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We consider the information metric and Berry connection in the context of noncommutative matrix
geometry. We propose that these objects give a new method of characterizing the fuzzy geometry of
matrices. We first give formal definitions of these geometric objects and then explicitly calculate them for
the well-known matrix configurations of fuzzy S? and fuzzy S*. We find that the information metrics are
given by the usual round metrics for both examples, while the Berry connections coincide with the

configurations of the Wu-Yang monopole and the Yang monopole for fuzzy S? and fuzzy S* respectively.
Then, we demonstrate that the matrix configurations of fuzzy S” (n = 2, 4) can be understood as images of

the embedding functions §” — R”*! under the Berezin-Toeplitz quantization map. Based on this result, we

also obtain a mapping rule for the Laplacian on fuzzy S*.
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I. INTRODUCTION

In the matrix models for string and M- theories [1,2],
geometry of fundamental objects such as strings and
membranes are described in terms of some Hermitian
matrices X*, which correspond to the quantized version
of the embedding functions. The quantization process to
obtain the matrices is very similar to the canonical
quantization of classical mechanical systems, in which
coordinates and conjugate momenta are promoted to
noncommutative operators acting on a Hilbert space.
In the case of the matrix models, the noncommuta-
tivity is introduced purely between coordinates and this
leads to the notion of the noncommutative matrix
geometry.

A nice framework of this quantization process is given
by the matrix regularization [3,4]. The matrix regulari-
zation can be defined for any compact symplectic
manifold (M,w) and is characterized by a sequence
{Ty}, where N runs over an infinite set of strictly
increasing positive integers and 7'y is a linear map from
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functions on M to N x N matrices. Basically, Ty is
required to satisfy

ITn(F)Tn(9) = Tn(f9)ll = O.
lien[Tn(f). Tn(9)] = Tn({f g}l = 0.

TrTN(f)—>/a)2”f, (1.1)

as N — oo. Here, || - || is a matrix norm, {, } is a Poisson
bracket on M and cy is an N-dependent constant, which
goes to infinity as N — oo and controls the magnitude of
noncommutativity. The first condition in (1.1) says that
the algebra of matrices approximates the algebra of
functions. In particular, it implies that the matrices
Ty(f) become commutative in the large-N limit. The
second condition means that, in the large-N limit, the
Poisson algebra can also be well-approximated by
the commutator algebra of matrices. The third condition
for integrals can be used to map action functionals on M
to matrix models.

Though most well-known matrix geometries such as the
fuzzy CP", fuzzy tori and so on [5-8] can be regarded as
concrete examples of the matrix regularization, there are
some other examples which do not fit into the definition of
the matrix regularization. In particular, since the definition
of the matrix regularization depends on the symplectic
structure, it can not be applied to nonsymplectic manifolds.
For example, $* is not a symplectic manifold and its fuzzy
version [9] gives a typical example which can not be
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described naively as the matrix regularization of four-
sphere.1 The fact that these nonsymplectic spaces also
play important roles in understanding D-branes in the
matrix models [9] suggests that the requirements of the
matrix regularization (1.1) may be too strong, and more
fundamental framework may be necessary to understand
fuzzy geometries in the matrix models.

In this paper, we consider the Berezin-Toeplitz quanti-
zation for spinor bundles [11,12]. This method can be
defined on a compact Riemannian spin-C manifold
equipped with a topologically nontrivial gauge field con-
figuration. This method provides a systematic way of
generating a linear map from functions on the manifold
to N x N matrices. Here, the space of N x N matrices
arises as a restriction of the functional space of spinors to
the space of Dirac zero modes, where N is the dimension of
the kernel of the Dirac operator and is related to the
topological charge (such as the monopole charge or
instanton number) of the gauge field by the index theorem.
For Kihler manifolds, this mapping has been shown to
satisfy the properties (1.1) of the matrix regularization, as a
consequence of the Kéhler compatibility condition [11,12].
However, since the definition of this quantization depends
only on the metric and gauge connection, the Berezin-
Toeplitz quantization map can be defined for nonsymplec-
tic manifolds as well. Therefore, the Berezin-Toeplitz
quantization may serve as a more fundamental mathemati-
cal framework for matrix models. Though a lot of concrete
matrix configurations corresponding to various objects in
string/M theories have been explicitly constructed so far
[5-8], to our best knowledge, little work has been done to
clarify the connection between those configurations and the
Berezin-Toeplitz quantization scheme.” In this paper, we
try to understand this connection more deeply to see
whether this quantization method indeed gives a good
framework for matrix models or not.

The problem we consider in this paper is an inverse
problem of the construction of the Berezin-Toeplitz quan-
tization. In the Berezin-Toeplitz quantization, matrices
(Toeplitz operators) are obtained from continuous geo-
metric data, such as manifolds and Dirac zero modes.’
Conversely, in this paper, we try to extract the geometric
data from a given set of Hermitian matrices X* which
define a fuzzy space. This problem should be particularly
important in studying the matrix models, which are for-
mulated completely in the language of matrices.

The most important geometric data in the Berezin-
Toeplitz quantization are the metric and the gauge

ISee [10] and references therein for various descriptions of
fuzzy S*.

This quantization has been studied in terms of the lowest Landau
level problem on some monopole backgrounds. See [13—15].

*More precisely, we mean by the geometric data the triplet of
the manifold, the metric and the gauge connection. Note that the
Dirac zero modes can be constructed from them.

connection. In order to recover these geometric objects
from the matrices X*, we propose the use of the information
metric and Berry connection. These objects are calculable
from the matrices X* and also serve as new objects
characterizing the geometry of the fuzzy spaces.

The definitions of the information metric and Berry
connection are based on the notion of the coherent states in
fuzzy spaces, which has been studied in various contexts
recently. In [16], the coherent states were introduced for
fuzzy spaces based on the viewpoint that they should have
minimal wave packets in the target space in the large-N
limit. In this formulation, the coherent states are defined as
ground states of a certain Hamiltonian. This construction
was then generalized to the case of finite-N matrices [17].
In the earlier work [18], the use of Dirac operator on DO-
branes was proposed based on a string-theory viewpoint.
This method also leads to the notion of the coherent states.
Since in all of these formulations, coherent states play very
important roles, we call these methods collectively the
coherent state methods in this paper. See [19-21] for some
analysis using the coherent state methods. See also [22,23]
for a nice interpretation of the coherent state methods in the
system of non-Bogomol nyi-Prasad-Sommerfield (BPS)
D-branes.

Based on the coherent state methods, one can define the
information metric and Berry connection for fuzzy spaces.
In this paper, we first give formal definitions of these
geometric objects. Then, we calculate the objects explicitly
for fuzzy S? and fuzzy S* as examples. Finally, we show
that for both cases the coherent states form a basis of
the Dirac zero modes, so that the Hilbert space on which the
matrices are acting can be identified with the space of the
Dirac zero modes in the Berezin-Toeplitz quantization. We
also demonstrate that, under the Berezin-Toeplitz quanti-
zation map, the defining Hermitian matrices for the fuzzy
S? and S$* can be seen as the images of the embedding
functions of $? and $*, respectively, into the flat target
spaces. This result provides a unified viewpoint for fuzzy
S? and fuzzy S$* By using the quantization map, we also
obtain explicit mapping rules for Laplacians on S? and S*.

This paper is organized as follows. In Sec. II, we review
the coherent state methods. In Sec. III, we introduce the
information metric and Berry connection. In Sec. IV, we
compute these structures for fuzzy S? and $*. In Sec. V, we
first review the Berezin-Toeplitz quantization and then
show that the matrix configurations of fuzzy S and fuzzy
S* can be interpreted as the images of the embedding
functions on S%> and S*, respectively. In Sec. VI, we
summarize our results.

II. COHERENT STATE METHODS

For a given set of Hermitian matrices {X*}, we can
define an analogue of the coherent states. By using them,
we can then associate the corresponding commutative
space M with the given matrices. In this section, we
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review this process for two different methods based on the
Hamiltonian and the Dirac operator.

