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We study fermions in a domain wall backgrounds in five dimensional supergravity, which is similar to
zero temperature limit of holographic superconductor. We find the fermionic operators for small charges in
the dual four dimensional theory have gapped spectrum.
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I. INTRODUCTION

Holographic methods [1–3] are very useful tools for
studying strongly coupled fermionic systems. These have
been effectively used to studyFermi surfaces [4–6]with black
hole background on the gravity side, leading to appearance of
holographic Fermi and non-Fermi liquids with different
scaling behaviors of excitations. Various aspects of the
non-Fermi liquidswere studied [7–9],with effects ofvariation
of different parameters. The approach employed in these
works is bottom up, where on the gravity side one considers
a custom gravity theory reflecting the appropriate symmetry
of the operators in the low energy effective theory. In this
approach gravity theory is tailored to produce desired
dynamics and advantage lies in its flexibility.
Another approach is top down, where one considers a

known string or supergravity model and the advantage is
the dual field theory is known. In this approach, cases of
probe branes and N ¼ 2 supergravity theories were studied
in [10–14]. Subsequently, analyses of maximally gauged
supergravity theories appeared in literature [15–18] at zero
temperature leading to Fermi surfaces in the dual theories.
These were further extended to computation of Greens
function at finite temperatures, giving rise to ungapped
spectrum [19,20]. These studies considered backgrounds
having finite entropy at zero temperature. Later, a model
having vanishing entropy at zero temperature was analysed
in [21] where they found fermionic fluctuations are stable
within a gap around Fermi surface. Gapped spectra were
also found from the analysis of Green’s function at finite
temperature for Lifshitz geometry in bottom-up approach
[22,23]. Discussions of Fermi surfaces in similar context
appeared in [24–26].
A different class of backgrounds were considered in this

vein, where symmetry gets broken due to condensation of a
charged scalar in the gravity theory. The zero temperature
limits of these backgrounds are expected to be domain wall

solutions of the supergravity theory [27–29]. Such back-
grounds appear in the studies of condensed phase of
holographic superconductors and may be related to the
non-Fermi liquids. Analyses of spectral function of fer-
mions at zero temperature of a holographic superconductor
with condensed scalar appeared in [30] in bottom up
approach and they reported peak-dip-hump structure as
found in APRES experiment. [31] considered Majorana
fermions coupled to itself, as well as to a cooper pair scalar
of twice charge and obtained a gapped spectrum. In view of
that, it was natural to study whether holographic super-
conductors constructed from string and M theory [10,
32–35] show similar gaps for fermionic spectra [36–39].
Behaviour of generic fermions in the background of a
domain wall in four dimension, obtained from compacti-
fication of M theory was studied in [36], giving rise to
bands of normalizable modes in the region of spacelike
momentum. Analysis of domain wall backgrounds in
four dimensional gauged supergravity, dual to Aharony-
Bergman-Jafferis-Maldacena (ABJM) theory with a sym-
metry breaking source appeared in [37], leading to both
gapped and gapless bands of stable quasiparticles. Similar
domain wall solutions, dual to states in ABJM theory with
broken Uð1Þ symmetry were studied in [38], where the gap
in the spectrum has been attributed to small fermionic
charge and interaction between particles and holes.
In the present work we consider a domain wall solution

in five dimensional gravity theory given in [33]. This theory
can be obtained by compactification of type IIB super-
gravity on a five dimensional squashed Sasaki-Einstein
manifold [32,40] after making suitable truncations.
Solution of equation of motion of this truncated theory
can be expected to remain a solution when uplifted to the
full theory. The domain wall interpolates between two AdS
geometries with spontaneously breakdown of a Uð1Þ
symmetry and in that respect, it may corresponds to zero
temperature of holographic superconductor. In this back-
ground, we consider dynamics of certain fermionic modes
that appear in this truncated five dimensional theory. It
turns out [40] that after suitable truncation, the fermionic
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modes can be separated in different sectors of which there
is one with a single fermion, which does not couple to other
fermions or gravitini. Using holographic method we have
studied spectra of the dual operator. This domain wall
solution corresponds to some state in the dual field theory
and so it can shed light on the behavior of fermionic
operators there. In addition, this five dimensional theory
demonstrates a different kind of couplings between fer-
mions and charged scalars which may have some phenom-
enological interest [40]. In order to keep our study flexible
we analyse fermions with different values of charges. From
the analysis in the spacelike region we find for small charge
there is no normal mode around ω ¼ 0. As the charge
increases normal modes start appearing for ω ¼ 0. We have
also studied behavior of the gap with variation of Pauli
term. We have studied the spectral function in the timelike
region and find excitations having a dispersion relation,
which is different from that in the spacelike region.
The plan of the article is as follows. In the next section, we

briefly describe the domain wall solution that we use as the
background. In Secs. III and IV we present Green’s function
and its numerical computation for different charges respec-
tively. We conclude with a discussion in Sec. V.

II. DOMAIN WALL SOLUTION

In this section we review the domain wall solution found
in [33]. We consider compactification of type IIB string
theory on a product of an anti-de Sitter space and a Sasaki-
Einstein manifold, AdS5 × Y. A consistent truncation gives
rise to a five-dimensional theory with bosonic content
consisting of metric, a Uð1Þ gauge field and a complex
scalar. The action is given by [33]

S ¼ 1

2κ25

Z
d5x

ffiffiffiffiffiffi
−g

p �
R −

1

4
FμνFμν

−
1

2

�
ð∂μηÞ2 þ sinh2η

�
∂μθ −

ffiffiffi
3

p

L
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�
2
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þ 3

L2
cosh2

η

2
ð5 − cosh ηÞ ð2:1Þ

where the complex scalar field is ηeiθ and there is
also an additional Chern-Simons term. The potential
VðηÞ ¼ − 3

L2 cosh2
η
2
ð5 − cosh ηÞ has two extrema, η ¼ 0

and η ¼ Logð2þ ffiffiffi
3

p Þ
In order to obtain domain wall solution consider follow-

ing ansatz for the metric, gauge field and scalar field,

ds2¼e2AðrÞ½−hðrÞdt2þdx2�þ dr2

hðrÞ ;

Aμdxμ¼AtðrÞdt; θ¼0;η¼ηðrÞ: ð2:2Þ

The equations of motion following from the action (2.1)
and ansatz (2.2) are given by
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The last equation is a constraint and if all other equations
are satisfied, it holds for all values of r provided it is
satisfied at some value of r [27].
The domain wall solution interpolates between two

extrema of scalar potential, η¼0 at UVand η¼Logð2þ ffiffiffi
3

p Þ
at IR. The boundary conditions are chosen as follows. At
both the extremes the geometries are AdS5 with radii of
curvature L and LIR ¼ 2

ffiffiffi
2

p
L
3
respectively At IR, At van-

ishes and A ∼ r=LIR, h ∼ 1. The infrared asymptotic behav-
ior of gauge field and scalar field are given by,

η ∼ Logð2þ
ffiffiffi
3

p
Þ þ aηeð△IR−4Þr=LIR ;

At ∼ aAt
eð△At−3Þr=LIR : ð2:4Þ

From the infrared limit of the equations it follows that
△IR ¼ 6 −

ffiffiffi
6

p
and △At

¼ 5. The parameter aAt
can be

chosen to be equal to 1 [33] by shifting r. That would
introduce a multiplicative factor in e2A in the metric, which
can be reabsorbed by rescaling t and x⃗ appropriately. So we
are left with a single parameter aη.
At ultraviolet, η ¼ 0, h ¼ hUV, A ∼ rffiffiffiffiffiffi

hUV
p

L
. In order to

ensure that the solution gives rise to spontaneous breaking
of the symmetry it is required that at the ultraviolet
η ∼ e−3A, which corresponds to an expectation value for
the dimension 3 operator dual to η. Imposing this condition
allows only discrete values of aη. With a suitable value of
the parameter aη, the Eq. (2.3) with boundary condition can
be integrated numerically for domain wall solution. For the
range that we have used we have chosen aη ¼ 1.866, which
has least number of nodes. This solution is expected not to
be supersymmetric and so there are possibilities of insta-
bilities. An analysis of thermodynamic stability of the
numerical solution is required to settle stability related
issue. Our choice corresponds to the fact that, other values
of aη would give solutions with higher number of nodes
with same boundary condition and so have higher free
energy and can be considered as less favourable
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thermodynamically. Profiles of the various fields are given
in Fig. 1.

III. GREEN’S FUNCTION

In this section we will study the fermionic spectrum for
the bosonic solution presented in the last section in the
background. This domain wall appears as a solution in a
consistent truncation of bosonic theory in a compactification
of type IIB theory onAdS5 times a Sasaki-Einsteinmanifold
and the fermionic content of this truncated theory has been
discussed elaborately in [40]. As explained there, after
suitable truncation the fermionic fields can be arranged into
separate decoupled sectors. For the present purpose we are
interested in the sector consisting of only a single fermionic
mode,which does not couple to any other fermionicmode or
gravitino. That will keep the analysis simpler, while con-
sidering coupled fermions along with gravitino would
require a more involved approach. The action for this sector
containing a single fermionic mode is given by

S ¼
Z

d5x
ffiffiffiffiffiffi
−g

p 1

2
λ̄

�
ΓμDμ þ i

ffiffiffi
3

p

2
sinh2

η

2
ΓμAμ

−
1

2

�
7þ sinh2

η

2

�
− ip

ffiffiffi
3

p

4
ΓμνFμν

�
λ; ð3:1Þ

where Dμ ¼ ∂μ þ 1
4
ωμabΓab − i

ffiffi
3

p
q

2
Aμ and ωμab represents

the spin connection. We have set L ¼ 1. From the super-
gravity action the asymptotic charge q ¼ 1 and the coef-
ficient of Pauli term p ¼ 1

6
, but we have kept these as free

parameter. The Dirac equation following from the action is
given by

�
Γμ

�
∂μ − i

ffiffiffi
3

p
Q

2
Aμ

�
−M − ip

ffiffiffi
3

p

4
ΓμνFμν

�
λ ¼ 0; ð3:2Þ

where Q ¼ qþ sinh2 η
2
and M ¼ 1

2
ð7þ sinh2 η

2
Þ are the

scaler dependent charge and mass terms and so it has a

(a) (b)

(c) (d)

FIG. 1. Plots of different fields for domain wall solution.
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running coupling and mass. Redefining λ → h−1=8 as λ
we can absorb the contribution of spin connection in the
Dirac equation.
We choose the following γ-matrices in 2 × 2 block form,

Γt̂¼
�

0 iσ2
iσ2 0

�
; Γr̂ ¼

�
1 0

0 −1

�
; Γx̂ ¼

�
0 σ1

σ1 0

�
:

ð3:3Þ

Spinors are chosen to be λ ¼ e−iωtþikxðψþ;ψ−ÞT , where
each of the ψ� are two component spinors. Dirac equations
reduce to

ð�
ffiffiffi
h

p ∂r−MÞψ�þ ie−A

×
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ffiffi
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2
Atffiffiffi

h
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3
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p

2
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tiσ2

�
ψ∓ ¼ 0: ð3:4Þ

Writing ψ� ¼ ðψ�
1 ;ψ

�
2 ÞT , equations for the individual

components becomes
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3
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h
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p
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2
A0
t

�
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The other two components satisfy the following equations,

ð
ffiffiffi
h

p ∂r−MÞψþ
2 þ ie−A

�
kþωþ

ffiffi
3

p
Q

2
Atffiffiffi

h
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3
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2
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ð
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h
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�
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3
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2
Atffiffiffi

h
p þ

ffiffiffi
3

p
p

2
A0
t

�
ψþ
2 ¼ 0:

ð3:6Þ

Note that (ψþ
1 , ψ

−
2 ) and (ψþ

2 , ψ
−
1 ) are coupled with each

other through the Dirac equation. Equations for these two
sets will be interchanged by flipping the signs of ω, Q and
p. In what follows we will confine ourselves to the case of
(ψþ

1 , ψ
−
2 ) only.

We consider the behaviors of the fermions
following from (3.5) at the IR and UV limits. At the IR
limit, η ¼ Logð2þ ffiffiffi

3
p Þ, which implies Q ¼ qþ 1=2,

mIR ¼ 15=4, h ¼ 1 and the geometry is AdS with radius
LIR. Following [41], the behavior of fermions correspond-
ing to infalling boundary condition depends on whether the
momentum is spacelike or timelike. We discuss the two
cases in the following separately.
We begin with spacelike momenta, k2 ≥ ω2. For this

case, infalling boundary conditions at IR are given in terms
of modified Bessel functions as follows:

ψþ
1 ðrÞ∼Uþ

1 e
−r=2LIRKmIRLIRþ1

2
ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2−ω2

p
LIRe−r=LIRÞ;

ψ−
2 ðrÞ∼U−

2 e
−r=2LIRKmIRLIR−1

2
ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2−ω2

p
LIRe−r=LIRÞ; ð3:7Þ

where U−
2 ¼ −i

ffiffiffiffiffiffiffi
kþω
k−ω

q
Uþ

1 . We have chosen Uþ
1 ¼ 1.

For timelike momentum, ω > jkj the solutions are
expressed in terms of Hankel function of first kind,

ψþ
1 ðrÞ∼Uþ

1 e
−r=2LIRHð1Þ

mIRLIRþ1
2

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2−k2

p
LIRe−r=LIRÞ;

ψ−
2 ðrÞ∼U−

2 e
−r=2LIRHð1Þ

mIRLIR−1
2

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2−k2

p
LIRe−r=LIRÞ; ð3:8Þ

where U−
2 ¼ i

ffiffiffiffiffiffiffi
ωþk
ω−k

q
Uþ

1 . We have chosen Uþ
1 ¼ 1.

Similarly, for ω < −jkj they are expressed in terms of
Hankel function of second kind.
For both the regions at UV limit: η ¼ 0, Q ¼ q,

MUV ¼ 7=2, hðrÞ approaches a constant hUV, At
approaches AtðUVÞ and the geometry is AdS with radius
LUV. At r → ∞ behaviour of fermions depend on mass
terms only and are given by

ψþ
1 ðrÞ ∼ Cþ

1 e
MUVr=

ffiffiffiffiffiffi
hUV

p
þDþ

1 e
−ðMUVþ1Þr=

ffiffiffiffiffiffi
hUV

p
;

ψ−
2 ðrÞ ∼ C−

2 e
ðMUV−1Þr=

ffiffiffiffiffiffi
hUV

p
þD−

2 e
−MUVr=

ffiffiffiffiffiffi
hUV

p
: ð3:9Þ

The Green’s function is given by

GRðω; kÞ ¼
D−

2

Cþ
1

: ð3:10Þ

The Green’s function in the present case is diagonal and the
other component can be obtained from (ψþ

2 , ψ−
1 ) in a

similar manner. Imaginary part of the retarded Green’s
function represents the spectral function. In the next section
we study the behavior of spectral function for fermions for
different choices of charges.

