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A certain identification of points in a planar Schwarzschild-anti de Sitter (AdS) black hole generates a
four-dimensional static black string. In turn, a rotating black string can be obtained from a static one by
means of a local boost along the compact direction. On the basis of the gauge/gravity duality, these black
strings are dual to rotating thermal states of a strongly interacting conformal field theory (CFT) that lives on
a cylinder. In this work, we obtain the complete quasinormal mode (QNM) spectrum of the gravitational
perturbations of rotating black strings. Analytic solutions for the dispersion relations are found in the
hydrodynamic limit, characterized by fluctuations with wave number and frequency much smaller than the
Hawking temperature of the string (or the temperature of the CFT in the dual description). We obtain these
dispersion relations both by studying the gravitational perturbations of rotating black strings and by
investigating relativistic wave vectors in a moving fluid living on the boundary of the AdS spacetime.
Relativistic effects like the Doppler shift of the frequencies, wavelength contraction, and dilation of the
thermalization time are shown explicitly in such a regime. The numerical solutions for the fundamental
QNMs show a crossover (a transition) from a hydrodynamic-like behavior to a linear relativistic scaling for
large wave numbers. Additionally, we find a new family of QNMs which are purely damped in the zero
wave number limit and that does not follow as a continuation of QNMs of the static black string, but that
appears to be closely related to the algebraically special perturbation modes.
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I. INTRODUCTION

Since its advent in the late 1990s, the celebrated anti-de
Sitter/conformal field theory (AdS=CFT) correspondence
[1–4] has been extended and applied to different areas of
physics. Such developments have lead to what is now
known as the AdS/QCD [5–8], the AdS/condensed matter
[9–11], and the fluid/gravity [12–14] correspondences.
Over the last two decades, the AdS=CFT duality has
allowed the study of properties of strongly coupled systems
in a n-dimensional flat spacetime by mapping them to a
weakly coupled gravitational theory in an asymptotically
AdSnþ1 spacetime. In applications to particle physics, top-
down and bottom-up models were used to study, among
other things, the mass spectrum, the correlation functions,
and the deep inelastic scattering of glueballs, vector and
scalar mesons [15–23]. Some phenomena in condensed

matter, such as the high-temperature superconductivity
[24–26], the classical and quantum Hall effects [27–32]
and the (non-)Fermi liquid behavior of certain materials
[33–35], were also object of study in the literature. In
relation to plasma physics, the fluid/gravity correspondence
establishes a one-to-one map between solutions of the
relativistic Navier-Stokes equation and asymptotically AdS
black hole solutions of Einstein equations [36–40]. Among
the important results obtained so far, one may cite the
universality of the ratio between the shear viscosity and
entropy density of a holographic CFT plasma [41–47].
In the gravity side of the correspondence, the Einstein

equations with a negative cosmological constant admit
four-dimensional black hole solutions [48,49] with cylin-
drical horizon topology (see Fig. 1). These objects, known
also as black strings, can be put to rotate through a boost in
the compact direction, which is an improper coordinate
transformation as discussed by Stachel [50]. Although
locally equivalent, static and rotating black strings are
globally different solutions of the Einstein equations. Just
as static black strings are dual to static thermal states of a
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strongly coupled CFT on the boundary of the AdS4
spacetime, the rotating black strings correspond to rotating
thermal states of this CFT. Such a theory is defined on a
three-dimensional Minkowski spacetime with one compact
dimension.
According to the AdS=CFT dictionary, the classical field

perturbations in the AdS bulk represent out-of-equilibrium
linear excitations in the CFT. In particular, we can obtain
finite-temperature correlation functions by evaluating the
action of the scalar, electromagnetic, or gravitational
perturbations in the AdS spacetime, following the Son-
Starinets prescription or its generalizations [51–54]. By
explicitly calculating the momentum-space retarded
Green’s functions in the dual field theory, it has been
noticed that the poles of these functions are precisely the
frequencies of the quasinormal modes (QNMs) of field
perturbations in the AdS spacetime [55–57]. The standard
boundary conditions used for asymptotically flat black hole
spacetimes are just incoming waves at the horizon and
outgoing waves at the spatial infinity, which lead to a
complex spectrum for the QNMs [58,59]. In the case of
asymptotically AdS backgrounds, the presence of a neg-
ative cosmological constant changes the spacetime asymp-
totic structure and the outgoing wave condition at spatial
infinity is, in general, replaced by a Dirichlet boundary
condition [60–63].
The study of QNMs of AdS black holes is a two-decade

old topic, and so there are a significant number of papers in
the literature investigating QNMs in asymptotically AdS
spacetimes. See Refs. [64,65] for reviews on the subject
and [66–73] for references on the study of QNMs of black
branes and black strings. In spite of this long history, the
gravitational QNMs of rotating black strings studied in the
present work have not been investigated yet. The frequen-
cies of these QNMs correspond to the poles of the stress-
energy tensor correlators in the dual CFT. We see that it is
possible to separate the gravitational perturbations of the
rotating black strings into two sectors, which can be called
as transverse and longitudinal perturbations. The main goal
of this work is to explore the complete QNM spectrum
associated to these perturbations and investigate its con-
nections with the AdS=CFT correspondence.
The structure of the paper is as follows. Section II is a

review of the main properties of the rotating black string

background, such as the Hawking temperature and the
relation with the spacetime of a static black string. In
Sec. III the fundamental differential equations for the
transverse and longitudinal gravitational perturbations are
presented, including a study of the symmetries of these
equations. Section IV is dedicated to obtaining the solutions
of the fundamental perturbation equations in the hydro-
dynamic limit. In such an approximation, analytical sol-
utions are found and used to build the dispersion relations
for both sectors of the gravitational perturbations.
Numerical solutions are also shown for a comparison to
the analytical expressions. Several results for nonhydrody-
namic QNMs are presented and discussed in Sec. V. Since
we cannot find a general exact solution for the differential
equations, we use the Horowitz-Hubeny method [60].
Section VI is devoted to investigate the relation between
a class of highly damped QNMs and the algebraically
special frequencies of the rotating black strings. Section VII
contains the final comments and conclusion.

II. THE BACKGROUND SPACETIME

The gravitational background considered here is the
spacetime of a rotating AdS4 black string, whose metric
may be written in the form [48]

ds2 ¼ α2γ2r2h
u2

�
−ðdt − adφÞ2f þ

�
dφ
α

− aαdt

�
2

þ dz2

γ2

�

þ du2

α2u2f
; ð1Þ

where α is a parameter related to the AdS radius R by
α ¼ 1=R ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

−3=Λ
p

, with Λ being the negative cosmo-
logical constant, rh is a constant with units of length, and
we defined

γ ¼ ð1 − a2α2Þ−1=2; ð2Þ

f ≡ fðuÞ ¼ 1 − u3; ð3Þ

with a being the rotation parameter. The ranges of the
coordinates are −∞ < t < þ∞, 0 ≤ u < ∞, 0 ≤ φ < 2π,
and −∞ < z < þ∞, so that metric (1) represents a rotating
black hole with cylindrical topology. In the present coor-
dinates, the AdS boundary, where the dual CFT3 lives, is
located at u ¼ 0.
The spacetime described by the metric (1) presents an

event horizon located at u ¼ uh ¼ 1, which is the real
positive zero of the equation fðuÞ ¼ 0. To establish a
relation between the constant rh and the circumferential
radius of the event horizon, we consider the length l of the
circular curve of constant t, u, and z, and obtain

l ¼ 2π
γrh
u

½1 − a2α2f�1=2: ð4Þ

FIG. 1. The global topology of the black string R × S1, and the
visualization of the local flat geometry.
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In the limit of u → uh, it follows l ¼ 2πγrh, and hence γrh
can be identified with the circumferential radius of the
cylindrical surface of the event horizon.
For a rotating black string, the mass M and the angular

momentum J per unit length along the string are well
defined quantities. In terms of the parameters rh and a,
these quantities are given by [48]

M ¼ r3hα
3γ2

�
2þ a2α2

8

�
; J ¼ 3r3hα

3aγ2

8
: ð5Þ

Inverting the last relations, it results in

r3h ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9M2 − 8J2α2

p
−M

α3
;

a ¼ 3M −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9M2 − 8α2J2

p

2α2J
: ð6Þ

As can be seen from the above equations, an event horizon
exists if and only if 0 ≤ J2α2 ≤ M2, or, equivalently, if and
only if 0 ≤ a2α2 ≤ 1.
The Hawking temperature of a rotating black string can

be written as [48]