A. Hamiltonian

We start with a set of N x N Hermitian matrices
{X#}(u=1,...,D), which defines a fuzzy space. We
assume that there exists a commutative limit such that
X* become mutually commuting and this limit is given by
the large-N limit. (For example, for the fuzzy sphere,
D =3 and X* are given by the N-dimensional irreducible
representation matrices L;(i = 1,2,3) of the SU(2) gen-
erators. For a unit sphere, X’ should be normalized to
satisfy (X')> =1y and thus X' —\/—L With this

normalization, X' become commuting matrices in the
large-N limit.) We also call this limit the classical limit
by analogy with the quantum mechanics, where the
commutative limit 7 — 0 indeed corresponds to the
classical limit. In terms of the matrix regularization, this
setup corresponds to a situation such that we are first given
the images X*:=Ty(x*) of the embedding functions
x: M — RP. But the following arguments apply not
only to the symplectic manifolds but also to nonsymplectic
manifolds such as S*. In the latter case, one can also
construct the corresponding matrices X* based on the
observations of D-brane charges or symmetries [9].

For the given N x N Hermitian matrices {X*}, we first
introduce the Hamiltonian, which is an N x N Hermitian
matrix defined by

t\.)l»—‘
IIMD

X, =y, In)" (2.1)

Here y, (4 = 1,2, ..., D) are real parameters and 1, stands
for the N x N identity matrix. In the following, we omit the
N x N identity matrix 1, for notational simplicity. Since
the Hamiltonian H(y) is Hermitian for any y, it is always
possible to diagonalize H(y) by using unitary similarity
transformations. We introduce a basis, on which H(y)
becomes diagonal:

H(y) ), (n=0,1,...,

N-1). (2.2)

s >:En(y>

Since H(y) is a non-negative matrix, all the eigenvalues
E,(y) are non-negative. We label the eigenvalues as
0 <Ey(y) <Ei(y) <--- <Ey_i(y). The eigenstates shall
be normalized as (n,y|m,y) = 5,,.

In quantum mechanics, the canonical coherent states are
the states with minimal wave packets and in particular, the
sizes of the wave packets go to zero in the classical limit
h — 0. For fuzzy spaces defined by {X*}, we can introduce
an analogue of the canonical coherent states by using the
above Hamiltonian as follows. From the definition of the
eigenstates, the lowest eigenvalue E,(y) can be expressed as

Eo(y) = (051H()[0.5) =5 ((X,)~3,)? + 5 (AX, )2
(2.3)
where
(Xu) = (0,¥[X,10, y), (2.4)
AX, = /(0. ¥1X2[0.3) = (0.¥[X, (0.2 (2.5)
In terms of the wave packet of the ground state |0, y), (X,

corresponds to the position of the center of the wave packet in
the target space, while AX,, corresponds to the size of the
wave packet in the u direction. Now, suppose that E(y) for a
certain y goes to zero in the classical (commutative) limit as
Ey(y) — 0. Then, since both terms in the right-hand side of
(2.3) are squared and positive, we have

- =0 ”
AX, — 0.

for all u simultaneously. This means that at the point y, there
exists a wave packet which can shrink to zero size in the
classical limit. Note that the inverse statement is also true,
namely, if there is a state which (is not necessarily an
eigenstate of H(y) but) satisfies (2.6) for a certain point
y € RP, the ground state energy E(y) is vanishing in the
classical limit. Thus, the zero loci of Ey(y) in R? is
equivalent to the subspace of R? such that there can exist
a wave packet which shrinks to a point in the classical limit.
Such states are counter objects of the canonical coherent
states in quantum mechanics. From this analogy, we call
,¥) coherent states here if it satisfies (2.6).

For the fuzzy space defined by {X*}, we can associate a
classical (commutative) manifold M as a hypersurface in
RP defined as a set of points on which there exist coherent
states. In other words, M is given by the zero loci of the
Hamiltonian:

M = {y e R?|f(y) = 0}, (2.7)
where we introduced a function
f(y) = lim Eo(y). (2.8)

Note that, in most cases of finite-size matrices, exact zero
modes of the Hamiltonian do not exist, and the classical space
M can only be defined with the large-N limit in this method.
However, this method can be extended to finite-/N cases with
the use of quasicoherent states [ 17]. Note also that even in the
large-N limit, if we consider general matrices for X#, there are
a lot of cases where M becomes an empty set. In order to
have a non empty set, {X*} need to become commutative in
the large-N limit as [X#, X*] — 0.
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In summary, we first introduced the coherent states as the
ground state eigenvectors of the Hamiltonian (2.1) which
have vanishing eigenvalues in the large-N limit. Next, we
defined a classical space M as a set of points in R? on
which there exists the coherent states.

B. Dirac operator

We next introduce another method based on a matrix
Dirac-type operator [18,22,23]. While the method using
Hamiltonian is based on the analogy with the quantum
mechanics, the method using Dirac operator is based on
some observations in string theories. Here, we first show
the mathematical treatment of this method and then explain
its physical implications in string theory.

The Dirac operator is defined from the given matrix X* as

D(y) = 5yvl—w b (XU _y”ﬂN)'

This is a 2[P/2IN x 2/P/2IN Hermitian matrix, where [D/2]
stands for the maximal integer less than or equal to D/2.

Here T* are 2[P/2 x 2[P/2 matrix representations of the
D-dimensional Euclidean Clifford algebra:

(2.9)

(T, T} = 26" Ty (2.10)

The classical space M is defined as a hypersurface on
which there exist zero modes of the Dirac operator as
follows. Since the Dirac operator is Hermitian matrix, it has
real eigenvalues. We denote eigenvalues and eigenstates as

B(y)n.y) = E,(y)ny),  (n=0,1,....2P72N - 1),

(2.11)

where we order the eigenvalues as |Ey(y)| < |E\(y)| <
-+ < |Eyway_q (v)| and the eigenstates shall be normalized
as (n,y|lm,y) = 8,,,. Note that E,,(y) can also take negative
values unlike the case of the Hamiltonian. The classical
space M is defined as hypersurfaces on which zero modes
of the Dirac operator exist:

M = {y € RP|Ey(y) = 0}. (2.12)

This definition of the classical space may look similar to
that using the Hamiltonian (2.7). A crucial difference is that
in the method using the Dirac operator, we do not need to
take the large-N limit to define the classical space M. The
Dirac operator allows exact zero modes even for finite N,
and the geometry is defined for a fixed finite N.

There are two different interpretations of this construction
in the context of the string theory. One is based on the probe
picture of DO-brane action [18]. Suppose N DO-branes form a
bound state such as fuzzy sphere and behave as higher
dimensional D-brane. Let X be the matrix configuration (the
bosonic fields) of these DO-branes. In addition, we consider
another probe D0O-brane at y*. Then, the Dirac operator (2.9)
appears in the fermionic kinetic term of the open string modes

connecting the bounded DO-branes and the probe brane. E,,
measures the lowest energy of the open string, which is in
general proportional to the length of the open string. Thus, at
the position where Dirac zero modes exist, the probe brane
hits the DO-branes, and hence M defined by (2.12) gives the
geometry of the DO-branes seen by the probe brane.

The second interpretation is provided by flat non-BPS
D-brane systems in superstring theory [22,23] (see also
[24,25]). The theory on the non-BPS D-branes generally
contains the tachyon field 7'(y), and the potential term of
T(y) in the low energy action is proportional to the

exponential factor ¢~ 70’ The theory possesses a classical
solution, which represents tachyon condensations. The
solution takes the form T(y) = ub(y), where X* in
(2.9) can be arbitrary constant Hermitian matrices. In order
for this to be a solution of the equation of motion, the
parameter u has to be sent to infinity. Then, since the
potential energy is proportional to e P0) with u — oo,
only zero modes of the Dirac operator survive. In particular,
this is possible only when y € M, where M is defined by
(2.12). Thus, this solution corresponds to a situation that
the original non-BPS branes with the world volume
coordinates y* becomes another configurations of D-branes
which has the shape of M. From the analysis of the
boundary string field theory, the latter D-branes are found
to be stable BPS D-branes. Thus, in this context, M given
by (2.12) corresponds to the shape of the BPS D-branes
produced after the tachyon condensation.
The square of the Dirac operator is calculated as

1
D*(y) = Tyop ® (X! = y!y)* + 2 [P T] @ [X7, X",
(2.13)

Note that the first term on the right-hand side is propor-
tional to the Hamiltonian. For the commuting matrices in
the large-N limit, we have

