γ−1
β ≥ D;

ð53Þ

at small length scales x2βmin ≫ τ ≫ x2βmax. For τ ≪ x2βmin there
is the usual falloff to 0 due to discreteness. Furthermore, the
result of an intermediate dimension does not depend on the
step size in the sum over x (as long as it is much smaller
than xmax). This result can be directly applied to the test
case of a spin-foam sum restricted to equilateral (n ¼ 1)
configurations with γ ¼ ða − bαÞV.
The equilateral result can now be generalized to the case

of N -periodic spin-foam configurations based on a scaling
assumption for the Laplacian. For the spectrum of the
Laplacian there is some evidence [49] that the scaling in a
single variable Eq. (52) generalizes to N -periodic lattices
in terms of averages. That is, the assumption is that for a
sufficiently large number n of independent length variables
le on edges e [which depends in our setting on N , see
Eq. (67)],

ΔðleÞ ≈ l2−1Δ; ð54Þ

where l2 is the average over all squared edge lengths l2i of a
given configuration,

l2 ¼ 1

n

X
e

l2e: ð55Þ

Under this assumption we can explain the numerical results
analytically.
It should be emphasized that the scaling of the

Laplacian’s spectrum, though an assumption, is based on
a well-motivated conjecture. In particular, this conjecture
stems from an exact result on the perturbative expansion of
the spectrum in the momentum k for any n [49]. For the
spectral dimension, only the first (quadratic) order is
relevant for obtaining the topological dimension above
the discreteness scale. Subleading orders merely determine
the form of a local maximum around the discreteness scale.
Thus, the assumption is very meaningful in this context and
the fact that the numerical results can be explained in this
way further supports the conjecture.
The spin-foam expectation value of the heat trace can

now be transformed to a one-dimensional integral, up to an
irrelevant overall factor. We show this first for the restric-
tion to geometric configurations where a transformation to
edge-length variables le is possible and generalize then to
arbitrary spins jf. The key point is that a transformation of
the integral

hPðτÞi ¼
R ½dle�n AðleÞTreτΔðleÞR ½dle�nAðleÞ

ð56Þ

to “radial” coordinates with radius l2 is possible such that
only the radial part contributes to the heat kernel expect-
ation value. Explicitly, the transformation is

le ¼
ffiffiffiffiffiffiffi
nl2

q
feðΩÞ ð57Þ

TABLE IV. Values for the spectral dimension Ds in the 1-
periodic case with spin variables for the plateau l2min < τ < l2max.

α 0.3 0.25 0.2 0.15 0.1

Ds 0. 0.121� 0.006 1.23� 0.02 2.42� 0.02 3.53� 0.02

FIG. 5. Numerical results of hPðτÞi (left) and Ds (right) in the 1-periodic case in spin variables for several values of α.
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where feðΩÞ are the standard angular functions in radial
coordinates. In this way, the semiclassical cuboid spin-
foam amplitudes factorize into a radial part and angular part
gðΩÞ as well,

AðleÞ ∝
Y
v

ÂðαÞ
v ðleÞ ¼

ffiffiffiffiffiffiffi
nl2

q −ða−bαÞV
gðΩÞ: ð58Þ

Then, the angular part in the heat-trace expectation factor-
izes and cancels with the denominator

hPðτÞiα ¼
R lmax
lmin

½dle�n
Q

vÂ
ðαÞ
v ðleÞTreτΔðleÞR lmax

lmin
½dle�n

Q
vÂ

ðαÞ
v ðleÞ

≈

R l2max

l2min
dl2

ffiffiffiffi
l2

p
n−2−ða−bαÞV

Treτl
2−1Δ

R l2max

l2min
dl2

ffiffiffiffi
l2

p
n−2−ða−bαÞV ð59Þ

¼ 1

lmax
n−ða−bαÞV − lmin

n−ða−bαÞV

×
Z

l2max

l2min

dl2
ffiffiffiffi
l2

q
n−2−ða−bαÞV

Treτl
2−1Δ: ð60Þ

For the remaining part one can apply again the result
Eq. (53) from [17], now with β ¼ 1=2 and γ ¼ ð2þ ða −
bαÞV − nÞ=2 such that there is a dimensional flow to

