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We present noncritical Bianchi type I string cosmology solutions in the presence of central charge deficit
term Λ. The leading-order string frame curvature appears to be in the high curvature limit Rα0 ≳ 1, which
underlines the necessity of including higher-order α0 corrections. We give new solutions of two-loop (first-
order α0) β-function equations of the σ model with nonzero Λ and the dilaton field in both cases of the
absence and presence of a spatially homogeneous H field (H ¼ dB). Also, the evolution of solutions is
studied in the Einstein frame, in which the string effective action can transform to Gauss-Bonnet gravity
model coupled to a dilaton field with potential. We study explicit examples in first-order α0 with chosen
values of appeared constants in the solutions and discuss the cosmological implications.
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I. INTRODUCTION

In the σ-model context, the conformal invariance is
provided by vanishing β functions [1], which are equivalent
to the equations of motion of effective action in the string
frame [2]. The low-energy string effective action, being
compatible with the conformal invariance in one-loop
order, has wide cosmological implications for describing
the evolution of early Universe with a very low curvature
and string coupling, gs ¼ e−ϕ [3–5]. In two-loop order of β
functions, the string effective action is modified by includ-
ing the α0 corrections of quadratic curvature type α0R2,
where the α0 is the square of the string length, α0 ¼ λ2s=2π
[2,6]. The expanded leading-order effective action is widely
believed to regularize the curvature singularity [7]. The
two-loop β functions, possible α0-corrected string effective
actions, and on-shell compatibility of the α0-corrected
effective action equations of motion with the two-loop
conformal invariance condition have been investigated in
Ref. [2]. A renormalization scheme (RS) dependence
appears in the B field–dependent terms of two-loop β
functions and consequently in the α0-corrected effective

actions, the two schemes of Gauss-Bonnet and R2 of which
have been considered distinctly in Ref. [2]. Furthermore,
the S matrix is invariant under a set of field redefinitions
[8], which allows one to transform between RSs and leads
to a physically equivalent class of effective actions [9].
Generally, two kinds of corrections can be included in

the string effective action, the stringy α0 expansion and the
quantum nature loop expansion in string coupling [5].
The α0 corrections are significant when the curvature is in
the high limit Rα0 ≳ 1, while the loop corrections become
important in the case of strong string coupling gs > 1. As
long as the coupling is sufficiently weak in the high
curvature regime, the α0 corrections are enough to be taken
into account, and the loop corrections can be neglected [5].
Solutions of one-loop β-function equations with the

contribution of the dilaton field and antisymmetric B field
have been presented for several cosmological backgrounds
such as homogeneous anisotropic space-times [10–14] and
inhomogeneous models [15]. According to Ref. [12], the
contribution of the field strength tensor H ¼ dB in all
Bianchi-type models with diagonal metrics can be classi-
fied into three classes of χð→Þ, χð↑Þ, and χð↗Þ, where the
χ is all possible Bianchi types and the arrows indicate the
orientation of H�, the dual of H with respect to the three-
dimensional (3D) hypersurface of homogeneity Σ3 sec-
tions. In the aforementioned works, the central charge
deficit term Λ has been considered to be zero. In D
dimensions, Λ is proportional to D − 26 in bosonic string
theory and D − 10 in superstring theory and provides a
term in the effective action analogous to the nonvanishing
cosmological constant term [16]. Solutions with nonzeroΛ,

*f.naderi@azaruniv.ac.ir
†rezaei-a@azaruniv.ac.ir
‡f.darabi@azaruniv.ac.ir

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 98, 026009 (2018)

2470-0010=2018=98(2)=026009(18) 026009-1 Published by the American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.98.026009&domain=pdf&date_stamp=2018-07-05
https://doi.org/10.1103/PhysRevD.98.026009
https://doi.org/10.1103/PhysRevD.98.026009
https://doi.org/10.1103/PhysRevD.98.026009
https://doi.org/10.1103/PhysRevD.98.026009
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


called noncritical string cosmology, have been obtained in
the lowest-order β-function equations [16–18].
Moreover, neglecting the Λ term, the solutions of two-

loop β-function equations have been presented in some
works, such as on the Kasner and Schwarzschild back-
ground with setting the H field to zero [19] and on
anisotropic homogeneous backgrounds with the contribu-
tion of the H field [20]. Alternatively, the α0-corrected field
equations of the effective action in the Einstein frame have
been solved in several classes of backgrounds such as M
theory, black holes, and cosmology with no contribution
of the H field [21–29]. Also, the solutions in the presence
of the H field have been investigated, for instance, on
Friedmann-Robertson-Walker (FRW) and Garfinkle-
Horowitz-Strominger (GHS) black hole backgrounds with
zero Λ in Refs. [27,28] and on Godel space-time with
contribution of Λ in Ref. [29].
Especially, attempts to find accelerated expanding uni-

verses in the context of higher-dimensional superstring and
M theory led people to consider the extended gravitational
actions, since, in the low-energy limit of their effective field
theory, where the gravitational action is given only by the
Einstein-Hilbert action, the accelerated expanding solutions
are not allowed with a time-independent internal space
[30]. In these theories, inflation is expected to occur at the
Planck scale of 10 or 11 dimensions, and in such a high-
energy scale, the higher-order corrections are required to be
taken into account, at least in the early times. In this sense,
accelerated solutions have been found in higher-order
corrected high-dimensional string and M theory in the
absence of the H field, for example, in Refs. [31–35], with
special attention paid to the de Sitter–like and power-law
expanding solutions.
In this work, aimed at presenting a noncritical four-

dimensional two-loop string cosmology, we study the
solutions of two-loop β-function equations on anisotropic
Bianchi type I space-time with a nonzero Λ and dilaton
field in two cases of the presence and absence of anH field.
As we will show, the leading-order solutions have string

frame curvature in the high limit Rα0 ≳ 1, where the higher-
order α0 corrections become significant. We will limit our
calculations to the first order in α0, in which the corrections
of quadratic curvature types are included in the effective
action. Concerning only this order of corrections, the
regularizing effects of α0 corrections, in which the
higher-order corrections usually act to correct the lower-
order solutions order by order, are already known
[5,21,25,27]. We can, therefore, hope to provide a glimpse
of the feature that could be obtained considering all orders
in α0. Similar to what we have done in Ref. [20] for
classifying and solving the two-loop β function on all
Bianchi-type models withΛ ¼ 0 and theH field in the χð↑Þ
class, a perturbative series expansion in α0 is implemented
on the background field, and the general forms of equations
and solutions are presented. Also, we consider the field
equations in the Einstein frame by obtaining the contribu-
tion of H field in α0 order of the energy-momentum tensor
to investigate the cosmological implications of the α0-
corrected solutions.
The paper is organized as follows. In Sec. II, the general

forms of two-loop β functions considering the two RS of
Gauss-Bonnet and R2 are recalled. Also, the field equations
of the Gauss-Bonnet scheme in the Einstein frame are
presented. In Sec. III, the two-loop β functions with
nonzero Λ are solved on Bianchi type I background in
the two cases of a vanishing and nonvanishing H field.
Then, the behavior of solutions is investigated in the
Einstein frame in Sec. IV. Finally, the main results are
summarized in Sec. V.

II. TWO-LOOP (ORDER α0) β FUNCTIONS
AND α0-CORRECTED STRING

EFFECTIVE ACTION

In a σ model with background fields of metric g, dilaton
field ϕ, and antisymmetric B field, the two-loop β function
of the metric is given by [2]

1

α0
βgμν ¼ Rμν −

1

4
H2

μν −∇μ∇νϕþ α0

2

�
RμαβγRν

αβγ −
3

2
RðμαβγHνÞαλHβγ

λ −
1

2
RαβρσHμαβHνρσ þ

1

8
ðH4Þμν −

f
2
ðRμαβνðH2Þαβ

þ 2RðμαβγHνÞαλHβγ
λ þ RαβρσHμαβHνρσ −∇λHμαβ∇λHν

αβÞ − 1

12
∇μ∇νH2 þ 1

4
∇λHμαβ∇λHν

αβ þ 1

12
∇μHαβγ∇νHαβγ

þ 1

8
HμαλHνβ

λðH2Þαβ
�
; ð1Þ

whereH4 ¼ HμνλHνρκHρσ
λHσμ

κ,H2
μν ¼ HμρσH

ρσ
ν , andH is

the field strength of the B field defined byHμνρ ¼ 3∂ ½μBνρ�.
The f parameter indicates the RS dependence in β
functions. Especially, the schemes corresponding to f ¼
1 and f ¼ −1, called R2 and Gauss-Bonnet schemes, have

been pointed in Ref. [2]. Solutions of various RS β-function
equations are different but still equivalent because of their
belonging to various definitions of the physical metric,
dilaton field, and B field. The β functions of the B field in
the mentioned RS are given by [2]
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1

α0
βBμνðf ¼ 1Þ ¼ −

1

2
∇μHμνρ þ

α0

4

�
2R½μγαβ∇γHαβ

ν�

þ∇γHαβ½μHν�ραHβγρ þ 2∇βH2
α½νHμ�αβ

þ 1

2
H2

αβ∇αHβ
μν −

1

12
Hμν

ρ∇ρH2

�
; ð2Þ

1

α0
βBμνðf ¼ −1Þ ¼ R̂½μν� þ

α0

4

�
2R̂αβγ ½νR̂μ�αβγ − R̂βγα½νR̂μ�αβγ

þ R̂α½μν�βHαβ −
1

12
Hμν

ρ∇ρH2

�
; ð3Þ

where the R̂ρ
μνσ is the Riemann tensor of the generalized

connection with torsion Γ̂ρ
μν ¼ Γρ

μν − 1
2
Hρ

μν [36]. The aver-
aged β function of a dilaton, which can be written in terms
of β functions of the metric and dilaton field as
β̃ϕ ¼ βϕ − 1

4
βgμνgμν, is given by

1

α0
β̃ϕ ¼ −Rþ 1

12
H2 þ 2∇μ∇μϕþ ð∂μϕÞ2 − Λ −

α0

4

�
R2
μνρλ

−
1

2
RαβρσHαβλHρσ

λ þ 1

24
H4 −

1

8
ðHμν

2Þ2
�
; ð4Þ

which can be obtained by variation of the following string
effective action with respect to the dilaton field:

S ¼
Z

d4x
ffiffiffiffi
G

p
eϕ
�
R −

1

12
H2 þ ð∇ϕÞ2 þ Λþ α0

4

�
R2
μνρλ

−
1

2
RαβρσHαβλHρσ

λ þ 1

24
H4 −

1

8
ðHμν

2Þ2
��

: ð5Þ

The Λ term is related to the central charge deficit of theory
and in noncritical D-dimensional bosonic theory is given
by [16,17]