D2(y) = 2050 ® H(y) (2.14)
in the large-N limit. Thus, the Dirac operator asymptoti-
cally coincides with the Hamiltonian in the large-N limit.
One may think that the relation (2.14) between the
Hamiltonian and the Dirac operator in the large-N limit
also implies the equivalence of the classical spaces defined
by the two methods. However, rigorously speaking, there
are some cases in which the classical spaces do not coincide
with each other. Let us denote by My and My the
classical spaces defined by the Hamiltonian and the Dirac
operator in the large-N limit, respectively. For y* € My,

there exists a zero mode of the Dirac operator as
D(y)|0,y) = 0. Then we have

0 = (0,y[B*(y)|0.y) ~2(0,y

Tyon ® H(y)

0.y). (2.15)
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Thus, there also exists a zero mode of the Hamiltonian at
the same point y* in the large-N limit. This means that
My C My. However, the inverse statement may not be
true in general. For y# € My, one can only say that P
has an approximate zero mode in the large-N limit,
namely, # may not have an exact zero mode at that
point. Thus, if there exists a point at which any
eigenvalues of P are nonzero but some of them are very
small as O(1/N), such point will be included in My but
not in My, Hence, in general, we have only the
relation My C Mpy.

The method using the Dirac operator has an advantage
that the geometry can be rigidly defined at finite N and
hence mathematically rigorous treatment is possible at
finite N. However, depending on a context, one may be
interested in the geometry which emerges only in the large-
N limit. The method using the Hamiltonian has an
advantage that, without introducing the vector space of
spinors, one can pick up not only the points in M but
also approximately emergent points.

In the both pictures, each zero eigenstate describes a
single D-brane. If there are some degenerate zero eigen-
states of the Dirac operator, they corresponds to multiple
coincident D-branes.

III. INFORMATION METRIC
AND BERRY CONNECTION

In this section, we give definitions of the information
metric and Berry connection on M. In this section, we use
the Dirac operator method, but the same arguments apply to
the Hamiltonian method as well. See [21] for the case of the
Hamiltonian method.

A. Information metric
Suppose that the Dirac operator has k degenerate zero
modes and the zero eigenstates are labeled as |0,a,y)

(a=1,2,...,k). From these eigenstates, we first define a
density matrix,

k

1
p(y) =7 _10.a.5){0.a.y].

a=1

(3.1)

which is proportional to the projection operator onto the
k-dimensional vector space spanned by |0, @, y). Note that
p(y) is the unique density matrix made of the zero
eigenstates and invariant under the U(k) rotational trans-
formation of the zero eigenstates,

), V(y) e U(k). (3.2)

b=1

We consider the case that M defined in (2.12) is a smooth
simply connected compact manifold corresponding to

extended D-branes.* On a vicinity of this manifold,
,y) are differentiable. (Note that ) =
0,a,y) +¢€0,|0,a,y) +---. The derivative terms are
explicitly given by the formula of the perturbation theory
under D(y + €) = D(y) — I'*e,. This perturbation should be
smooth at least when ¢* is much smaller than the spectral gap
of the Dirac operator.) Then, p defined by (3.1) gives a
smooth map from M to the space of the density matrices.
Furthermore, we can show that p and its differential dp
are injective mappings. See Appendix A for our proof. Then,
p gives an embedding of M into the space D of all density
matrices,

p: M —-D. (3.3)

The space D of the density matrices forms a convex cone
and one can define a metric structure on this space. In fact,
the information (Bures) metric provides a natural metric on
D, defined by

1
ds*> = ETr(dpG), dp=pG+Gp. (34)

Here, the trace is taken over the vector space associated
with the density matrices and G is defined from p by the
second equation of (3.4). For pure states, the information
metric is equivalent to the Fubini-Study metric on the
complex projective space given by a set of normalized
complex vectors.

The embedding (3.3) then defines the pullback of the
information metric. This pullback provides a metric struc-
ture for M. For p given by (3.1), differentiating the relation
p> = p/k, one finds that

G = kdp. (3.5)

The pullback can then be explicitly written as

(D10 = D (0o )

a,b=1
(3.6)
Here || - || is the vector norm and d|0, a, y) is understood as
)= aloande, ()
=35 4,1V, 4, 2 .
Oo® Y

where {6} is arbitrary local coordinate on M. The local
coordinate should be chosen such that {¢”} parametrizes
the zeros of P(y) as Ey(y(s)) = 0.

“In general, M contains some disconnected components. The
following arguments can be easily extended to such general
cases.
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B. Berry connection

We can consider a gauge connection on M associated
with the local U(k) rotation (3.2) of the zero eigenstates
|0, a, y). This gauge field corresponds to the (non-Abelian)
Berry connection. The Berry connection is defined as the
following one form on M:

Aap(0) = —i(0.a.y|d|0. b, y), (3.8)

where d|0, b, y) is defined in (3.7). It is easy to see that (3.8)

transforms as a non-Abelian gauge field under the trans-
formation (3.2) as

A — VIAV —iviav. (3.9)

For well-known fuzzy spaces such as fuzzy S and S,
this gauge field takes topologically nontrivial configura-
tions such as monopoles and instantons. We demonstrate
this calculation in the following sections.

Let us comment on the setup considered in [21], in which
matrices {X*} behave as

[X*, XY] = — WH(X) + - -
CN

(3.10)

Here, cy is an N-dependent constant which goes to infinity
in the large-N limit, and - - - represents higher order terms in
1/cy. WH(X) in (3.10) is antisymmetric in the indices p, v
and is a polynomial in X* with convergent degree and
coefficients in the large-N limit. For the matrices satisfying
(3.10), it was shown in [21] that the curvature 2-form of the
Berry connection gives a symplectic form in the large-N
limit. Namely, the curvature 2-form is closed and non-
degenerate. The information metric was also shown to be
the compatible Kéhler metric for the symplectic form.

In the setup with D-branes studied in [18,22,23], the
Berry connection is understood as the gauge field on the
D-branes, as first noted in [24,26]. For Kéhler manifolds,
the information metric is the compatible world volume
metric on the D-branes.

IV. EXAMPLES

In this section, we consider fuzzy S? and $* as examples.
Through explicit calculations, we demonstrate that the
information metric for these spaces are given by the
ordinary round metric, while the Berry connections are
given by the configurations of the Wu-Yang monopole and
Yang monopole for fuzzy S? and S$*, respectively.

A. Fuzzy S?

1. Definition of fuzzy S*

In the standard description of the fuzzy S?, one uses three
Hermitian matrices, which correspond to the quantized

embedding functions into R3. The three matrices are
given as

2

X =RL!, R=——.
NZ—1

(4.1)

Here, L' are the SU(2) generators in the spin-J irreducible
representation, where J is related to the matrix size N by
N = 2J + 1. The normalization factor R is chosen so that
the fuzzy sphere has a unit radius as

3
> o(x)?2=1. (4.2)
i=1
These matrices satisfy the commutation relations’
L 2iekii
X, X)) = —=—_ X*, (4.3)
N> —1

For later convenience, we introduce the standard basis
J,m) of the representation space of L'. They satisfy

L3

J,m) =ml|J, m),

Jom)y=+/(JFm)(JEtm+1)J,m=E1),

Li

(4.4)

where L* = L' £iL% For J=1/2, we also use the
shorthand notation,

11/2,4) = [1/2,£1/2). (4.5)

2. Classical space for fuzzy S*
The Dirac operator for fuzzy S? is given by a 2N x 2N
Hermitian matrix,
D(y) =o' ® (RL' —y"). (4.6)
Here o' are the Pauli matrices. The spectrum of (4.6) is

derived in the Appendix B (See also [19,20,22]). There are
three types of the eigenstates,

W) = (U, @ Uy) (a5 [1/2,40) @ [J.m) + b5 [1/2,-)
® |J,m+1)),
lyy) = (U @Uy)1/2,4) @ |J.J).
ly.) = (U ®Uy)|1/2,—) ®|J,=J), (4.7)

where m =-J,-J+1,...,J—2,J—1, and the corre-
sponding eigenvalues are given by

Note that this commutation relation is of the form of (3.10).
Thus, the argument in [21] can be applied.
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R 1
2 ()= =55 [ R+ 4P =R 2m+ 1)y + R +1)}

Ay (y)=RJ—|y
A(y)=RJ+|y

El

, (4.8)

respectively, where |y| = v/>_;v%. In (4.7), b are
real coefficients satisfying

@ _ RYU-mU+m+1), o

ay’ = " (4.9)

Rm — |y = 2

as well as the normalization condition
a®)?2 4 pH2 =1, (4.10)

The unitary matrices U, and Uy in (4.7) are defined in
Appendix C 1.