IV. RESULT

In this section we consider behavior of the operators dual
to the fermionic modes in the present model. As mentioned
earlier, restricting ourselves to (ψþ

1 , ψ
−
2 ) is sufficient as

the behaviour for the other two fermionic modes will be
similar. Unlike generic fermions, in this model both charges
and masses depend on the scalar field η through the relation
Q ¼ q − sinh2 η

2
and M ¼ 1

2
ð7þ sinh2 η

2
Þ.

Since the boundary conditions differ in spacelike and
timelike region, these two cases are analysed separately.
For the former (spacelike region) we numerically solve
Dirac equations for supergravity fermionic modes (3.5)
subject to the boundary condition (3.7) and look for normal
modes. The normal modes correspond to zeroes of Cþ

1 in
(3.9) leading to singularities of the Green function. Keeping
the charge q fixed we scan over values of ω and k to find the
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zeroes of Cþ
1 . We begin with the charge following from the

supergravity model i.e., q ¼ 1, which does not yield any
normal mode. This fermionic mode has small asymptotic
charge (q ¼ 1) and nonzero asymptotic mass (m ¼ 7

2
) and

so it is consistent with the result in [36], as with higher mass
possibility of having normal mode reduces.
Artificially dialling the charge to higher values leads to

the appearances of normal modes for ω ≥ ωc in this
region. As charge increases, ωc decreases coming down
to ωc ¼ 0. This has been demonstrated for two different
values of charges, q ¼ 4.5 and q ¼ 10. Unless mentioned
otherwise, we have kept the mass and Pauli coupling to
be same as those followed from supergravity throughout
the discussion. The plots of ω vs. k for normal modes
for those two charges are given in Figs. 2(a) and 2(b)
respectively. For q ¼ 4.5 normal modes occur for
ω ≥ ωc ¼ 0.761, while for q ¼ 10 the minimum value
for ω for occurrence of normal modes comes down to
ωc ¼ 0 indicating gapped and gapless spectra in these
two cases respectively.
In the present model, the supergravity Lagrangian has a

Pauli term with coefficient p ¼ 1
6
and as shown in [9,23]

Pauli term may have substantial effect on the spectrum. In
particular, as observed in [23], large Pauli term may give
rise to gapped spectrum. In order to explore such effects in
our model we have manually varied the coefficient of the
Pauli term p keeping the charge q fixed at 4.5 and plotted
the gap δ vs. p in Fig. 3(b). We find for a small negative
value of p (around −0.3) the gap is maximum. As we go
away from this value on both sides the gap generally
decreases, apart from a local maxima around p ¼ −3.55.
Since in the present case, the gap is non-zero at p ¼ 0 for
smaller charge, it cannot be interpreted as an effect of
Pauli term.
It has been suggested from a semiclassical analysis [36],

that the dispersion relation satisfied by the normal modes

can be given by ðωþqϕUVÞ2
hUV

− k2 ¼ m2
eff, where the constant

on the right hand side is related to the number of nodes of
the fermion wave-function associated with normal mode.
For q ¼ 4.5 the normal modes shown in Fig. 2(a) corre-
spond to wavefunctions with zero nodes. We have plotted a
typical wave function in Fig. 3(a). As we increase the value
of charge q to q ¼ 10, more normal modes appear. These
are organized along various curves shown in Fig. 2b, where
associated wave functions of the modes lying on a curve
have same number of nodes. In Fig. 2(b), the normal modes
lying on the curve on right extreme correspond to zero node
wave functions and number of nodes increases as one
moves from right to left. We have tried fitting the relation
ðωþqϕUVÞ2

hUV
− k2 ¼ m2

eff with the points, but a one parameter
fit, keeping the values of ϕUV and hUV as follows from the
equations and varying meff does not reproduce the shapes
of the curves well. Instead we have tried a 3 parameter fit by
varying ϕUV, hUV and meff as arbitrary parameters and
the shapes are reproduced well, as given in the Figs. 2(a)

and 2(b). Introducing k2UV ¼ k2 − ðωþqAtðUVÞÞ2
hUV

we find
that, all the normal modes appear inside the region

k ≤ ðωþqAtðUVÞÞ2
hUV

as found in [36].
Next we consider the complementary timelike region

and explore the behavior of spectral function by numeri-
cally solving Dirac equation (3.5) with boundary condition
given by (3.8). The spectral function is obtained from
imaginary part of the Green’s function given in (3.10). We
begin with Dirac equation in absence of the mass term and
Pauli term for charge q ¼ 10 and plot the spectral function
vs. ω for different values of k are shown in Figs. 4(a)
and 4(b). In order to find dispersion relation for these
excitations we have plotted ω and k values for the peaks for
k < 0 in Fig. 7(a). As it is evident from the figure the set of
points in the UV region smoothly connect to the points
representing normal modes residing in the IR region on the

(a) (b)

FIG. 2. Normal modes in the space-like region for q ¼ 4.5 and q ¼ 10. The solid purple lines and red lines represents boundaries of IR
and UV lightcones respectively. Blue lines show the fits.
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other side of the IR light cone (purple line). A numerical fit

with expression ðωþqϕUVÞ2
hUV

− k2 ¼ m2
eff by varying all the

three parameters captures the shape of the curve well. One
can obtain a similar plot for k > 0.
Next we consider the cases with both mass term as well

as Pauli terms in place for two different values of charges,
q ¼ 4.5 and q ¼ 10 and plot the spectral function vs. ω for
five and eight different values of k respectively. The plots
are given in Fig. 5b for q ¼ 4.5 and in Fig. 6 for q ¼ 10. As
the charge increases the heights of the peaks also increases.
However, as k increases the position of peak in ω does not
vary monotonically. The dispersion relation of the excita-
tions associated with these peaks can be observed from the
plot of the positon of the peaks in ω vs. k. For modes within
the timelike region for q ¼ 10 are shown in Fig. 7(b).

Fitting the numerical data with ðωþqϕUVÞ2
hUV

− k2 ¼ m2
eff by

varying all the 3 parameters ϕUV, hUV and meff , does not
yield a suitable fit. Instead, a quadratic fit, with a relation

like ω − ω0 ¼ ðk−k0Þ2
2meff

matches with the data points in this

region, as shown in the Fig. 7(b). Similar matches are
obtained for q ¼ 4.5 Fig. 8 shows that for both q ¼ 4.5 and
q ¼ 10 the modes appearing in the timelike region matches
smoothly with those corresponding to the normal modes in
the spacelike region. For q ¼ 4.5 the modes are trailing
along the boundary of IR light cone for positive k, while
for q ¼ 10 modes for large frequency appears in the
timelike region. However, in both the cases, for timelike
region with large positive frequency modes are outside the
UV light cone. Considering both the regions, a 3 parameter

(a) (b)

FIG. 4. Spectral function for fermionic mode in absence of mass term. kLUV ¼ 0.1ðredÞ, 0.2(blue), 0.3(orange), 0.4(black), 0.5
(green), 0.6(brown), 0.7(purple), 0.8(pink), 0.9(blue).

(a) (b)

FIG. 3. A typical normal mode vs. r is plotted in the left panel. A plot for variation of the gap with respect to Pauli coupling for
spacelike region is given in the right panel.
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(a) (b)

FIG. 5. Spectral function for fermionic mode. Left q ¼ 1. Right q ¼ 4.5 with kLUV ¼ 0 (red), 0.2(green), 0.4(blue), 0.6(purple) and
0.7(brown). The inset figure shows the behavior at large frequency.

(a) (b)

FIG. 6. Spectral function for fermionic mode for q ¼ 10. On left with kLUV ¼ 0ðredÞ, 0.2(black), 0.4(green), 0.6(brown). On right
with kLUV ¼ 0:8ðblueÞ, 1(black), 1.1(orange), 1.2(purple).

(a) (b)

FIG. 7. Dispersion relation for q ¼ 10 in time-like region. The solid purple lines and red lines represent boundaries of IR and UV light
cones respectively. Green lines show the fits. Left figure shows all regions in k < 0. Right figure shows timelike region.
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numerical fit with relation given by ðωþqϕUVÞ2
hUV

− k2 ¼ m2
eff

(shown by the green lines in the figure) is more suitable. It
would be interesting to understand the features of such
excitations in a greater detail. In addition, from this Fig. 8
one can observe that for q ¼ 4.5 the modes are lying on the
positive ω region with an upward concave pattern, which is
expected for a BCS superconductor. For q ¼ 10, however, a
similar pattern is obtained in the negativeω region, which is
different from the one obtained for gapped spectrum in
[38]. It could be due to the fact that for large values of
charge the modes are shifted downwards in ω. For the
charge q ¼ 1, which follows from the supergravity, how-
ever we have not found any peak as shown in Fig. 5a. This
may be attributed to the fact that charge of this mode is too
small. However, the large frequency behaviour are similar
for other charges (for q ¼ 4.5 an inset figure in Fig. 5(b) is
given to show this behavior).
We conclude this sectionwith a discussion of the dual field

theory. The dual model of this five dimensional supergravity
theory, that we have considered corresponds to a four
dimensional superconformal quiver gauge theory. The scalar
field η has mass given by m2 ¼ △ð△ − 4Þ ¼ −3 implying
conformal dimension of the dual operator is △ ¼ 3 with
R-charge 2, confirming it is chiral primary. For IIB theory
compactified on S5 there are two such operators given by
superpotentialW and trðWαWαÞ, whereWα is field strength
superfield. As explained in [42], only a linear combination of
these two operators (orthogonal to chiral superfield associ-
ated with Konishi multiplet) represents the chiral primary.
Following [32] we identify the dual operatorOη as the lowest
component of a linear combination of these two.
However, it turns out [32] that for a black hole back-

ground, temperature of condensation of chiral primaries is a
monotonically decreasing function of conformal dimension
△. Since the present case corresponds to zero temperature it

may be useful to check that whether Oη has lowest
conformal dimension compared to other chiral primaries
in the dual theory. For IIB on S5, the first family of scalar
fields [43] admits modes withm2 ¼ kðk − 4Þ, k ≥ 2, which
couple to △ ¼ k chiral primary operators given by sym-
metrized traceless combinations trðΦi1…ΦikÞ. For k ¼ 2
this operator has conformal dimension△ ¼ 2 which is less
than that of Oη. Similarly, chiral primary operators with
△ < 3 exists in IIB on T1;1 [42], where trðAiBjÞ is a chiral
primary with △ ¼ 3=2 < 3. A suitable option would be to
consider IIB on an orbifold of 5-sphere, S5=Γ, where Γ ∈
SUð3Þ and the dual theory isN ¼ 1 supersymmetric quiver
gauge theory. In the case ofΓ ¼ Z3 orbifold, chiral primaries
are discussed in [43]. As explained there, the supergravity
mode corresponding to k ¼ 2 mentioned above, is in 200 of
SUð4Þ. For Γ ¼ Z3, its decomposition under SUð3Þ ×Uð1Þ
is 200 ¼ 6ð4=3Þ þ 6̄ð−4=3Þ þ 8ð0Þ. Only the 8(0) survives
the projection but it does not couple to a chiral primary
operator and so one does not expect to have a chiral primary
of dimension 2 in the dual theory. However, superpotential
and trðWαWαÞ will survive the orbifolding making Oη,
chiral primary operator with lowest dimension.
The fermions considered in [40] corresponds to the lowest

rung of mass spectrum of fermions obtained by compacti-
fication of IIB on S5 as given in Fig. 4 of [44]. In particular,
the fermionic mode we are interested in corresponds to
mass 7

2
, that occurs in 4 of SUð4Þ. In the notation of [45,46]

it occurs at the level 3 sets of modes in representation
Dðpþ5=2;1=2;0;0;p−3;1ÞþDðpþ5=2;0;1=2;1;p−3;0Þ
at p ¼ 3. The surviving KK modes for IIB on S5=Z3

has been discussed and classified in [46]. Under
SUð3Þ × Uð1Þ decomposition the Dynkin label splits into

ð1;p−3;0Þ¼⊕ð2p−1Þ=3
l¼ðpþ1Þ=3 ð−1þ2l−p;−1þ2p−3lÞ2p−4lþ1

⊕ð2p=3
l¼ðp=3þ1

ð−3þ 3l − p; 0þ 2p − 3lÞ2p−4lþ1. The mode

(a) (b)

FIG. 8. Spectral function for fermionic mode for q ¼ 4.5 and q ¼ 10. The solid purple lines and red lines represent boundaries of IR
and UV light cones respectively. Green lines show the fits.
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we are interested in corresponds to p ¼ 3 and in the second
term in the splitting in this series and gives rise to a singlet
of SUð3Þ. As explained in [46] it belongs to Gravitino
multiplet II (λ4 in their notation). The corresponding super-
field in the dual theory is given by L2_α ¼ trðeVW̄ _αe−VW2Þ,
where V is the gauge superfield for the dual quiver gauge
theory and W represents the field strength superfield.

V. DISCUSSION

We have considered a domain wall solution with asymp-
totic AdS geometry that appears in a five dimensional
supergravity theory obtained through compactification on
a Sasaki-Einsteinmanifold. The dual theory is a quiver gauge
theory in four dimensions. In the background of this domain
wall solution, we have studied behavior of the operator dual
to certain fermionic mode in the supergravity theory, which
does not couple to gravitino or other fermionic modes. In the
dual field theory, the domain wall solution corresponds to
condensation of a chiral primary operator given by a linear
combination of superpotential and trðWαWαÞ, while the
fermionic operator dual to the supergravity mode belongs
to a multiplet given by trðeVW̄ _αe−VW2Þ.
We have artificially dialled the charges and explored

existence of normal modes in the spacelike region. We
found for the charge q ¼ 1 that follows from supergravity,
there is no normal mode. Higher charge q ¼ 4.5 admits
normal modes but at ω > 0 leading to gapped spectrum.
If we increase charge further, there are normal modes at
ω ¼ 0 aswell.We obtain a dispersion relation for the normal
modes. In the timelike region, for q ¼ 4.5 and q ¼ 10
we find peaks of spectral function. The dispersion relation
in the timelike region turns out to be quadratic in k.
Considering both the regions a hyperbolic fit matches well.

In the case of q ¼ 1, the charge following from supergravity
theory, however, we have not observed any peak.
Fermionic quasi particles in presence of condensate at

zero temperature has a similar gapped spectrum [30].
Gapped spectra were also found in four dimensional
gauged supergravity dual to ABJM model with broken
Uð1Þ symmetry [37,38], where the gap has been attributed
to the low charge or particle hole interaction. In the present
analysis, it seems that the small charge is responsible for the
gapped spectrum. The condensed bosonic operator may
play substantial role in the behavior of spectrum of
fermionic operators considered here. An understanding
of the role of the condensed scalar operator in determining
the spectrum of the fermionic one, from the perspective of
field theory would be interesting.
The five dimensional supergravity obtained after suitable

truncation gives rise to several decoupled sectors of fer-
mionicmodes. In the presentworkwe have restricted ourself
to the case of the fermionic sector consisting of a single
fermion. It may be interesting to extend this analysis to the
fermionicmodes in the other sectors aswell. However, those
fermions are coupled with one another and also coupled to
gravitino and so it calls for a more involved analysis. In the
present discussion we have neglected back reaction of the
fermions and a natural extension would be to consider it.
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