Λ ¼ 2ð26 −DÞ
3α0

: ð6Þ

The effective action (5) has been written in the string frame,
and its variations with respect to the background fields give
the β functions. Also, there is another frame, namely, the
Einstein frame, its metric, g̃μν, of which is related to the
string frame metric, gμν, in four-dimensional space-time by

g̃μν ¼ eϕgμν: ð7Þ
Actually, the gμν is the metric seen by the string and
describes physics from the string viewpoint. However, it is
not convenient to understand the gravitational phenomena
due to the dilaton field–dependent coefficient of the Ricci
scalar in (5). Transforming to the Einstein frame by
performing the conformal transformation (7) eliminates
the dilaton field–dependent factor. This frame is appro-
priate for comparison with the string S matrix. Actually,
computing the α0-corrected string effective action can be
studied either in the σ model and its β-functions approach

or from the tree-level S matrix. However, it is worth noting
that to a given order α0 an intrinsic ambiguity remains in the
string effective actions. Since the S matrix is invariant
under a set of field redefinitions of type [8]

δgμν ¼ α0ðb1Rμν þ b2∂μϕ∂νϕþ b3H2
μν

þ gμνðb4Rþ b5ð∂ϕÞ2 þ b6∇2ϕþ b7H2ÞÞ;
δBμν ¼ α0ðb8∇λHλμν þ b9Hμν

λ∂λϕÞ;
δϕ ¼ α0ðb10Rþ b11ð∂ϕÞ2 þ b12∇2ϕþ b13H2Þ;

there is a field redefinition ambiguity and a class of
physically equivalent effective actions parametrized by
eight essential coefficients [37]. Choosing a particular
set of field variables corresponds to a particular RS choice.
Aimed at calculating a set of these coefficients, the Gauss-
Bonnet scheme has been used and gives the effective action
for the bosonic string in four dimensions [2],

S ¼
Z

d4x
ffiffiffiffi
G

p �
R̃ −

1

12
e2ϕH2 −

1

2
ð∇̃ϕÞ2 þ Λe−ϕ

þ α0eϕ

4

�
R̃2
μνρλ − 4R̃2

μν þ R̃2 þ eϕ
�
1

2
H2

μν∇̃μϕ∇̃νϕ

−
1

2
R̃αβρσHαβλHρσ

λ þ 1

2
H2

μν∇̃μϕ∇̃νϕ −
1

12
H2ð∇̃ϕÞ2

�

þ e2ϕ
�
1

24
H4 þ 1

8
ðHμν

2Þ2 − 5

144
ðH2Þ2

���
; ð8Þ

in which ∇̃ indicates the covariant derivative with respect to
g̃. The Λ, which is positive in D ¼ 4, appears in a way that
reminds a negative cosmological constant in standard
theory of gravity, up to a weight factor e−ϕ. Using the
field redefinitions, the Gauss-Bonnet combination R̃2

μνρλ −
4R̃2

μν þ R̃2 in the effective action can be replaced by the
square of the Riemann tensor, and the price to be paid is the
appearance of a dilaton-dependent α0 correction [2,6].
The equivalence of two-loop β functions and equations of

motion of the α0-corrected effective action can be estab-
lished by using the field redefinitions and the lowest-order
equations of motion [2]. Physical quantities are not affected
by the field redefinitions [28], and appropriate use of them
and the leading-order equations of motion allows us to
transform between the RSs [2,8]. Hence, where the higher-
order corrected field equations of effective actions are
considered in the string theory context, the field redefini-
tions can be applied conveniently to reach the simplest
effective action. In this sense, the Gauss-Bonnet effective
action, which is free of ghosts and terms with higher than
the second derivative in its field equations, usually holds
attention. Considering the effective action (8), the variation
over the Einstein frame metric metric, g̃μν, gives

R̃μν −
1

2
R̃g̃μν ¼ TðeffÞ

μν ; ð9Þ
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where the effective energy-momentum tensor is defined as

TðeffÞ
μν ¼ TðϕÞ

μν þ TðB1Þ
μν þ TðGBÞ

μν þ TðB2Þ
μν ; ð10Þ

in which the energy-momentum tensors of the dilaton field
and B field in the leading order are given by

TðϕÞ
μν ¼ 1

2

�
∇̃μϕ∇̃νϕ −

1

2
g̃μνð∇̃ϕÞ2 þ Λeϕg̃μν

�
; ð11Þ

TðB1Þ
μν ¼ e2ϕ

4

�
HμκλHκλ

ν −
1

6
H2g̃μν

�
; ð12Þ

and in the α0 order, the Gauss-Bonnet term gives [38]

TðGBÞ
μν ¼ α0eϕ

�
−
1

2
R̃μαβγR̃ν

αβγ þ R̃μαβνR̃αβ þ R̃μαR̃να −
1

2
R̃R̃μν þ

1

8
g̃μνðR̃2

αβρλ − 4R̃2
αβ þ R̃2Þ

þ R̃μαβνð∇̃α∇̃βϕþ ∇̃αϕ∇̃βϕÞ − 2R̃αðμð∇̃νÞ∇̃αϕþ ∇̃νÞϕ∇̃αϕÞ − R̃μνðð∇̃ϕÞ2 þ ∇̃2ϕÞ

þ 1

2
R̃ð∇̃μϕ∇̃νϕþ ∇̃μ∇̃νϕÞ þ ðð∇̃ρ∇̃σϕþ ∇̃ρϕ∇̃σϕÞR̃ρσ −

1

2
ðð∇̃ϕÞ2 þ ∇̃2ϕÞR̃Þg̃μν

�
: ð13Þ

Also, we obtain the following energy-momentum tensor for the B field–dependent α0-correction terms:

TðB2Þ
μν ¼ α0e3ϕ

8

��
R̃αβρσHμαβHνρσ þ 3R̃αβσðμHνÞλσHλ

αβ þ e−3ϕ∇̃ρ∇̃σðe3ϕHμρλHνσ
λÞ − 1

2
ðHαμσHβν

σ∇̃αϕ∇̃βϕ

þH2
βðμ∇̃νÞϕ∇̃βϕÞ þ 1

2
ð∇̃ϕÞ2H2

μν þ
1

12
H2∇̃μϕ∇̃νϕ

�
−
e2ϕ

2

�
H4

μν þH2
μρH

2 ρ
ν þ 2H2

αβHμ
αλHνλ

β −
5

12
H2H2

μν

�

þ 1

2
g̃μν

��
−R̃αβρσHαβγHρσ

γ − ∇̃ρϕ∇̃βϕH2
ρβ −

1

6
H2ð∇̃ϕÞ2

�
þ e2ϕ

�
1

12
H4 þ 1

4
ðHαβÞ2 −

5

72
ðH2Þ2

���
: ð14Þ

The TGB
μν in (13) has been written in its most general

case. Indeed, the Gauss-Bonnet term is a total derivative in
four dimensions, and the terms without derivatives of the
dilaton in TGB

μν cancel each other and vanish automati-
cally [38].

III. NONCRITICAL (Λ ≠ 0) ANISOTROPIC
BIANCHI TYPE I TWO-LOOP STRING

COSMOLOGY SOLUTIONS

In this section, we are going to solve the two-loop β
functions in the presence of central charge deficit Λ on
Bianchi type I space-time with a similar method by which
we have calculated the solutions of two-loop β functions on
homogeneous space-times in Ref. [20]. The solutions give
the string frame metric gμν, dilaton field, and B field, where
the corresponding Einstein frame solutions can be obtained
using the conformal transformation (7). Maintaining the
provided convention by β-function solutions, the field
redefinitions of Ref. [8] will not be applied.
Considering the anisotropic Bianchi type I metric as a

string frame metric,

ds2 ¼ gμνdxμdxν ¼ −g00ðtÞdt2 þ
X3
i¼1

a2i ðtÞðdxiÞ2; ð15Þ

where ai are the string frame scale factors, we have

Γt
ij ¼ g00aiðtÞ2Hiδ

i
j;

Γi
jt ¼ Hiδ

i
j;

Γt
tt ¼ H0;

Rijij ¼ g00ðaiajÞ2HiHj;

Ritit ¼ −a2i ð _Hi −HiH0 þH2
i Þ;

Rtt ¼ −
X

ð _Hi þH2
i −H0HiÞ;

Rii ¼ _Hi þHi

X
Hk −H0Hi;

R ¼ g00
�X

ð2 _Hi þH2
i − 2H0HiÞ þ

�X
Hi

�
2
�
:

ð16Þ

The dot symbol stands for derivation with respect to t, and
the Hi are the Hubble coefficients of the string frame
defined by Hi ¼ d

dt ðln aiÞ and H0 ¼ 1
2
d
dt ðln g00Þ.

The solutions of the β-function equations will be inves-
tigated in two cases of the absence and presence of the H
field. Since the considered metric is spatially homo-
geneous, the dilaton field can be only a function of time.

A. Solutions with vanishing H field

Without the contribution of the H field, the ði; iÞ and
time-time components of the metric β function (1) and the β
function of the dilaton (4) with using relations (16) reduce
the coupled differential equations
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_Hi þHi

X
Hk þHi

_ϕ −HiH0 þ α0Kig00 ¼ 0; ð17Þ

ϕ̈þ
X

ð _Hi þH2
i −H0ð _ϕþ _HiÞÞ þ α0K0g00 ¼ 0; ð18Þ

−2ϕ̈− _ϕ2−
X

ð2 _ϕHiþHi
2þ2 _HiÞ−

�X
Hi

�
2

−Λg00

−2

�
_ϕþ

X
Hi

�
H0−α0Kϕg00¼ 0; ð19Þ

where the auxiliary K functions have been introduced for
the shorthanded writing of equations and are given as
follows:

Ki ¼ _H2
i þ2ðHi−H0ÞHi

_HiþH2
i

�X
H2

k−H2
0−H0Hi

�
;

K0¼
X

ð _H2
i þ2HiðHi−H0Þ _HiþH4

i þH2
0H

2
i −H0H3

i Þ;
Kϕ ¼

X
ð _H2

i þ2HiðHi−H0Þ _HiþH4
i

þH2
0H

2
i −H0H3

i Þþ
X
i<j

H2
i H

2
j : ð20Þ

Now, adding Eqs. (18) and (19) with sum-over i in Eq. (17)
leads to the following equation:

− ϕ̈ − _ϕ

�
_ϕþ

X
Hi

�
þ _ϕH0 − Λg00

þ α0
�
Kϕ þ K0 þ

X
Ki

�
g00 ¼ 0: ð21Þ

Also, subtracting the summed-over i of (17) from the sum
of Eqs. (18) and (21) gives the initial value equation as
follows:

_ϕ

�
_ϕþ 2

X
Hi

�
þ
�X

Hi

�
2

−
X

H2
i þ Λg00

− α0ðKϕ þ 2K0Þg00 ¼ 0: ð22Þ

We are going to solve the set of equations of (17) and (21)
subject to the initial value equation (22) along with
implementing the perturbative series expansion on the
background fields up to the first order of α0,

ϕ ¼ ϕ0 þ α0ϕ1; ð23Þ

a2i ¼ a2i0ð1þ 2α0ξiÞ; ð24Þ

g00 ¼ 1þ 2α0ξ4; ð25Þ

and applying a time redefinition that introduces the new
time coordinate τ as [11]

dτ ¼ a−3e−ϕdt; ð26Þ

where a3 ¼ a1a2a3. Accordingly, Eqs. (17) and (21) recast
the equations in the zeroth order of α0,

ðln ai0Þ00 ¼ 0; ð27Þ
ϕ00
0 þ Λa60e2ϕ0 ¼ 0; ð28Þ

where a30 ¼ a10a20a30. Also, in the first order of α0, we get

ξ00i − ðln ai0Þ0ξ04 þ K̂i ¼ 0; ð29Þ

ϕ00
1 þ 2Λa60e2ϕ0

�
ϕ1 þ

X
ξi þ ξ4

�
− ϕ0

0ξ
0
4

− K̂ϕ −
X

K̂i − K̂0 ¼ 0; ð30Þ
where the prime stands for derivations with respect to τ and
the K̂ terms are the rewritten versions of K terms in the new
time coordinate, multiplied with a a6e2ϕ factor. Also, the
initial value equation (22) reads [39]

1

2

�X
i<j

ðln a2i0eϕ0Þ0ðln a2j0eϕ0Þ0 − ϕ02
0 þ 2Λa60e2ϕ0

�

þ α0
��

ϕ0
0 þ

X
ln a0i0

��
ϕ0
1 þ

X
ξ0j

�
− 2

X
ln a0i0ξ

0
i

þ 2Λa60e2ϕ0

�
ϕ1 þ

X
ξi þ ξ4

�
þ K̂ϕ þ 2K̂0

�
¼ 0:

ð31Þ
The solution of (27) and (28) gives the zeroth order of

scale factors and dilaton field as

ai0 ¼ Lieqiτ; ð32Þ

ϕ0 ¼ −
X

qiτ − ln

� ffiffiffiffi
Λ

p
L1L2L3

n
coshðnτÞ

�
; ð33Þ

where Li, qi, and n are integrating constants. Accordingly,
the leading-order string frame Ricci scalar and kinetic of
the dilaton field are given by

R¼ Λ
n2

cosh2ðnτÞ
��X

qi

�
2

þ
X

qiðqiþ2n tanhðnτÞÞ
�
;

ð34Þ

_ϕ0
2 ¼ a−60 e−2ϕ0ϕ02 ¼ Λ

n2

��
n2 þ

�P
qi

�
2
�
cosh2ðnτÞ

þ 2n
X

qi coshðnτÞ sinhðnτÞ − n2
�
; ð35Þ

which are growing functions of time. The dependence of R
and _ϕ2

0 on Λ, which implies that the curvature and dilaton
field kinetic are comparable with inverse of α0 [40],
demonstrates the necessity of including the higher orders
of α0 corrections. In this work, we focus on studying the
effects of first order of α0 corrections.
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Demanding only the first-order α0 corrections in the
solutions of the metric, dilaton field, and H field, only the
zeroth-order α0 terms of K̂ will be considered. Hence,
substituting (32) and (33) into the rewritten versions of (20)
in the τ coordinate gives the explicit forms of K̂. Now, the
solutions of (29) and (30) give the general forms of α0
corrections of the scale factor and dilaton field as

ξi ¼ −
ZZ

K̂idτdτ þ qi

Z
ξ4dτ þ liτ þ ri; ð36Þ

ϕ1 ¼ Q1 tanhðnτÞ þQ2ðnτ tanhðnτÞ − 1Þ þ φ0

þ 1

n

�
tanhðnτÞ

Z
ðnτ tanhðnτÞ − 1ÞgðτÞdτ

− ðnτ tanhðnτÞ − 1Þ
Z

tanhðnτÞgðτÞdτ
�

−
�
n tanhðnτÞ þ

X
qi

�Z
ξ4dτ; ð37Þ

in which gðτÞ is given by

gðτÞ ¼
X�

−2n2

cosh2ðnτÞ
ZZ

K̂idτdτ þ K̂i

�
− K̂ϕ − K̂0

ð38Þ

and li, ri, φ0,Q1, and Q2 are constants of integration. After
some calculations with using Taylor series expansions up to
the first order of α0, it turns out that these constants have the
following roles:

(i) li corresponds to an infinitesimal change in
qi, qi → qi þ α0li.

(ii) ri is a proper scaling in the xi direction.
(iii) Q1 describes an infinitesimal time displace-

ment, τ → τ − α0Q1.
(iv) Q2 corresponds to an infinitesimal change in

n, n → nð1 − α0Q2Þ.
(v) φ0 describes a constant shift in the dilaton.
Substituting these solutions into the initial value equa-

tion (31) gives

�
n2 −

X
q2i

�
ð1þ 2α0ξ4Þ

¼ 2α0
�
n2Q2 þ

1

2
K̂ϕ þ K̂0

þ
X�

n2

cosh2ðnτÞ
ZZ

K̂idτdτ − ðn tanhðnτÞ

þ qiÞ
Z

K̂idτ

�
þ n

Z
tanhðnτÞgðτÞdτ

�
: ð39Þ

Actually, the n2 −
P

q2i term is the initial condition on the
constants, which appears in the one-loop β-function

solutions. However, here, we are not allowed to set it to
zero because the right side of this equation does not vanish.
A comparison between the two sides of this equation
proposes the initial condition on arbitrary constants,

n2ð1 − 2α0Q2Þ −
X

q2i ¼ 0; ð40Þ

and the remaining terms on the right side of (39) fix the
correction of the lapse function, ξ4. In the α0 → 0 limit, the
zeroth-order initial condition can be recovered from (40).
Appearing the α0Q2 term in the constraint would not be
disappointing because, as we have mentioned before, Q2

can be related to an infinitesimal change in n that acts as
n2 → n2ð1 − 2α0Q2Þ up to first order of α0. Noting the
relation between β-function equations and Einstein equa-
tions, this initial condition may be regarded as a
Hamiltonian constraint that has been corrected in first
order α0.
The explicit forms of α0 corrections of the metric and

dilaton after calculating the integrals in (36), (37), and (39)
are presented in Appendix A.

B. Solution with nonvanishing H field of a spatially
homogeneous (time-dependent) B field

As mentioned before, the forms of the H field can be
classified based on the orientation of its dual, H�, with
respect to the 3D hypersurface of homogeneity Σ3 sections.
Accordingly, the three classes of→, ↑, and↗ denoting the
spatial, time, and time-spatial orientations of H� have been
introduced, respectively, by [12]

H� ¼H�
i ðtÞdxi; H� ¼H�

0dt; H� ¼H�
0ðtÞdtþH�

i ðtÞdxi:

With Λ ¼ 0, the solution of one-loop β-function equa-
tions has been investigated on Bianchi-type models for ↑,
→, and ↗ classes in Refs. [10–12], respectively.
With a nonvanishing Λ, we have found no explicit

solution for the leading order of β-function equations in
the ↑ and↗ classes. Therefore, we keep going with the→
class with the metric (15) in such a way that, considering a
B field that is a function of time, theH0ij components of the
H field are allowed to be nonzero [41]. On the other hand,
the leading-order β-function equations with metric (15)
make the off-diagonal components of H2

μν vanish. This
means that only one of the H0ij may be nonzero. Here,
there is no preferred direction, and we consider the
following 3-form of field strength H for simplicity [10]:

H ¼ 1

3
AðtÞða1a2Þ2ðdt ∧ dx1 ∧ dx2Þ: ð41Þ

Then, the β-function equations (1)–(4), using (16), recast
the forms
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_Hk þHj

�X
Hi þ _ϕ −H0

�
þ 1

2
A2ða1a2Þ2 þ α0ðKj þ VjÞg00 ¼ 0; j ¼ 1; 2; ð42Þ

_H3 þH3

�X
Hk þ _ϕ −H0

�
þ α0ðK3 þ V3Þg00 ¼ 0; ð43Þ

X
ð _Hi þH2

i Þ þ ϕ̈ −
1

2
A2ða1a2Þ2 −H0

�
_ϕþ

X
_Hi

�
− α0ðK0 þ V0Þg00 ¼ 0; ð44Þ

_Aþ A

�
_ϕþ

X
Hi −H0

�
þ α0g00VB ¼ 0; ð45Þ

−2ϕ̈ − _ϕ2 −
X

ð2 _ϕHi þHi
2 þ 2 _HiÞ −

�X
Hi

�
2

− Λg00 −
1

2
A2ða1a2Þ2 − 2

�
_ϕþ

X
Hi

�
H0 − α0ðKϕ þ VϕÞg00 ¼ 0;

ð46Þ
where the K terms are the same as given in (20) and the V terms, which stand for the H field–dependent terms, are given as
follows:

V1 ¼
�
1

2
ðð3H2

2 þ ð−H0 þ 4H1ÞH2 þ 2H2
0 þ 2H2

1 þ 2H2
3 þ _H2Þf þ 2H2

2 þ ð−H0 þ 4H1ÞH2 þH2
0 − 2H0H1

þ 3H2
1 þH2

3 þ _H2ÞA2 −
�
ðH0 −H1 −H2Þf þ 1

2
H0 −

1

2
H2

�
_AAþ 1

2
ð1þ fÞ _A2

�
ða1a2Þ2 þ

3

16
ða1a2Þ4A4; ð47Þ

V2 ¼ V1ð1 ↔ 2Þ; ð48Þ

V3 ¼ −
1

2
½A _H3f þH3Aðð−H0 þH1 þH2 −H3Þf −H0 þH1 þH2 − 2H3Þ þH3

_A�Aða1a2Þ2; ð49Þ

V0 ¼
1

2
½ðð2H2

0 − ðH1 þH2ÞH0 þ 3H2
1 þ 5H1H2 þ 3H2

2 þ _H2 þ _H1Þf −H2
0 þ 2ðH1 þH2ÞH0 þ 3H2

1 þH1H2 þ 3H2
2

þ 2ð _H2 þ _H1Þ þ _H0ÞA2 − _Að2ðH0 −H1 −H2Þf − 3H0 þH1 þH2ÞAþ _A2f − AÄ�ða1a2Þ2 þ
3

8
ða1a2Þ4A4; ð50Þ

Vðf¼1Þ
B ¼ 1

2

��
H2

1 þH2
2 −H0ðH1 þH2Þ þ _H1 þ _H2Þ _Aþ A

�
ðH1 þH2 −H0Þð _H1 þ _H2Þ þ ðH1 þH2Þ

X
H2

i

−H0ð2ðH2
1 þH2

2 þH1H2Þ −H0ðH1 þH2ÞÞ
�
− A2ð15 _Aþ Að13ðH1 þH2Þ − 16H0ÞÞða1a2Þ2

�
; ð51Þ

Vðf¼−1Þ
B ¼ 1

2

��
H2

1 þH2
2 −H0ðH1 þH2Þ þ _H1 þ _H2Þ _Aþ A

�
ðH1 þH2 −H0Þð _H1 þ _H2Þ þ ðH1 þH2Þ

X
H2

i

− 2H0ðH2
1 þH2

2 þH1H2 −H0ðH1 þH2Þ=2Þ
�
− 11A2ð _Aþ AðH1 þH2 −H0ÞÞða1a2Þ2

�
; ð52Þ

Vϕ ¼ −
1

2
½ _H1 þ _H2 þH2

1 þ ðH2 −H0ÞH1 þH2
2 −H0H2�A2ða1a2Þ2 þ

1

4
ða1a2Þ4A4: ð53Þ

Similar to what we have done to obtain Eq. (21), adding (42)–(44) to (46) gives the following equation:

−ϕ̈ − _ϕ

�
_ϕþ

X
Hi

�
þ _ϕH0 − Λg00 þ A2ða1a2Þ2 þ α0

�
Kϕ þ Vϕ þ K0 þ V0 þ

X
ðKi þ ViÞ

�
g00 ¼ 0: ð54Þ

Furthermore, adding (54) to (44) and subtracting (42) and (43) from it give the initial value equation as follows:

_ϕ

�
_ϕþ 2

X
Hi

�
þ
�X

Hi

�
2

−
X

H2
i þ Λg00 −

1

2
A2ða1a2Þ2 − α0ðKϕ þ Vϕ þ 2ðK0 þ V0ÞÞg00 ¼ 0: ð55Þ

Now, we are going to solve Eqs. (42), (43), (45), and (54) subject to the initial value equation (55). Again, the equations will be
rewritten in the new time coordinate (26) with applying the given series expansion in α0 (23)–(25). Also, wewill conveniently set
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AðtÞ ¼ _η ¼ η0a−3e−ϕ ð56Þ

and take the α0 expansion of η as

η ¼ η0 þ α0η1: ð57Þ

Then, in the τ coordinate, Eqs. (42), (43), (45), and (54) lead to
the following equations in the zeroth order of α0:

ðln aj0Þ00 þ
1

2
η020 ða10a20Þ2 ¼ 0; j ¼ 1; 2; ð58Þ

ðln a30Þ00 ¼ 0; ð59Þ

η000 ¼ 0; ð60Þ

ϕ00
0 − η020 ða10a20Þ2 þ Λa60e2ϕ0 ¼ 0: ð61Þ

The solutions of above equations are found as

a10¼
ffiffiffi
n

p
e−qτffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

bL2 coshðnτÞ
p ; a20¼L2e2qτa10; a30¼L3epτ;

ð62Þ

η0 ¼ bτ; ð63Þ

ϕ0 ¼ −pτ þ ln coshðnτÞ − ln

�
nΛL3

mb
coshðmτÞ

�
; ð64Þ

where q,L2,L3, b,p,m, and n are constant. Obviously, theH
field in this class brings about an inevitable anisotropy in the
solutions. Compared to the leading-order solutions in the
absence ofΛ given in Ref. [10], only the dilaton field has been
modified by the third term in (64). Based on these solutions,
the leading-order string frame Rici scalar and kinetic terms of
the dilaton field and B field, with m ¼ n, for example, are
given by

R ¼ Λ
2n2

ðð−n2 þ 4p2 þ 4q2Þcosh2ðnτÞ − 3n2Þ; ð65Þ

_ϕ2
0 ¼ a−60 e−2ϕ0ϕ02 ¼ p2Λ

n2
cosh2ðnτÞ; ð66Þ

HμνρHμνρ ¼ 6η02a−203 e
−2ϕ0 ¼ 6Λ. ð67Þ

Evidently, the string frame Ricci scalar is increasing and starts
from the high curvature limit Rα0 ≳ 1. Also, the kinetic terms
are comparable with the inverse of α0. Note that the R and _ϕ2

0

keep growing andmay dominate the dynamical effect of theH
field at late τ. The high curvature and kinetic terms point out
the necessity of considering the α0 corrections.We include the
first-order α0 corrections, noting that the solutions are valid as
long as the string coupling is weak.

In the first order of α0 by employing the zeroth-order
equations (58)–(61), Eqs. (42), (43), (45), and (54) read

ξ00j − ðln aj0Þ0ξ04 þ ðη020 ðξ1 þ ξ2Þ þ η0η1Þða10a20Þ2
þ K̂j þ V̂j ¼ 0; j ¼ 1; 2; ð68Þ

ξ003 − ðln a30Þ0ξ04 þ K̂3 þ V̂3 ¼ 0; ð69Þ

η001 − η00ξ
0
4 þ V̂B ¼ 0; ð70Þ

ϕ00
1 þ 2Λa60e2ϕ0

�
ϕ1 þ

X
ξi þ ξ4

�

þ 2ðη020 ðξ1 þ ξ2Þ þ η0η1Þða10a20Þ2 − ϕ0
0ξ

0
4 þ ρ ¼ 0;

ð71Þ

where the K̂ and V̂ terms are the corresponding terms of
(20) and (48)–(53) rewritten in the new τ coordinate,
multiplied with a a6e2ϕ factor. Also, the ρ term in (71)
has been defined as

ρ ¼ −
�
K̂ϕ þ V̂ϕ þ

X
ðK̂i þ V̂iÞ þ K̂0 þ V̂0

�
: ð72Þ

In the same way, the initial value equation (55) is recast into
the following form:

1

2

�X
i<j

ðlna2i0eϕ0Þ0ðlna2j0eϕ0Þ0−ϕ02
0 þ2Λa60e2ϕ0

−
1

2
η020 ða10a20Þ2

�
þα0

��
ϕ0
0þ

X
lna0i0

��
ϕ0
1þ

X
ξ0j

�

−2
X

lna0i0ξ
0
iþ2Λa60e2ϕ0

�
ϕ1þ

X
ξiþξ4

�

− ðη020 ðξ1þξ2Þþη0η1Þða10a20Þ2

þ K̂ϕþ V̂ϕþ2ðK̂0þ V̂0Þ
�
¼ 0: ð73Þ

Again, because we are interested in the first-order α0
corrections in the solutions of the metric, dilaton field,
and H field, only the zeroth-order α0 terms of K̂ and V̂,
which depend on ai0, ϕ0 and η0, will be considered. Hence,
substituting (62)–(64) into the rewritten versions of (20)
and (48)–(53) in the τ coordinate gives the explicit forms of
K̂ and V̂. Then, solving Eqs. (68)–(71) gives the general
forms of α0 corrections of the scale factors ξi, lapse function
ξ4, H field η1, and dilaton field ϕ1 as
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ξ1 ¼ c1 tanhðnτÞ þ c2ðnτ tanhðnτÞ − 1Þ þ r1

þ
�
n
2
tanhðnτÞ − q

�Z
ξ4dτ

þ 1

n

�
tanhðnτÞ

Z
ðnτ tanhðnτÞ − 1Þg1ðτÞdτ

− ðnτ tanhðnτÞ − 1Þ
Z

tanhðnτÞg1ðτÞdτ
�
; ð74Þ

ξ2 ¼ ξ1 −
ZZ

ðK̂2 þ V̂2 − K̂1 − V̂1Þdτdτ þ 2q
Z

ξ4dτ;

ð75Þ

ξ3 ¼ −
ZZ

ðK̂3 þ V̂3Þdτdτ þ p
Z

ξ4dτ þ r3; ð76Þ

η1 ¼ −
ZZ

V̂Bdτdτ þ b
Z

ξ4dτ; ð77Þ

ϕ1 ¼
1

m

�
tanhðmτÞ

Z
ðmτ tanhðmτÞ − 1ÞgϕðτÞdτ

− ðmτ tanhðmτÞ − 1Þ
Z

tanhðmτÞgϕðτÞdτ
�
þ φ0;

ð78Þ

where g1 and gϕ are given by

g1ðτÞ ¼ −
2n2

cosh2ðnτÞ
�ZZ

ðK̂2 þ V̂2 − K̂1 − V̂1Þdτdτ

− q−10

Z
V̂Bdτ

�
þ K̂1 þ V̂1; ð79Þ

gϕðτÞ ¼ 2Λa60e2ϕ0

�X
ξi þ ξ4

�
− ϕ0

0ξ
0
4 þ ρ

þ 2ðη020 ðξ1 þ ξ2Þ þ η0η1Þða10a20Þ2 ð80Þ

and c1, c2, ri, and φ0 are integrating constants. A closer
look with using Taylor series expansion reveals that up to
first order of α0:

(i) c1 corresponds to an infinitesimal time displace-
ment τ → τ − 2α0c1.

(ii) c2 acts as an infinitesimal change in n,
n → nð1 − 2α0c2Þ.

(iii) φ0 is an infinitesimal shift in the dilaton.
(iv) ri is a proper scaling in the xi direction.
For calculating the integrals of (78), it is convenient to

set m ¼ n, where, as given in Appendix B, the ϕ1 and gϕ
take the forms of (B1) and (B2). Then, similar to what has
been done in the previous subsection, substituting the
above solutions into the initial value equation (73) gives

1

2
ðn2−2p2−4q2Þð1þ2α0ξ4Þ¼ α0

�
2n2c2

−2n tanhðnτÞ
Z

ðK̂3þ V̂3Þdτþ K̂ϕþ V̂ϕþ2K̂0þ2V̂0

þðn tanhðnτÞþ2qÞ
Z

ðK̂2þ V̂2− K̂1− V̂1Þdτ

−
n2

cosh2ðnτÞ
�
q−10

Z
V̂Bdτþ

ZZ
ðK̂2þ V̂2− K̂1− V̂1

−2K̂3−2V̂3Þdτdτ
�
−2n

Z
tanhðnτÞðgϕðτÞþg1ðτÞÞdτ

�
:

ð81Þ
Again, we have a similar situation as discussed in the
absence of the H-field case in (39), and this equation leads
to the following condition on the arbitrary constants:

n2ð1 − 4α0c2Þ − 2p2 − 4q2 ¼ 0: ð82Þ
In α0 → 0 limit, the initial condition of n2 − 2p2 − 4q2 ¼ 0
that appears in the solutions of one-loop β functions can be
recovered. But in two-loop order, this condition has been
modified by a term in the order α0, and n2 − 2p2 − 4q2 ≠ 0
is required for consistency in the solution of (81). Then, the
remaining terms in (81) fix the correction of the lapse
function, ξ4.
Now, calculating the integrals in (74)–(78) gives the

explicit forms of the first α0 correction of the scale factors,
dilaton field, and H field. Because of dense mathematical
results, the final forms of ξi, ξ4, ϕ1, and η1 in two RSs of
Gauss-Bonnet and R2 are presented in Appendix B.

IV. EINSTEIN FRAME REPRESENTATION

Having solved the two-loop β-function equations in the
two cases of the vanishing H field and presence of a time-
dependentH field inSec. III,we return toEinstein frame field
equations (9) in order to study the cosmological implications
of the α0-corrected solutions. As mentioned in Sec. II, in the
α0 order of effective actions, there is a field redefinition
ambiguity and a class of equivalent effective actions corre-
sponding to the same S matrix. The cosmological effects of
the field redefinition have been studied with the constant
dilaton in Ref. [34] and with a time-dependent dilaton in
Ref. [35], where a generalized effective action obtained by
the field redefinitions has been investigated. However, here,
we consider the Gauss-Bonnet effective action (8). In the
Einstein frame, regarding Tμ

μ ¼ ð−ρ; P1; P2; P3Þ, the non-
zero components of energy-momentum tensors (11)–(14)
give the effective energy density and pressures based on (10).
TheEinstein framemetric,which is related to the string frame
metric by the conformal transformation (7), is considered as

ds2 ¼ g̃μνdxμdxν ¼ −dt̃2 þ
X3
i

ã2i ðdxiÞ2; ð83Þ
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where ãi are the Einstein frame scale factors related to the
string frame ones by ã2i ¼ eϕa2i , in such a way that up to the
first order of α0 we have

ã2i ¼ eϕ0a2i0ð1þ α0ð2ξi þ ϕ1ÞÞ: ð84Þ
Also, the time element in (83) has been defined using the
following relation:

dt̃ ¼ e
ϕ
2

ffiffiffiffiffiffi
g00

p
dt: ð85Þ

In the previous section, we found the solutions in terms of the
time coordinate τ, which, using (26), has the following
relation with the cosmic time t̃:

dt̃ ¼ a03e3ϕ0=2

�
1þ α0

�X
ξi þ ξ4 þ

3

2
ϕ1

��
dτ: ð86Þ

The integration of the above expression and transformation
from τ to t̃ are not straightforward in the solutions; hence, for
investigating the behavior of the solutions, the time deriv-
atives in physical quantities in the Einstein frame will be
rewritten in terms of τ derivatives such as

_̃ai ≡ dãi
dt̃

¼ ã−3
�
ã0i0 þ α0

�
ãi0

�
ξi þ

1

2
ϕ1

��0�
; ð87Þ

̈̃ai≡d2ãi
dt̃2

¼ ã−6
�
ã00i0− ã0i0

X
lnã0j0þα0

��
ãi0

�
ξiþ

1

2
ϕ1

��00

− ã0i0

�
ln

�
1þ

X
ξjþξ4þ

3

2
ϕ1

��0

þα0
�
ãi0

�
ξiþ

1

2
ϕ1

��0X
lnã0j0

��
: ð88Þ

Here and hereafter, the dot symbol stands for derivation with
respect to t̃. Also, the second derivative of the averaged scale
factor up to first order of α0 is given by

̈̃a¼ d2

dt̃2
ðã1ã2ã3Þ13¼

1

9
ðã1ã2ã3Þ13

�
3
X

_̃Hi−
�X

H̃i

�
2
�

¼ ã−5
�
ðlnãi0Þ00−ðlnãi0Þ0

X
ðlnãi0Þ0þα0

��
ξiþ

1

2
ϕ1

�00

−ðlnãi0Þ0
�
ln

�
1þ

X
ξjþξ4þ

3

2
ϕ1

��0

þα0
�
ξiþ

1

2
ϕ1

�0X
lnã0j0

��
: ð89Þ

InEq. (86), if the coefficient termofdτ is positive, t̃will be an
increasing function of τ, and then dτ > 0 if and only if
dt̃ > 0. In this sense, the early and late behaviors of solutions
can be investigated in the τ → 0 and τ → ∞ limits.
The solutions of β-function equations for the metric,

dilaton field, and B field contain integrating constants that
are allowed to be any real number, provided that some of
them satisfy the initial conditions of (40) in the vanishing

H-field case and (82) in the presence of the H field. It turns
out that the constants appearing in the zeroth-order sol-
utions affect the general behavior of solutions, while the
constants of the first α0 corrections influence the early-time
behavior. As a matter of fact that it is not convenient to
predict the cosmological behavior of solutions without
selecting some values for these constants, we are going to
investigate the features of the obtained solutions with some
chosen set of arbitrary constants. In this regard, besides the
β-function prescribed initial conditions of (40) and (82), the
other conditions that can be demanded from the cosmo-
logical point of view to be imposed on the obtained
solutions are the positive sign of the coefficient term of
dτ in (86), satisfying the energy condition ρðeffÞ > 0, and
having no singularity corresponding to the vanishing of
scale factors in the future. Also, it should be noticed that the
calculation of α0 corrections is trusted as long as the string
coupling at tree level of the string interaction is weak, i.e.,
gs ≪ 1. Hence, the reliable area of solutions may be
affected by selected parameters.

A. Evolution with vanishing H field

In the absence of the H field, the solutions of two-loop
β-function equations were found in Sec. III A. In the
Einstein frame, according to (11), we have the dilaton
field and charge deficit term Λ contributions to the effective
energy density and pressures up to first order of α0 as
follows:

ρðϕÞ ¼ 1

4
ð _ϕ2 − 2Λe−ϕÞ

¼ 1

4
ð _ϕ2

0 − 2Λe−ϕ0 þ α0ð2 _ϕ0
_ϕ1 þ2Λe−ϕ0ϕ1ÞÞ; ð90Þ

PðϕÞ
i ¼ 1

4
ð _ϕ2 þ 2Λe−ϕÞ

¼ 1

4
ð _ϕ2

0 þ 2Λe−ϕ0 þ α0ð2 _ϕ0
_ϕ1 −2Λe−ϕ0ϕ1ÞÞ: ð91Þ

Also, TðGBÞ
μν (13) gives

ρðGBÞ ¼ −3α0eϕ _ϕH̃1H̃2H̃3; ð92Þ
PðGBÞ
1 ¼ α0eϕðH̃2H̃3ðϕ̈þ _ϕ2Þ þ _ϕðH̃2

_̃H3 þ H̃3
_̃H2

þ H̃2H̃3ðH̃2 þ H̃3ÞÞ; ð93Þ
PðGBÞ
2 ¼ α0eϕðH̃1H̃3ðϕ̈þ _ϕ2Þ þ _ϕðH̃1

_̃H3 þ H̃3
_̃H1

þ H̃1H̃3ðH̃1 þ H̃3ÞÞ; ð94Þ

PðGBÞ
3 ¼ α0eϕðH̃2H̃1ðϕ̈þ _ϕ2Þ þ _ϕðH̃2

_̃H1 þ H̃1
_̃H2

þ H̃2H̃1ðH̃2 þ H̃1ÞÞ; ð95Þ

where the H̃i are Einstein frame Hubble parameters defined
by H̃i ¼ d

dt̃ ln ãi [42]. It should be noted that for investigating

F. NADERI, A. REZAEI-AGHDAM, and F. DARABI PHYS. REV. D 98, 026009 (2018)

026009-10



the solutions up to first order of α0 only the zeroth order of H̃i

and ϕ contributes in TðGBÞ
μν and TðB2Þ

μν .
The α0-corrected string frame scale factors, lapse func-

tion, and dilaton field introduced in (23)–(25) have been
found in the forms of (32), (33), and (A1)–(A3) in the
absence of the H field. The leading-order string coupling,
in this case, is given by

gs ¼ e−ϕ0 ¼
ffiffiffiffi
Λ

p
L1L2L3

n
coshðnτÞe

P
qiτ: ð96Þ

Aiming at considering only the α0 corrections, the string
coupling is required to be weak. In early τ, it can be
achieved by setting the Li constants at least of order

ffiffiffiffi
α0

p
.

Then, with
P

qi < 0, the weak string coupling condition is
satisfied in all times with the proper selection of n, but withP

qi > 0, the gs may leave the weak coupling limit as time
goes on. Here, we present two examples with isotropic and
anisotropic parametrization. The constants appearing in the
solutions are qi, n, li, Li, Q1, and Q2, where qi, n, and Q2

have to satisfy the initial condition (40).
For an isotropic example, we set qi ¼ −2, n ¼ 1,

Li ¼
ffiffiffiffi
α0

p
, li ¼ −10, ri ¼ 0, Q1 ¼ 500, along with using

the (40) condition for fixing Q2. Here, the string frame
curvature that starts in the Rα0 ≳ 1 limit is increasing, and
the string coupling is weak and decreasing. These imply
that the α0-corrected solutions are valid and important even
in late times and the string loop correction can be ignored.
This example has positive but decreasing _̃a and ̈ã.
Effectively, the energy density is decreasing, and the
pressure is negative and increasing. Also, the strong energy
condition is violated by ρðeffÞ þ 3PðeffÞ < 0, where the null
energy condition ρðeffÞ þ PðeffÞ ≥ 0 is satisfied except in a
short range of time near τ ¼ 0. Hence, this example
describes an accelerated expanding Universe with avoid-
ance of initial singularity related to violation of strong
energy condition. The phantom phase, which by definition
satisfies the PðeffÞ < −ρðeffÞ with the equation of state
parameter w less than −1, is transient in early time.
Having found no compatible example with

P
qi < 0 in

the anisotropic case with preserving the signature of metric
(83) and the energy condition of ρðeffÞ > 0, we set q1 ¼ 1.1,
q2 ¼ 1.5, q3 ¼ 2, n ¼ 2.4, li ¼ 1, ri ¼ 0, and Li ¼ 20

ffiffiffiffi
α0

p
.

The Q2 is fixed by initial condition (40). This example
gives positive and increasing _̃ai, ̈ãi, and ̈ã defined in (87),

(88), and (89). Furthermore, the PðeffÞ
i are negative with

violating the strong and null energy conditions. It is worth
mentioning that as time goes on in this parametrization,
accompanied by the unbounded growth of curvature that
has started in the Rα0 ≳ 1 limit, the string coupling gs keeps
growing until leaving the weak coupling limit. Reaching
the strongly coupled high curvature phase signals the
entering of the system into the full M-theory regime
[43,44]. Nevertheless, this given solution is valid as long

as the gs is sufficiently weak in early τ and describes an
accelerated expansion in all directions with the avoidance
of initial singularity and behaves as a phantom with
wi < −1. The existence of the w < −1 region opens up
the possibility of the so-called big-rip singularity, which
has been classified in four classes, occurring [45–48].
Noting the scale factors and dilaton field given by (32),
(33), and (A1)–(A3), no finite-time singularity appears in
the scale factors, derivatives of Hubble parameters, dilaton
field (and their derivatives), nor, consequently, according to
(90)–(95), the pressures and energy density. Exhibiting no
sudden future time divergence by these quantities, which is
also verified by their plots, implies that none of the four
types of big-rip singularities occurs.

B. Evolution with the nonvanishing H field

Considering a spatially homogeneous time-dependent B
fieldwith the field strength tensor of type (41), the solutions of
two-loop β-function equations have been found in Sec. III B.
Ausual effect of this typeofH field is an anisotropic evolution
in spatial directions. Also, the contribution of the B field
brings up a RS dependence on the two loop–order β-function
equations and consequently in their solutions. We have
considered two special RSs of R2 and Gauss-Bonnet corre-
sponding to the RS parameters of f ¼ 1 and f ¼ −1,
respectively. In the Gauss-Bonnet scheme, with the H field
of the form (41), the components of energy-momentum
tensors (12) and (14) recast the following forms:

ρðB1Þ ¼ −PðB1Þ
1 ¼ −PðB1Þ

2 ¼ PðB1Þ
3 ¼ 1

4
A2ã21ã

2
2e

2ϕ; ð97Þ

ρðB2Þ ¼ α0

64
A2ã21ã

2
2e

−ϕ
�
38

3
A2ã21ã

2
2e

−2ϕ þ 15H̃1H̃2

− 8ðH̃1 þ H̃2ÞðH̃3 þ 3 _ϕÞ þ 32ðH̃2
2 þ H̃2

1Þ

þ 4 _ϕ2 þ 48ð _̃H1 þ _̃H2Þ
�
; ð98Þ

PðB2Þ
1 ¼ α0

64
ã21ã

2
2e

−ϕ
�
−
26

3
A4ã21ã

2
2e

−2ϕ þ 8 _A2 þ ð72 _ϕ2

− 8ð6H̃1 − H̃2Þ _ϕ − 16H̃2
1 − ð31H̃2 þ 32H̃3ÞH̃1

− 80H̃2
2 − 8ϕ̈ − 24H̃2H̃3 − 64 _̃H1 − 48 _̃H2

− 24 _̃H3ÞA2 þ 16ð3H̃1
_Aþ 2H̃2

_A − 3 _ϕ _AþÄÞA
�
;

ð99Þ
PðB2Þ
2 ¼ PðB2Þ

1 ð1 ↔ 2Þ; ð100Þ

PðB2Þ
3 ¼ −α0

192
A2ã21ã

2
2e

−ϕð10A2ã21ã
2
2e

−2ϕ þ 36 _ϕ2 − 3H̃1H̃2Þ:
ð101Þ

The contributions of the dilaton field and Gauss-Bonnet
term in the effective energy-momentum tensor are the same
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as given by (90)–(95). Again, only the zeroth order of ãi,

H̃i, A, and ϕ will be effective in the components of TðGBÞ
μν

and TðB2Þ
μν . The H field in this class brings about anisotropic

pressures, which means that it acts like an anisotropic fluid.
Its contribution to the pressures in the zeroth order of α0,
given by (98), is negative in the x1 and x2 directions and
positive in the x3 direction, but the signs in the first order of
α0 may be affected by selected values for the arbitrary
constants of solutions.
In Sec. III B, the solutions of two-loop β-function

equations gave the α0-corrected string frame scale factors,
lapse function, dilaton field, and H field of (23)–(25) and
(57) in the forms of (62)–(64) and (74)–(78), where the
final forms of correction terms after performing the
integrals are presented in Appendix B through (B3)–
(B12). Regarding the obtained scale factors, it turns out
that the anisotropy is inevitable with the H field in this
considered class. Here, we are going to investigate the
behavior of solutions by choosing some values for arbitrary
constants in two RSs and study the feature of energy-
momentum tensor components of the Gauss-Bonnet
scheme. The constants appearing in the solutions are
q; p; n; b; c1; c2; ri;φ0, and L3, where the p, q, n, and c2
must satisfy the initial condition (82).
According to (64), the leading-order string coupling is

given by

gs ¼ e−ϕ0 ¼ L3b−1
ffiffiffiffi
Λ

p
epτ: ð102Þ

Its value in the origin of τ can be set to be sufficiently small,
for instance, by letting the L3 and b−1 constants be in orderffiffiffiffi
α0

p
. The behavior of gs depends on the sign of p, in such a

way that with p ≤ 0 the weak coupling condition is always
satisfied, but with p > 0, it increases going forward in time
and may leave the weak coupling limit.
In the R2 scheme, as an example, the set of q ¼ 3,

p ¼ −2, n ¼ 3, L3 ¼ 2
ffiffiffiffi
α0

p
, b−1 ¼ 2

ffiffiffiffi
α0

p
, φ0 ¼ 12, c1 ¼ 1,

and ri ¼ 0 can be chosen. Investigating _̃ai shows that this
example is expanding in all direction in early times and
then turns to Kasner-type expanding, i.e., expanding in two
directions and contracting in one direction with _̃a1 < 0,
followed by a phase of expansion in all directions.
Moreover, the behavior ̈ãi is as follows: ̈ã1 is negative
in early times and then turns to be positive, the ̈ã2 is positive
forever, and the ̈ã3 has behavior similar to the first direction
but leaves the negative phase earlier [49]. Also, the first and
second derivatives of the averaged scale factor (89) are
positive, which shows that the expansion is accelerated.
In the Gauss-Bonnet scheme, for example, the para-

metrization of q ¼ 1, p ¼ 3.15, n ¼ 5, L3 ¼
ffiffiffiffi
α0

p
,

b−1 ¼ ffiffiffiffi
α0

p
, φ0 ¼ 300, r3 ¼ 350, and c1 ¼ r2 ¼ r2 ¼ 0,

with using (73) to fix c2, is capable of preserving
ρðeffÞ > 0, preventing the vanishing of scale factors, and

making the coefficient of dτ in (86) be positive. This
example starts expanding in all directions and then becomes
contracting in the first and third directions, where the _̃a1
leaves the negative area earlier than _̃a3, and then becomes
FRW-type expansion along all directions. In addition,
investigating the behavior of ̈ãi (88) shows that ̈ã1 and ̈ã2
are negative at first and then become positive and keep
increasing, but ̈ã3 is negative and decreasing. Also, the
averaged scale factor has ̈ã > 0, which implies that the

evolution of the model is accelerated. Furthermore, PðeffÞ
1

and PðeffÞ
2 start negatively and keep increasing to become

positive, wherePðeffÞ
3 is negative and decreasing. Effectively,

the strong energy condition ρðeffÞ þP
PðeffÞ
i > 0 is violated,

and hence the initial singularity is avoided. Also, the null
energy condition is violated in the third direction so the time-
dependent equation of state parameter in the third direction

is w3 < −1. However, investigating ãi,
_̃Hi, ρðeffÞ, and PðeffÞ

shows that there is no evidence of big-rip singularity
occurrence corresponding to a sudden divergence in these
quantities. It is worth mentioning that the gs, starting in the
weak coupling limit in early time, evolves toward the strong
coupling because thep is positive here. Hence, as amatter of
fact that curvature and gs show unbounded growth, the
calculation of α0 corrections is no longer valid in
τ > p−1 lnð b

L3

ffiffiffi
Λ

p Þ, when the condition of gs ≪ 1 is violated

and Universe enters the non perturbative regime of the M
theory.

V. CONCLUSION

The higher-derivative corrections are introduced to the
string effective action when the equivalence between field
equations and higher-loop σ-model β functions is consid-
ered. Aimed at presenting noncritical Bianchi type I string
cosmology solutions, we have solved the β-function
equations in the presence of central charge deficit term
Λ. Being of order α0−1, the Λ term resulted in the leading-
order string curvature in the high curvature limit of Rα0 ≳ 1,
which requires the consideration of higher-order β-function
equations and consequently including the α0 corrections in
the effective action. The other type of effective action
modification, i.e., the stringy loop corrections, have been
assumed to be negligible, which is reliable where the
leading-order sting coupling is weak, i.e., gs ≪ 1.
Considering the two-loop (order α0) β-function equations

with Λ ≠ 0 in the two cases of a vanishing and non-
vanishing H field, we have calculated their solutions by
implementing a perturbation series expansion up to first
order of α0 on the background fields. The solutions
provided an α0-corrected string frame metric, dilaton field,
and H field. Then, to study the cosmological implications
of solutions, the corresponding solutions in the Einstein
frame have been obtained by performing a conformal
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transformation on the metric. Also, the Einstein frame
effective action has been considered to include the Gauss-
Bonnet term coupled to the dilaton field, because from the
string theory point of view, the Gauss-Bonnet combination
is indistinguishable from the other quadratic curvature
corrections. In this sense, the effective energy-momentum
tensor in the Einstein frame field equations contains the
contributions of the Gauss-Bonnet term, dilaton, Λ, and
H field.
For investigating the detailed behaviors of the α0-

corrected background field solutions and the effective
energy density and pressures, we have considered some
set of values for the arbitrary constants appearing in the
solutions. These constants are allowed to be any real
number, provided that some of them satisfy the initial
condition. Particularly, preserving the energy condition
ρðeffÞ > 0 and avoiding the singularity in the metric caused
by vanishing scale factors have been demanded in selecting
the constants. Without the contribution of the H field, the
solutions are not necessarily anisotropic, and two examples
with choosing isotropic and anisotropic parametrization
were discussed. In the isotropic case, an example describ-
ing the accelerated expanding Universe with a transient
phantom phase in early time was presented. In the offered
anisotropic example, the dilaton field starts from weak
coupling in early time and evolves to the strong coupling
regime as time goes on. Hence, the calculation of α0
corrections is valid only in sufficiently small times with
gs ≪ 1, where the given example describes an accelerated
expansion that crosses the phantom phase wi < −1 with
violating the null energy condition in all directions. In
addition, in the presence of a time-dependent H field of
which the H012 component was considered to be nonzero,
the solutions appeared to be inevitably anisotropic. In this
case, the presented example with the chosen set of con-
stants describes an accelerating model evolving from a
Kasner-type phase to FRW-type expansion in all directions
along with violating the null energy condition in the third
direction. Its valid cosmological era is limited to early times
by the growing of gs.
It is worth mentioning that the conformal invariance

condition prescribes including the whole α0-correction
series. Especially, working at the high curvature limit,
all higher orders of α0 corrections certainly become
important. Nevertheless, aimed at finding a pattern given
by including the corrections, we restricted our discussion to
the first-order α0 (two-loop) β-function equations as the
solutions of the first-order α0-corrected string effective
action at zeroth order in the string coupling. Even in the
first order, the corrections have been capable of i) excluding
the initial singularity in the regime of violation of the strong
energy condition and ii) describing the accelerated expan-
sion of the Universe. However, as time passes, the validity
of examples may be restricted by the growing of the string
coupling and passing the weak coupling limit. Also, in the

trustable area, the phantom phase may appear where the w
becomes less than −1, but there is no big-rip, which is
indicated by the finite future time divergence in scale
factors, energy density, pressures, or time derivative of
Einstein frame Hubble parameters [45,46].
The Gauss-Bonnet model coupled to a dynamical scalar

field with a non-negative potential on FRW space-times has
long been known to have nonsingular cosmological sol-
utions by allowing the violations of both the null and the
strong energy conditions [26]. Recently, the dark energy
scenario has been investigated in this model, in which
phantom phases have been predicted [38]. The Λ term in
the Einstein frame effective action (8) takes the form of a
potential of type VðϕÞ ¼ V0e−ϕ, where the V0 is assigned
to be negative in D < 26-dimensional string theory. The
vanishing H-field case presented in Secs. III A and IVA,
which is described by the effective action similar to that of
the Einstein–scalar–Gauss-Bonnet model [38] but with a
negative potential, possesses the w < −1 phase in the
investigated α0-corrected solutions, but the described
Universe does not seem to reach a big-rip singularity.
Also, it has been shown in Refs. [50,51] that bouncing
solutions, which have a connecting phase between a
contraction and an expansion period, are not allowed in
the isotropic flat FRW Universe in the Einstein–scalar–
Gauss-Bonnet model. The presented examples in Sec. IVA
show the similar feature in both the isotropic and aniso-
tropic cases, since they have no contraction phase and
correspondingly no bounce phase.
The evolution with a nonvanishing homogeneousH field

with H012 ≠ 0 has been studied in the low curvature phase
in Refs. [52,53] and in the high curvature phase including
the α0 corrections in Ref. [27], in which the potential of the
dilaton field or equivalently the Λ term has been neglected,
assuming the domination of the kinetic terms. However,
this assumption made the valid cosmological era of the
results be limited. We have seen that, particularly in the
early τ, Λ is significant and cannot be ignored because none
of the R,H2, or _ϕ2 overcomes the Λ. However, in late τ, the
curvature and kinetic term of the dilaton field may
dominate where the dynamical effect of the H field
becomes negligible.
Furthermore, the presented example with a nonvanishing

H field in Sec. IV B has no bounce phase in the R2 scheme,
but in the Gauss-Bonnet scheme, H̄ crosses zero with
_̄H > 0. Hence, the appearance of the bouncing solutions in
string-inspired Einstein–scalar–Gauss-Bonnet with B-field
contribution in the leading and first correction orders seems
to be allowed but sensitive to the chosen RS.

APPENDIX A: EXPLICIT SOLUTIONS OF
VANISHING H FIELD CASE

In this Appendix, the explicit forms of the first α0
corrections of metric and dilaton field, introduced in
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(23)–(25), are presented. After performing the integrals in (36), (37), and (39) with using the (32) and (33) solutions, we
obtain

ξi¼−
Λqi2

2n3

�
1

2n

�
n2þ

X
q2i

�
ðcosh2ðnτÞþn2τ2ÞþqiðcoshðnτÞsinhðnτÞþnτÞ− τ2n3

�
þqi

Z
ξ4dτþ liτþ ri; ðA1Þ

ϕ1¼Q1 tanhðnτÞþQ2ðnτ tanhðnτÞ−1Þ−
�
n tanhðnτÞþ

X
qi

�Z
ξ4dτþ

Λ
4n4

�
−e−nτ

X�
q2i

�
n2−

X
q2j

�
τ

−4q3i

�
tanhðnτÞn

X
q3i ð2cosh2ðnτÞ−3Þþn

�
4
X

ðnq3i þq4i Þþ6
X
i<j

qiqj

�
tanhðnτÞτ

þ
�X

ðn2q2i þq4i Þþ
X
i<j

qiqj

�
ððcoshðnτÞÞ2−2Þ−n

X
q2i

�
n2−

X
q2i

�
ðnτ tanhðnτÞ−2Þτ

þ n
coshðnτÞ

��X
q2i

�
n2−

X
q2j

�
τþ4n2

X
ri−2

X
q3i

��
ðnτ tanhðnτÞ−1Þe−nτ− nτ

coshðnτÞ
���

þφ0; ðA2Þ

where the li and φ0 are integrating constants, and then from (39), we have

ξ4 ¼
3Λ
4n3

�
1

3
n

�X
ðn2q2i þ q4i Þ þ

X
i<j

q2i q
2
j

�
coshð2nτÞ þ 2

3
n2

X
q3i sinhð2nτÞ −

8

3
n

�X
ðn2q2i þ 2q4i Þ

þ
X
i≠j

qiq3j þ
1

2

X
i<j

q2i q
2
j

�
cosh2ðnτÞ − 20

15

�
sinhðnτÞ

��
5
X

q3i þ
X
i≠j

qiq2j

�
n2 þ

�X
qi

�
2X

qj

�
coshðnτÞ

�

−
2

3
n

�X�
q2i τn

3 −
�
2q3i τ þ 4qi

X
rj þ 3q2i

�
n2
�
− 2τ

X
i≠j

qiq2jn
2 þ

�X
q2i

�
2
�
−nτ þ

�
2τ

�X
qj

�
− 1

��

þ 4

3
tanhðnτÞn2

�X
ððq2i τ þ 2riÞn2 − q3i − τq4i Þ − 2τ

X
i≠j

q2i q
2
j

�
þ 1

cosh2ðnτÞ
�
2

3
n2
�X

ððq2i τ þ 2riÞn2

− τq4i þ q3i Þ − 2τ
X
i≠j

q2i q
2
j

�
coshðnτÞe−nτ þ τn3

��X
ðq2i τ þ 4riÞn2 − τq4i − 2q3i

�
− 2τ

X
i≠j

q2i q
2
j

���
: ðA3Þ

APPENDIX B: EXPLICIT SOLUTIONS OF NONVANISHING HOMOGENEOUS H FIELD CASE

With m ¼ n, the solution of ϕ1 (78) reads

ϕ1 ¼
1

n

�
tanhðnτÞ

Z
ðnτ tanhðnτÞ − 1ÞgϕðτÞdτ − ðnτ tanhðnτÞ − 1Þ

Z
tanhðnτÞgϕðτÞdτ

�
− p

Z
ξ4dτ þ φ0; ðB1Þ

in which gϕ is simply given by

gϕðτÞ ¼ −
2n2

cosh2ðnτÞ
�ZZ

ðK̂3 þ V̂3Þdτdτ − q−10

Z
V̂Bdτ

�
þ ρ: ðB2Þ

In the following, the explicit forms of the first α0 corrections of the metric, dilaton field, andH field in (23)–(25) and (57) are
presented for the case of contribution of theH field in the→ class, considered in Sec. III B. After performing the integrals of
(74)–(78) and for the RS of R2, f ¼ 1, and Gauss-Bonnet, f ¼ −1, with m ¼ n, we obtain

ξðGBÞ1 ¼ c1 tanhðnτÞ þ c2ðnτ tanhðnτÞ − 1Þ þ
�
n
2
tanhðnτÞ − q

�Z
ξ4dτ þ r1

þ Λp2

8n2

�
τððn2τ − 2nqτ − 2n − 4qÞ tanhðnτÞ − 2nþ 4qÞ þ Li2ð−e2nτÞ tanhðnτÞ

þ q
n
ðcoshð2nτÞÞ−2ðnτðe−2nτ þ 1Þ tanhðnτÞ − 2nτ þ e−2nτ þ 1Þ þ 2 lnðe2nτ þ 1Þ

�
þ FðτÞjf¼−1; ðB3Þ
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ξðR
2Þ

1 ¼ c1 tanhðnτÞ þ c2ðnτ tanhðnτÞ − 1Þ þ
�
n
2
tanhðnτÞ − q

�Z
ξ4dτ þ r1

þ Λ
8n2

�
ðcoshð2nτÞÞ−2

�
− lnðe2nτ þ 1Þð2n2 − p2 þ ðnðp2τ þ nÞ tanhðnτÞ − p2Þ coshð2nτÞ

− ð2cosh2ðnτÞ − 1Þτnp2 tanhðnτÞÞ þ 1

n

��
1

2
nð−2 lnð2Þn2 þ n2ðp2τ2 þ 1Þ − 2p2qnτ2 þ 2p2qτÞ tanhðnτÞ

−
1

2
p2ðn2τ − 2nqτ − 2qÞ

�
e−2nτ þ τn

�
n

�
1

2
np2τ − p2qτ þ n2

�
tanhðnτÞ − 1

2
p2ðn − 2qÞ

�
e2nτ

þ n

�
− lnð2Þn2 þ n3τ þ

�
p2τ2 þ 1

2

�
n2 − 2p2qnτ2 þ p2qτ

�
tanhðnτÞ þ 2n4τ − n2p2τ þ 2n3 lnð2Þ − n3 þ p2q

��

− tanhðnτÞp2ð−Li2ð−e2nτÞ þ τðnτðn − 2qÞ þ 2nþ 4qÞÞ
�
þ FðτÞjf¼1; ðB4Þ

where the FðτÞ is given by

FðτÞ ¼ Λ
32n3

ðtanhðnτÞ
�
8n3 lnðe2nτ þ 1Þτðð3n2 þ 8p2 þ 4q2Þf þ n2 þ 2p2 þ 4q2Þ − 4nτððnτ þ 2Þn2ð3n2 þ 8p2

þ 4q2Þf þ τn5 þ 3n4 þ 2τðp2 þ 2q2Þn3 þ ð4p2τqþ 6p2Þn2 þ 8p2q2 þ 16q4Þ þ 4n2Li2ð−e2nτÞðfð3n2
þ 8p2 þ 4q2Þ þ n2 þ 2p2 þ 4q2Þ − sinhð2nτÞð48q4 þ ð16τn3 þ 24p2Þq2 − 16n2p2τqþ 3n4 þ 6n2p2Þ

þ 2n coshð2nτÞððn4 þ 2n2p2 þ 8p2q2 þ 16q4Þτ − 12nq2 þ 12p2qÞ þ n4ð10f þ 13Þð2nτ − e−2nτ − 1Þ
cosh2ðnτÞ

�

− ðnτ tanhðnτÞ − 1Þð2cosh2ðnτÞððn2 − 4q2Þ2 þ 2n2p2 þ 8p2q2Þ þ 16 sinhðnτÞp2q coshðnτÞn
− 16p2τqn2 þ 4n2 lnðcoshðnτÞÞðð3n2 þ 8p2 þ 4q2Þf þ n2 þ 2p2 þ 4q2Þ − n4tanh2ðnτÞð10f þ 13ÞÞÞ: ðB5Þ

Also, we have

ξ2 ¼ ξ1 þ 2q
Z

ξ4dτ þ
Λp2q
2n3

ðsinhðnτÞ coshðnτÞ þ nτÞ þ r2; ðB6Þ

ξ3 ¼ p
Z

ξ4dτ þ
p2Λ
4n4

��
3

2
n2 þ p2 þ 2q2

�
cosh2ðnτÞ þ 2 sinhðnτÞ coshðnτÞnp

þ
�
τ

�
f þ 1

2

�
n2 þ p2τ þ 2q2τ þ 2p

�
n2τ

�
þ r3; ðB7Þ

ϕðGBÞ
1 ¼ UðτÞjf¼−1 − p

Z
ξ4dτ þ

Λp3

8n

�
tanhðnτÞ

�
−nτ2 − 2τ þ 2τ lnð1þ e2nτÞ þ 1

n
Li2ð−e2nτÞ

�

−
2

n
ðnτ tanhðnτÞ − 1Þ lnðcoshðnτÞÞ

�
þ φ0; ðB8Þ

ϕðR2Þ
1 ¼ UðτÞjf¼1 − p

Z
ξ4dτ þ

Λ
8n2

�
tanhðnτÞ

�
ðcoshðnτÞÞ−2n

�
2n2τ2 þ 4n lnð2Þτ þ 1=2þ nτð2 sinhð2nτÞ − 1

þ 2 lnð2Þe2nτÞ þ 1

2
e−2nτ

�
þ lnð1þ e2nτÞ

�
2p2τ −

3n
4cosh2ðnτÞ ð2nτ þ sinhðnτÞÞ

�
þ p2

n
Li2ð−e2nτÞ − n lnð2Þ

−
n2τenτ

2 coshðnτÞ þ ð−nτ2 − 2τÞp2 þ n2τ

�
þ ðnτ tanhðnτÞ − 1Þ

�
2ðn2 − cosh2ðnτÞp2Þ lnðcoshðnτÞÞ þ n2

n cosh2ðnτÞ
��

þ φ0;

ðB9Þ
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where the UðτÞ is given by

UðτÞ¼ Λ
32n3

ðtanhðnτÞðτð11n5τþð−8τþ18Þn4þ2τðp2þ58q2þ2Þn3þðð24p3−16p2−32q2þ8pÞτþ44p2

þ104q2þ4Þn2þð−4p4τ−8p2q2τþ16p3Þnþ24p4þ80p2q2þ64q4þ16q2Þ−nLi2ð−e2nτÞðð18n2þ36p2

þ24q2Þfþ11n2þ4p2þ116q2þ4Þþ 1

4cosh2ðnτÞð4fn
3ð4np2τ3þ2p2τ2−34nτþ17Þþ8np2ðn2þ2p2

þ4q2Þτ3þ4p2ðn2þ8npþ2p2þ4q2Þτ2−4ð35n3þ2p3Þτþ70n2þð8fðp2τ2þ17=2Þn3þ4p2ððn2þ2p2

þ4q2Þτ−8pÞτnþ70n3Þe−2nτÞ−2n2τ lnð1þ e2nτÞðfð18n2þ36p2þ24q2Þþ11n2þ4p2þ116q2þ4Þ
þ2ðð−4p4−8ðn2þ2q2Þp2þn4þð32q2þ1Þn2−16q4−4q2Þτþ6ð4p3−n2−2p2−4q2þpÞÞcoshð2nτÞ

þ 1

n
ðð8τ−3Þn4þð−32p3τþ8ð2τþ3Þp2−8pτ−3þ32ðτ−3Þq2Þn2þ12ðp4þq2ð4p2þ4q2þ1ÞÞÞsinhð2nτÞÞ

− ðnτ tanhðnτÞ−1Þð−2n lnð1þ e2nτÞðð18n2þ36p2þ24q2Þfþ11n2þ4p2þ116q2þ4Þþ τðfn2ð9n2τ
þ64p2þ48q2Þþ22n4−16n3þð4p2þ232q2Þn2þð48p3−32p2−64q2þ16pÞn−8p4−16p2q2Þ
þðcoshðnτÞÞ−24ðnτ2þ τÞp4þ4ð2nτ−1Þp3þ2ðnτþ1Þðð2fþ1Þn2þ4q2Þτp2þð−34f−35Þn3þ4ðp2τ

−pþððfþ1=2Þn2þ2q2ÞτÞp2e−2nτþ 2

n
ðcoshð2nτÞðn4þð−8p2þ32q2þ1Þn2−16q4−4ðð4p2þÞq2þp4ÞÞÞ

þ8ð−4p3þn2þ2p2þ8q2−pÞsinhð2nτÞÞÞ; ðB10Þ

ηðGBÞ ¼ bp2Λ
8n3

ðsinhðnτÞ coshðnτÞ þ nτÞ; ðB11Þ

ηðR2Þ ¼ bΛ
4n

�
−n2τ2 − 2 lnð2Þnτ − Li2ð−e2nτÞ þ

p2 sinhð2nτÞ
4n2

þ 1

2

p2τ

n

�
: ðB12Þ

Also, Eq. (81) gives

ξðGBÞ4 ¼ −Λ
16n2ð2n2 − 2p2 − 4q2Þ ½lnðe

2nτ þ 1Þð7n2 þ 40p2 − 92q2 − 4Þn2 − τn2ð7n4 þ 8n3 þ ð38p2 − 92q2 − 4Þn2

þ ð−24p3 þ 8ð−qþ 2Þp2 − 8pþ 32q2Þnþ 4p4 þ 8p2q2Þ þ ðn4 þ ð−8p2 þ 32q2 þ 1Þn2 − 4p4 − 16q4 − 4q2

− 16p2q2Þ coshð2nτÞ þ ð4n3 þ ð−16p3 þ 8p2 þ 16q2 − 4pÞnÞ sinhð2nτÞ þ 1

2cosh2ðnτÞ ð−2np
2ðn2τ

− 2p2τ − 4q2τ þ 2p − 8qÞe−2nτ þ ð12n4 þ ð16p2 þ 224q2 þ 8Þn2 − 64q4 − 32q2Þcosh4ðnτÞ þ 32ð−2p3

þ n2 þ ðqþ 2Þp2 − pþ 4q2Þn sinhðnτÞcosh3ðnτÞ þ ð6n4 þ ð−48p2 − 216q2 − 8Þn2 − 48p4

− 96p2q2Þcosh2ðnτÞ − 16np2 sinhðnτÞðn2τ − 2p2τ − 4q2τ þ 2pþ qÞ coshðnτÞ þ nðð6p2τ2 − 7Þn3
− 2n2τp2 − 12p2τðp2τ þ 2q2τ þ 2pþ 4qÞnþ 4p2ðp2τ þ 2q2τ − pþ 4qÞÞÞ þ 2ðcosh2ðnτÞððn2 − 4q2Þ2
þ 2p2ðn2 þ 4q2ÞÞ þ 8 coshðnτÞnp2q sinhðnτÞ − 8p2τqn2 þ 2n2 lnðcoshðnτÞÞð−2n2 − 6p2Þ
− 3=2n4tanh2ðnτÞ − 2n4ðcoshðnτÞÞ−2Þ�; ðB13Þ
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ξðR
2Þ

4 ¼ −ΛðcoshðnτÞÞ−2
1184ðn2 − 2p2 − 4q2Þ ½−592 lnðcoshðnτÞÞn

2 − ðcoshð2nτÞð29n2 − 112p2 þ 140q2 þ 4Þ þ 333n2

− 112p2 þ 140q2 þ 4Þ lnðe2nτ þ 1Þ þ 1

2n2
ðð58n5τ þ ð−16τ þ 2Þn4 þ ð84p2τ þ 280q2τ þ 8τÞn3

þ ð48p3τ þ −16ð2τ þ 1Þp2 þ 16pτ þ 2þ 64ð−τ þ 1Þq2Þn2 − 8p4 − 32p2q2 − 32q4 − 8q2Þ coshð2nτÞ
þ ðn4 − 4n3 þ ð−8p2 þ 32q2 þ 1Þn2 − 4p4 − 16p2q2 − 16q4 − 4q2Þ coshð4nτÞ þ 8ð−p4τ − 4p3 þ n2

þ 2ð−q2τ þ 1Þp2 − pþ 4q2Þn sinhð2nτÞ þ 4nð−4p3 þ n2 þ 2p2 þ 4q2 − pÞ sinhð4nτÞ − 8ð17n2τ − 37nqτ

þ p − 37qÞnp2e−2nτ − 148τn2p2ðn − 2qÞe2nτ þ ð888n4 þ ð1184p2 þ 16576q2 þ 592Þn2 − 4736q4

− 2368q2Þcosh4ðnτÞ þ 2368ð−2p3 þ n2 þ ðqþ 2Þp2 − pþ 4q2Þn sinhðnτÞcosh3ðnτÞ þ ð−3108n4
þ ð−3552p2 − 20720q2 − 592Þn2 − 3552p4 − 7104p2q2Þcosh2ðnτÞ þ 1184n sinhðnτÞð3n2τ þ 2p2τ þ 4q2τ

− 2p − qÞp2 coshðnτÞ þ 608n4 lnð2Þ þ 666n5τ þ ð−1764p2τ2 − 16τ þ 7115Þn4 þ ð−224p2τ þ 280q2τ þ 8τÞn3
þ ð−1176p4τ2 − 2304p3τ þ ð−2352q2τ2 − 1184qτ − 32τ − 8Þp2 þ 16pτ þ 1þ ð−64τ þ 32Þq2Þn2

− 8p2ð−37qþ pÞn − 4ðp4 þ 4p2q2 þ 4q4 þ q2ÞÞ þ 148nð 1

12n3
cosh4ðnτÞððn2 − 4q2Þ2 þ 2p2ðn2 þ 4q2ÞÞ − n

þ 1

n2
cosh2ðnτÞð4 sinhðnτÞp2q coshðnτÞ − 4p2τqnþ 2n lnðcoshðnτÞÞð2n2 þ 5p2 þ 4q2Þ − 23n2

4
tanh2ðnτÞÞÞ�:

ðB14Þ
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