Note that A.(y) is strictly positive and /lﬁ,it)(y) cannot be
zero form = —J,—J + 1, ...,J — 1. Thus, only |w,) can be
the zero mode of the Dirac operator. The classical space is
then defined as a set of y € R on which the zero mode
exists:

M = {y' € R3||y| = RJ}. (4.11)
Obviously, the classical space is given by a sphere with the
radius RJ embedded in R*. We can also apply the method
using the Hamiltonian. This is shown in Appendix D 1.

3. Information metric and Berry connection for fuzzy S*

We parametrize the classical space (4.11) by

y! = RJsin @ cos ¢,
y> = RJ sin@sin ¢,

y? = RJ cos . (4.12)
We also introduce the stereographic coordinate (z, z) on the
classical space by

‘ 0

z=e"tan~. (4.13)
2

We first compute the information metric (3.6) for the

zero eigenstate |y;) for the fuzzy S2. The expression (C8)

for the unitary matrix U is very useful in computing the

differential of the zero mode |w;). In the stereographic
coordinate, the differential of Uy(y)|/,J) is given by

J(zdz — zd?)

AUV ) = TR U )
%UN()/) J,J—1). (4.14)

By using this, we can easily compute (3.6). The result is
given by

dzd?

ds? = ||dlw)II? = [wildlwn)? = N5
$* = ) IP = 1wldlyn) P = N =

(4.15)

This is nothing but a round Kihler metric for S%. The
overall factor also picks up information of the density of
DO-branes, which is an intrinsic data of the matrices X*.

By using (4.14), we can also compute the Berry con-
nection (3.8) for fuzzy S% The result is given by

Nzdz — zdz

—i TR (416
2 1+ z? (4.16)

A= —i(y,|dly;) =

This is just the Dirac monopole configuration. The field
strength is

dz A dz

F=dA=iN~—~"2
(1+1z%)?

(4.17)

The monopole flux (or equivalently the first Chern class)
coincides with the matrix size N:

1

~ [F=n. (4.18)
2r

B. Fuzzy $*

1. Definition of fuzzy S*

Let us first introduce the following orthonormal vectors®:

0

Im) = > In2) =

(4.19)

n3) = : Ina) =

S = O O O O O =
- o O O O O =

We denote by H,, the Hilbert space spanned by all n-fold
totally symmetric tensor products of |n;) (i = 1,2, 3,4). We
denote by N the dimension of this space:

N dim i <n—|—3> _ (4 D+ 2)(n+3)

3 6
(4.20)

®See also [9,27] for the calculation in this subsection.
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We also denote by H;' the subspace of H,, spanned only by
all symmetric tensor products of |7;) and |i,). The
dimension of this subspace is

n+1
dim’H,,*:( | >:n—|—1.

We also introduce the five dimensional gamma matrices ',
satisfying {I"*, T2} = 2§4%1,. In the following, we use the
following representation of I'4:

<0 —io-,->
Ii'=0,Q®0;,=| .
ioc; O

0 1,
Ih=0®1,= s

(4.21)

1, 0
1, 0

Ts=06,01,=( ° , (4.22)
0 -1,

where o; are the Pauli matrices. Note that |57;) are eigenvec-
tors of I's with I's[n; 5) = [112) and I's|n34) = —[113.4)-

The vector space H,, gives the N-dimensional irreducible
representation space of the SO(5) Lie group. The
SO(5) generators 2,3 (A,B =1,2,...,5) are represented
on H, as

Dy (Zpp) =7 Tap @@ - @I+ 1, @Typ

Q QI+ +1,Q0 - @1, Qp).
(4.23)

N[ =

The fuzzy S* is defined by the configuration of the five
matrices on H,,,

" 1
XA:RG1(4>’ R:_a

, (4.24)

forA=1,2,...,5. Here, G/(;’) are N x N matrices acting on
'H,, and are given by the n-fold symmetric tensor products
of the five-dimensional Euclidean gamma matrices I'4:

Gg”) =IL® QL+, ® - ®T1,+---
T+, - @1, Q. (4.25)
We emphasize that though GX’) are represented as 4" x 4"

matrices, the Hilbert space is now restricted to H, with
dimension (4.20). As we prove in Appendix E, the matrices

G\ satisfy the relation,

STGY)? = n(n+ 41y,

(4.26)

The normalization factor R is chosen so that X4 gives a unit
sphere in the large-N limit:

> X% =1y, + O(1/n). (4.27)
A

Below, we will see that the classical spaces defined by the
Dirac operator and Hamiltonian indeed become the unit
sphere in the large-N limit.

2. Classical space for fuzzy S*

Here, we compute the classical space of fuzzy S* by
using the Dirac operator method (See also [20]). See
Appendix D2 for the derivation using the Hamiltonian
method.

For the configuration (4.24) of fuzzy S*, the Dirac
operator is given by

B(y) =T* ® (RGY" = y,). (4.28)
This is a 4N x 4N Hermitian matrix acting on R ‘H,.In
[20], it is shown that this Dirac operator has n + 2

degenerate zero modes. In the following, we present these
states based on a symmetry argument. We parametrize y, as

ya = |y|x4, where |[y| = /> ,¥3 and x4 is the unit vector
(C9) parametrized with the polar coordinates. We consider

a similarity transformation of A(y) with the unitary matrix
defined in (C17). Because of the relations (C11) and (C18),
the Dirac operator transforms into

4
Ut p(y) Ut =3 T @RGL 4TS ®(RGS ).
a=1
(4.29)

By using (E3) and I|5) = |n;), we can see that the
(n + 1)-fold tensor product of |5;) gives an eigenstate of
(4.29) with the eigenvalue nR — |y|. Thus, for |y| = nR,
UB+1)|5,)®("+1) gives a zero mode of the Dirac operator.
Note that the vector [|;;)®"*!) is an element of
H,.1 C C* ® H,. Hence, we can consider the action of
SO(5) generators Dy, (Z45) onto this vector. We notice
that (4.29) commutes with the SO(4) generators
DHHI(Zab) with a, b =1, 2, 3, 4, since all the SO(4)
vector indices are contracted in (4.29). Thus, any states
given by acting these generators on |5;)®"+1) also give
zero eigenstates of (4.29). In order to write down these
states, we utilize the decomposition of the SO(4) gener-
ators into the generators of SU(2) x SU(2):

i i
11:—5(2414—223), J2:—§(242+231)’

I
J3 = —5(243 +Z),

~ i
le

~ i
(Za1 — Z3). Ja 25(242—231),

\S]

J3 == (Z43 = Zp2). (4.30)

NI~

They satisfy
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Vi I = i€ijd s [T j] = iegjud i V.,J]=o0.
(4.31)
It is easy to see that Dy, (J;) are vanishing on [5;)®""+1),
while Dy, (J;) act as
1
Dy (J3)|n;) @Y = "er Iy, ) O,

ey _ (1 1D)(n+3)

DHn+1(Ji)2|771> = 4 |’71>®("+1)-

(4.32)

Hence, the state |17, )®("+1) is the highest weight state under
the one of the SU(2) symmetries. We use the notation J =
1 for the spin of this state and label the highest state as

I >® (n1)

= |7, (4.33)

By acting Dy, ,(J_) on this state, we can obtain the other

zero eigenstates of (4.29). By multiplying U®(**+1) on these
states, we finally obtain the n + 2 degenerate zero eigen-
states of D(y) as

U®n+l) > _ (‘] + m)! ®(n+1)
N @NT = m)!
X Dy, (J)' 7" )®0Y, (4.34)

where m =—-J,—J+1,...,J. These states have the
common eigenvalue Rn — |y| for the Dirac operator.

The classical space is given by the loci of zeros of the
Dirac operator as

M = {y € R’||y| = nR}. (4.35)

This is indeed $* with radius nR = 1. Note that this radius
differs from the naive expectation (4.27) by 1/n corrections.

3. Information metric and Berry connection for fuzzy S*

We introduce the spherical coordinate for (4.35) by
parametrizing y* as

= Rnx4, (4.36)

where x4 is defined in (C9). The information metric for the
fuzzy S* is given by

1 J
d’s = 4dU®n+l1) J, 2
sz (3 lawse i

J
- |<J,m|w®<"+l>du®("+l>|f,m’>l2>~

m,m'=—J

(4.37)

To evaluate this metric, let us introduce the chiral projection
operators,

P.==(1,£T%). (4.38)

l\.)l>—‘

Note that the states

) have the positive chirality,

) =

We notice that the second term in (4.37) can be written as

P?(le)

). (4.39)

J
Z (J, m|UT®+D) qu@n+)| 1 ')

x (J, m'|dUT®n ) y®n+)| T m), (4.40)
and UTdU takes values in the SO(5) Lie algebra. Since the
both sides of U'dU are projected onto the positive chirality
states in (4.40), only terms with SO(4) generators survive.
Furthermore, if one decomposes SO(4) to SU(2) x SU(2)
as in (4.30), J; vanish on ). Thus, only the generators
J; in UTdU survive in computing (4.40). For the generators
Ji, >[I, m')(J, m'| behaves as the unit matrix. In other
words, we have

Z |7, m)(J.m| = P2V, (4.41)
m=—J
Hence, (4.40) is equivalent to
1 ®(n-+1)
n+2 ZJU’ mlUT®(n+1)dU®(n+l)P+
x AU ySIH) | g ). (4.42)

Combining this with the first term in (4.37), we find that the
information metric is written as

1

dZ
s n+2

Z (J.m|O|J, m),

m=—J

O =P, dU'UP_U'dUP,. @ 1$" +---,  (4.43)

where - - - stands for the (n + 1)-fold symmetrization of the
first term. From (C7), we can explicitly compute UTdU as

1 1
UTdU = E d9F45 + E d¢(COS 9F34 + sin 9F35)
1
+ 5 dyr{cos pI'»3 + sin ¢p(cos O, + sin O55) }

1
+ 3 dy[cosyT'|, + siny{cos ¢I'|3

+ sin¢(cos 04 + sin O 5) }]. (4.44)
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This is decomposed under the chiral projection as
. d

P+LﬂdUP+::P+{—Z'?c<)s9r34

dy .

> (cos @I'r3 + sin ¢h cos Oy

dy

2

+

+ 2 (cosyT |, + siny cos ¢pI3

+ siny sin ¢ cos O 14) }P+,

dao d
P_UTdUP+ = P_{7F45 +7¢Sin9F35

d
+ 71” sin ¢ sin Ol 55

d
+~§smwsm¢sm9rw}P+. (4.45)

By substituting this into (4.43), finally we find that

dSZ_n—l-l

(d6?* + sin®0dgp?* + sin*Gsin’pdy?

+ sin?@sin’gsin’ydy?). (4.46)

This is the standard round metric for S*.
Next, we calculate the Berry connection for fuzzy S
which is defined by

Ay = —i{(J, m|UT+DquBn+D ] m'y, (4.47)

By using (4.30) and (4.45), we find that the Berry
connection is given by
Ay = (cos pdy — sinys sin ¢ cos Ody) Dy, (J1)

— (sin ¢ cos Odys + siny cos pdy ) Dy, (J2)

— (cos Od¢p — cosydy) Dy, (J3) - (4.48)
Let us also calculate the field strength. Introducing the

matrix notation, A == Y3 | A;Dy  (J;), the field strength
is given by F = Y3 | F;Dy,  (J;), where

1
F = dA® — 2 e Ab A AC, (4.49)

Straightforward calculation gives
F' = —sin ¢sin’0d¢p A dy + siny sin ¢ sin 0dO A dy,
F? =sin¢sin0dO A dy + siny sin ¢sin’0dep A dy,

F3 = sin0df A d¢p — sinysin’¢psin’0dy A dy. (4.50)

We can also show that this configuration is self-dual.
Taking a square of the field strength, we obtain

FIAF'4+F2PAFP+FP AP

= 6sin® @sin? gpsiny (dy A dy A dp A dB).  (4.51)
The right-hand side is just a volume form on S$*. This
configuration is known as the SU(2) Yang monopole on S*.
The instanton number (The second Chern class) is given by
the matrix size:

1
@/TI‘H”H (F AN F) = N. (452)

V. BEREZIN-TOEPLITZ QUANTIZATION

In this section, we show that the matrix configurations of
fuzzy S? and fuzzy S* can be regarded as the images of the
Berezin-Toeplitz quantization map.

A. Review of Berezin-Toeplitz quantization

We first give a brief review of the Berezin-Toeplitz
quantization map on spin-C manifold. We consider a
Euclidean compact spin-C  manifold M with a
Riemannian metric ¢ and a spinor bundle on M. We
assume that the gauge group is U(k) and the spinors shall
belong to the representation R of the gauge group. We
define the Dirac operator as usual as

1
p — FAEIIZ (8,4 +ZwyBCFBC — lAﬂ) . (51)

where A, e, and w are the gauge connection, vielbein, and
spin connection, respectively. By using the invariant
measure defined from the metric g, we can define the
inner product of sections. We denote this inner product
as (w,y').

Because of the index theorem, the kernel of the Dirac
operator (5.1) forms a finite dimensional vector space. The
dimension of this vector space is related to the Chern
numbers of A as well as the representation R of spinors. We
denote this dimension by N. Let {y;|i = 1,2,..., N} be an
orthonormal basis of Kerp satisfying (y;,y;) = d;;.
Multiplying a function f € C*(M) on y; gives another
spinor, which in general does not belong to Kerp) and can
be expanded in terms of the eigenfunctions of P as

N
fl//i:Z]ACijl//j"i_'”- (5.2)
=1

A

Jfij are constants (coefficients of y; in this expansion), and
-- - represents the part which takes values in the orthogonal
complement of Ker ). The coefficients fi ;j can be extracted as

]Acij = (l//jvfl//i)' (5-3)
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Since {f;;} is justaconstant N x N matrix, this construction
can be seen as a mapping from a function f to an N x N
matrix. This is the Berezin-Toeplitz quantization map. The
matrix f‘ is called the Toeplitz operator of f.

B. Berezin-Toeplitz quantization for fuzzy S*

Here, we will show that the matrix configuration (4.1) is
equal to the Toeplitz operator of the standard embedding
function S? — R3.

We first show that the zero eigenstate |y;) in (4.7) also
gives a zero eigenstate of the continuum Dirac operator
(5.1). In order to fix the basis of the 2-component spinors,
we make a local Lorentz transformation and consider

’ >>. (5.4)

Note that |y, )) contains only the positive chirality compo-
nent |1/2, +), and this is written as the upper component in
the last expression in (5.4). By using the vielbein and spin
connection in Appendix F, we can write the covariant
derivatives V, = €4(9, +  ,,.0"°) explicitly as

1+ |z z
V. — 3
=\ )

1+ |z z
(VR S S
= % pe

where r is the radius of the sphere. The actions of these
operators on |y, ) follow from (4.14) as

(J+1/2) \/_<UN|JJ_1>>7

) =Us @ Iylw,) = < 0

(5.5)

v ) +
_(T+1/2) 1/2)

Vily,) = 0

Vi_lw,) = ).

Note that the first terms in these expressions are just the
Berry connections multiplied by the inverses of vielbein,
euA,. From (5.6), we find that |y,)) satisfies

Ply) = o°(V, —ieaA,)ly,) =

Thus, |y,)) is a zero eigenstate of p. There are N
independent components in |y;)). Introducing the basis
liY(i =1,2,...,N) of the N-dimensional vector space, we
thus find N zero modes of P:

v = ((iIUNIJJ>
! 0

(5.6)

(5.7)

), Py; =0. (5.8)

By using the information metric g, we can define the

standard inner product for spinors. In the following
calculations, we use the formulas,

2B A - B)!B!

[ G

(I +1z%) (A+1)!

(5.9)

and

(1+| %) ’,Z_J < < )l/zu’r)’ (10)

where dQ, = sin0d6 A d¢p = zlli\m\d)z

of the unit sphere satisfying [ sz = 4n. From these
formulas, we can easily show that’

is the volume form

%/szUN|J,J><J,J|Uj‘v =Ty. (5.11)
This implies that y; are orthonormal under the inner
product given by the information metric. From the index
theorem, it also follows that the dimension of Kerp) is equal
to N. Thus, y; form an orthonormal basis of Kerp.

The Toeplitz operator for a function f € C*®(S5?) is given by

N .
i = g fwi) = 3 [ 9 liUMI 10U

(5.12)

The formula (5.11) also implies that the image of the unit
constant function on S? is given by the identity matrix.
Similarly, we can compute the images of the embedding
functions x’ (i = 1,2, 3) defined in (C1). We find that they are
mapped to

NS
Rl=—L,

5.13
J+1 (5:13)

fori = 1,2, 3. This is just the matrix configuration of fuzzy 5>
up to the overall constant. Thus, the matrix configuration of the
fuzzy S can be regarded as the Toeplitz operator of the
embedding function S* — R3.

The Toeplitz quantization map also induces mappings
for derivatives and integrals on S2. For example, the
mapping rule for integrals on S can be obtained by taking
the trace of (5.12):

Trf = % / dQ,f. (5.14)

Thus, integrals are mapped to traces. Similarly, we can
derive the mapping rule for the Laplace operator on S? as

1

(AAf)ij - _ﬁ [Llw [Lk»ﬂ]ij- (5-15)

See Appendix G 1 for derivation.

"The Eq. (5.11) can also be obtained easily from the symmetry
argument: The integration over S only produces rotationally
invariant tensors on S2. From the structure of indices, the
integration of Uyl|J, J){J,J|U) turns out to be proportional to
the identity matrix. The proportionality constant is fixed by
taking the trace.
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C. Berezin-Toeplitz quantization for fuzzy S$*

Next, we show that the matrix configuration (4.24) is
equal to the Toeplitz operator of the standard embedding
function $* — R>. We also obtain the mapping rule for the
Laplacian on $*.

We perform a local Lorentz transformation of the zero
eigenstates (4.34) and consider

Wmh) = 14 ® UP"|J, m). (5.16)
Recall that |J,m) is an element of H, ; C C* x H,, and

can be written as a sum of tensor products of elements in C*
and H,,. This decomposition is given by

oo
Tmy=Y %" cln  1/2.5)®17=1/2.7).  (5.17)

S:—%y:—J+%

where C;/,; is the Clebsh-Gordan coefficient of SU(2). In

terms of this expression, |y ,,)) can also be written as
e

) = > Cln L 11/2.5) @ (US"1T = 1/2.7)).

s=—ty=—J+1

(5.18)

Note that this vector has the positive chirality with respect
to I's:

I's® ﬂ?nw/]m» = |W!m>> (519)

Below, we will show that |y, )) is a zero eigenvector of the
differential Dirac operator (5.1). Here, the gauge field is
given by the Berry connection (4.48) and the representation
of the gauge group is the spin J = "T“ representation of
SU(2). The vielbein and the spin connection are given in
Appendix F.

Let us first consider the action of the covariant derivative
V, = ¢i(0, + o, ") without the gauge connection.
By comparing (4.45) and (F7), we find that the spin
connection has the following relation:

1 4
i > wpl P, = P,UAUP,. (5.20)

a,b=1
By using this relation, we obtain

ravah//Jm» = (FaP+ ® U®n)(U‘8aU ® ]]?n + ) J, m>’
(5.21)

where d, = €,0, and - - - stands for the symmetrization of
the first term. In the symmetrization of U'0,U, we insert
14 =P, + P_ in front of each UTaa U. Then, the terms

containing P, in these insertions can be calculated as

([P, @ (UP)®)(UTO,UTF" +--)|J.m)
J
- Z T U |J,m')(J,m'|(UT0,UR1Y" +---)|J,m)

J
= > (@) Wsm DA wim: (5.22)

where the second line follows from (4.41). Thus, this
contribution gives the Berry connection. On the other hand,
the terms containing P_ can be calculated as

(TP, @ U®) x 1, @ (P_UT0,UP, @ 12"V +...)|1.m)

1 o

:5(1]4®U®")XF“®(F,1®1]?< Dy, m)
1 n

=2, (1L@US) (" ®G")|J.m). (5.23)

where we used (4.45) and (F6) to obtain the second line.
Note that the last expression is vanishing as we saw in
Sec. IV B 2. Thus, combining these calculations, we find
that |y, ) gives a zero eigenvector of the gauge covariant
Dirac operator (5.1):

Ply ) =0, (5.24)

where the gauge field acts as Al ;,, ) = > Wi D (A) yrm-
Let{|i)|i = 1,2, ..., N} be any orthonormal basis of H,,.

By multiplying T, ® (i| to the state (5.18), we obtain

1 1
VN & &2 .
12 > i |1/2.9)(U®" T = 1/2.7).

n+
s=—ty=—J+1

q/{m =
(5.25)

1;/{ ™ are N spinors on S*, which are also elements of Kerp
because of (5.24). We introduce a gauge invariant inner
product between these spinors by

1 G 3(n+ 1) . .
(i) P /d94(w! )"

:n+2m:_J ys

(5.26)

where the dot - between y’s stands for the contraction of the
spinor indices, and d€, is the volume form of the unit
S* normalized as f dQ, = % We multiplied the factor
(n+1)? so that the integration measure becomes propor-
tional to the invariant measure made of the information
metric.
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Let us calculate (y;,y;). By using (5.25), we obtain

. N
Jm\t ., Jm _ J J
E:(‘/’im) wi" = nt 17 E : C%;?—%yc%ﬁ—%y'

m mxy.y
x (jlU®"T = 1/2,7)

x (J = 1/2,7|UT®"]i). (5.27)

By using the summation formula of the Clebsh-Gordan
coefficients,

2 1
et

10w (528

cy cy
§ :Caab/i Caab’ﬁ’
ay

we obtain

N 2J +1
dQy (y!m)T - ylm = ~
> / ) =

x / 49, |(UP, U ).

(5.29)

To obtain the last expression, we also used the fact that
|/ —1/2,7) forms a complete basis of H, and satisfies

SU=1200=1/2.4]=PF".  (530)
Y

Finally, by using (E6), we find that (5.29) is given by J;;
multiplied by a constant factor. Substituting this result into
(5.26), we find that

Wi w)) = 6y (5.31)
Namely, y?™ are orthonormal under this inner product.
Note that, from the index theorem with the second Chern
class (4.52), the dimension of Kerp) is equal to N. Thus,
{wlmli=1,2,...,N} gives a complete basis of Kerp.

We then consider the Toeplitz quantization map (5.3) for
fuzzy S*. Note that the orthonormal relation (5.31) implies
that the image of the unit constant function on $* is equal to
the identity matrix T4 . In this paper, we assume for
simplicity that the function f is gauge singlet, namely, it is
proportional to J,,,,. In this case, (5.3) can be written more
explicitly as

3 N

=2 [ ao,ril(up, U,
871.2"_'_1 4f<l|(U +U) |]>

fij (5.32)
Let us consider the case in which f is the embedding
function x* defined in (C9). By using the formula (E7), we

find that the image of this embedding function is given as

1

& = (1G],

=— 5.33
t n +4 ( )

The right-hand side is just the matrix configuration of fuzzy
S*. Thus, we find that the configuration of fuzzy S* can be
obtained as the Toeplitz operator of the embedding func-
tion $* — RS,

As for the case of §?, we can obtain the mapping rules for
integrals and the Laplace operator on S*. By taking the
trace of (5.32), we obtain

(5.34)
Thus, integrals are mapped to traces of matrices. Similarly,

the image of the Laplace operator on S* is given by

N 1 n n) 7%
(&f)y; = =[Gy G 7y

o (5.35)

See Appendix G 2 for derivation.

VI. SUMMARY AND DISCUSSION

In this paper, we developed the notion of the information
metric and Berry connection in the context of the matrix
geometry. These geometric objects can be defined purely
from given matrix configurations and are very useful in
characterizing the geometry of matrices. We utilized these
objects to see that the well-known matrix configurations of
fuzzy S and fuzzy S* can be viewed in a unified manner as
the Toeplitz operators of the embedding functions S§" —
R""! (n =2, 4). Based on this result, we also obtained
mapping rules for the Laplacian on these spaces and found
that in both cases, the Laplacian is realized as the matrix
Laplacian, [X*, [X*,]].

The fuzzy S? is the Berezin-Toeplitz quantization such
that the gauge group is U(1) and the monopole charge of
the connection 1-form is related to the matrix size N. The
large-N limit corresponds to the limit of large monopole
charge. On the other hand, we found that the Berezin-
Toeplitz quantization map for fuzzy S* has a very different
structure. The gauge group is non-Abelian and only an
SU(2) subgroup has nontrivial gauge connection, which
takes the form of the Yang-monopole on S*. The Yang-
monopole configuration has a fixed instanton number,
which is equal to 1. Thus, the topological charge does
not correspond to the matrix size unlike the case of fuzzy
S?. Instead, the spinors in the quantization map belong to
the spin-J representation of the SU(2) subgroup and this
spin J is ultimately related to the matrix size of fuzzy S*.
Thus, the large N limit is not the limit of large instanton
number but the limit of the large representation space of
spinors.

It would be an interesting problem to construct a
different Berezin-Toeplitz quantization on S* such that
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the representation of spinors are fixed but the instanton
numbers are given as an increasing sequence. Such map
would give a new description of fuzzy S*.

What we argued in this paper can be understood as an
inverse problem of constructing the Berezin-Toeplitz quan-
tization. In the Berezin-Toeplitz quantization, the matrices
(Toeplitz operators) are constructed from the geometric
structures such as the metric and gauge field, while we
constructed the information metric and Berry connection
from the given matrices. For the case of fuzzy S? and fuzzy
§*, we showed that the N-dimensional vector spaces on
which the matrices X* are acting are indeed identified with
the kernel of (differential) Dirac operators, and the asso-
ciated Berezin-Toeplitz quantization produce X* as the
Toeplitz operators. This means that our construction indeed
gives a solution of the inverse problem. Though we have
checked this statement only for S and S* in this paper,
extending this study to more general cases should be
important in understanding the geometry of matrices.

The use of the information metric and Berry connection
will not be limited only to the same kind of problems of the
Berezin-Toeplitz quantization that we considered in this
paper. For example, by embedding our setup into systems
with D-branes as considered in [22,23], the Berry con-
nection will be identified with the gauge field on D-branes.
Through the dualities considered in [28], it will be possible
to understand the Seiberg-Witten map for the Berry
connection for generic configurations of D-branes. It will
also be interesting to see the relation between our findings
in this paper and some recent attempts to construct
gravitational theories from matrix models [29-31].

The geometric objects presented in this paper are gauge
invariant and they provide a new class of observables for
matrix models. Though analytic calculation of these
observables may be difficult in general, the numerical
Monte Carlo method, which has been intensively utilized
in studying matrix models recently [32-37], gives a
practical way of computing these observables. For some
parameter regimes, it will be possible to capture geometric
information of matrix models by numerically computing
those observables. For example, the weak coupling region
of the BMN matrix model [38] on the fuzzy sphere
background, which corresponds to the decoupling limit
of D2-branes [39], can be studied with this method.
However, the interesting regime of the matrix models for
M-theory or string theory is not the weak coupling region,
unfortunately. We consider that extracting classical geom-
etry by using our observables is not straightforward for
such generic sector. This is because the matrix models
generically contain higher energy modes than the super-
gravity and generic configurations of matrices contain
contributions from the high energy modes [40-42].
Including those high energy modes, the classical geometric
description will not be valid. Thus, we consider that in
order to use our observables, it is first needed to find nice

degrees of freedom which can probe the low energy
physics. (In [41,42], such low energy description was
found for a 1/4 BPS sector of the BMN matrix model.)
It would be very interesting to find a numerical method of
extracting proper low energy degrees of freedom. Such
method would also make our observables very useful in
studying geometric aspects of the matrix models.
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APPENDIX A: INJECTIVITY OF p AND dp

In this Appendix, we prove the injectivity of p and dp.

We first prove the injectivity of p by contradiction. For
y#Y (v,y € M), suppose that p(y) = p(y'). Since the
density matrix is made of zero modes of the Dirac operator,
we have

B(y)p(y) =0. (Al)
From the assumption, we also have
By )p(y') =Dy )p(y) = 0. (A2)
Subtracting (A1) from (A2), we have
T ® (v, = ¥)p(y) =0. (A3)

Similarly, from the right action of the Dirac operator, we
also obtain

P @ (yu = ¥')) =0. (A4)
Then, we find that
0=p)I*® (v, =) ® (v, = ¥.))p(y)
= 2P0 1) @ (3, = ¥, ) = Y ))ol)
=(y=y)P*(). (AS)

As we assumed y # )/, it follows that p(y) = 0. This
contradicts with Trp(y) = 1. Hence we conclude that
p(y) # p(y') for y #y', which means that the map p is
injective.

Next, we show the injectivity of the differential dp. Let
c*(y)0, be a tangent vector field on M (i.e., ¢ has only
tangential components along M). We will show below that
if ¢#0,p =0, ¢ is vanishing. This is nothing but the
injectivity of dp. Assuming ¢*0,p = 0 on M, we have
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0= c(9,p(y))l0,
= (a0
‘%<1_;'0’b’y>< b,

)

)

)

)a,,|o,a,y>

cH
ZQZ\n,yﬂn,ﬂ%IO,a,y)- (A6)
n#0
As {|n,y)} is linearly independent, we find that
c#(n,y|0,10,a,y) =0 for n #0. (A7)
From the relation,
0= ¢"9,(D(y)[0,a,y))
= )+ D) ). (A8)

it follows that c#(n,y|d,(0,a,y) = c¢*(n,y|I',|0,a,y)/E,
for n # 0. Thus, (A7) is equivalent to

c(n,y|l,|0,a,y) =0 forn#0. (A9)
By acting (0, b, y| on the Eq. (A8), we also obtain
c(0,b,y|l",|0,a,y) = 0. (A10)
The relations (A9) and (A10) lead to
c"T,10,a,y) = 0. (A11)

By using this equation, we can calculate as

0 =ctc*(0,a, ,y)

= [c[*(0.a.y[0.b.y)

= |c[*8ap- (Al12)

This clearly shows that ¢c# = 0. Thus, we have shown that
dp is an injective map.

APPENDIX B: SPECTRUM OF DIRAC
OPERATOR FOR FUZZY §?

In this Appendix, we analyze the spectrum of the Dirac
operator for the fuzzy S?. We first notice that the Dirac
operator (4.6) satisfies

P (y) + RD(y) = (R*J(J + 1)+ [y, ® 1y
- 2R<yi% QIy+1,® yiL,.>. (B1)

Consider the operators

O =¥ @1y O()=1®yL. (B2)
Since the operators O;(y), O,(y) and P?(y) + RB(y)
mutually commute, they can be simultaneously diagonal-
ized. Thus, the eigenvalue problem of B%(y) + RP(y) is
reduced to finding the eigenstates of O;(y) and O,(y).

The eigenstates of y'L; can be found as follows.
Consider the unitary similarity transformation (C6) which
produces the rotation of the vector index. We consider the
rotation matrix (C5) with @ = ¢. In this case, U is explicitly
given by (C7) or equivalently by (C8). Under this similarity
transformation, y'L; transforms as

YU'LU =y (A7) /L; = |y|Ls. (B3)
This implies that the eigenstates of y'L; are give by
U|J,m), where |J,m) is the standard basis defined in
(4.4). Note that U depends only on the angular variables
for y.

Diagonalizing y’ %, which appears in O;(y), is just the
spacial case of the above argument such that the dimension
of the representation is equal to 2. Thus, its eigenstates are
given by U|1/2, £). Thus, the simultaneous eigenstates of
O,(y) and O,(y) are given by

Us(y)[1/2,£) @ Un(y)|J. m), (B4)
where the subscripts of U, and Uy just stand for the
dimensions of the representation spaces on which they are
acting.

(B4) gives the eigenstates of #?(y) + RP(y). For each
eigenstate, the eigenvalue of B*(y) + RP(y) is given by

R2J(J + 1)+ |y|* = 2R|y|(m £ 1/2). (B5)
Note that the states U,(y)|1/2,+) ® Uy(y)|J,J) and
U,(y)|1/2,-) @ Un(y)|J,—J) are not degenerate but
the other states are doubly degenerate.

The nondegenerate eigenstates of P*(y) + RP(y) are
also eigenstates of P(y) itself. Thus, we find the following
eigenstates of D(y):

), (BO)
(B7)

) = (U, ® Uy)[1/2.4) ®
lw.) = (U2 @ Uy)[1/2,=) ® |/, —J).

For the degenerate eigenstates of P?(y) + RP(y), we
generally need to take a linear combination of them to
find the eigenvectors of P(y). Thus, we consider

(U, @ Uy)(an|1/2.+) ® )
+b,[1/2,-) ® 1) (B8)

form=—-J,-J+1,...,J — 1. By acting the Dirac oper-
ator on these states, we obtain

W) =
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Bly) = (Us @ Uy) [Ra3 &L~ @y

R
+5(0'+ RQL_+o_ ®L+):|

where we utilized the properties of the unitary
matrices U, and Uy shown in Appendix C1. The
action of the SU(2) generators on the right-hand
side can also be explicitly computed by using (4.4).
Assuming that |y,) are eigenstates of P(y) with

X (a,|1/2,4) @ [J,m) + b,,|1/2,-) eigenvalues 4,,, we can obtain the following equations
® [J.m+ 1)), (BY) for a,, and b,,:
|
a, Rm— R\/(J—m)(J+m+1 a,
lm( ):< vl V(I =m)( >>< ) (B10)
by, R\/(J-m)(J+m+1)  —R(m+1)+]y| by,
The characteristic equation reads
Rm —|y| -4, R\/(J—m)(J+m+1
0 _det< 1yl V(I = m)( )> B11)
R/(J-m)J+m—+1) —R(m+1)+|y| -2,
=22, + R, — |y)? + R2m + 1)|y| = R2J(J + 1). (B12)
The eigenvalues are then given by
2 = R+ \/R2 + 4{|y]* = R2m + 1)|y| + R2J(J + 1)}. (B13)
|
The corresponding coefficients ') and b5 have to satisfy Let x be a general vector in R® parametrized as
(4.9) to give a solution of (B10). The normalization . -
condition for the state |y,,) also imposes (4.10). Note that, * sin§ cos ¢
' I
without loss of generality, both a'P and b can be set to x* [ = | sinfsing |, (C1)
be real numbers. Thus, the two Egs. (4.9) and (4.10) fully x3 cos @

determine the states |y,,).

APPENDIX C: REPRESENTATION MATRICES
OF SPECIAL UNITARY GROUPS

1. Representation matrices of SO(3)

In this Appendix, we explicitly write down representation
matrices of a SO(3) rotation which transforms a general unit

and x, be the unit vector pointing the North pole as

x; 0
3 |l=10 (C2)
x; 1

We can consider an SO(3) rotation which transforms x to x,

vector into the unit vector pointing the north pole. X = (A )ijx{)' (C3)
|
A~! is explicitly given by
cosOcos¢p —sing sinfcosq cosa sina O
A™' =] cosfsingg cos¢ sin@sing —sina cosa 0 (C4)
—siné 0 cos 6 0 0 1
cos¢p —singg O cos@ 0 sind cosa sina O
= | sing cos¢p O 0 1 0 —sina cosa 0 (C5)
0 0 1 —sinf 0 cosé 0 0 1
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Note that in defining A~! there is an ambiguity of SO(2)
rotations around the north pole. This ambiguity is repre-
sented by the angle a.

Now, let us consider the action of this rotation on the
generators of SO(3) (SU(2)). Let L' (i =1, 2, 3) be any
irreducible representation matrices of SU(2) generators.
Since the representation matrices of the generators of Lie
algebra are invariant tensors, there always exist unitary
similarity transformations which undo the rotation of the
vector index. Thus, there exists a unitary matrix U
satisfying
L

U'L,U= (A (Ce6)

ij=ie
If A! is the 3-dimensional (vector) representation matrix
of an element g of SU(2), the unitary matrix U is given by
the N-dimensional irreducible representation of the same
element g, where N is the dimension of the representation
of L.

Below, we fix the ambiguity in the definition of A~! by
putting @ = ¢. From (C5), we find that the unitary matrix U
satisfying (C6) is given by

U = e Lz g=i0La pi¢Ls (C7)
This has another expression:
U = b~ gL log(1+[2*) p-2L* (C8)

where L* = L' + iL? and we introduced the stereographic
coordinate (z,z) defined in (4.13).

2. Representation matrices of SO(5)

In this Appendix, we show representation matrices of
SO(5) rotations.
Let us first consider a unit vector in R, which can be
parametrized in the polar coordinate as
! sin @ sin ¢ sin y sin y

2 sin @ sin ¢ sin y cos y

3| = sin @ sin ¢ cos yr

4 sin 0 cos ¢

T T
|

5 cosfd

We also consider the unit vector x, pointing the North pole
given by

Xy 0
x5 0
x|=10 (C10)
xg 0
x; 1

There exists SO(5) rotation which transforms x, to x as

xA = ApxB.

(C11)

This transformation can be written as a product of some
SO(2) rotations. Indeed, A is given by a composition of a
rotation on the 5-4 plane with angle 6, a rotation on the 4-3
plane with angle ¢, a rotation on the 3-2 plane with angle y
and finally a rotation on the 2-1 plane with angle y.

We will write down the explicit form of A in the
following. We introduce the generators of SO(5) Lie
algebra, X,5,A, B € {1,2,3,4,5}, which satisfies

[ZAB’ 2'CD} = 5ADZBC + 5BCZAD - 5ACEBD - 5BD2AC'
(C12)

The fundamental (vector) and the spinor representation
matrices of X,p are given by

DV(ZAB)CD = 0acO8p — SanOBC>

1 1
Ds[Zpp] = sTap = —[Ca, Tg),

5 2 (C13)

respectively. For example, in the vector representation, Xs,
can be written as

0

Dy(Zsy) = 0 (C14)

0 -1
1 0

This generates the rotation on the 5-4 plane with angle 6,

1

Dy(e™s) = | (C15)

cos@ sinf

—sinfd cosd
Then, the rotation matrix A in (C11) can be represented as
A= Dv(e—)fzzl e VEn o—9Z43 6_9254). (C16)

The spinor representation of the same group element,

U = Ds(e—ﬂfzzl e—lI/Z3ze—¢243€—9254)

— e 121/2 p=¥T32/2 p=9T43/2 p—61's4/2 (C17)
satisfies the relation
AABFB - UIFAU (C18)
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APPENDIX D: HAMILTONIAN METHOD

1. Hamiltonian method for fuzzy S>
In this Appendix, we compute the classical geometry of
S? by using the Hamiltonian method.
The Hamiltonian for the fuzzy S? configuration (4.1) is
given by

o .
H(y) =5 (RL' = y')* = S (RYJ(J + 1) + [y") = Ry'L;.

N[ =

(D1)

Thus, the problem is just reduced to diagonalizing the
operator y'L;. This is done in Appendix B, and the eigenstates
are given by U(y)|J, m), where U(y) is the N-dimensional
representation matrix of the SO(3) rotation defined in
Appendix C 1. The eigenvalues of H(y) are given by

1
= (R2J(J + 1)+ [y*) — Rmly|.

5 (D2)

In particular, the ground state is given by m = J. In the large-
N limit, the ground state energy converges to

1

S (=)

5 (D3)

The classical geometry is defined as zeros of this function.
Thus, we find that the classical geometry is given by a unit
sphere,
M ={yeR|y| =1}, (D4)
The information metric and the Berry connection can
also be computed in the similar way to the case of the Dirac
operator. By using the differential of the ground state
(4.14), one can quickly check that in the large-N limit, the
information metric and Berry connection are equal to those
obtained in Sec. IVA 3.

2. