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We present noncritical Bianchi type I string cosmology solutions in the presence of central charge deficit
term A. The leading-order string frame curvature appears to be in the high curvature limit Re’ > 1, which
underlines the necessity of including higher-order ' corrections. We give new solutions of two-loop (first-
order ') f-function equations of the ¢ model with nonzero A and the dilaton field in both cases of the
absence and presence of a spatially homogeneous H field (H = dB). Also, the evolution of solutions is
studied in the Einstein frame, in which the string effective action can transform to Gauss-Bonnet gravity
model coupled to a dilaton field with potential. We study explicit examples in first-order o' with chosen
values of appeared constants in the solutions and discuss the cosmological implications.
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I. INTRODUCTION

In the o-model context, the conformal invariance is
provided by vanishing f functions [1], which are equivalent
to the equations of motion of effective action in the string
frame [2]. The low-energy string effective action, being
compatible with the conformal invariance in one-loop
order, has wide cosmological implications for describing
the evolution of early Universe with a very low curvature
and string coupling, g, = e~? [3-5]. In two-loop order of /3
functions, the string effective action is modified by includ-
ing the o corrections of quadratic curvature type o' R?,
where the  is the square of the string length, o = A2/2x
[2,6]. The expanded leading-order effective action is widely
believed to regularize the curvature singularity [7]. The
two-loop S functions, possible «'-corrected string effective
actions, and on-shell compatibility of the «'-corrected
effective action equations of motion with the two-loop
conformal invariance condition have been investigated in
Ref. [2]. A renormalization scheme (RS) dependence
appears in the B field—dependent terms of two-loop f
functions and consequently in the o'-corrected effective
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actions, the two schemes of Gauss-Bonnet and R? of which
have been considered distinctly in Ref. [2]. Furthermore,
the S matrix is invariant under a set of field redefinitions
[8], which allows one to transform between RSs and leads
to a physically equivalent class of effective actions [9].
Generally, two kinds of corrections can be included in
the string effective action, the stringy « expansion and the
quantum nature loop expansion in string coupling [5].
The o corrections are significant when the curvature is in
the high limit Ra’ = 1, while the loop corrections become
important in the case of strong string coupling g, > 1. As
long as the coupling is sufficiently weak in the high
curvature regime, the @’ corrections are enough to be taken
into account, and the loop corrections can be neglected [5].
Solutions of one-loop pf-function equations with the
contribution of the dilaton field and antisymmetric B field
have been presented for several cosmological backgrounds
such as homogeneous anisotropic space-times [10—14] and
inhomogeneous models [15]. According to Ref. [12], the
contribution of the field strength tensor H = dB in all
Bianchi-type models with diagonal metrics can be classi-
fied into three classes of y(—), ¥(1), and y(/"), where the
y is all possible Bianchi types and the arrows indicate the
orientation of H*, the dual of H with respect to the three-
dimensional (3D) hypersurface of homogeneity =* sec-
tions. In the aforementioned works, the central charge
deficit term A has been considered to be zero. In D
dimensions, A is proportional to D — 26 in bosonic string
theory and D — 10 in superstring theory and provides a
term in the effective action analogous to the nonvanishing
cosmological constant term [16]. Solutions with nonzero A,
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called noncritical string cosmology, have been obtained in
the lowest-order f-function equations [16—18].

Moreover, neglecting the A term, the solutions of two-
loop p-function equations have been presented in some
works, such as on the Kasner and Schwarzschild back-
ground with setting the H field to zero [19] and on
anisotropic homogeneous backgrounds with the contribu-
tion of the H field [20]. Alternatively, the «-corrected field
equations of the effective action in the Einstein frame have
been solved in several classes of backgrounds such as M
theory, black holes, and cosmology with no contribution
of the H field [21-29]. Also, the solutions in the presence
of the H field have been investigated, for instance, on
Friedmann-Robertson-Walker (FRW) and Garfinkle-
Horowitz-Strominger (GHS) black hole backgrounds with
zero A in Refs. [27,28] and on Godel space-time with
contribution of A in Ref. [29].

Especially, attempts to find accelerated expanding uni-
verses in the context of higher-dimensional superstring and
M theory led people to consider the extended gravitational
actions, since, in the low-energy limit of their effective field
theory, where the gravitational action is given only by the
Einstein-Hilbert action, the accelerated expanding solutions
are not allowed with a time-independent internal space
[30]. In these theories, inflation is expected to occur at the
Planck scale of 10 or 11 dimensions, and in such a high-
energy scale, the higher-order corrections are required to be
taken into account, at least in the early times. In this sense,
accelerated solutions have been found in higher-order
corrected high-dimensional string and M theory in the
absence of the H field, for example, in Refs. [31-35], with
special attention paid to the de Sitter—like and power-law
expanding solutions.

In this work, aimed at presenting a noncritical four-
dimensional two-loop string cosmology, we study the
solutions of two-loop f-function equations on anisotropic
Bianchi type I space-time with a nonzero A and dilaton
field in two cases of the presence and absence of an H field.
As we will show, the leading-order solutions have string

|

frame curvature in the high limit R’ 2 1, where the higher-
order o corrections become significant. We will limit our
calculations to the first order in ¢/, in which the corrections
of quadratic curvature types are included in the effective
action. Concerning only this order of corrections, the
regularizing effects of « corrections, in which the
higher-order corrections usually act to correct the lower-
order solutions order by order, are already known
[5,21,25,27]. We can, therefore, hope to provide a glimpse
of the feature that could be obtained considering all orders
in o. Similar to what we have done in Ref. [20] for
classifying and solving the two-loop f function on all
Bianchi-type models with A = 0 and the H field in the y(1)
class, a perturbative series expansion in o' is implemented
on the background field, and the general forms of equations
and solutions are presented. Also, we consider the field
equations in the Einstein frame by obtaining the contribu-
tion of H field in & order of the energy-momentum tensor
to investigate the cosmological implications of the o'-
corrected solutions.

The paper is organized as follows. In Sec. II, the general
forms of two-loop S functions considering the two RS of
Gauss-Bonnet and R? are recalled. Also, the field equations
of the Gauss-Bonnet scheme in the Einstein frame are
presented. In Sec. III, the two-loop f functions with
nonzero A are solved on Bianchi type I background in
the two cases of a vanishing and nonvanishing H field.
Then, the behavior of solutions is investigated in the
Einstein frame in Sec. IV. Finally, the main results are
summarized in Sec. V.

II. TWO-LOOP (ORDER «’) § FUNCTIONS
AND o-CORRECTED STRING
EFFECTIVE ACTION

In a 0 model with background fields of metric g, dilaton
field ¢, and antisymmetric B field, the two-loop $ function
of the metric is given by [2]

1 1 o 3 1 1 f
J }ib = R;w - ZH;Zw - vyvv¢ + E |:R;4a/}yRua/}y - ER(u(lﬂ}ll—lu)oulI{/ﬁ//1 - ER(lﬂlmHuaﬂHU/m + g (H4);4u - 5 (R;mﬁu(Hz)a/}
1 1 1
+ 2R, H o '+ R H, oy H” = Vg VAH, ) = SV, Y H 4 2V Hyop 0 H, =V H o, ¥ HOY

1
+ gl—llwtﬂl{y/)’/1 (HQ)aﬁj| s

where H* = H,,,H"""H ,,’H** ., H2., = H ,,,H)", and H is
the field strength of the B field defined by H ,,, = 30),B,).
The f parameter indicates the RS dependence in f
functions. Especially, the schemes corresponding to f =
1 and f = —1, called R? and Gauss-Bonnet schemes, have

12
(1)

|

been pointed in Ref. [2]. Solutions of various RS f-function
equations are different but still equivalent because of their
belonging to various definitions of the physical metric,
dilaton field, and B field. The f functions of the B field in
the mentioned RS are given by [2]
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1 1 o
- Eu(f = 1) = _EvﬂHﬂbp +Z

2R V' H
o ( [urap V]

+ VyHoyp Hy) " HP + 2V s HE H
1 1
+ S oV i = 5 HWPV,,H2> )

1 N o N aby B AP
v /145; (f=-1)= Ry + 4 <2R ﬂy[vR/t]aﬁy - R Ry

N 1
+ R(l[mx]/}H b — mHﬂypv/)Hz) s (3)

where the IAQ,’;,,,, is the Riemann tensor of the generalized
connection with torsion [, = I7, — 1H}, [36]. The aver-
aged f function of a dilaton, which can be written in terms
of f functions of the metric and dilaton field as

p? = p? —1pl.g", is given by

1. 1 o«
P =R+ SH 42V, Vi + (0,4) = A= (wam

1 1 1
— E Raﬂ/mHa/}/lH/mﬂ 4 ﬂ H* — g (Hﬂ02)2> , (4)
which can be obtained by variation of the following string
effective action with respect to the dilaton field:

4 HUPA

/
S = /d4x\/5e¢ <R —1—12H2 + (Vo)? A+ s <R2

1 1 1
_ERaﬂnga/MHpai +ﬁH4 _g(HﬂV2)2>>‘ (5)
The A term is related to the central charge deficit of theory
and in noncritical D-dimensional bosonic theory is given
by [16,17]

2(26 - D)
A ©)

The effective action (5) has been written in the string frame,
and its variations with respect to the background fields give
the f functions. Also, there is another frame, namely, the
Einstein frame, its metric, g,,, of which is related to the
string frame metric, g,,, in four-dimensional space-time by

A:

g;w = ed)g/w' (7)

Actually, the g,, is the metric seen by the string and
describes physics from the string viewpoint. However, it is
not convenient to understand the gravitational phenomena
due to the dilaton field—dependent coefficient of the Ricci
scalar in (5). Transforming to the FEinstein frame by
performing the conformal transformation (7) eliminates
the dilaton field—dependent factor. This frame is appro-
priate for comparison with the string S matrix. Actually,
computing the o'-corrected string effective action can be
studied either in the ¢ model and its f-functions approach

or from the tree-level S matrix. However, it is worth noting
that to a given order o' an intrinsic ambiguity remains in the
string effective actions. Since the § matrix is invariant
under a set of field redefinitions of type [8]

59/”’ = a/(blR;w + bzaﬂ¢ay¢ + b3H/2u/
+ G (baR + bs(3)* + bV + by H?)),

5B;4u = a/(bSVAH/Uw + b9Hﬂyﬂa/1¢),

8¢ = d (b1oR + b1, (0¢)* + b1V + bi3H?),

there is a field redefinition ambiguity and a class of
physically equivalent effective actions parametrized by
eight essential coefficients [37]. Choosing a particular
set of field variables corresponds to a particular RS choice.
Aimed at calculating a set of these coefficients, the Gauss-
Bonnet scheme has been used and gives the effective action
for the bosonic string in four dimensions [2],

S= / d*xVG <R - % e*H? — % (Vg)? + Ae™?

ael [, 52 B2 1o eu e
+ R, — 4R, + R + ¢! 5Hmv”qsv ¢

1. Ui gugngy — L s
_ ERaﬂ/)O’HQﬂaldl + E H}%Dvﬂgbv ¢ — EHZ (v¢)2>

+ e (%H‘* +é(H,w2)2 —fﬂ(ﬂz)zﬂ)’ ®)

in which V indicates the covariant derivative with respect to
g. The A, which is positive in D = 4, appears in a way that
reminds a negative cosmological constant in standard
theory of gravity, up to a weight factor e~®. Using the
field redefinitions, the Gauss-Bonnet combination R;zwp/l -

4R%, + R? in the effective action can be replaced by the
square of the Riemann tensor, and the price to be paid is the
appearance of a dilaton-dependent o correction [2,6].

The equivalence of two-loop f functions and equations of
motion of the «'-corrected effective action can be estab-
lished by using the field redefinitions and the lowest-order
equations of motion [2]. Physical quantities are not affected
by the field redefinitions [28], and appropriate use of them
and the leading-order equations of motion allows us to
transform between the RSs [2,8]. Hence, where the higher-
order corrected field equations of effective actions are
considered in the string theory context, the field redefini-
tions can be applied conveniently to reach the simplest
effective action. In this sense, the Gauss-Bonnet effective
action, which is free of ghosts and terms with higher than
the second derivative in its field equations, usually holds
attention. Considering the effective action (8), the variation
over the Einstein frame metric metric, g,,, gives

% 1 ~ eff
Rpw _ERg;w = T/(ll/ )’ (9)
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where the effective energy-momentum tensor is defined as

) =1 + 1) + TP + T (10)

in which the energy-momentum tensors of the dilaton field

and B field in the leading order are given by
|

GB 1o & 5
T/(w - et |:_§R””ﬁ7R”aﬁy + Rﬂaﬁu

+ R/m/}u(vavﬁ¢ + va¢vﬂ¢) ZR(I ( v v)

R + R, _Rv —

y 1
T =5 (vﬂrpw g,w<V¢>> + Ae gﬂy> (11)
e 1
T8 = T (HMHM 6H2gw) (12)

and in the o' order, the Gauss-Bonnet term gives [38]

1. 1 = ~
RR;w +3 8 g;w( afpl 4R§ﬂ + R2)

2
Vg +V, ¢va¢> R.,((V§)? +V2p)

+ ER(@/J¢6IJ¢ + vuqus) + ((v/)v(7¢ + v/)(ﬁﬁo—q&)klm - 5 ((@qﬁ)z + 62()15)]*?)57;41/:| . (13)

Also, we obtain the following energy-momentum tensor for the B field—dependent «’'-correction terms:

a3 [/ - s
TE) = o [(R"ﬁ/’”HWﬂHW,, + 3R H, s Hr oy + €30V (3 H,H, ) —

1 cu e
E(Ha/wHﬂygv ¢vﬂ¢

24) 5
+ Hy V) pVig) + (v¢)2H2 H2v ¢vy¢> -5 <H4 + H2,H," +2H2,H,%H,,P — EHZH*%”>
Yo (=R 17— g g2, — L E2(9 w( L Yo ye - 2 2y 14
+§gﬂl/ aﬂy - dV' ¢ /}__ ( ¢) t+e E +Z( aﬂ) _ﬁ( ) : ( )

The TGB in (13) has been written in its most general
case. Indeed, the Gauss-Bonnet term is a total derivative in
four dimensions, and the terms without derivatives of the
dilaton in TEDB cancel each other and vanish automati-
cally [38].

III. NONCRITICAL (A # 0) ANISOTROPIC
BIANCHI TYPE I TWO-LOOP STRING
COSMOLOGY SOLUTIONS

In this section, we are going to solve the two-loop S
functions in the presence of central charge deficit A on
Bianchi type I space-time with a similar method by which
we have calculated the solutions of two-loop £ functions on
homogeneous space-times in Ref. [20]. The solutions give
the string frame metric g,,, dilaton field, and B field, where
the corresponding Einstein frame solutions can be obtained
using the conformal transformation (7). Maintaining the
provided convention by p-function solutions, the field
redefinitions of Ref. [8] will not be applied.

Considering the anisotropic Bianchi type I metric as a
string frame metric,

3
ds? = g, dxtdx’ = —goo(1)di* + Z a2(1)(dx')?,  (15)

where a; are the string frame scale factors, we have

F}t - Hié;,
F;t = Hy,

Rijij :goo(aiaj)zHiHj’

Ry = —a}(H; — H;Hy + H?),
R, = _Z(Hi + H} — HoH,),
R; =H, +HiZHk —HyH;,

R =g <Z(2H,- + H? —2HyH,;) + (Z H,->2>.
(16)

The dot symbol stands for derivation with respect to ¢, and
the H; are the Hubble coefficients of the string frame
defined by H; = 4 (Ing;) and Hy = 14 (In gy).

The solutions of the f-function equations will be inves-
tigated in two cases of the absence and presence of the H
field. Since the considered metric is spatially homo-
geneous, the dilaton field can be only a function of time.