T ¼ T
γ
; ð7Þ

where T ¼ 3α2rh=4π is the temperature of a static black
string with horizon radius rh. From the dual field-theory
perspective, T is the local rest-frame temperature of the
CFT plasma [36,74]. As emphasized by Cardoso et al. [75],
Eq. (7) “gives the redshift factor relating measurements
done in the laboratory and comoving frames”.
It is worth mentioning also that the extremely rotating

solution is obtained when aα ¼ 1, or, equivalently,
Jα ¼ M. In the extremal case, the radius rh vanishes,
which means that the singularity at u → ∞ becomes
lightlike. Moreover, the Hawking temperature of the black
string vanishes as expected for extremal black holes.
It is important to determine the angular velocity of matter

particles and photons around the rotating black strings. In
particular, we are interested in obtaining the angular
velocity at the event horizon, the static limit surface and
the AdS boundary. We start with the general expression for
the angular velocity of lightlike particles in a circular orbit
(see, e.g., Ref. [76]),

Ω� ¼ ωφ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
φ −

gtt
gφφ

r
; ð8Þ

where

ωφ ¼ −
gtφ
gφφ

¼ aα2ð1 − fÞ
1 − a2α2f

; ð9Þ

and is interpreted as the angular velocity of a locally
nonrotating observer [77]. The metric coefficients in
Eqs. (8) and (9) are

gtt ¼ α2γ2r2hða2α2 − fÞ=u2;
gφφ ¼ γ2r2hð1 − a2α2fÞ=u2;
gtφ ¼ −aα2γ2r2hð1 − fÞ=u2: ð10Þ

As it is well known, any timelike particle in a circular orbit
is constrained to travel with angular velocity between Ωþ
and Ω−.
Substituting the metric (1) into Eqs. (8) and (9), we get

RΩ�ju¼uh ¼ aα; Rωφju¼uh ¼ aα: ð11Þ

This is similar to the Kerr and Kerr-Newman black-hole
cases, for which the angular velocities Ω� and ωφ of
equatorial circular orbits coalesce at the horizon. From this
we conclude that the angular velocity of the rotating black
string is aα. The expressions for the angular velocities at
the event horizon of rotating charged black strings are
found in Refs. [49,78]. Taking the zero charge limit of the
expressions presented in those papers, and considering the
different notations, we get the results (11).
The stationary limit surface of a rotating black string,

defined by the condition gtt ¼ 0, is located at u ¼ us ¼
ð1 − a2α2Þ1=3. It coincides with the horizon in the non-
rotating black string case, when aα ¼ 0, and is located
outside the horizon for aα ≠ 0. This means that there is an
ergosphere in the rotating black string. On this surface, it
results

RΩþ ¼ Rωφ ¼ 2aα
1þ a2α2

; RΩ− ¼ 0: ð12Þ

Any particle or observer inside the surface delimited by us
must rotate along the direction of the black string rotation,
an effect associated with the inertial frame dragging [77]. In
the extremely rotating case (aα ¼ 1), RΩþ reaches the
speed of light. It is worth noticing that the rotating black
string has only one event horizon and one stationary limit
surface [48], differently from the Kerr black hole, which
has event and Cauchy horizons and an ergosphere with two
surfaces, the outer surface being located outside the event
horizon [79].
At the AdS boundary (u ¼ uB ¼ 0) we get

RΩ�ju¼uB ¼ �1; Rωφju¼uB ¼ 0: ð13Þ

These results show a difference in respect to the asymp-
totically flat spacetime where the angular velocity vanishes
at the spatial infinity as rΩ� ¼ �1, where r is the radial
Boyer-Lindquist coordinate. In turn, the result ωφðuBÞ ¼ 0
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means that locally stationary observers at the AdS boun-
dary is really at rest.

III. FUNDAMENTAL EQUATIONS FOR THE
GRAVITATIONAL PERTURBATIONS

In this section, we present the fundamental differential
equations that govern the gravitational perturbations of the
background spacetime (1). The starting point is the wave
equations for the gravitoelectromagnetic perturbations of
rotating charged black strings obtained in Ref. [80]. In the
particular case we are interested in here, i.e., for zero
electric charge and without source terms, these general
differential equations can be written as

½f∂uðf∂uÞ þ γ2ðw − aα2mÞ2 − VT;L�ΦT;L ¼ 0: ð14Þ
Here, ΦTðuÞ and ΦLðuÞ stand for the Regge-Wheeler-
Zerilli (RWZ) master variables associated, respectively, to
the transverse and longitudinal sectors of the gravitational
perturbations, while VTðuÞ and VLðuÞ are the correspond-
ing effective potentials, given by

VTðuÞ ¼ fðp2 − 3uÞ; ð15Þ

VLðuÞ ¼
f

p2 þ 3u

�
p4 þ 9ð2þ p2u2 þ u3Þ

p2 þ 3u

�
; ð16Þ

where

p2 ¼ q2 þ γ2α2ðm − awÞ2: ð17Þ
The frequency w and the wave numbers m and q are
normalized by the temperature T according to the relations

w ¼ 3ω

4πT
; m ¼ 3m

4πT
; q ¼ 3q

4πT
; ð18Þ

where ω is the frequency, m is the wave number along the
rotation direction φ, and q is the wave number along the
direction z.
In the limit of a → 0, the transverse and longitudinal

perturbations, labeled by (−) and (þ) in Ref. [80], corre-
spond respectively to the odd (axial) and even (polar)
perturbations under the parity transformation φ → −φ. As
shown along this work, the (T) sector gives rise to shear
modes in the hydrodynamic regime, while the (L) sector
gives rise to sound wave modes.
By comparing Eqs. (14)–(17) to the corresponding

differential equations obtained in the static black string
case [67,68], we find that the RWZ variables governing the
perturbations of a rotating black string satisfy fundamental
equations of the same form as the equations for the
perturbations of a static black string, provided we consider
the change of the radial coordinate r by u ¼ rh=r and
establish the following relation between the frequencies
and wave numbers,

8>><
>>:

w̄ ¼ γðw − aα2mÞ;
m̄ ¼ γðm − awÞ;
q̄ ¼ q;

ð19Þ

where the barred and unbarred quantities refer, respectively,
to the static and rotating cases. Such a connection between
the perturbation equations of a rotating and a static black
string are expected in advance, since the metrics of the
corresponding background spacetimes are related by an
“illegitimate” linear transformation, which mixes the time
with the angle φ [48,49]. The same result was obtained in
the study of electromagnetic perturbations of rotating black
strings [73]. Hence, in principle, the equations of motion
for the gravitational perturbations of the rotating black
string, Eq. (14), could be obtained directly by replacing
relations (19) into the fundamental differential equations
for the perturbations of the static black string.
In addition to the fundamental equations, the perturba-

tion problem in an anti-de Sitter spacetime requires the
imposition of boundary conditions at the horizon and at the
AdS boundary. Whereas the natural boundary condition at
u ¼ uh is that of an ingoing wave only, since classically the
horizon acts like a one-way membrane, the boundary
condition at the spatial infinity can be Dirichlet,
Neumann, or Robin according to which the field perturba-
tions, their derivatives or a combination of both are required
to vanish at the anti-de Sitter boundary.
Another important issue in the determination of the

quasinormal spectrum of black holes is the choice of
appropriate gauge-invariant quantities to describe the per-
turbations of the black hole. As an example, it is known that
the electromagnetic and gravitational QNM spectra of the
even (polar) sector, obtained by using the RWZ and
Kovtun-Starinets (KS) [63] master variables, are different
if one uses the same boundary condition at the spatial
infinity (see, for instance, Refs. [70,81]). As first argued in
Ref. [81] and elaborated in details in Ref. [82] for a global
Schwarzschild-AdS4 black hole, the criterion of nondefor-
mation of the boundary metric requires the imposition of
Robin-type conditions on the RWZ master fields. These
boundary conditions are translated into Dirichlet conditions
for the KS variables [72].
Therefore, to describe gravitational perturbations of AdS

backgrounds, the KS variables have at least two advantages
over the RWZ variables. The first one is the correspondence
between the QNM frequencies and the poles of the stress-
energy tensor correlators in the dual field theory [63],
which is easier to be established by using the KS than by
using the RWZ master functions. The second one is that
numerically it is easier to deal with Dirichlet than with
Robin boundary conditions.
In this work, we use the KS gauge-invariant quantities,

and so it is important to express the fundamental equations
of the gravitational perturbations in terms of such variables.
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Our task is then to rewrite the differential equations (14) in
terms of the KS gauge invariant variables. To do that we
need the relations between the RWZ and KS variables as it
was done in Ref. [72] for a d-dimensional black brane,
which is a topologically trivial version (for d ¼ 4) of the
static black string. Since the form of such relations are quite
different depending on the perturbation sector, we consider
the transverse and longitudinal sectors separately.
We start with the transverse sector. In this case, the

relation between theRWZandKSvariables can bewritten as

ZTðuÞ ¼ PTðuÞ∂uΦTðuÞ þQTðuÞΦTðuÞ; ð20Þ

where the coefficients are polynomials in u given by

PTðuÞ ¼ uf; QTðuÞ ¼ −f: ð21Þ

Notice that relation (20) depends only on the holographic
coordinate u. Hence, the differential equation for the KS
variable ZT may straightforwardly be obtained by replacing
relation (20) into the corresponding equation for the RWZ
variable ΦT , Eq. (14). After some algebraic manipulations,
it yields

∂2
uZT þ

�
γ2ðw − aα2mÞ2∂u ln f
γ2ðw − aα2mÞ2 − fp2

−
2

u

�
∂uZT

þ
�
γ2ðw − aα2mÞ2 − fp2

f2

�
ZT ¼ 0: ð22Þ

Now we consider the longitudinal sector, whose analysis
is not straightforward as in the transverse sector, because
the relation between the RWZ and KS master functions
depends also on the frequencies and wave numbers [72]. In
this situation, we can use the relationship connecting the
frequencies and wave numbers of static and rotating black
strings, cf. Eq. (19), and the relation between the RWZ and
KS variables found in the static case. Working out such
relations, it follows

ZLðuÞ ¼ PLðuÞ∂uΦLðuÞ þQLðuÞΦLðuÞ; ð23Þ

where the coefficients are given by

PLðuÞ ¼ −
f2ðuÞp2
p2 þ 3u

;

QLðuÞ ¼
−p2

4ðp2 þ 3uÞ2
�
2up2½2γ2ðw − aα2mÞ2 − 9u�

þ 3½4þ 8u2γ2ðw − aα2mÞ2 þ u3ðu3 − 14Þ�

þ ðu3 − 4Þup4 þ 36u3γ2ðw − aα2mÞ2
p2

�
: ð24Þ

Hence, manipulating Eqs. (14), (16), and (23) we obtain the
fundamental differential equation for the KS master var-
iable of the longitudinal sector,

∂2
uZL þ p2Y1 þ γ2ðw − aα2mÞ2Y2

uXf
∂uZL

þ p2Y3 þ p4Y4 þ 4γ4ðw − aα2mÞ4
Xf2

ZL ¼ 0; ð25Þ

where we have introduced the coefficients1

X ¼ 4γ2ðw − aα2mÞ2 − ðf þ 3Þp2;
Y1 ¼ 8f2 þ 3ðf þ 3Þu3;
Y2 ¼ 4ðf − 3Þ;
Y3 ¼ −ð∂ufÞ2f − ð5f þ 3Þγ2ðw − aα2mÞ2;
Y4 ¼ ðf þ 3Þf: ð26Þ

For numerical purposes it is important to know the
singular points and symmetries of the differential equa-
tions (22) and (25). Let us start with the transverse-sector
differential equation (22). The singularities of this equation
are

u0 ¼ 0; u1 ¼ 1; u3 ¼
�
m2α2 þ q2 −w2

p2

�
1=3

;

ð27Þ

and all of them are regular singular points. The same
happens with the longitudinal-sector differential equa-
tion (25), whose regular singular points are

u0 ¼ 0; u1 ¼ 1; u3 ¼
ffiffiffi
4

3
p �

m2α2 þ q2 −w2

p2

�
1=3

:

ð28Þ

The regular nature of the singularities allows us to expand
the solutions near these regular singular points. That is the
core of the power series method that we use in the
numerical procedure of this work.
Finally, let us look at the symmetries of the Eqs. (22) and

(25). Both differential equations are invariant under the
following (symmetry) transformations,

fm; ag → f−m;−ag; fm;wg → f−m;−w�g;
fw; ag → f−w�;−ag; fqg → f−qg; ð29Þ

where w� is the complex conjugate of the frequency w.
These symmetry transformations are going to be used when
we present the numerical results in the next sections. We
split the complex frequency as w ¼ wR − iwI , so that the
imaginary part wI is positive for decreasing perturbations.

1There are some typos in the coefficients presented in
Eqs. (3.22) and (4.7) of Ref. [72]. Here we write the correct
expressions of the coefficients.
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With this convention, negative wI would imply instability
against linear perturbations, what does not happen for the
rotating AdS black strings in four-dimensional spacetimes.
Additionally, we choose to fix the signals of a and wR as
being positive, such that (for q ¼ 0) the signal of the wave
number component m indicates the propagation direction
of the wave on the cylinder surfaces of constant u, along or
contrary to the string rotation. Hence, we present graphs for
numerical results in the first and second quadrants of the
planes ðm;wRÞ and ðm;wIÞ. In the case of m ¼ 0, a
similar procedure is followed to present the numerical
results in terms of the wave number component q. The
symmetric solutions may be obtained using the trans-
formations of Eq. (29).

IV. HYDRODYNAMIC QUASINORMAL MODES

The hydrodynamic approximation is characterized by a
regime where the frequencies and wave numbers are much
smaller than the local temperature T , i.e., w ≪ 1, q ≪ 1
and m ≪ 1. In such a regime, it is possible to express the
dispersion relations wðm; qÞ as power series in the wave
numbers q and m. In general, the hydrodynamic frequen-
cies are the lowest frequencies in the spectrum of QNMs.
The main characteristic of these modes is that the frequency
vanishes as the wave numbers go to zero, i.e., w → 0
as (m; qÞ → 0.
In this section, we develop a complete analysis of the

hydrodynamic quasinormal modes for the transverse sector
(also called shear channel), and for the longitudinal sector
(also called sound channel). Firstly, we present the ana-
lytical results for both sectors, then we solve numerically
the differential equations (22) and (25) with the appropriate
boundary conditions and, at the end, we compare the
numerical and analytical results.

A. Transverse sector—analytical results

Here we start by writing the dispersion relation for the
transverse sector (or shear channel) of the static black
string, which is characterized by being a purely damped
mode [43,68],

w̄ ¼ −
i
3
ðq̄2 þ α2m̄2Þ þ � � � ; ð30Þ

where the ellipses denotes higher powers of q̄ and m̄. In the
specific case of the hydrodynamic QNMs, the fact that
w̄ → 0 as ðm̄; q̄Þ → 0 allows us to obtain the dispersion
relations of the rotating black strings by substituting the
relations (19) directly into Eq. (30) and then solving the
resulting equations for w. To do that, we introduce an
additional dimensionless parameter λ, that scales the wave
numbers asm → mλ and q → qλ, so that the frequency can
be expanded in terms of this parameter as

w ¼ c0 þ c1ðm; qÞλþ c2ðm; qÞλ2 þ c3ðm; qÞλ3 þ � � � :
ð31Þ

We then solve for the coefficients c1ðm; qÞ; c2ðm; qÞ;…,
order by order in Eq. (30) and set the coefficient c0 ¼ 0
because the frequency of a hydrodynamic mode goes to
zero in the limit ðm; qÞ → 0. After re-introducing the
original wave numbers (or, equivalently, by setting
λ ¼ 1), we obtain the following dispersion relation,

w ¼ aα2m −
i
3γ

�
α2m2

γ2
þ q2

�
þ � � � : ð32Þ

Rewriting Eq. (32) in terms of the non-normalized fre-
quency and wave numbers, it follows that

ω ¼ aα2m −
i

4πγT

�
α2m2

γ2
þ q2

�
þ � � � : ð33Þ

The result (33) is the dispersion relation of a diffusion
problem, where the first term on the right hand side is the
convective term (with velocity aα). The coefficient of the
quadratic term is the shear-diffusion coefficient, given by
D ¼ 1=ð4πγT Þ, while the perturbation damping time is
defined as τ ¼ 1=ωI .
It is worth comparing the above results with those

obtained for the static black string [43,68]. Our convention
here is that black strings rotate counterclockwise (we called
this as the positive direction). The wave number parallel to
rotation is m and the perpendicular component is q. After
comparing the dispersion relation (30) with the non-
normalized version of (33), we see there is a Lorentz
contraction of the wavelength 2π=ðαmÞ, i.e., m ¼ γm̄.
There is also a dilation of the damping time, i.e., τ ¼ γτ̄.
These are expected effects for relativistic systems described
in different frames. At last, let us mention that Eq. (32)
reduces to the static result, Eq. (30), in the limit of zero
angular velocity (a ¼ 0).

B. Transverse sector—numerical results

In this subsection, we solve numerically the differential
equation (22) and compare the resulting quasinormal
frequencies to the analytical solution, Eq. (32), obtained
in Sec. IVA for the hydrodynamic regime (w;m; q ≪ 1).
The numerical solutions are found by means of the

power series method developed in Ref. [60]. We notice that
it is difficult to visualize and interpret the numerical results
by plotting directly the relations wRðm; qÞ and wIðm; qÞ,
since the results are three-dimensional graphics. For that
reason, we initially split the analysis in two cases, as
follows.
First, we look for results with m ¼ 0, i.e., for perturba-

tions propagating along the direction z. The corresponding
numerical results are displayed in Fig. 2. In this case the
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frequencies are pure imaginary numbers. These results are
expected because by settingm ¼ 0 in Eq. (32) the real part
of the frequency vanishes. In Fig. 2 the dashed lines
represent the numerical results, while the solid lines
represent the analytical solution given by Eq. (32). As
expected, we observe a good agreement between the
numerical and analytical results in the regime of small
wave numbers and frequencies. It is also seen that the
hydrodynamic approximation is no longer valid for large
wave numbers.
The effects of the rotation on the damping time can be

noticed in Fig. 2. In fact, it is perceived that, given a specific
wave number value, the imaginary part of the frequency for
aα ¼ 0.1 (left panel) is larger than the imaginary part of the
frequency for aα ¼ 1=

ffiffiffi
2

p
≈ 0.71 (right panel). This means

that perturbations on a slowly rotating black string are
damped faster than the perturbations on a fast rotating black
string. In view of the symmetry of the differential equa-
tions (14) under the change q → −q, commented at the end
of Sec. III, the curves for negative q are mirror-symmetrical
to the curves for positive q.
Second, we look for results with q ¼ 0, i.e., for pertur-

bations propagating just along the φ direction. The results
obtained in this case are displayed in Fig. 3. The real part of
the frequency is interpreted as the convective term,
cf. Eq. (32). This term is positive when the perturbation
wave vector has the same direction as the rotation velocity
(m > 0), and is negative when the perturbation wave vector
is in the opposite direction (m < 0). Both cases represent
propagation in the direction of increasing φ, the same
direction of the rotation velocity, as expected for a con-
vection process. Following our choice of non-negative wR,
the graphs in Fig. 3 contain only the quasinormal frequen-
cies for m ≥ 0.
Furthermore, by comparing quantitatively the results of

the imaginary parts for different values of the rotation
parameter, e.g., aα ¼ 0.1 and aα ¼ 1=

ffiffiffi
2

p
(top and bottom

panels in Fig. 3), we observe that waα¼0.1
I > waα¼0.71

I (for a
specific value of the wave number, e.g., m ¼ 1). This

means that the damping time for perturbations propagating
on a black string with smaller rotation parameter are
damped faster than the perturbations propagating on a
black string with larger rotation parameter, i.e., τaα¼0.1 <
τaα¼0.71. Such a result is in agreement with the expected
relativistic effect of time dilation. This kind of behavior has
already been observed in a previous study of electromag-
netic perturbations of rotating black strings [73].

C. Longitudinal sector—analytical results

The longitudinal sector (or sound channel) of the
gravitational perturbations is governed by the differential
equation (25). It is possible to solve this differential
equation by using a perturbative expansion of ZL in powers
of w, m and q, as it was originally done in Refs. [41,42].
However, here we use the relations between the frequencies
and wave numbers of the static and rotating black strings,
given by Eq. (19), and the dispersion relation for the static
black string, as obtained in Refs. [44,70], namely,

w̄ ¼ � 1ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q̄2 þ α2m̄2

q
−
i
6
ðq̄2 þ α2m̄2Þ þ � � � : ð34Þ

First we note that the general dispersion relation for the
longitudinal momentum fluctuations of a fluid is given by
the sound wave mode

ω̄ ¼ �c̄
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q̄2 þ α2m̄2

q
−iΓ̄ðq̄2 þ α2m̄2Þ þ � � � ; ð35Þ

where c̄ is the (phase) speed of sound and Γ̄ is the sound
wave damping constant. By comparing Eqs. (34) and (35),
the phase speed and the damping constant are identified,
respectively, by c̄ ¼ 1=

ffiffiffi
2

p
and Γ̄ ¼ 1=ð8πT Þ. As in the

transverse sector, the damping time is given by the inverse
of the imaginary part, i.e., τ̄ ¼ 1=ω̄I .
Therefore, by replacing relations (19) into Eq. (34) and

following the same procedure as in the case of the trans-
verse sector, specifically considering the expansion (31),
we obtain
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FIG. 2. Dispersion relations of the hydrodynamic QNMs (solid lines), cf. Eq. (32), and shear modes (dashed lines) of the transverse
sector, with m ¼ 0, for aα ¼ 0.1 (left panels) and aα ¼ 1=

ffiffiffi
2

p
(right panel). These solutions are purely damped.
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w ¼ aαγ2

1þ γ2
αm� 1

1þ γ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2α2m2 þ ð1þ γ2Þq2

q

−
2iγ3

3ð1þ γ2Þ2 q
2 −

2iγ3

ð1þ γ2Þ3
�
2

3
þ a2α2

�
α2m2

� iaαγ3ð6þ a2α2Þ
3ð1þ γ2Þ3 αm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2α2m2 þ ð1þ γ2Þq2

q

∓ ia3α3γ3

ð1þ γ2Þ2
αmq2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2α2m2 þ ð1þ γ2Þq2
p þ � � � : ð36Þ

In order to interpret this result, we rewrite it in a more
compact form. To do that, we introduce a new parameter c,
defined by

c ¼ ð1 − c̄2Þaα cos θ
1 − a2α2c̄2

� c̄
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a2α2

p

1 − a2α2c̄2

×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a2α2c̄2 − ð1 − c̄2Þa2α2cos2θ

q
; ð37Þ

where cos θ ¼ mα=ðm2α2 þ q2Þ1=2. In the dual CFT
description, the modulus of the parameter c can be
interpreted as the “speed of sound” in the cylinder rest
frame K (the rotating black-string frame in the bulk).
Differently from the value of the speed of sound c̄ ¼
1=

ffiffiffi
2

p
in the fluid rest frame K̄ (the static black-string

frame) that is positive, by definition, cmay be positive, zero

or negative, depending on the propagation direction,
because m may assume all values in the real line (see,
for instance, Fig. 5).
By writing Eq. (36) in terms of the parameter c and

reintroducing the original quantities ω, q, and m from
Eq. (18), it gives (see also Appendix for more details)

ω ¼ c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2α2 þ q2

q
−

i
8πT γð1 − aαc̄ cos θ̄Þ

×

�
γ2
�
1 −

aαc
cos θ

�
2

m2α2 þ q2
�
; ð38Þ

where cos θ̄ ¼ m̄α=ðm̄2α2 þ q̄2Þ1=2.
Differently from the transverse sector, here it is not

straightforward to identify the relativistic effects as the
Lorentz contraction and the time dilation. By comparing,
term by term, Eqs. (34) and (38), we can identify the
generalized effects of time dilation and wavelength con-
traction in a situation where the wave is moving in both
reference frames,

τ ¼ γð1 − aαc̄ cos θ̄Þτ̄;

m̄α ¼ γ

�
1 −

aαc
cos θ

�
mα: ð39Þ

To simplify the analysis we consider some particular
cases. By setting θ̄ ¼ 0, aα ¼ c̄, and by choosing the minus
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FIG. 3. Dispersion relations of the hydrodynamic QNMs (solid lines), cf. Eq. (32), and shear mode (dashed lines) of the transverse
sector, with q ¼ 0, for aα ¼ 0.1 (top panels) and aα ¼ 1=

ffiffiffi
2

p
(bottom panels).
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sign solution from Eq. (37), we obtain the usual time
dilation between the damping times, τ̄ ¼ γτ. Notice that, in
this case, the frame K is comoving with the plane wave.
Besides, the relation between the wave number components
parallel to the rotation (θ̄ ¼ 0 ⇒ θ ¼ 0) reduces to m̄ ¼
γm or, in terms of the wavelengths, ð2π=m̄αÞ ¼
γ−1ð2π=mαÞ (see also Appendix).

D. Longitudinal sector—numerical results

In this subsection we show the numerical solutions of the
differential equation (25) for the lowest lying mode and
compare the results to the analytical solutions (36). The
results are displayed in Figs. 4 and 5, where the dashed
lines represent the numerical results while solid lines
represent the analytical solutions, respectively. As it was

done for the transverse sector, to simplify the analysis and
trying to get a clear physical interpretation of the results, the
analysis is split into two cases.
First, we consider perturbations propagating perpendicu-

larly to the rotation direction (m ¼ 0). The results for this
case are displayed in Fig. 4, where we observe that the real
part of the frequency is proportional to q in the hydro-
dynamic limit. From Eq. (36) we realize that the propor-
tionality factor depends on the value of the rotation
parameter and, to observe the effect of such a parameter,
we plot three different cases: aα ¼ 0.1 (top panels), aα ¼
1=

ffiffiffi
2

p
≈ 0.71 (middle panels), and aα ¼ 0.95 (bottom

panels). By comparing the real parts of the frequencies
in this figure for a fixed value of the wave number, e.g., for
q ¼ 1, it is verified that when the rotation increases the real
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FIG. 4. Hydrodynamic QNMs (solid lines), cf. Eq. (36), and sound mode (dashed lines) of the longitudinal sector with m ¼ 0 for
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p
(middle panels), and aα ¼ 0.95 (bottom panels).
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part of the frequency decreases, i.e., waα¼0.1
R > waα¼0.71

R >
waα¼0.95

R . This behavior is understood by noticing that, in
the hydrodynamic approximation, given by Eq. (36), the
leading term of the real part of the frequency is wR ¼
q=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ γ2

p
, which decreases when aα increases.

On the other hand, the imaginary part of the frequency is
proportional to q2, and the corresponding coefficient,

Γ ¼ γ3

2πT ð1þ γ2Þ2 ; ð40Þ

is associated to the damping of sound waves in the dual
field theory. It is observed that the imaginary part of the
frequency increases with the rotation parameter, as can be
seen in the top and middle panels of Fig. 4, since

waα¼0.1
I < waα¼0.71

I . This behavior remains until the rota-
tion parameter reaches the critical value ðaαÞc ¼

ffiffiffiffiffiffiffiffi
2=3

p
,

where the sound wave damping coefficient attains a
maximum value, decreasing from then on (waα¼0.71

I >
waα¼0.95

I ). This means that perturbations with the same
wave numbers decay faster for higher rotation parameters if
aα < ðaαÞc, but decay more slowly if aα > ðaαÞc. It is
interesting to note that in the extremely rotating case, for
aα ¼ 1, the damping coefficient vanishes, eliminating the
imaginary part of the frequency, such that the QNMs
become normal modes.
Second, we consider the case q ¼ 0, which turns

out to be a more interesting situation, cf. Fig. 5. In this
case, the hydrodynamic approximation to the real part of
the frequency is linear in m, with the proportionality
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FIG. 5. Hydrodynamic QNMs (solid lines), cf. Eq. (36), and sound mode (dashed lines) of the longitudinal sector with q ¼ 0 for
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coefficient being the transformation of the velocity c̄ to the
moving frame, see Appendix for more details. Figure 5
displays three cases: aα ¼ 0.1 (top panels), aα ¼ 1=

ffiffiffi
2

p
(middle panels), and aα ¼ 0.95 (bottom panels). The
graphs in all cases show good agreement between the
analytical and the numerical results in the hydrodynamic
limit. The deviation of the numerical results from the sound
wave mode is also observed. Such deviation is easily
understood by noticing that the analytical solutions are
no longer valid beyond the hydrodynamic regime.
According to our conventions, assuming positivewR, the

perturbations with positive m propagate in the same
direction as the rotation, while the perturbations with a
negativem value propagate in the opposite direction. In the
former case the real part of the frequency, obtained from the
positive solution of Eq. (36), reduces to ½ðc̄þ aαÞ=
ð1þ aαc̄Þ�mα, while in the opposite direction it becomes
½ðc̄ − aαÞ=ð1 − aαc̄Þ�mα. With these simplifications on
hand we analyze in the following some interesting
situations.
An interesting situation appears when the value of the

rotation parameter equals the value of the speed of sound in
the rest frame of the fluid, i.e., aα ¼ c̄ ¼ 1=

ffiffiffi
2

p
. The results

for this situation are presented in the middle panels of
Fig. 5. In this case, there are two hydrodynamic quasi-
normal modes for positive values of m, indicated respec-
tively by QNM 1 and QNM 2, and none for negative values
of m with wR > 0. The QNM 1 can be understood from
Eq. (36). For negative m and a > 1=

ffiffiffi
2

p
such equation

furnishes frequencies with negative real part, representing
in fact waves (positive frequencies) travelling along þφ
(with positive m, and hence these modes, like QNM 1, are
plotted in the first quadrant of Fig. 5. Furthermore, by using
the transformations (39), it is seen that the QNM 1 and
QNM 2 correspond, respectively, to waves propagating in
the −φ̄ and þφ̄ direction in the frame K̄. For small wave
number values, the real part of the QNM 1 frequency is
essentially zero (within our numerical precision), while the
real part of the QNM 2 frequency is wR ≈ 2=

ffiffiffi
2

p
. Also, the

QNM 1 frequency has relatively large imaginary part (in
comparison to QNM 2), implying a small damping time
(1=ωI). Contrarily, the damping time of the hydrodynamic
QNM 2 is large (in comparison to QNM 1), which means
that the dissipative effects can be neglected in this case.
Once the QNM 1 frequency has real part close to zero, it
looks like a diffusion problem in the hydrodynamic regime.
Such a result is expected in advance, since in this situation
the frame K is comoving with the sound wave.
Bottom panels of Fig. 5 show the results for the case

aα ¼ 0.95. We observe again the existence of two hydro-
dynamic QNMs for a given m > 0, one of them being
associated to a wave propagating along the −φ̄ direction of
the frame K̄. This effect can be interpreted in analogy to the
case of an observer moving away from a source of sound
waves that is at rest in relation to the medium. In the present

case, as the velocity of the observer K, i.e., the rotation
velocity of the black string, is larger than the speed of sound
in the medium (1=

ffiffiffi
2

p
), the observer detects all the wave

fronts moving away from him in the opposite direction.
Additionally, the imaginary part of the QNM 2 is very
small, indicating that this perturbation mode is weakly
damped.

V. NONHYDRODYNAMIC
QUASINORMAL MODES

In this section, we investigate the nonhydrodynamic
QNMs of the transverse and longitudinal sectors for a few
different values of the rotation parameter, namely, for aα ¼
0.1; 0.2; 1=

ffiffiffi
2

p
and 0.8. The frequencies of the nonhydro-

dynamic (or ordinary) modes are obtained by solving
numerically the differential equations (22) and (25) for
specific values of the wave numbers m and q. The main
difference between the nonhydrodynamic and the hydro-
dynamic QNMs is the behavior in the small wave number
limit, with the hydrodynamic frequencies going to zero,
while the nonhydrodynamic frequencies tend to nonzero
values. The ration between the imaginary parts of succes-
sive frequencies at zero wave numbers is used to rank in
increasing order the different nonhydrodynamic QNMs.
Since their damping time τ ¼ 1=ωI is relatively short for
small wave numbers, the nonhydrodynamic modes are the
first to disappear in this regime. Moreover, numerical
studies on the time evolution of the perturbations show
that such modes dominate the initial response of the
system, i.e., they are the most relevant modes at early
times after the perturbation takes place (see Ref. [72] as an
example). Several works in this direction were published in
the last few years due to its interpretation and relevance in
the dual field theory, and mainly to get more information
about the quark-gluon plasma before the hydrodynamic
regime [83–85].

A. Transverse sector

The nonhydrodynamic QNM frequencies of the trans-
verse sector are found by solving numerically the differ-
ential equation (22). The results displayed here are for wave
numbers in the intervals m ∈ ½−10; 10� and q ∈ ½0; 10�.
In Fig. 6 we show the frequencies of the first five transverse
nonhydrodynamic QNMs obtained for aα ¼ 0.1. The first
difference to note in comparison to the static case studied in
Ref. [70] is that the frequencies are now asymmetric under
the change m → −m. This result for the real parts of the
frequencies may be understood in terms of the difference in
the Doppler shift produced by the rotation as the waves
propagate in the þφ or −φ directions.
Another fact worthy to be noted is the interconnection

between two different neighbor modes, as it can be
observed in Fig. 6, where a lower lying mode grows and
reaches the first upper lying mode. This effect occurs at
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small q and positive m and is more evident for the
imaginary parts of the frequencies. We still do not know
the origin of such an effect that does not happen in the static
black string case, and a physical interpretation for it is also
missing.
To get more information from Fig. 6 we take two

dimensional slices by choosing some fixed values of the
wavenumber q. The slices for q ¼ 0, 1, 2 and 3 of the first
nonhydrodynamic mode are displayed in Fig. 7. As already
mentioned, the asymmetry of the real (left panel) and
imaginary (right panel) parts of the frequencies in relation
to m is a consequence of the rotation. The curves of wI
againstm show the peculiar behavior observed in Fig. 6 for
m ≫ 1: the asymptotic behavior of the modes for small q is
very different from that for large q. Clearly there is a sharp
jump at some intermediate value of q. However, in the −m
direction, the frequencies converge to the same value for
all q.
On basis of Fig. 8 an additional analysis of the slice

q ¼ 0 is developed in the sequence. As mentioned above,
we take the hydrodynamic QNM together with the first
nonhydrodynamic mode because these are the dominant
modes throughout the time evolution of the gravitational
perturbations (see, for instance, Ref. [85]). In the top panels
of Fig. 8 we display the absolute value of the QNM
frequencies, w ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2

R þw2
I

p
, as a function of the wave

number component m for aα ¼ 0.1 (top left panel) and
aα ¼ 1=

ffiffiffi
2

p
(top right panel). In these graphics, it is

possible to observe the different behaviors of the quasi-
normal frequencies in the low- and high-wave number
regimes. To quantitatively measure these differences we
calculate the slope of each curve through the relation

∂mw≡ ∂w
∂m ≈

Δw
Δm

¼ wiþ1 −wi

miþ1 −mi
: ð41Þ

Here wi and wiþ1 are numerical solutions calculated at
neighbor wave number values mi and miþ1, respectively.
The bottom left panel in Fig. 8 shows the corresponding
results for aα ¼ 0.1. In this figure we see a sharp jump
close to the point m ≈ 2.1 for both the hydrodynamic and
the first nonhydrodynamic modes. A vertical line was
plotted at this point. In the opposite direction, the hydro-
dynamic QNM still has this sharp jump atm ≈ −2.1, while
the nonhydrodynamic mode has a smooth transition. An
important feature is that the dispersion relation of the
nonhydrodynamic mode is approximately constant—the
slope being approximately zero—between the two vertical
lines. Asymptotically, for large wave numbers, the
dispersion relations tend to be linear, which is characteristic
behavior of the relativistic regime (see also Ref. [86]).
Repeating the same analysis for aα ¼ 1=

ffiffiffi
2

p
, we observe a

FIG. 6. The first five nonhydrodynamic modes of the transverse sector obtained by setting aα ¼ 0.1. The left (right) panel shows the
real (imaginary) part of the frequency.
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smooth transition in the results displayed in the bottom
right panel of Fig. 8.
The absolute values of the QNM frequencies, plotted

in Fig. 8, exhibit two different regimes. This behavior is
confirmed numerically by plotting the slope of the
dispersion relations, given by ∂mw, as shown in the bottom
panels of Fig. 8. A sharp jump for aα ¼ 0.1 and a smooth
jump for aα ¼ 0.71 are observed. Such a result might mean
that there exists some kind of “phase transition” in the
dual field theory: one phase dominated by a typical QNM
behavior and another phase by a linear relativistic
dispersion relation, as claimed in Ref. [86].
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FIG. 8. The absolute values of the hydrodynamic and the first nonhydrodynamic QNMs of the transverse sector as a function ofm for
q ¼ 0, with aα ¼ 0.1 (top left panel), and aα ¼ 1=

ffiffiffi
2

p
(top right panel). The bottom panels show the slope of the curves w ¼ wðmÞ,

given by ∂mw, for both cases shown in the top panels. The vertical lines in the left panels (top and bottom) are located at
m ≈ 2.1 and m ≈ −2.1.
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FIG. 9. The first five nonhydrodynamic QNMs of the transverse sector as a function of the rotation parameter for m ¼ q ¼ 0.

TABLE I. The first four nonhydrodynamic QNMs of the
transverse sector for aα ¼ 0.2, aα ¼ 1=

ffiffiffi
2

p
, and aα ¼ 0.8, by

setting q ¼ m ¼ 0.

aα ¼ 0.2 aα ¼ 1=
ffiffiffi
2

p
aα ¼ 0.8

n wR wI wR wI wR wI

1 1.80874 2.67375 1.88332 3.25760 2.05936 3.56685
2 3.08284 4.98585 3.88903 6.73601 4.41405 7.64535
3 4.35865 7.34553 5.98003 10.35772 6.84171 11.85020
4 5.66173 9.75472 8.09551 14.02184 9.28790 16.08711
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Figure 8 also shows another important consequence of
the rotation. In the case of aα ¼ 0.1 a transition from the
hydrodynamic-like to the relativistic behavior is observed,
an effect that was previously reported in Ref. [86] for the
QNMs of electromagnetic perturbations. As the rotation
parameter increases to aα ¼ 1=

ffiffiffi
2

p
, such a transition is no

longer evident. In the extremely rotating case, aα ¼ 1, the
dispersion relation becomes linear, meaning that the rela-
tivistic behavior is dominant and no transition is observed.
To finish the analysis of the transverse-sector, in Fig. 9

we display the evolution of the first five non-hydrodynamic
QNMs as a function of the rotation parameter aα. For
simplicity we choosem ¼ 0 ¼ q. These zero-wave number
modes are interpreted as gravitational waves propagating in
the radial direction. Additional information on the behavior
of these modes in terms of the rotation parameter can be
seen in Table I, where we write the frequencies of the first
four non-hydrodynamic modes for some selected values of
the rotation parameter. It is clearly seen that the frequency
grows with aα.

B. Longitudinal sector

The nonhydrodynamic QNM frequencies of the longi-
tudinal sector are obtained by solving numerically the
differential equation (25). Here we solve this equation for

wave number values in the intervals m ∈ ½−10; 10� and
q ∈ ½0; 10�. We display the numerical results of the first
three nonhydrodynamic modes in Fig. 10 for aα ¼ 0.1. As
reported in Ref. [70], the real and imaginary parts of the
frequencies of the static black string are symmetric under
the changes m → −m and q → −q. Here, the results show
that the symmetrym → −m is broken because the rotation
introduces a preferred direction. The asymmetry in the real
part of the frequency may be interpreted as a Doppler shift.
Differently from the transverse sector, cf. Fig. 6, no

interconnections between adjacent modes were observed.
In Table II we write selected values of the frequency of the
first four nonhydrodynamic modes; to obtain these results
we set m ¼ 0 ¼ q.
As it was done for the transverse sector, to get additional

information of the numerical results we plot slices of the
absolute value of the frequency as a function of m for
q ¼ 0. In the left top panel of Fig. 11 we plot the
hydrodynamic and the first nonhydrodynamic quasinormal
frequencies for aα ¼ 0.1. We also calculate the slope of the
curves by means of numerical approximations for ∂mw.
The results are displayed in the left bottom panel of Fig. 11.
For a (non)hydrodynamic QNM, it is observed a smooth
transition between a (non)hydrodynamic like behavior for
small wave numbers to a linear relativistic behavior in the
regime of large wave numbers.
The right top panel of Fig. 11 displays the results for

aα ¼ 1=
ffiffiffi
2

p
. This figure shows the hydrodynamic and the

first nonhydrodynamic quasinormal modes along the φ
direction. The slope ∂mwwas also calculated and the result
is displayed in the bottom right panel of that figure. The
plot shows a smooth transition from the small to the large
wave number regimes.
To complete the analysis of the longitudinal sector we

show in Fig. 12 the evolution of the first five nonhydrody-
namic QNMs as a function of the rotation parameter for
m ¼ 0 ¼ q. The behavior of these modes with the rotation
parameter is similar to the case of the transverse sector.

FIG. 10. The first three nonhydrodynamic modes of the longitudinal sector of perturbations. The left (right) panel shows the real
(imaginary) part of the frequency. These results were obtained by setting aα ¼ 0.1.

TABLE II. The first four nonhydrodynamic QNMs of the
longitudinal sector with zero wave numbers (q ¼ m ¼ 0) for
aα ¼ 0.2, aα ¼ 1=

ffiffiffi
2

p
, and aα ¼ 0.8.

aα ¼ 0.2 aα ¼ 1=
ffiffiffi
2

p
aα ¼ 0.8

n wR wI wR wI wR wI

1 1.80350 2.66783 1.24011 2.17621 1.16478 2.01591
2 3.05672 4.94665 2.89498 5.01419 3.22866 5.59221
3 4.28620 7.22177 4.93568 8.54886 5.62604 9.74459
4 5.50904 9.47953 7.03808 12.19031 8.06416 13.96753
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VI. EMERGENCE OF A NEW QNM CLASS AND
THE ALGEBRAICALLY SPECIAL MODES

As commented previously, the QNMs of the rotating
black strings are closely related to those of the static black
strings. Therefore, for most of the modes, the dispersion
relations of the static black string QNMs can be recovered
from the dispersion relations of the rotating black string
QNMs in the limit of aα → 0. However, during the search
for non-hydrodynamic QNMs, new solutions arise in both
sectors of the gravitational perturbations. These new
frequencies do not have any similar in previous studies

on static black strings (see, for instance, Refs. [68,70,72]),
and arise when the numerical search for QNMs is per-
formed close the imaginary axis. This is true, in particular,
for zero wave numbers m ¼ 0 ¼ q. Figure 13 displays the
evolution of the real and imaginary parts of the frequency
of the transverse (top panel) and longitudinal (bottom
panel) sectors, respectively, as a function of the wave
number component m.
Another characteristic property of these modes is the

behavior close to the static limit a → 0. In order to see that
we plot in Fig. 14 the first four QNMs of the transverse (left
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FIG. 11. The top panels show the absolute value of the frequency, w ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2

R þ w2
I

p
, for the hydrodynamic and the first non-

hydrodynamic QNMs of the longitudinal sector as a function of m, with q ¼ 0, and for two values of the rotation parameter: aα ¼ 0.1
(top left panel) and aα ¼ 1=

ffiffiffi
2

p
(top right panel). The bottom panels show the slope of the curves presented in the top panels. The right

panels show a vertical line at m ¼ −1.2.
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panel) and longitudinal (right panel) sectors as a function of
the rotation parameter. These frequencies raise to infinity
when aα → 0, i.e., the value of the frequency diverges
when the rotation parameter goes to zero. In fact, this is the
reason why these modes are not found in the static black-
string analysis. The numerical results indicate the existence
of an infinite sequence of such modes.
It is worth mentioning at this point that it has appeared in

the literature a few works studying purely damped modes
of the Kerr black hole in asymptotically flat spacetimes
[87,88]. They report on the appearance of frequencies that
have the same behavior as presented in Fig. 14, but no

physical interpretation was given for such perturbation
modes. On the other hand, in the present case of rotating
black strings in an asymptotically AdS background, the
solutions have a clear physical interpretation, namely, they
are gravitational quasinormal modes. In the holographic
context, it was recently obtained a similar result in the study
of perturbations of a five-dimensional 1-R charged black
hole close to a critical point [89].
In complement to the previous analysis, we now explore

a possible relationship between the modes of Fig. 14 and
the algebraically special modes [90–92]. For the definition
and more details on the algebraically special perturbations
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in the Kerr and Schwarzschild black holes see, e.g.,
[93–97]. It is verified numerically that the first (n ¼ 1)
QNM frequency of the transverse sector (left panel in
Fig. 14) approaches one of the algebraically special
frequencies in the limit of small values of the rotation
parameter. This is shown in the left panel of Fig. 15. In
order to verify such a relationship, we start reviewing the
dispersion relation of an algebraically special mode. As
found in previous works [70], static black strings possess
an algebraically special frequency given by

w̄ ¼ −
i
6
ðq̄2 þ m̄2α2Þ2: ð42Þ

Hence, by replacing relations Eq. (19) into Eq. (42) we get
some of the algebraically special frequencies of the rotating
black strings. Such frequencies now have nontrivial
dispersion relations

γw ¼ −i
γ4α4ðm − awÞ4

6
; ð43Þ

where to simplify the analysis we have set q ¼ 0. Solving
Eq. (43) for w and expanding the solutions around m ¼ 0,
we get

wa
1 ¼

61=3ei5π=6

ðaαÞ4=3γ þ
�

4

3aα
−
aα
3

�
mα

þ 22=3eiπ=6

37=3ðaαÞ2=3γ3 ðmαÞ2 þ � � � ; ð44Þ

wa
2 ¼ −

61=3eiπ=2

ðaαÞ4=3γ þ
�

4

3aα
−
aα
3

�
mα

−
22=3eiπ=2

37=3ðaαÞ2=3 ðmαÞ2 þ � � � ; ð45Þ

wa
3 ¼ aαðmαÞ − eiπ=2

6γ5
ðmαÞ4 þ � � � ; ð46Þ

wa
4 ¼

61=3eiπ=6

ðaαÞ4=3γ þ
�

4

3aα
−
aα
3

�
mα

þ 22=3ei5π=6

37=3ðaαÞ2=3γ3 ðmαÞ2 þ � � � ; ð47Þ

where the ellipses stand for higher order corrections and
the superscript a refers to the algebraically special frequen-
cies. From these results we observe the existence of
nonvanishing real and imaginary parts of the frequencies
wa

i ði ¼ 1;…; 4Þ, contrary to the static case, where the
algebraically special frequencies are purely imaginary
numbers. We discard the solutions wa

1 and wa
4 because

they have negative imaginary parts, representing unstable
modes. We also discard wa

3 because it does not present the
same behavior of the modes of Fig. 14, whose frequencies
are large for small rotation parameters. The remaining
solution, wa

2 , assumes large values for small rotation
parameters and the imaginary part is positive. It is worth
noticing that this solution becomes purely damped when
the wave number m is zero. This particular solution is
important because it coalesces into the first purely damped
transverse QNM in the limit of zero angular momentum,
aα → 0. In fact, this singular behavior was our guide to try
to connect the new-class frequencies to the algebraically
special frequencies. We realize that the first new transverse-
sector quasinormal mode is very close to the algebraically
special mode for small values of the rotation parameter,
deviating from it as the rotation parameter increases.
Quantitatively the difference between these two frequencies
can be seen in Table III. These results are also shown in the
left panel of Fig. 15.
Here we highlight the existence of an algebraically

special mode of frequency (42) associated to the longi-
tudinal perturbations. However, such a mode does not
appear in the QNM spectrum of the longitudinal (polar)
perturbations of a static black string [67,68]. Hence, as it
could be expected, it was not found a connection between
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FIG. 15. Left panel: The algebraically special frequency (dashed line) and the first new quasinormal mode (solid line) as a function of
the rotation parameter. Right panel: The dependence of the real parts of the frequencies of the first new purely damped mode (dashed
line), and of the algebraically special mode (solid line) with the wave number valuem. To get the results shown on the left panel we set
m ¼ 0 ¼ q, while to get the results on right panel we set q ¼ 0 and aα ¼ 0.2.
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the frequencies (44)–(47) and the new-class QNMs of the
longitudinal perturbations.
At this point one could ask if there exists a relation

between the algebraically special frequencies, wa
2 , and the

new family of QNMs for nonvanishing values of m (or q).
In order to answer such a question, we plot in Fig. 15 the
joint results of the real part of the frequency of the
algebraically special mode and the first new-class mode
(right panel) as a function of the wave number component
m. For small wave number values, the slope of the
dispersion relation curve is precisely the coefficient of
the real part of the frequency in Eq. (45), and it is the same
for both frequencies. This is true at least for values of the
rotation parameter smaller than aα ¼ 0.5. Doing the same
analysis for several values of the rotation parameter (we do
not present the whole results here), we arrive at the
conclusion that, at least for the first new mode, the modes
are numerically indistinguishable. Contrary to what hap-
pens in the static case, where the hydrodynamic QNM
approaches asymptotically to the algebraically special
frequency for large wave number values, here the opposite
situation is verified. The first new QNM, n ¼ 1, approaches
to the algebraically special frequency as the rotation
parameter decreases, cf. Fig. 14. We also realize that the
evolution of the first new QNM frequency as a function of
the wave number is approximately the same as the
algebraically special frequency for small values of the
wave number, as it can be seen in the right panel of Fig. 15.
We cannot say much about the new modes in the

longitudinal sector because, in this case, we do not have
an analytical expression for the static black string as the
algebraically special frequency (42). However, the behavior
of the new QNMs of the longitudinal perturbations seems
to be similar to those of the transverse-sector QNMs.

VII. FINAL COMMENTS AND CONCLUSION

We developed a detailed analysis of the gravitational
quasinormal modes of rotating black strings. First we
explored the relation between the Regge-Wheeler-Zerilli
(RWZ) and Kovtun-Starinets (KS) gauge-invariant quan-
tities to get the equations of motion in the KS variables.
After that, we obtained solutions of the differential

equations for the hydrodynamic quasinormal modes
through analytic and numeric methods. The analytic
solutions show the corrections in the dispersion relations
due to rotation. An example is the appearance of a nonzero
term associated to convection in the real part of the shear
mode frequency. On the other hand, the sound wave mode
has an intricate dispersion relation due to the mixture of
relativistic effects like the Lorentz contraction, the time
dilation, and the transformation of the sound velocity,
which become evident by considering some particular
cases, cf. for instance, Figs. 3 and 5. In both sectors, the
Doppler effect appears in our results as a consequence of
the finite angular momentum of the black string.
The nonhydrodynamic QNMs were investigated by

means of numerical methods. We found that the transverse
sector exhibits an interconnection between successive
modes, cf. Figs. 6 and 7. Additional information was
obtained by calculating the absolute values of the frequen-
cies, where it was observed a crossover from a (non)
hydrodynamic like behavior to the linear relativistic scaling
for small values of the rotation parameter, cf. the top left
panel in Fig. 8. By increasing the value of the rotation
parameter, the crossover is no longer observed, cf. top right
panel in Fig. 8. This result is expected since for large values
of the rotation parameter the system presents a typical
relativistic behavior. The results for the longitudinal sector
do not present an interconnection between successive
modes.
Additionally, we have found a new class of quasinormal

frequencies that does not have a similar counterpart in the
QNM spectra of static black strings. These modes appear in
both sectors and may be identified due to their peculiar
dependence on the rotation parameter, cf. Fig. 14. In the
transverse sector, the first mode of this new family of
QNMs has a similar behavior as the algebraically special
frequency, and approaches the last one in the limit of zero
rotation parameter. We also have shown the evolution of the
first new mode with the wave number, cf. the right panel of
Fig. 15. It is worth mentioning also that these new
frequencies are purely damped in the limit of zero wave
numbers.
We finish this work by mentioning one of our out-

looks concerning the present work. The immediate goal
is to explore how the above results change when the
electric charge is introduced in the rotating black strings.
We may follow the study on gravitoelectromagnetic per-
turbations of rotating charged black strings of Ref. [80] for
this purpose.
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APPENDIX: RELATIVISTIC WAVE VECTORS

The main goal of this Appendix is to find the dis-
persion relations of sound waves propagating in a moving
fluid from the known dispersion relations in the fluid
rest frame. The motivation for this alternative analysis is to
get a better understanding of the dispersion relations
obtained in the study of the gravitational perturbations
of rotating black strings, e.g., Eq. (36) of Sec. IV C. For
that, we start reviewing the sound-wave propagation in a
medium (which is identified as the CFT plasma in the
AdS=CFT duality) and the wave vector transformation
under a Lorentz boost.
Let K̄ and K denote two inertial reference frames. Later

on we shall identify K̄ as the rest frame and K as the
moving frame with respect to the fluid. The relations
between the four-vector components k̄μ (defined in the
frame K̄) and kμ (in the frame K) is kμ ¼ Λμ

νk̄ν, where Λ
μ
ν

is the Lorentz transformation matrix. In the present case,
the fluid lives in a (2þ 1)-dimensional Minkowski space-
time. Explicitly, we may write (see, e.g., Ref. [98]):

8<
:

ω ¼ γðω̄ − v · k̄Þ;
kk ¼ γðk̄k − vω̄Þ;
k⊥ ¼ k̄⊥;

ðA1Þ

where v is the velocity of frame K̄ with respect to K, k̄k (kk)
and k̄⊥ (k⊥) are, respectively, the parallel and perpendicular
components of the wave vector with respect to v. In order to
compare with the results presented in the previous sections,
we identify v ¼ aα, where boldfaced symbols are used
to indicate the spatial parts of vectors in the (2þ 1)-
dimensional Minkowski spacetime. The form of Eq. (A1)
guarantees the invariance of the phase of the plane waves.
For a discussion on this point see, for instance, Ref. [99].
The angular frequency in the rest frame K̄ is ω̄ ¼ k̄ · ūp,
where ūp is the phase velocity, with longitudinal projection
given by ūLp ¼ ðk̄ · ūpÞk̄=k̄2. The transverse components of
the phase velocity are indefinite [99]. Analogously, in the
moving frameK, the angular frequency isω ¼ k · up. From
here on, in this Appendix, we also use the relations ω̄ ¼
k̄ · ūp ¼ k̄ c̄ in frame K̄, and ω ¼ k · up ¼ kc in frame K.
Our next task is then to transform the identity ω̄ ¼ c̄ k̄

from K̄ to the new frame K, i.e., we are interested in
obtained the transformed quantities ω, c, and k entering the

identity ω ¼ ck in frame K. By applying the inverse of
Lorentz transformation (A1) to such an identity it
follows

γðω − vkkÞ ¼ c̄
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2ðkk − vωÞ2 þ k2⊥

q
: ðA2Þ

To complete the transformation, it is necessary to find the
transformation from the speed c̄ in frame K̄ to the speed c
in the new frame K. We then solve Eq. (A2) for the
frequency ω and use the identity ω ¼ ck to get

c ¼ ð1 − c̄2Þv cos θ
1 − v2c̄2

� c̄
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2c̄2 − ð1 − c̄2Þv2cos2θ

p
1 − v2c̄2

; ðA3Þ

where we used the relations kk ¼ k cos θ and jk⊥j ¼ k sin θ.
A similar result to Eq. (A3) was found in the context of
relativistic (super)fluids in Ref. [100].
Now we are ready to deal with the dispersion relations in

both reference frames. We know the dispersion relation of a
sound wave propagating in a dissipative medium in the rest
frame of the fluid (see, for instance, Ref. [101]), as being

ω̄ ¼ c̄
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k̄2k þ k̄2⊥

q
−
iðζ þ ηÞ
2ðϵþ pÞ ðk̄

2
k þ k̄2⊥Þ þOðk̄3; k̄4; � � �Þ:

ðA4Þ

Quantities ζ, η, ϵ and p are, respectively, the bulk viscosity,
shear viscosity, energy density and the pressure of the fluid.
The additional terms, i.e., Oðk̄3; k̄4; � � �Þ, are subleading
terms in the regime where the frequency and wave number
are of the same order. Here, it is interesting to point out that
in a CFT fluid ϵ ¼ 2p and ζ ¼ 0.
In order to build the dispersion relation in the frame K,

we start with the expression of the invariant wave phase
written in both frames [99],

ϕ ¼ ω̄ t̄−k̄ · r̄ ¼ ωt − k · r: ðA5Þ

Taking the derivative of Eq. (A5) with respect to time t,
considering a constant phase and using Lorentz trans-
formations, it follows

ω ¼ k · up þ
1

γð1 − v · ūpÞ
ðω̄ − k̄ · ūpÞ; ðA6Þ

where up ¼ dr=dt and ūp ¼ dr̄=dt̄ are the wave velocities,
i.e., the phase velocities in each reference frame. Notice
that, at first order approximation in the frequencies and
wave numbers, Eq. (A6) is trivially satisfied. However, we
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now are assuming that the dispersion relations are no longer
linear. This means that the relation ω̄ ¼ c̄ k̄ (or ω ¼ ck in
frame K) are first order approximations to the full
dispersion relation.
Finally, the dispersion relation in the new frame can be

obtained by substituting the relation k · up ≡ kc and
Eq. (A4) into (A6),

ω ¼ c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2k þ k2⊥

q
−

iðζ þ ηÞ
2γðϵþ pÞð1 − v · ūpÞ

×

�
γ2k2k

�
1 −

vc
cos θ

�
2

þ k2⊥
�
þ � � � : ðA7Þ

Notice that v · ūp ¼ vc̄ cos θ̄, where cos θ̄ ¼ k̄k=k̄.
Equation (A7) is equivalent to Eq. (36) obtained in
Sec. IV C. Here we prove this equivalence at least for
the linear term in the wave numbers. We start by replacing
Eq. (A3) into Eq. (A7) to get

ω ¼ ð1 − c̄2Þvkk
1 − v2c̄2

� c̄
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p

1 − v2c̄2

×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − v2c̄2Þk2 − ð1 − c̄2Þv2ðkkÞ2

q
; ðA8Þ

where it was taken into account the � signs of Eq. (A3).
Then, by setting kk ¼ k cos θ ¼ αm, k⊥ ¼ k sin θ ¼ q,

c̄ ¼ 1=
ffiffiffi
2

p
, v ¼ aα, and ðaαÞ2 ¼ 1 − 1=γ2, after algebraic

simplifications we obtain

ω ¼ aαγ2

1þ γ2
αm� 1

1þ γ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2α2m2 þ ð1þ γ2Þq2

q
: ðA9Þ

Notice that the right-hand side of (A9) is precisely the
linear term of Eq. (36). The proof of the equivalence for the
higher order terms requires additional algebraic manipu-
lations and we do not present here.
By comparing the results (A4) and (A7), we obtain a

little more clarification about the imaginary part of the
frequency. Setting k⊥ ¼ 0 (to simplify the analysis) in
Eq. (A7) and considering the� signs in Eq. (A3) we obtain
the relation

ωI ¼
ð1 − vc̄Þ
γð1þ vc̄Þ2 ω̄I ðA10Þ

for the plus sign, and

ωI ¼
1

γð1 − vc̄Þ ω̄I ðA11Þ

for the minus sign. In the last two relations, ω̄I is the
imaginary part of the frequency in the fluid rest frame K̄,
namely,

ω̄I ¼
1

2

ηþ ζ

ϵþ p
k̄2k: ðA12Þ

The imaginary part of the frequency in the moving frameK,
ωI , is modified (contracted) by the Lorentz factor γ, and it
is also modified due to the relative motion by the factors
ð1 − vc̄Þ and ð1þ vc̄Þ.
Taking into account that the damping time τ goes as the

inverse of the imaginary part of the wave frequency, i.e.,
:τ ¼ 1=ωI , for (A10) it follows

τ ¼ γ3
ð1þ vc̄Þ2
ð1 − vc̄Þ τ̄; ðA13Þ

while for (A11) it gives

τ ¼ γð1 − vc̄Þτ̄; ðA14Þ

where τ̄ and τ are the damping times in the frames K̄ andK,
respectively. Equations (A13) and (A14) are valid for
arbitrary values of the velocity v. By taking v ¼ c̄ into
Eq. (A14), it becomes τ ¼ τ̄=γ which is the time dilation
effect.
Furthermore, yet by comparing Eqs. (A4) and (A7) we

see that the parallel wave number component changes as
follows

k̄k ¼
�
1 −

vc
cos θ

�
γkk: ðA15Þ

Considering the particular situation where k⊥ ¼ 0 or,
equivalently θ ¼ 0, the plus sign solution of Eq. (A3) can
be written as c ¼ ðvþ c̄Þ=ð1þ vc̄Þ. Replacing into
Eq. (A15) it reduces to

kk ¼ ð1þ vc̄Þγk̄k: ðA16Þ

On the other hand, by considering the minus sign solution
and taking θ ¼ 0 into Eq. (A3) it can be written as
c ¼ ðv − c̄Þ=ð1 − vc̄Þ, so that Eq. (A15) reduces to

kk ¼ ð1 − vc̄Þγk̄k: ðA17Þ

Replacing v ¼ c̄ in Eq. (A17) it reduces to kk ¼ k̄k=γ
which is the Lorentz contraction. It is worth to point out
that by doing v ¼ c̄ the observer K is comoving with the
frame of the wave front.
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