Dα
s ¼ Vða − bαÞ − n ð61Þ

at l2min ≪ τ ≪ l2max for 0 < Vða − bαÞ − n < D. Note that
in this way any value Dα

s ∈ ½0; D� can be obtained for some
α for a finite number of degrees of freedom n and vertex
amplitudes V. The range of α where such a flow occurs is
given by

α ¼ 1

b

�
a −

n
V

�
−

1

bV
Dα

s : ð62Þ

Numerical calculations in the various cases are in perfect
agreement with the analytically derived linear relationship
between Dα

s and the theory’s parameter α, as shown in
Fig. 6.
It is not obvious, however, how the scaling of the

Laplacian generalizes from the case of length variables
to area variables, Eq. (37), and thus spins jf. At first, a

scaling in jf or in j2f seems meaningful. Here we take our
numerical results as input where we find a dimensional
flow for the sum over n spins jf (see Fig. 6) to

Dα
s ¼ 2ðVða − bαÞ − nÞ: ð63Þ

This can be explained under the assumption for the
Laplacian on spin configurations

ΔðjfÞ ¼ j2−1=2Δ ð64Þ

which means that j2 ¼ 1
n

P
j2f is the proper average for the

scaling assumption. Performing the same transformation to
radial-type coordinates, now in the space of spin configu-
rations,

AðjfÞ ∝
Y
v

ÂðαÞ
v ðjfÞ ¼ ðnj2Þ−ða−bαÞV=2hðΩÞ; ð65Þ

one finds the heat-trace expectation value

hPðτÞi∝
Z

jmax

jmin

½djf�n
Y
v

ÂðαÞ
v ðjfÞTreτΔðjfÞ≈

1

2

ffiffiffi
n

p
n

×
Z

dΩ
Y
v

hvðΩÞ
Z

j2max

j2min

dj2ðj2Þn−2−ða−bαÞV2 Treτj
2−1=2Δ:

ð66Þ

Thus, the only difference in the resulting equation for the
intermediate dimension Dα

s between a spin-foam sum over
spins jf and the restricted spin-foam sum over geometric
configurations given by le is a factor of 2 stemming from
the different scaling of Laplacian in the squared-variable
average, that is β ¼ 1=4 for spins and β ¼ 1=2 for edge
lengths.
Accordingly, there is an effect of nongeometricity in this

spin-foam model on the spectral dimension, though the
underlying reason seems to be the number of degrees of
freedom and resulting amplitude scaling rather than an
explicitly geometric explanation. The number of degrees of
freedom on the N -periodic configurations of the cuboid
spin-foam model with its translation invariance is n ¼
ðD
2
ÞN 2 for spin variables on faces, or n ¼ DN for length

FIG. 6. Comparison of numerical results (values and error bars
according to Tables I–IV) with the analytical result Eqs. (61) and
(63) for the intermediate spectral dimension Dα

s as a function of
the model parameter α for n ¼ 4 (V ¼ 1), n ¼ 8 (V ¼ 16) and
n ¼ 12 (V ¼ 81) length variables, as well as n ¼ 6 (V ¼ 1) spin
variables.
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variables on edges. Together with the different amplitude
scaling ða; bÞ, Eq. (51), one finds a different N -dependent
offset in the linear relation between Dα

s and α, while the
slope is the same in both cases for given N (see Fig. 6).
Restricting to geometric configurations shifts the range of α
at which a dimensional flow occurs to smaller α forN ≥ 2.
This is true in particular for the large-N limit which we
discuss in the following.

IV. FULL CUBOID-SPIN-FOAM SUM AND
RENORMALIZATION GROUP FLOW

Though the analytic equations explaining our numerical
results turn out to be rather simple, the physical conse-
quences are far reaching. In the end we are interested in the
large-periodicity limit, that is, the full cuboid spin-foam
sum. The analytic equations Eqs. (61) and (63) allow us to
take this limit. It appears that the range of α where an
intermediate dimension 0 < Dα

s < D is observed shrinks
to a point fα�g. We provide two interpretations for this
fact. Considering the large-periodicity limit as a certain
thermodynamic limit, one can argue that α ¼ α� is the point
in the parameter space of such a model where a phase
transition from zero-dimensional to D-dimensional space-
time takes place. Complementary, one can ask the question
whether our results are consistent across lattices of different
periodicity. In this sense we discuss the possibility to use
Dα

s as a condition to define a renormalization group flow
for α. We discuss these two possibilities—which should be
emphasized not to be exclusive subsequently—in the two
parts of this section. In any case, an intriguing aspect is that
dynamics, more precisely the amplitude ÂðαÞ

v , at α� is
invariant under global rescaling, connecting the discussion
also with the topic of restoration of diffeomorphism
invariance.

A. The large-N limit and scale invariance

Our numerical computations are approximate in a two-
fold way. For explicit calculations one has to fix a finite N
and a finite maximal spin jmax. To obtain exact results it is
necessary to take the limits N → ∞ and jmax → ∞. The
main advantage of the analytic explanation of the results
under the power-law assumption for the Laplacian is that
they enable us to take these limits.
Both our numerical and analytical studies reveal a

universal behavior of the spectral dimension for cuboid
spin foams. For any choice of finite number of spin-foam
vertices V or finite periodicity N we observed essentially
three different regimes depending on the parameter α: For
large α we observe Ds ¼ 0, for small αDs ¼ D and in
between those regions exists a small interval in which Ds

can take any value between 0 andD changing continuously
with α. However, the position and size of this interval in α
depend sensitively on the size of spin foam. For growingN
(or V) the size of this interval shrinks and the upper and

lower end increase to approach the value in α where the
spin-foam amplitude becomes invariant under global scal-
ing, i.e. ÂðfλjigÞ ¼ ÂðfjigÞ.
Thus, the relevant quantity to analyze is the parameter

α ¼ αN ðDα
s Þ at which a certain intermediate dimension Dα

s

is observed for N -periodic spin-foam configurations.
When approximating large spin-foam configuration sums
by N -periodic configurations, the details of the limit
depend on the specific degrees of freedom. On a hypercubic
spin-foam lattice there are in general n ∝ N D degrees of
freedom. However, because of the translation invariance
Eq. (30) due to the restriction to cuboids this reduces to

n ¼ cDN p ð67Þ

where p ¼ 2 and cD ¼ ðD
2
Þ for a general spin configuration

while p ¼ 1 and cD ¼ D for edge-length variables in the
restriction to geometric configurations. In any case it is
meaningful to restrict the dynamics according to the
periodicity, that is V ¼ N D vertex amplitudes. As a result,
the generalized version of Eq. (62) is

αN ðDα
s Þ ¼

a
b
−
cD
b
N −Dþp −

2β

b
Dα

s N −D ð68Þ

where β ¼ 1=4 in the general spin case and β ¼ 1=2 in the
geometric edge-length case, as discussed before. While
any value Dα

s ∈ ½0; D� can be obtained for some α for a
finite number of degrees of freedom, there is a fine-tuning
with the periodicity N . The larger the N , the smaller the
range of α yielding an intermediate dimension Dα

s . In
particular, in the limit N → ∞, this α-interval shrinks to a
point α� ¼ a=b.
The discontinuous jump fromDα

s ¼ 0 toDα
s ¼ D at α� in

the limit N → ∞ is reminiscent of a phase transition. First
of all, one can indeed consider the large-N limit as a
thermodynamic limit. It is the limit of a large number of
degrees of freedom according to Eq. (67). While in
quantum gravity volume becomes a quantum observable
itself; its expectation value, being an extensive quantity, is
expected to scale with the combinatorial size Nlattice of
the lattice underlying the spin-foam configurations, in
particular, with the number of vertices such that their ratio
is fixed. For technical reasons, i.e. to avoid the compactness
effect of the spectral dimension, we have considered N ≪
Nlattice in explicit, finite-N computations in Sec. III. In the
large-N limit it is however equally meaningful to consider
lattices of sizeNlattice ¼ N . In this sense,N → ∞ is indeed
a thermodynamic limit.
Certainly, the quantity of spacetime dimension is a

suitable order parameter in the broadest sense to describe
the properties of different phases of a quantum geometry.
A different (effective) dimension of a spacetime, in
particular, when this spacetime is made up of intrinsically
D-dimensional building blocks, implies that it is ordered in
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a different way. The spectral dimension Ds captures a
particularly physical aspect of spacetime dimension, i.e.
the effective dimension as tested by a scalar field. Hence the
spectral dimension is a highly nonlocal quantity encapsulat-
ing information of the entire spacetime. However this is not
surprising in theories of quantum gravity which are expected
to have nonlocal features, e.g. due to diffeomorphism
invariance. Thus the definition of physically meaningful
local quantities is rather challenging. In causal dynamical
triangulations, for comparison, it is also common to use
averaged geometric quantities such as the number of
triangulation vertices per number of 4-cells as order param-
eters [18]. These quantities have a more precise meaning as
order parameters since they are conjugate to coupling
parameters on the level of the state sum. Still, the jump
of the spectral dimension fromDα

s ¼ 0 toDα
s ¼ D at α ¼ α�

is at least a strong sign for a phase transition.
The phase transition to D-dimensional spacetime

becomes even more relevant in the large-jmax limit. The
scale of the dimensional flow fromD toDα

s ≤ D is given by
the largest length scale l2max ∼ jmax up to which the spin
foam is summed. However, this is just an artificial cutoff, to
be sent to infinity in most spin-foam models.9 As a
consequence, this flow from Dα

s to D is shifted to infinity,
that is, the spectral dimension has the valueDα

s on all scales
(above the discreteness scale jmin). In particular, for an α
yielding Dα

s < D semiclassical quantum spacetime is
indeed of dimension smaller than the observed classical
D-dimensional spacetime. The usual D dimensions occur
only below some minimal αmin, either continuously for
finite N , or discontinuously at α ¼ α� in the thermody-
namic limit N → ∞. In this sense D-dimensional space-
time emerges in this spin-foam model.
The critical parameter α� has a special physical relevance,

as it is the point where the amplitude ÂðαÞ
v becomes invariant

under global rescaling; i.e. only the shape of the cuboid
determines the value of the amplitude, not its scale. Indeed
we know from [43,45] that α determines whether small or
large spins are preferred in the spin-foam state sum, where α�
marks the turning point between these two domains.
This tells us that in the N → ∞ limit, the spectral

dimension Ds is solely determined by the global scaling
behavior of the amplitude, where the scale-invariant ampli-
tude marks the transition between the phases characterized
by Ds ¼ 0 and Ds ¼ 4. The individual shape of the cuboids
does not seem to influence the spectral dimension. Interes-
tingly, this observation strongly resonates with the action of
an Abelian subgroup of diffeomorphisms, which trans-
forms a cuboid configuration into another cuboid confi-
guration. Such a diffeomorphism acts by shifting an entire

hyperplane in the direction orthogonal to it to obtain
another hypercubioid configuration. Hence such a diffeo-
morphism only changes how flat space is subdivided into
flat cuboids, which are glued together in a flat way.
The independence of the spectral dimension on the shape

of the cuboids in the N → ∞ limit implies that it is indeed
invariant under such diffeomorphisms which might indicate
that diffeomorphism invariance is restored in this limit at
α ¼ α�. This is further underlined by two previous results on
cuboid spin foams restricted to geometric configurations. In
[43] two glued hypercuboids were considered under trans-
lations of the middle cube along which they are glued while
keeping the total volume fixed. It was found that ÂðαÞ

v is
almost invariant under such hyperplane translations for
α ≈ 0.6. Similarly in [44,45] indications for a UV-attractive
fixed point of the renormalization group flow of ÂðαÞ

v were
found around α ≈ 0.628. It has been conjectured that broken
diffeomorphism symmetry of discrete theory gets restored at
such a fixed point [79,80]. Remarkably both these values are
in close proximity to α� ¼ 14=24 ≈ 0.583 in the present
context. The root of the discrepancy might be due to the fact
that the calculations in [43,45] were performed for finite
lattices, whereas our result holds for V;N → ∞.
Conversely, we can revert the logic and wonder when to

expect a nontrivial spectral dimension. In our study of the
spectral dimension for finite periodicity N of the spin
foam, we observed two different regimes in α, one with
Ds ¼ 0 and one with Ds ¼ 4 separated by a small region in
which it changes continuously. In the limit of N → ∞ the
two regimes persist and we can readily assign a spectral
dimension to them. However the intermediate region,
which contains any 0 < Ds < 4, shrinks to a single point
α�. Hence we cannot infer a value of the spectral dimension
right on this transition, yet we expect it to be nontrivial
there. Moreover, if this is the point on which diffeo-
morphism symmetry is restored, we conjecture that the
spectral dimension shows a nontrivial behavior there.
Naturally, this reasoning should be taken with a grain of

salt. The spectral dimension is, by definition, a global and
nonlocal observable, in which many properties of a geometry
get washed out. This is even more true in the case of a
quantum geometry where one sums over all geometries
allowed by the theories. Nevertheless, the fact that in the
N → ∞ limit only the scaling properties of the amplitude
determine the spectral dimension and microscopic properties
do not appear to play any role hints towards a restoration and
connection to diffeomorphism invariance.
As an exception, spin-foam configurations on a hyper-

cubic lattice without any symmetry on the variables are a
special case with a slightly different limit α�. While the
cuboid spin-foam model implies translation invariance, our
analytical argument also applies to less restricted spin-foam
sums. If all variables in the spin-foam configurations are
independent, that is p ¼ D in Eq. (67), the αN ðDα

s Þ relation
Eq. (68) is modified and has the limit

9Spin-foam models for quantum gravity with a nonvanishing
cosmological constant Λ often come with a natural cutoff jmax on
the spins [71–78]. One possibility is quantum groups at the root
of unity, where jmax is related to the level k of the quantum group.
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αN ðDα
s Þ ¼

a − cD
b

−
2β

b
Dα

s N −D →
N→∞

a − cD
b

ð69Þ

corresponding to a shift a ↦ a − cD. No such spin-foam
model with n ∝ N D variables has been calculated explic-
itly yet. But it is obvious that such a model, being much less
restricted than the cuboids, would describe also curvature
and other degrees of freedom. One could take this simple
argument for a different α�, thus as a hint that such a model
would indeed also be scale invariant at such nontrivial α�.

B. Renormalization and the spectral dimension
as order parameter

Complementary to the thermodynamic limit N → ∞ one
can pose the question of how the results depend on the
chosen periodicityN and whether the results for the spectral
dimension are consistent. Indeed, spin foams of different
periodicity correspond to different choices of discretizations.
Generically, for the same α, we then obtain different values
for the spectral dimension for different periodicities N . To
make this consistent, we can revert the reasoning and ask
which α, i.e. which spin-foam amplitudes, must we assign to
spin foams of different periodicity in order to observe the
same spectral dimension. In this sense, we use the value of
the spectral dimension as a criterion to define a renormal-
ization group flow for different periodicities, namely for
finer and coarser discretizations. If we then consider the flow
in the refining direction, i.e. growing N , we reobtain the
large-N limit and observe the flow α → α� for all
0 < Ds < 4. In this sense we can interpret α� as the UV
fixed point of the renormalization group flow.
In a nutshell, the idea behind renormalization in spin

foams is to model the same physical transition on different
discretizations. This is done by relating and identifying
boundary states across Hilbert spaces by embedding maps
and looking for consistent dynamics [39–42,48]. This
naturally extends to expectation values of observables,
which should be the same for different discretizations.
Conversely one can invert this logic and define a renorm-
alization group flow by requiring that expectation values of
observables agree [43–45]. The spectral dimension, which
is a global observable defined for all discretizations, is a
possible candidate (with certain limitations10).
In this article we have studied infinite four-dimensional

lattices without a boundary; hence the refining formalism
via embedding maps does not readily apply. As a further

restriction we have set the spin foam to be N periodic to
have better control over the number of variables. A natural
idea to relate the spectral dimension across such discreti-
zations is to compare an N -periodic spin foam to a 2N -
periodic one.
This comparison works conceptually as follows: The

2N -periodic spin foam is regarded as the refinement of the
N -periodic one. This implies that each of the repeated cells
is subdivided once in each dimension, resulting in 2D times
more lattice sites for the 2N -periodic spin foam. For this
comparison to be reasonable, we must ensure that we
compare the spectral dimension for similar (superpositions
of) geometries.
For the cuboid spin foams studied here, the only relevant

geometric quantity is the spins on faces, or the lengths on
edges in the geometric restriction. Thus our results so far
are labeled by the minimal and maximal allowed spins jmin,
jmax or edge lengths lmin, lmax. In order to compare N - and
2N -periodic lattices, their total minimal and maximal
scales must agree. For geometric cuboids this naturally
implies that the minimal and maximal lengths in the 2N -
periodic case are just half the size of their respective
counterparts in theN -periodic case. Accordingly, for spins
which relate to areas the refinement step yields

jmin ↦
1ffiffiffi
2

p jmin; jmax ↦
1ffiffiffi
2

p jmax: ð70Þ

In this sense the 2N -periodic configuration is a refinement
of the N -periodic one via a rescaling.
The comparison of the spectral dimension across spin

foams of different periodicity N leads to a flow in α as
follows: From the analytical explanation of our numerical
results we have an explicit formula for the intermediate
spectral dimension Dα

s ¼ Dα
s ðα;N Þ as a function of α

and N , via the number of vertices V ¼ N D and number
of degrees of freedom n ¼ cDN p with 0 < p ≤ D cover-
ing all the possible cases discussed in Sec. IVA. If Ds is
supposed to be the same under refining N iþ1 ¼ 2N i, we
have to assign specific parameters αi ¼ αN i

and αiþ1 ¼
αN iþ1

¼ α2N i
to each periodicity. Then we interpret the

N i-periodic spin foam for αi as the effective, coarse-
grained amplitude of the N iþ1-periodic spin foam for
αiþ1, both giving rise to the same spectral dimension Dα

s .
According to Eqs. (61) and (63) the parameters αi have
to satisfy

2βDα
s ðαi;N iÞ ¼ ða − bαiÞN D

i − cDN
p
i ¼ 2βDα

s ðαiþ1;N iþ1Þ ¼ ða − bαiþ1ÞN D
iþ1 − cDN

p
iþ1

¼ ða − bαiþ1Þ2DN D
i − cD2pN

p
i ð71Þ

10For the spectral dimension to show meaningful behavior, one cannot choose the underyling discretization to be too small. Otherwise
one only observes the compactness of geometry; see also the discussion in Sec. II C.
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or equivalently

ða − bαiþ1Þ − 2−Dða − bαiÞ ¼ cD2−Dð2p − 1ÞN p−D
i : ð72Þ

For p < D the right-hand side vanishes for large N . The equation is then solved by

αi ¼
a
b
−

1

2Dði−1Þ

�
a
b
− α0

�
→
i→∞

a
b

ð73Þ

which converges to α� ¼ a=b after many refinement steps, independent of some initial parameter value α ¼ α0. Taking the
N -dependent right-hand side of Eq. (72) into account, the more general flow depending on N i ¼ 2iN 0 is

αi ¼
a
b
−

1

2Dði−1Þ

�
a
b
− α0

�
−

1

N D−p
i

�
1 −

1

2Dði−1Þ

�
2p − 1

2D − 1

cD
b
: ð74Þ

In particular, one observes that for a full set of independent
variables, p ¼ D, and only in this case, the fixed point of
the flow is shifted to α� ¼ ða − cDÞ=b, in agreement with
Eq. (69).
Remarkably, this result does not depend on the scaling of

the Laplacian captured by β. Furthermore, the details of the
coarse graining are not important either. Any refinement
N iþ1 ¼ κN i, κ > 1, leads to the same fix point α� (where
formally κ might even be real). The kinds of variables of the
models captured by p and cD, in particular, length or spin
variables, make a difference only if p ¼ D, that is, if the
number of variables are proportional to the number of
vertex amplitudes.
There is subtlety regarding the consistency of the flow

equations Eq. (72). For a given value of intermediate
dimension 0 < Dα

s < D, there exists only one value α
for any (finite) periodicity producing this spectral dimen-
sion. Thus, the renormalization group flow αi → αiþ1 is
unambiguous and actually invertible. However, for Dα

s ¼ 0
orDα

s ¼ 4 we usually find large domains in α giving such a
spectral dimension. Consequently when considering the
flow, no unambiguous flow can be defined directly. This
quite significantly restricts the applicability of Eq. (72) as
the α interval permitting 0 < Dα

s < D shrinks rapidly.
Nevertheless, one can extend the flow to all α covering

also the regime of Ds ¼ 0 and Ds ¼ 4. On these values it is
never going to flow out of this phase by the renormalization
group flow. Hence we can define a new αi under renorm-
alization for it by considering the minimal value αiðDα

s ¼
0Þ for Dα

s ¼ 0 as well as the maximal value αiðDα
s ¼ 4Þ. If

we have Dα
s ¼ 0, the αi to be renormalized is αi ≥ αið0Þ,

whereas for Ds ¼ 4, the corresponding αi ≤ αið4Þ. In this
sense, we can extend Eq. (72) to the entire domain of α.
At this stage, a comment on the flow itself is in order.

Given the previously mentioned extension, we always see a
flow under refinement of α → α�. In that sense the flow is
UVattractive. However, this statement should be taken with
a grain of salt. It clearly holds that if we start, for a givenN ,
with an α leading to a 0 < Ds < 4, yet outside this interval,

which quickly shrinks for growing N , we have defined the
flow to be the same as inside the interval. This behavior
might indicate that the spectral dimension is not an ideal
observable to define a renormalization group flow, but still
serves as a good order parameter for identifying different
geometric phases of the model.
Note that this renormalization group flow is defined

under the assumption that the Laplace operator—and thus
the way the scalar field probes spacetime—does not change
under this flow, which is well motivated by regarding the
scalar field as a mere test field. However, in general both
matter and gravity need to be renormalized at the same
time, e.g. to describe how matter effectively propagates on
an effective spacetime. Furthermore it is necessary to
identify consequences of choosing a particular discrete
Laplace operator. We hope to shed more light on these
intriguing questions in future research.

V. CONCLUSIONS

In this work we have calculated the spectral dimension of
flat quantum spacetime as defined by the restriction of the
EPRL-FK spin-foam model to cuboid geometries. More
precisely we studied N -periodic spin foams, both numeri-
cally and analytically, and found the following general
behavior: The spectral dimension vanishes below the
minimal scale jmin and flows to Ds ¼ 4 above a maximal
scale jmax. In between we have found an intermediate value
0 ≤ Dα

s ≤ 4 that depends sensitively on the parameter α
characterizing the face amplitude of the spin-foam model as
well as the number of degrees of freedom n parametrized by
the periodicity N . For larger α, we always find Dα

s ¼ 0,
whereasDα

s ¼ 4 for small α. In between, for finiteN , there
exists an interval in α in which Dα

s increases linearly with
decreasing α. This interval shrinks with increasing N .
Under the assumption that the Laplacian scales with a
certain power of the inverse mean square of the spin-foam
variables we have analytically derived the relation between
Dα

s and α for arbitrary periodicity N which is in good
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agreement with our numerical results. This allows us to
generalize our numerical results to any N . It furthermore
predicts the results for models on a lattice with different
variables, e.g. fewer symmetries.
The analytical results permit us to take theN → ∞ limit

in which the α-interval of intermediate dimensions Dα
s

shrinks to a point marking a discontinuous transition
between Ds ¼ 0 and Ds ¼ 4. We have interpreted this as
evidence for a phase transition from zero-dimensional to
four-dimensional spacetime. The point of this transition is
precisely given by α ¼ α� on which the spin-foam ampli-
tudes become invariant under global rescaling. Hence the
spectral dimension in the N → ∞ limit solely depends on
the scaling behavior of the amplitude and not on the shape
of the individual cuboids. This hints towards restoration of
(an Abelian subgroup of) diffeomorphisms in this limit. To
the best of our knowledge, this is the first time that such an
emergence of four-dimensional spacetime has been found
in the context of spin-foam models.
Naturally these results must be taken with a grain of salt:

the cuboid spin-foam model we considered here is a
restricted version of the EPRL-FK model. We define it on
a hypercubic lattice and fix the intertwiners to be of cuboid
shape. Thus, in the large-j limit these lattices are essentially
flat geometries, which are subdivided in different ways. As a
consequence, several features which we expect to influence
the spectral dimension are not accessible in this model.
Intertwiner degrees of freedom, encoding different shapes of
three-dimensional building blocks, are not summed over,
and thus we cannot encode curvature. As another conse-
quence, the model is not sensitive to oscillating spin-foam
amplitudes. Furthermore, we have not studied the deep
quantum regime by restricting ourselves to the large-j limit,
such that log oscillations as proposed to be a general feature
of quantum geometry [81] are not observed. Anyway, on
sufficiently large length scales the spectral dimension is not
affected by quantum (small-spin) effects since short scale
geometries get exponentially suppressed in the return
probability for growing diffusion time. In spite of these
restrictions, we expect our results to carry over qualitatively
to more general spin-foammodels (for Riemannian signature
on semiclassical length scales).
However, the spectral dimension is very sensitive to the

combinatorial structure of a discrete or discretized space-
time theory. Beyond regular lattices as exploited here, it
remains a huge challenge to find at all ensembles of
combinatorially random geometries which are effectively
four dimensional [82,83]. So far, only severe constraints
on the combinatorics of the cell complexes such as a
foliation into spatial hypersurfaces as in causal dynamical
triangulations [9,18], or combinatorial translation invari-
ance as in the hypercubic lattice, are known to lead to a
regime of Ds ¼ 4. The use of such a lattice is very
meaningful in the present context where spin-foam con-
figurations are considered as a discretization of continuum

spacetime and the dynamics are eventually defined through
coarse graining and a renormalization group flow. On the
other hand, our results have no straightforward generali-
zation to a context where different combinatorial ensembles
dominate, for example triangulations dual to melonic
diagrams as in tensor models [84–86]. Since such trian-
gulations effectively obey the structure of branched poly-
mers [87], one would expect also for a spin-foam model
with such combinatorics a maximal value of the spectral
dimension of Ds ¼ 4=3. In this sense, the expectation that
our results still hold on more general spin-foam models
applies to a generalization of the variables on a lattice, not
to a generalization of the lattice to any other combinatorial
dynamics.
Despite these limitations, our model allows us to isolate

one particular aspect of spin foams affecting the spectral
dimension, namely the superposition of geometries.
Indeed, most of the single discrete geometries summed
over in the path integral have a spectral dimension DS ¼ 4
above their respective effective lattice scale given by the
spins. Hence, one might not be surprised to find a phase
with DS ¼ 4 for the quantum geometry. However, we have
observed that depending on the spin-foam amplitude the
quantum geometry is described by DS < 4 or that it might
even be zero dimensional. The latter occurs when the
amplitude prefers large spins while an intermediate value is
the effect of a subtle balance of spins of all sizes. If a regime
with DS ¼ 4 is supposed to appear in general in spin-foam
models, it occurs where this balance tends towards a
preference of small spins in the partition function.
Furthermore, in the more general spin case our model

allows for nongeometric configurations, which can be
interpreted as torsion. However, despite quantitative
differences we have not observed a qualitatively different
behavior from the geometric case. In this way we would
also like to see our work as a proof of principle upon which
to build future research on. One crucial idea for our work is
to use periodic configurations. From the numerical per-
spective it is the indispensable ingredient to build feasible
simulations by keeping the number of variables reasonably
small. Moreover it allowed us to study the full spectrum of
the Laplacian and avoid the issue of compactness of the
configurations. We are curious to see whether these ideas
are applicable to more scenarios in spin-foam models.
We expect these results to transfer qualitatively also to

more general spin-foam models, at least for Riemannian
signature. The cuboid restriction of the EPRL model is a
restriction to flat spacetime on the level of the quantum
state sum. An obvious next step in this line of research
would be to compute the spectral dimension on less
restricted models which cover curvature degrees of free-
dom, for example the frustrum model [47] with cosmo-
logical constant [88]. Still, our guess would be that local
curvature excitations do not effect the qualitative behavior
of the spectral dimension as a global observable. Already in
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the cuboid model computed here there are torsionlike
degrees of freedom due to the nongeometricity. We have
seen that their main effect as compared to the restriction to
geometric configurations is only a quantitative modifica-
tion to the α-dependence of the result, which is eventually
due to the different number of degrees of freedom. We
expect similar modifications when adding more local
degrees of freedom such as curvature.
Extending our study to models for Lorentzian signature is

more challenging for several reasons. One is simply that the
large-spin asymptotics for the Lorentzian model is known
only partially and the case of cuboid restriction remains to be
worked out. Another reason is that, if one considers the field
propagation as actually physical, the possibility to return to
the same point in spacetime in the Lorentzian context would
imply closed-timelike curves or randomwalkers propagating
back in time. This issue could be addressed transferring the
definition of causal spectral dimension as studied in causal
sets [21] to spin foams. On the contrary, one could argue that
a notion of dimension should not directly depend on the
causal structure. In fact, the definition of the quantum
spectral dimension depends only on the spectral properties
of the geometry (implicit in the Laplacian) and the quantum
dynamics as captured by the spin-foam amplitude. The
causal structure is then already induced by the spectrum of
Lorentzian Laplacians and Lorentzian amplitudes.
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