A. Solutions with vanishing H field

Without the contribution of the H field, the (i,i) and
time-time components of the metric f# function (1) and the
function of the dilaton (4) with using relations (16) reduce
the coupled differential equations
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H;+H; Y Hy+ Hp—HHy+aKig® =0, (17)

$+Z<Hi+H%_HO(¢}+Hi))+a,K0900:0’ (18)
—2—¢*=> (2pH;+H?+2H,) (ZH) — Agoo

—2(¢+2Hi>H0—a’K,/,gOO:O, (19)

where the auxiliary K functions have been introduced for
the shorthanded writing of equations and are given as
follows:

K,=H?+2(H;—Hy)H,;H, + H? (ZH% — H} —HOH,-) ,

Ko=" (H}+2H;(H;—Ho)H;+ H} + H}H? — H,H}),
Ky=> (H;+2H;(H;—Ho)H;+ H}
+H3H? —=HoH?) + Y H?H3. (20)

i<j
Now, adding Egs. (18) and (19) with sum-over i in Eq. (17)
leads to the following equation:
—¢—¢(¢;+2Hi> + ¢Ho — Agoo
+d <K¢, +K0+ZK,->900 =0. (21)

Also, subtracting the summed-over i of (17) from the sum
of Egs. (18) and (21) gives the initial value equation as
follows:

¢<¢+22H,-> + (ZH,->2 =) " H? + Agoo
—d' (K, +2Kg) g™ = 0. (22)

We are going to solve the set of equations of (17) and (21)
subject to the initial value equation (22) along with
implementing the perturbative series expansion on the
background fields up to the first order of

¢ =¢o+ g, (23)
a; = ap(l +2d')), (24)
goo = 1 +2d'&,, (25)

and applying a time redefinition that introduces the new
time coordinate 7 as [11]

dr = a=3e7?dt, (26)

where a® = a,a,a;. Accordingly, Eqs. (17) and (21) recast
the equations in the zeroth order of o/,

(Inay)” =0, (27)
0+ Aabe*’o =0, (28)
where a% = a,9ayazo. Also, in the first order of , we get

& —(Inay)'E +K; =0, (29)
¢ + 2Aafe <¢1 +Y &+ &) - o,

k=Y ki-Ko =0, (30)

where the prime stands for derivations with respect to 7 and
the K terms are the rewritten versions of K terms in the new
time coordinate, multiplied with a a®e?? factor. Also, the
initial value equation (22) reads [39]

1
3 [Z(ln ape) (Inajeh) -

i<j

o [(456 + Z In a§0> <¢’1 + Z 5;) -2 Z In dy&;
+ 2Aabe?®o <¢1 + Z &+ §4> +K,+ 21%0} =0.

(31)

The solution of (27) and (28) gives the zeroth order of
scale factors and dilaton field as

¢+ 2Aa8€2¢0]

a;) = L'eqir (32)

==Y gr-In ( AL LyLy osh(m)>, (33)

where L;, g;, and n are integrating constants. Accordingly,
the leading-order string frame Ricci scalar and kinetic of
the dilaton field are given by

R:nAcoshz (nz ((Zq) +) il q,+2ntanh(m))>

(34)
by = agbe og? = 4 <<n2 + (Z q,-) 2) cosh?(nt)
+2n) _ g;cosh(nt) sinh(nz) — n2> , (35)

which are growing functions of time. The dependence of R
and qﬁ% on A, which implies that the curvature and dilaton
field kinetic are comparable with inverse of o [40],
demonstrates the necessity of including the higher orders
of o corrections. In this work, we focus on studying the
effects of first order of « corrections.
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Demanding only the first-order o« corrections in the
solutions of the metric, dilaton field, and H field, only the
zeroth-order  terms of K will be considered. Hence,
substituting (32) and (33) into the rewritten versions of (20)
in the 7 coordinate gives the explicit forms of K. Now, the
solutions of (29) and (30) give the general forms of o
corrections of the scale factor and dilaton field as

——//IA(,»drd'H—q,-/&dT-l-liT-i-ri, (36)

¢, = Q, tanh(nt) + Q) (nztanh(nz) — 1) + ¢

+% (tanh(nr) /(m tanh(nt) — 1)g(r)dr
— (nrtanh(nt) — 1) / tanh(nr)g(r)dr)
_ <n tanh(n7) + Zq,-) / £.dr, (37)

in which g(7) is given by

K. K, -K
9(7) = (cosh2 (n7) // drdt + ) Ky 0

(38)

and [;, r;, @o, Q1. and Q, are constants of integration. After
some calculations with using Taylor series expansions up to
the first order of ¢, it turns out that these constants have the
following roles:
(1) I; corresponds to an infinitesimal change in
g 4;i = q;i + ;.
(i1) r; is a proper scaling in the x; direction.
(iii) Q; describes an infinitesimal time displace-
ment, 7 > 7 — Q).
(iv) Q, corresponds to an infinitesimal change in
n,n—n(l—dQ,).
(v) ¢, describes a constant shift in the dilaton.
Substituting these solutions into the initial value equa-
tion (31) gives

(nz -> q?> (1+208,)
=2 [anQ + %f(,,, + K,
+ Z (co#zz(nr)// K;drdr — (ntanh(nt)
+a) / kid1> +n / tanh(m)g(f)df] (39)

Actually, the n> — 3" g7 term is the initial condition on the
constants, which appears in the one-loop p-function

solutions. However, here, we are not allowed to set it to
zero because the right side of this equation does not vanish.
A comparison between the two sides of this equation
proposes the initial condition on arbitrary constants,

-> g =0, (40)

and the remaining terms on the right side of (39) fix the
correction of the lapse function, &,. In the @ — 0 limit, the
zeroth-order initial condition can be recovered from (40).
Appearing the o’ Q, term in the constraint would not be
disappointing because, as we have mentioned before, O,
can be related to an infinitesimal change in n that acts as
n* — n*(1 —2d’Q,) up to first order of . Noting the
relation between f-function equations and Einstein equa-
tions, this initial condition may be regarded as a
Hamiltonian constraint that has been corrected in first
order o'

The explicit forms of @ corrections of the metric and
dilaton after calculating the integrals in (36), (37), and (39)
are presented in Appendix A.

1—2(1Q2

B. Solution with nonvanishing H field of a spatially
homogeneous (time-dependent) B field

As mentioned before, the forms of the H field can be
classified based on the orientation of its dual, H*, with
respect to the 3D hypersurface of homogeneity X* sections.
Accordingly, the three classes of —, 1, and ' denoting the
spatial, time, and time-spatial orientations of H* have been
introduced, respectively, by [12]

H*=H;(t)dx', H*=Hjdt, H*=H;(t)dt+H;(t)dx".

With A = 0, the solution of one-loop f-function equa-
tions has been investigated on Bianchi-type models for 1,
—, and " classes in Refs. [10-12], respectively.

With a nonvanishing A, we have found no explicit
solution for the leading order of f-function equations in
the 1 and " classes. Therefore, we keep going with the —
class with the metric (15) in such a way that, considering a
B field that is a function of time, the H(;; components of the
H field are allowed to be nonzero [41]. On the other hand,
the leading-order f-function equations with metric (15)
make the off-diagonal components of H ;w vanish. This
means that only one of the H;; may be nonzero. Here,
there is no preferred direction, and we consider the
following 3-form of field strength H for simplicity [10]:

H— %A(t)(alaz)z(dt ndxl Add).  (41)

Then, the f-function equations (1)—(4), using (16), recast
the forms
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H,+H,; <ZH,» + - H0> +%A2(a1a2)2 +d(K;+V)g® =0, j=12, (42)
Hy + Hj, <Z Hi+¢— H0> +a (K3 + V3)g® =0, (43)
> (Hi+H?) + - %A2(a1a2)2 - H, <</} + ZH) —d (Ko + V)™ =0, (44)
A +A(¢} +) H; - HO) +d g™V, =0, (45)
2 - = (2¢H; + H? +2H,) (ZH) Agoo—%Az(alaz - <¢+ZH) & (Ky+Vy)g™ =0,
(46)

where the K terms are the same as given in (20) and the V terms, which stand for the H field—dependent terms, are given as
follows:

1 )
V, = [5 (BH3 + (=Ho +4H\|)H, + 2H} + 2H? + 2H3 + H,)f + 2H3 + (—Hy +4H,)H, + H} — 2HH,

. 1 3
+3H%+H%+H2)A2—(<HO—H1 H))f + = Ho——H2>AA+ (1+ N)A*|(a1a2)? + — (a1a2)* A%, (47)

2 16
V, = Vl(l <~ 2), (48)
1 . .
V3= —E[AH3f+H3A((—Ho +H, + Hy, — H3)f — Hy+ H| + Hy — 2H3) + H3A]A(a,a,)%, (49)

1 . .
S[((2H5 = (H, + Hy)Ho + 3H] + SH H, + 3H3 + Hy + H,)f — Hy + 2(H, + Hy)Ho + 3H{ + H\H, + 3H;

V P—
079

+ 2(H2 + Hl) + Ho)Az —A(2(H0 - Hl — Hz)f - 3H0 + Hl + Hz)A + Azf - AA](G]QQ)Z + 7(61]612)4144, (50)
8

_ 1 . . . .
v = {(H%+H§—H0(H1 +Hy) + H, + H,)A +A((H1 + H, — Ho)(H, + Hy) + (H, +H2)ZH%

2
— Ho(Q(H? + H3 + H\Hy) — Ho(H, +H2>>) — (154 + A(13(H, + Hy) - 16Ho>><a1a2>2] (51)
__ 1 . . . . .
vi= = 5 [(H% + H2—Hy(H, + H,) + H, + H,)A +A<(H1 +Hy = Ho)(H, + H,) + (H, + Hy) Y H?
—2Hy(H} + H3 + H{H, — Hy(H, + Hz)/2)> —11A>(A+A(H, + H, - Ho))(alaz)z], (52)

1. . . 1
Vy = _§[H1 + H, + Hi + (Hy — Ho)H| + H3 — HyH,]A*(a,a,)* + — (a;a,)*A%. (53)

4
Similar to what we have done to obtain Eq. (21), adding (42)—(44) to (46) gives the following equation:

—¢—¢<¢5+ ZHi> + ¢Hy — Agoo + A(a,a,)? +GI<K¢ +Vy+ Ko+ Vo+ Z(Ki + Vi))goo =0. (54)

Furthermore, adding (54) to (44) and subtracting (42) and (43) from it give the initial value equation as follows:

4'5(43 + 221{,-) + (Z H,~>2 — > H? + Agoy - %Az(alaz)z —d(Ky+Vy+2(Ko+ Vy))g® =0. (55

Now, we are going to solve Egs. (42), (43), (45), and (54) subject to the initial value equation (55). Again, the equations will be
rewritten in the new time coordinate (26) with applying the given series expansion in @ (23)—(25). Also, we will conveniently set
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A(t) =n=na3e? (56)
and take the @’ expansion of 7 as
n=no+an. (57)

Then, in the 7 coordinate, Eqs. (42), (43), (45), and (54) lead to
the following equations in the zeroth order of «':

1 .
(Inajo)” +§’762(310a20)2 =0, j=12, (58)

(Inas)" =0, (59)
1y =0, (60)
b = (aypay)? + Aa§e*’ = 0. (61)

The solutions of above equations are found as

\/ne=1"

a)y=—, aro =L equa . ay =1L ep‘r’
10 bL2 cosh (m-) 20 2 10 30 3

(©)

no = br, (63)

¢o = —pt + Incosh(nz) —In <n211;3 cosh(mr)) , (64)
where ¢, L, L3, b, p, m, and n are constant. Obviously, the H
field in this class brings about an inevitable anisotropy in the
solutions. Compared to the leading-order solutions in the
absence of A given in Ref. [10], only the dilaton field has been
modified by the third term in (64). Based on these solutions,
the leading-order string frame Rici scalar and kinetic terms of
the dilaton field and B field, with m = n, for example, are
given by

A
R =2 (= 4 4p* + dg*)cosh(n7) = 3n?),  (63)
n

. A
$t = agbe 2 = pn—zcoshQ(nT), (66)
H,,H"’ = 6’7/2‘16326_24)0 = 6A. (67)

Evidently, the string frame Ricci scalar is increasing and starts
from the high curvature limit Re’ > 1. Also, the kinetic terms
are comparable with the inverse of . Note that the R and ¢%
keep growing and may dominate the dynamical effect of the H
field at late z. The high curvature and kinetic terms point out
the necessity of considering the &’ corrections. We include the
first-order o corrections, noting that the solutions are valid as
long as the string coupling is weak.

In the first order of & by employing the zeroth-order
equations (58)—(61), Egs. (42), (43), (45), and (54) read

& = (Inajo) &y + (nG (&1 + &) + nom) (araxn)*

& — (Inas)'&, + K3+ V3 =0, (69)
) =&, + Vg =0, (70)

¢ + 2Aage*™ <¢1 + Z S+ cf4>

+ 2015 (&1 + &) + nomi ) (@r0a20)* = oy +p = 0,
(71)

where the K and V terms are the corresponding terms of
(20) and (48)—(53) rewritten in the new 7 coordinate,
multiplied with a a%e?? factor. Also, the p term in (71)
has been defined as

In the same way, the initial value equation (55) is recast into
the following form:

1
5 [Z(ln ape’) (Inajpe) — g +2Aafe*

i<j

- %'If}z (010020)2} +ad Kd’f} + Z In a;0> (45/1 + Z 5;)

-2 Zln aly&l +2Aafe*Po <¢1 + Z &+ 54)
— (1§ (&1 + &) +nom ) (arpaz )

Again, because we are interested in the first-order o
corrections in the solutions of the metric, dilaton field,
and H field, only the zeroth-order o terms of K and V,
which depend on ay, ¢y and 7, will be considered. Hence,
substituting (62)—(64) into the rewritten versions of (20)
and (48)—(53) in the 7 coordinate gives the explicit forms of
K and V. Then, solving Eqs. (68)—(71) gives the general
forms of ' corrections of the scale factors &;, lapse function
&4, H field 5, and dilaton field ¢, as
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& = ¢y tanh(nz) + cy(nrtanh(nz) — 1) + r,

+ <2tanh nt) > /§4d1

—I—% [tanh(m) /(mtanh(m) —1)gi(7)dz
— (nrtanh(nt) — 1) /tanh(nr)gl (r)dr] , (74)

&H =4 —//<k2+‘72—k1 —Vl)d7d7+24/f4d‘f,
(75)

_//(f{3+f/3)drdr+p/§4df+rav (76)

n = —//\A/Bdrdr—f—b/&df, (77)

¢ :% [tanh(mr) /(mrtanh(mr) - 1)g,(r)de

— (mrtanh(mz) — 1) / tanh(mr)g(/,(f)df} + @0,

(78)
where g, and g, are given by
2n? X A A N
gi(r) = " cosh2(n7) (//(Kz +V, =K, = V,)drde
- q5" / VBdT> + Kk, +V,, (79)
gp(7) = 2Aafe*® <Z &+ 54) - &, +p
2(n5 (&1 + &) + nom ) (@10a20)? (80)

and cy, c,, r;, and ¢, are integrating constants. A closer
look with using Taylor series expansion reveals that up to
first order of «:

(i) ¢, corresponds to an infinitesimal time displace-

ment 7 = 7 — 2d/c;.

(i) ¢, acts as an

n— n(l—-2dc,).
(ili) ¢ 1s an infinitesimal shift in the dilaton.

(iv) r; is a proper scaling in the x; direction.

For calculating the integrals of (78), it is convenient to
set m = n, where, as given in Appendix B, the ¢, and g,
take the forms of (B1) and (B2). Then, similar to what has
been done in the previous subsection, substituting the
above solutions into the initial value equation (73) gives

infinitesimal change in 7,

1
E(n2 —2p*—4¢*) (1 +2d&,) =o' [ancz
—2ntanh(nz) /(f(3 +V3)de+Ky+Vy+2K,+2V,

+ (ntanh(nt) 4 24) /(f(2 +V, =K, =V))dr

n2 1 A A A A A
——F g, Vgd Ky+Vy,—K, =V
cosh?(nt) (qo / 5 H_//( 2t Vo=V

-2k, —2\73)de1) —2n/tanh(n1)(g¢(7) +g,(z))dr

(81)
Again, we have a similar situation as discussed in the
absence of the H-field case in (39), and this equation leads
to the following condition on the arbitrary constants:
n*(1 —4d'c,) —2p*> —4q* = 0. (82)
In & — 0 limit, the initial condition of n*> — 2p? —4¢> =0
that appears in the solutions of one-loop f functions can be
recovered. But in two-loop order, this condition has been
modified by a term in the order o, and n> — 2p?> —44¢*> # 0
is required for consistency in the solution of (81). Then, the
remaining terms in (81) fix the correction of the lapse
function, ¢&,.

Now, calculating the integrals in (74)—(78) gives the
explicit forms of the first o correction of the scale factors,
dilaton field, and H field. Because of dense mathematical
results, the final forms of &;, &4, ¢;, and 5, in two RSs of
Gauss-Bonnet and R? are presented in Appendix B.

IV. EINSTEIN FRAME REPRESENTATION

Having solved the two-loop S-function equations in the
two cases of the vanishing H field and presence of a time-
dependent H field in Sec. I1I, we return to Einstein frame field
equations (9) in order to study the cosmological implications
of the o -corrected solutions. As mentioned in Sec. II, in the
o' order of effective actions, there is a field redefinition
ambiguity and a class of equivalent effective actions corre-
sponding to the same S matrix. The cosmological effects of
the field redefinition have been studied with the constant
dilaton in Ref. [34] and with a time-dependent dilaton in
Ref. [35], where a generalized effective action obtained by
the field redefinitions has been investigated. However, here,
we consider the Gauss-Bonnet effective action (8). In the
Einstein frame, regarding T} = (—p, Py, P,, P3), the non-
zero components of energy-momentum tensors (11)—(14)
give the effective energy density and pressures based on (10).
The Einstein frame metric, which is related to the string frame
metric by the conformal transformation (7), is considered as

3
ds?* = g, dxtdx’ = —di* + Z&%(dxi)2, (83)
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where @; are the Einstein frame scale factors related to the
string frame ones by @2 = e?a?, in such a way that up to the
first order of o' we have

a; = eMag(1+ ' (25 + ¢1)). (84)

Also, the time element in (83) has been defined using the
following relation:

a'f = e%ﬁ\/go()dt. (85)

In the previous section, we found the solutions in terms of the
time coordinate z, which, using (26), has the following
relation with the cosmic time 7:

di = ay’ e3¢o/2(1+a <Z§l+f4+ 4’1))

The integration of the above expression and transformation
from 7 to 7 are not straightforward in the solutions; hence, for
investigating the behavior of the solutions, the time deriv-
atives in physical quantities in the Einstein frame will be
rewritten in terms of 7 derivatives such as

f=an 3<a§0+a/<aio<§i+%¢l>>/>v (87)
6(1'0 Yo may o | (an (54501 ) )

o5 30)

+ao (aio (5,- +%¢1> ) ,Zlnago] > .

Here and hereafter, the dot symbol stands for derivation with
respect to 7. Also, the second derivative of the averaged scale
factor up to first order of o' is given by

i= @) = jaaa) (3 A - (L))
—a= ()"~ (nay) Y (naw) +| (4501 )
_(1n&i0)’<ln<1+dej~l—<§4—|—;¢1>>/
+d (§1+ ¢1) Zlnajo])

InEq. (86), if the coefficient term of dz is positive, 7 will be an
increasing function of 7, and then dz > 0 if and only if
di > 0. In this sense, the early and late behaviors of solutions
can be investigated in the 7 — 0 and 7 — oo limits.

The solutions of p-function equations for the metric,
dilaton field, and B field contain integrating constants that
are allowed to be any real number, provided that some of
them satisfy the initial conditions of (40) in the vanishing

(86)

N
Qi

1

Qi

%\

(88)

(89)

H-field case and (82) in the presence of the H field. It turns
out that the constants appearing in the zeroth-order sol-
utions affect the general behavior of solutions, while the
constants of the first & corrections influence the early-time
behavior. As a matter of fact that it is not convenient to
predict the cosmological behavior of solutions without
selecting some values for these constants, we are going to
investigate the features of the obtained solutions with some
chosen set of arbitrary constants. In this regard, besides the
p-function prescribed initial conditions of (40) and (82), the
other conditions that can be demanded from the cosmo-
logical point of view to be imposed on the obtained
solutions are the positive sign of the coefficient term of
dr in (86), satisfying the energy condition p¢) > 0, and
having no singularity corresponding to the vanishing of
scale factors in the future. Also, it should be noticed that the
calculation of & corrections is trusted as long as the string
coupling at tree level of the string interaction is weak, i.e.,
g, < 1. Hence, the reliable area of solutions may be
affected by selected parameters.

A. Evolution with vanishing H field

In the absence of the H field, the solutions of two-loop
p-function equations were found in Sec. III A. In the
Einstein frame, according to (11), we have the dilaton
field and charge deficit term A contributions to the effective
energy density and pressures up to first order of o as
follows:

1
P9 = i (¢* — 2Ae™?)
1
= (¢0 —2Ae™? + (2¢0 ¢1 +2Ae~%¢y)),  (90)
1
P<¢ 4_1(¢ +2Ae™?)
1
_(¢0 +2Ae™h + o (2o 1 —2Ae~Ngy)).  (91)
Also, T,w ) (13) gives
p(GB) — —3a’e‘/’¢'51:] [:121:13, (92)
P = & N (FLH (§ + §7) + §(HLHy + HyH,
+I~{2H3(HZ+H3))’ (93)
Py = ol e (B Hy(+ §) + (i H +
+ By (H, + ), (94)
(GB) _ b (FT- T ()2 b2 4 (T E i1, F
Py =d'e?(HyH, (¢ + ¢7) + ¢(HoH + H H,
+Ir12[:11(1:12+1:11))7 (95)

where the H; are Einstein frame Hubble parameters defined
byH; = % In a; [42]. It should be noted that for investigating
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the solutions up to first order of &’ only the zeroth order of H;

and ¢ contributes in T,(SB) and TP(,E’Z).

The o-corrected string frame scale factors, lapse func-
tion, and dilaton field introduced in (23)—(25) have been
found in the forms of (32), (33), and (A1)-(A3) in the
absence of the H field. The leading-order string coupling,
in this case, is given by

ALL,L
e — Mcosh(nf)ez e (96)
n

gs =
Aiming at considering only the & corrections, the string
coupling is required to be weak. In early 7z, it can be
achieved by setting the L; constants at least of order v/o/.
Then, with ) g; < 0, the weak string coupling condition is
satisfied in all times with the proper selection of #, but with
> q; > 0, the g may leave the weak coupling limit as time
goes on. Here, we present two examples with isotropic and
anisotropic parametrization. The constants appearing in the
solutions are ¢;, n, I;, L;, O, and Q,, where ¢;, n, and Q,
have to satisfy the initial condition (40).

For an isotropic example, we set ¢; = =2, n =1,
L, =+Vd, I, =-10, r, =0, Q, = 500, along with using
the (40) condition for fixing Q,. Here, the string frame
curvature that starts in the Ra’ = 1 limit is increasing, and
the string coupling is weak and decreasing. These imply
that the o-corrected solutions are valid and important even
in late times and the string loop correction can be ignored.
This example has positive but decreasing & and .
Effectively, the energy density is decreasing, and the
pressure is negative and increasing. Also, the strong energy
condition is violated by pf) + 3P < 0, where the null
energy condition p(¢f) + P(ff) > ( is satisfied except in a
short range of time near 7 = (0. Hence, this example
describes an accelerated expanding Universe with avoid-
ance of initial singularity related to violation of strong
energy condition. The phantom phase, which by definition
satisfies the P < —pEM with the equation of state
parameter w less than —1, is transient in early time.

Having found no compatible example with > g; < 0 in
the anisotropic case with preserving the signature of metric
(83) and the energy condition of p¢) > 0, we set ¢; = 1.1,
g =15,q3=2,n=24,1;=1,r,=0,and L; = 20V
The Q, is fixed by initial condition (40). This example
gives positive and increasing @;, d;, and & defined in (87),
(88), and (89). Furthermore, the Pgeff) are negative with
violating the strong and null energy conditions. It is worth
mentioning that as time goes on in this parametrization,
accompanied by the unbounded growth of curvature that
has started in the Ra’ 2 1 limit, the string coupling g, keeps
growing until leaving the weak coupling limit. Reaching
the strongly coupled high curvature phase signals the
entering of the system into the full M-theory regime
[43,44]. Nevertheless, this given solution is valid as long

as the g, is sufficiently weak in early = and describes an
accelerated expansion in all directions with the avoidance
of initial singularity and behaves as a phantom with
w; < —1. The existence of the w < —1 region opens up
the possibility of the so-called big-rip singularity, which
has been classified in four classes, occurring [45-48].
Noting the scale factors and dilaton field given by (32),
(33), and (A1)-(A3), no finite-time singularity appears in
the scale factors, derivatives of Hubble parameters, dilaton
field (and their derivatives), nor, consequently, according to
(90)—(95), the pressures and energy density. Exhibiting no
sudden future time divergence by these quantities, which is
also verified by their plots, implies that none of the four
types of big-rip singularities occurs.

B. Evolution with the nonvanishing H field

Considering a spatially homogeneous time-dependent B
field with the field strength tensor of type (41), the solutions of
two-loop S-function equations have been found in Sec. III B.
A usual effect of this type of H field is an anisotropic evolution
in spatial directions. Also, the contribution of the B field
brings up a RS dependence on the two loop—order -function
equations and consequently in their solutions. We have
considered two special RSs of R?> and Gauss-Bonnet corre-
sponding to the RS parameters of f =1 and f = -1,
respectively. In the Gauss-Bonnet scheme, with the H field
of the form (41), the components of energy-momentum
tensors (12) and (14) recast the following forms:

1
Pl =P = P = PPV = o Ar@a@e. (97)

' 38 -
pB2) = %A%ﬁage—fﬁ <?A2&%&§e‘2¢ + 15H,H,

—8(H, + H,)(Hs + 3¢) + 32(H3 + H})
S+ 4gR +48(H, + ﬁ12)> : (98)
P = %&%Zz%e“ﬁ <—?A4Ez%&%e‘2¢ +8A% + (72¢°
— 8(6H, — H,)p — 16H> — (31H, + 32H;)H,
— 802 — 8¢ — 24, — 64H, — 48,
— 24H,)A2 + 16(3H,A + 2H,A — 3¢ A +A‘)A>,
(99)
pif) = piB) (1 & 2), (100)

p) _ %

Y = gy Aaiase ™ (104%a1a3e ™ + 364% — 3H,H,).

(101)

The contributions of the dilaton field and Gauss-Bonnet
term in the effective energy-momentum tensor are the same
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as given by (90)—(95). Again, only the zeroth order of a;,

H i» A, and ¢ will be effective in the components of T,(,E,}m

and T,&f”. The H field in this class brings about anisotropic
pressures, which means that it acts like an anisotropic fluid.
Its contribution to the pressures in the zeroth order of o,
given by (98), is negative in the x! and x? directions and
positive in the x* direction, but the signs in the first order of
a may be affected by selected values for the arbitrary
constants of solutions.

In Sec. IIIB, the solutions of two-loop p-function
equations gave the o/-corrected string frame scale factors,
lapse function, dilaton field, and H field of (23)-(25) and
(57) in the forms of (62)—(64) and (74)—(78), where the
final forms of correction terms after performing the
integrals are presented in Appendix B through (B3)-
(B12). Regarding the obtained scale factors, it turns out
that the anisotropy is inevitable with the H field in this
considered class. Here, we are going to investigate the
behavior of solutions by choosing some values for arbitrary
constants in two RSs and study the feature of energy-
momentum tensor components of the Gauss-Bonnet
scheme. The constants appearing in the solutions are
q,p,n,b,cy,co, 1y, @y, and Lz, where the p, ¢, n, and ¢,
must satisfy the initial condition (82).

According to (64), the leading-order string coupling is
given by

g, = e~ = Lyb~ 'V Aer. (102)
Its value in the origin of 7 can be set to be sufficiently small,
for instance, by letting the L and ! constants be in order

V. The behavior of g, depends on the sign of p, in such a
way that with p < 0 the weak coupling condition is always
satisfied, but with p > 0, it increases going forward in time
and may leave the weak coupling limit.

In the R? scheme, as an example, the set of g =3,
p=-2,n=3,Ly=2Vd,b"" =2Vd,py = 12,¢; = 1,
and r; = 0 can be chosen. Investigating &; shows that this
example is expanding in all direction in early times and
then turns to Kasner-type expanding, i.e., expanding in two
directions and contracting in one direction with @; < 0,
followed by a phase of expansion in all directions.
Moreover, the behavior &; is as follows: &, is negative
in early times and then turns to be positive, the &, is positive
forever, and the @3 has behavior similar to the first direction
but leaves the negative phase earlier [49]. Also, the first and
second derivatives of the averaged scale factor (89) are
positive, which shows that the expansion is accelerated.

In the Gauss-Bonnet scheme, for example, the para-
metrization of ¢g=1, p=3.15 n=95 Ly= Vo,
b~ =V, ¢y =300, r; =350, and ¢; =ry = r, =0,
with using (73) to fix c¢,, is capable of preserving
pM > 0, preventing the vanishing of scale factors, and

making the coefficient of dr in (86) be positive. This
example starts expanding in all directions and then becomes
contracting in the first and third directions, where the Zil
leaves the negative area earlier than ég, and then becomes
FRW-type expansion along all directions. In addition,
investigating the behavior of &; (88) shows that &, and &,
are negative at first and then become positive and keep
increasing, but @ is negative and decreasing. Also, the

averaged scale factor has 4 > 0, which implies that the

evolution of the model is accelerated. Furthermore, PECff)

and Pgﬁf) start negatively and keep increasing to become
(eff)

positive, where P is negative and decreasing. Effectively,

the strong energy condition p¢) + 3> P > 0is violated,
and hence the initial singularity is avoided. Also, the null
energy condition is violated in the third direction so the time-
dependent equation of state parameter in the third direction

is w; < —1. However, investigating a;, H,, p), and P(")
shows that there is no evidence of big-rip singularity
occurrence corresponding to a sudden divergence in these
quantities. It is worth mentioning that the g,, starting in the
weak coupling limit in early time, evolves toward the strong
coupling because the p is positive here. Hence, as a matter of
fact that curvature and g, show unbounded growth, the
calculation of « corrections is no longer valid in
7> p7! ln(LBL\/K), when the condition of g, < 1 is violated

and Universe enters the non perturbative regime of the M
theory.

V. CONCLUSION

The higher-derivative corrections are introduced to the
string effective action when the equivalence between field
equations and higher-loop o-model f# functions is consid-
ered. Aimed at presenting noncritical Bianchi type I string
cosmology solutions, we have solved the p-function
equations in the presence of central charge deficit term
A. Being of order o/ !, the A term resulted in the leading-
order string curvature in the high curvature limit of R’ = 1,
which requires the consideration of higher-order -function
equations and consequently including the o' corrections in
the effective action. The other type of effective action
modification, i.e., the stringy loop corrections, have been
assumed to be negligible, which is reliable where the
leading-order sting coupling is weak, i.e., g, < 1.

Considering the two-loop (order ') f-function equations
with A #0 in the two cases of a vanishing and non-
vanishing H field, we have calculated their solutions by
implementing a perturbation series expansion up to first
order of o on the background fields. The solutions
provided an «'-corrected string frame metric, dilaton field,
and H field. Then, to study the cosmological implications
of solutions, the corresponding solutions in the Einstein
frame have been obtained by performing a conformal
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transformation on the metric. Also, the Einstein frame
effective action has been considered to include the Gauss-
Bonnet term coupled to the dilaton field, because from the
string theory point of view, the Gauss-Bonnet combination
is indistinguishable from the other quadratic curvature
corrections. In this sense, the effective energy-momentum
tensor in the Einstein frame field equations contains the
contributions of the Gauss-Bonnet term, dilaton, A, and
H field.

For investigating the detailed behaviors of the o'-
corrected background field solutions and the effective
energy density and pressures, we have considered some
set of values for the arbitrary constants appearing in the
solutions. These constants are allowed to be any real
number, provided that some of them satisfy the initial
condition. Particularly, preserving the energy condition
p") > 0 and avoiding the singularity in the metric caused
by vanishing scale factors have been demanded in selecting
the constants. Without the contribution of the H field, the
solutions are not necessarily anisotropic, and two examples
with choosing isotropic and anisotropic parametrization
were discussed. In the isotropic case, an example describ-
ing the accelerated expanding Universe with a transient
phantom phase in early time was presented. In the offered
anisotropic example, the dilaton field starts from weak
coupling in early time and evolves to the strong coupling
regime as time goes on. Hence, the calculation of o
corrections is valid only in sufficiently small times with
gy < 1, where the given example describes an accelerated
expansion that crosses the phantom phase w; < —1 with
violating the null energy condition in all directions. In
addition, in the presence of a time-dependent H field of
which the H(;, component was considered to be nonzero,
the solutions appeared to be inevitably anisotropic. In this
case, the presented example with the chosen set of con-
stants describes an accelerating model evolving from a
Kasner-type phase to FRW-type expansion in all directions
along with violating the null energy condition in the third
direction. Its valid cosmological era is limited to early times
by the growing of g;.

It is worth mentioning that the conformal invariance
condition prescribes including the whole «-correction
series. Especially, working at the high curvature limit,
all higher orders of o« corrections certainly become
important. Nevertheless, aimed at finding a pattern given
by including the corrections, we restricted our discussion to
the first-order @ (two-loop) S-function equations as the
solutions of the first-order o'-corrected string effective
action at zeroth order in the string coupling. Even in the
first order, the corrections have been capable of i) excluding
the initial singularity in the regime of violation of the strong
energy condition and ii) describing the accelerated expan-
sion of the Universe. However, as time passes, the validity
of examples may be restricted by the growing of the string
coupling and passing the weak coupling limit. Also, in the

trustable area, the phantom phase may appear where the w
becomes less than —1, but there is no big-rip, which is
indicated by the finite future time divergence in scale
factors, energy density, pressures, or time derivative of
Einstein frame Hubble parameters [45,46].

The Gauss-Bonnet model coupled to a dynamical scalar
field with a non-negative potential on FRW space-times has
long been known to have nonsingular cosmological sol-
utions by allowing the violations of both the null and the
strong energy conditions [26]. Recently, the dark energy
scenario has been investigated in this model, in which
phantom phases have been predicted [38]. The A term in
the Einstein frame effective action (8) takes the form of a
potential of type V(¢) = Ve, where the V, is assigned
to be negative in D < 26-dimensional string theory. The
vanishing H-field case presented in Secs. Il A and IVA,
which is described by the effective action similar to that of
the Einstein—scalar—-Gauss-Bonnet model [38] but with a
negative potential, possesses the w < —1 phase in the
investigated o-corrected solutions, but the described
Universe does not seem to reach a big-rip singularity.
Also, it has been shown in Refs. [50,51] that bouncing
solutions, which have a connecting phase between a
contraction and an expansion period, are not allowed in
the isotropic flat FRW Universe in the Einstein—scalar—
Gauss-Bonnet model. The presented examples in Sec. IVA
show the similar feature in both the isotropic and aniso-
tropic cases, since they have no contraction phase and
correspondingly no bounce phase.

The evolution with a nonvanishing homogeneous H field
with Hy;, # 0 has been studied in the low curvature phase
in Refs. [52,53] and in the high curvature phase including
the o corrections in Ref. [27], in which the potential of the
dilaton field or equivalently the A term has been neglected,
assuming the domination of the kinetic terms. However,
this assumption made the valid cosmological era of the
results be limited. We have seen that, particularly in the
early 7, A is significant and cannot be ignored because none

of the R, H?, or ¢52 overcomes the A. However, in late 7, the
curvature and kinetic term of the dilaton field may
dominate where the dynamical effect of the H field
becomes negligible.

Furthermore, the presented example with a nonvanishing
H field in Sec. IV B has no bounce phase in the R scheme,
but in the Gauss-Bonnet scheme, H crosses zero with

H > 0. Hence, the appearance of the bouncing solutions in
string-inspired Einstein—scalar—Gauss-Bonnet with B-field
contribution in the leading and first correction orders seems
to be allowed but sensitive to the chosen RS.

APPENDIX A: EXPLICIT SOLUTIONS OF
VANISHING H FIELD CASE

In this Appendix, the explicit forms of the first
corrections of metric and dilaton field, introduced in
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(23)—(25), are presented. After performing the integrals in (36), (37), and (39) with using the (32) and (33) solutions, we
obtain

qu

E=— <—< +Zq ) (cosh?(nt) +nt*) + g;(cosh(nt) sinh(nt) + nr) — n3> +q,~/§4d1+lir+ri, (A1)

¢, = Q, tanh(nz) + O, (nrtanh(nz) — 1) — (ntanh(m) +y° ql-) / £4d1+$ [—e‘"’ > <q% <n2 - Zq§> T
- 4ql3> tanh(nz)n Z g3 (2cosh?(nt)—=3) +n <4 Z(nql3 +q)+ 6Zqiqj> tanh(n7)t

i<j

+ (Z(nqu?—i—ql —i—Zq,qj) ((cosh(nt) anl <n —qu> (nrtanh(nt) —2)z

Cosh ) <<Zq, (n >4 )r+4n2zr -23"¢} > ( (nrtanh(nz) — 1)e” ﬁ%)ﬂ +o. (A2)

where the /; and ¢, are integrating constants, and then from (39), we have

3A

i 2 8
G=733 {gn (Z g +qh) +> 4 61,) cosh(2nz) + 317 ) " g} sinh(2n7) = 2n <Z(n 4 + 2q?)

i<j

+Y qigd + 5 Zq >cosh2 nr) —% (smh nt << Y@+ a qj) (Z q,->2 > g ,) cosh(nr))

i#] l<1 i#]

o) 2
- gn (Z <q%m3 - (2(1?1’ + 4q; Z ri+ 3q,2> ) ZTZL] 612112 + (Z qi> <—nr + (21 <Z qj> - 1))

i#]
4 1 2
2 2 2_ 3 2 2 2
+§tanh(nr)n (Z((qir—i-Zr,-)n -q’ —1q}) ZT;ql qj> cos?(m2) <§n <Z((qi’[+2ri)n
-1q* +q3) ZTZq ) cosh(nz)e™ + tn? ( (Z(q%r +4r;)n* —zq} - 2q?> - 272q%q?> )} ) (A3)
i#j i#j

APPENDIX B: EXPLICIT SOLUTIONS OF NONVANISHING HOMOGENEOUS H FIELD CASE
With m = n, the solution of ¢, (78) reads
1
¢ =— [tanh(m) /(m'tanh(nr) —1)g4(7)dr — (nrtanh(nz) — 1) / tanh(nt)g,(7) ] /§4d1 + ¢, (Bl)
n

in which g, is simply given by

gol) = —— 2 ( / (Ks + V)dedr — g / de1> +p. (B2)

cosh?(nt)

In the following, the explicit forms of the first & corrections of the metric, dilaton field, and H field in (23)—(25) and (57) are
presented for the case of contribution of the H field in the — class, considered in Sec. III B. After performing the integrals of
(74)—~(78) and for the RS of R?, f = 1, and Gauss-Bonnet, f = —1, with m = n, we obtain

g(lGB) = ¢y tanh(n7) + ¢y (nrtanh(nz) — 1) + <2 tanh(nz) ) /54617 +r

A 2
+ 8—])2 7((n*t — 2nqt — 2n — 4q) tanh(nt) — 2n + 4q) + Liy(—*"") tanh(nz)
n
+4 (cosh(2n7))~2(nz(e™" + 1) tanh(nz) — 2nt + 72" + 1) + 2In(e* + 1) | 4+ F(z)|,—_,. (B3)
n
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rngz) = ¢, tanh(nt) + ¢, (nrtanh(nz) — 1) + (g tanh(nz) — q) /§4d1 +r
A -2 2 2_ 2 2 2
+ el (cosh(2n7))~*| —In(e*" + 1)(2n* — p* + (n(p”7 + n) tanh(nz) — p~) cosh(2n7)
1 1
— (2cosh?(nt) — 1)znp? tanh(nt)) + — ((5 n(=21n(2)n® + n?(p?a> + 1) = 2p?qnt* + 2p*qr) tanh(nt)
n
1 5 -2 L 2 2 L 2
—5P (n*t —2ngr —2q) |e " +n(n FNPTT= P gt + n* | tanh(nz) —5P (n—2q) |e*
1
+n <— In(2)n? + n’t + (p212 + E) n? = 2p*qnt® + p2q1> tanh(nz) + 2n*c — n?p?c + 203 In(2) — n® + pzq)>
— tanh(n7) p?(=Liy(—e**) + 7(nz(n — 2q) + 2n + 4q))] + F(2)] =1 (B4)

where the F(z) is given by

A
F(7) = e (tanh(nt) <8n3 In(e?* + 1)7((3n> + 8p? + 4¢*)f + n*> + 2p? + 4q¢*) — 4nz((nt + 2)n*(3n® + 8p?
n

+4g))f + 1’ + 3n* + 20(p? + 2¢*)n + (4p*zq + 6p)n® + 8p*q* + 16g*) + 4n’Li,(—e>"%)(f(3n?
+8p? +44%) + n® + 2p? + 4¢°) — sinh(2n7)(48¢* + (167> + 24p?)q*> — 16n°p?>zq + 3n* + 6n%p?)
n*(10f + 13)(2nt — e™2"7 — 1))

+ 2ncosh(2nt)((n* + 2n%p* + 8p*q* + 16¢*)t — 12nq* + 12p*q) +

cosh?(nt)
— (nrtanh(nt) — 1)(2cosh?(n7)((n? — 4¢°)* + 2n®p* + 8p*q*) + 16 sinh(nz) p>q cosh(nz)n
— 16p?tgn® + 4n* In(cosh(nt))((3n® + 8p? + 4¢°)f + n* + 2p* + 4¢*) — n*tanh?(n7)(10f + 13))). (BS)

Also, we have

A 2
&H=84+2q / Edr + % (sinh(nt) cosh(nz) + nt) + ry, (B6)

AT /3
&E=p / Eqdr + 37 KE n* + p? + 2q2> cosh?(nt) + 2 sinh(nz) cosh(nt)np

1
+ (T(f + 5) n? 4 p’tr +2q¢%t + 2p> n27:| + 13, (B7)

3

A 1
¢(1(;B) =U(@)|[j—c1—p / Epdr + SL <tanh(m) (—m2 — 27+ 271n(1 + €*") + Liz(—ez’”)>
n n

- % (nttanh(nz) — 1) ln(cosh(nr))> + @, (B8)

PR = U(t)| = — p / Sadr + 8% (tanh(m') <(cosh(m'))‘2n <2n21'2 +4nIn(2)7 + 1/2 + nr(2 sinh(2n7) — 1

(2nt + sinh(nr))) + %ZLiz(—ez’”) —nln(2)

2(n® — cosh?(nt)p?) In(cosh(nt)) + n?
n cosh?(nr) > ) + o

1
+21n(2)e?) + Ee‘z’"> +1In(1 + e*'7) <2p21

nze*

~ 2cosh(nr)

_on
4cosh?(nt)

+ (=nz? = 27)p* + n21> + (nrtanh(nt) — 1) (

(B9)
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where the U(z) is given by

A
U(z) =35 (tanh(n7)(r(11n°7 + (=87 + 18)n* +27(p? +58¢> +2)n’ + ((24p> — 16 p> — 324> +8p)r + 44 p?
P

+104q* +4)n* + (—4p*t —8p* >t +16p3)n +24p* +80p¢* + 644* +16¢%) — nLi,(—e*'*) ((18n* + 36 p>

+24¢2)f +11n> +4p> +1164*> +4) + (4fn®(4np?c> +2p*c* = 34nt+17) + 8np*(n> + 2 p?

4cosh? ()
+4g*) 3 +4p*(n® +8np +2p* +4¢*)? —4(35n +2p3) T +70n* + (8 (p?2 +17/2)n® +4p*((n* +2p?
+4¢%)t—8p)tn+70n%)e™2"7) — 2n*rIn(1 +e*) (f(18n* +36p* +24¢%) + 11n> +4p* +1164* +4)
+2((—4p*—8(n*+2¢%) p* +n* + (32¢* +1)n*> — 16¢* —4¢?)t +6(4p* —n* —2p> —44q* + p)) cosh(2n7)
+%((81— 3)n* 4+ (=32p3t+8(2t+3) p? —8pr—3+32(r =3)g*)n®* + 12(p* + ¢*(4p*> +44¢* +1))) sinh(2n7))
— (nrtanh(nz) — 1)(=2nIn(1+€>"7)((18n% 436 p> +24¢*) f + 11n* +4p> + 116¢°> +4) + (fn*(9n*c
+64p>+48¢%) +22n* — 1613 + (4p* +232¢%)n* + (48p> —32p* —64¢*> +16p)n—8p* — 16p¢?)

+ (cosh(nt))24(ne? + 1) p* +4Q2nt—1)p3 +2(nt+ 1) ((2f + 1)n® +4¢>)tp* + (=34f = 35)n> +4(p*c

2
—-p+((f+1/2)n? +2612)f)p2€‘2"’+;(Cosh(2nf)(n4 + (=8p2 +32¢> + 1)n* —164* —4((4p*+)4* + p*)))

+8(=4p® +n*+2p*+8¢*— p)sinh(2n1))), (B10)
) _ bP?*A
n(GB) = s (sinh(nt) cosh(nt) + nt), (B11)
P
bA , p?sinh(2n7) 1 p’z
n®) = o <—n212 —21n(2)nt — Liy(—e*"7) + # +5— ) (B12)
Also, Eq. (81) gives
—A
g% = [In(e2" + 1)(7n® + 40p? — 924> — 4)n* — tn*(Tn* + 8n® + (38p? — 924> — 4)n

16n*(2n* — 2p? — 44°)
+ (=24p® + 8(—q +2)p* — 8p + 32¢%)n + 4p* + 8p¢?) + (n* + (=8p? + 32¢> + 1)n? — 4p* — 164" — 44>

— 16p*¢?) cosh(2nt) + (4n + (=16p> + 8p? + 16¢> — 4p)n) sinh(2n7) (=2np*(n*c

" Zeosh(ne)
—2p*t — 4%t +2p — 8q)e 2" + (12n* + (16p? + 224¢* + 8)n* — 64¢* — 32¢>)cosh* (n7) + 32(-2p3

+n?+ (g +2)p? — p + 4¢*)nsinh(nz)cosh’ (nt) + (6n* + (—48p? — 2164 — 8)n? — 48p*

— 96p2¢?)cosh?(nt) — 16np? sinh(nt)(n’t — 2p*t — 4%z + 2p + q) cosh(nz) + n((6p*z*> — 7)n’

—2n%tp? — 12p%t(p?t + 2¢°t + 2p + 4q)n + 4p*(p*t + 2%t — p + 4q))) + 2(cosh?(n7)((n® — 44*)?
+2p*(n® + 4¢*)) + 8 cosh(nz)np?qsinh(nz) — 8p>zqn® + 2n? In(cosh(nz))(-2n* — 6p?)

— 3/2n*tanh?(nz) — 2n*(cosh(nz))=2)], (B13)
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£R) _ —A(cosh(nt))~2
Y 1184(n2 = 2p? —44?)

[—592In(cosh(nz))n? — (cosh(2n7)(29n* — 112p? + 140¢° + 4) + 333n>

1
— 112p? +140¢% + 4) In(e*"* + 1) + — ((58n°7 + (=167 + 2)n* + (84 p*t + 2804°t + 87)n?

2n?

+ (48p37 + —16(27 + 1)p? + 16p7 + 2 + 64(—7 + 1)g*)n> — 8p* — 32p?¢* — 32¢* — 84¢?) cosh(2n7)

+ (n* —4n® + (=8p? +32¢° + 1)n*> — 4p* — 16p*>q*> — 164* — 4¢*) cosh(4nt) + 8(—p*r — 4p> + n?
+2(=¢*t + 1)p? — p + 4¢*)nsinh(2n7) + 4n(—4p> + n? + 2p? + 4¢* — p) sinh(4nz) — 8(17n*c — 37nqz

+ p —37q)np*e 2" — 1487n’p(n — 2q)e*"™ + (888n* + (1184 p> + 165764¢* + 592)n* — 47364*
—2368¢%)cosh*(nt) + 2368(=2p* + n? + (q + 2) p* — p + 4¢*)n sinh(nt)cosh? (nz) + (—3108n*

+ (=3552p% — 20720¢° — 592)n? — 3552p* — 7104 p?q?)cosh? (nt) + 1184n sinh(nt)(3n’t + 2p*t + 4¢*t
—2p — q)p? cosh(nt) + 608n* In(2) + 66617 + (—=1764p>*c*> — 167 + 7115)n* + (=224 p*z + 2804¢*t + 87)n’
+ (=1176p*z? — 2304 p37 + (=2352¢%7> — 11847 — 327 — 8)p> + 16pr + 1 + (=647 + 32)¢*)n?

1
—8p*(=37q + p)n—4(p* +4p*¢* +4¢* + ¢*)) + 14811(12”3 cosh*(nz)((n® — 4¢)* +2p*(n*> +44¢%)) —n

1 23n?
+ — cosh?(n7) (4 sinh(n7) p?q cosh(nz) — 4p*zqn + 2nIn(cosh(nt))(2n* + 5p? + 44*) — Tntanhz(nr)))].
n
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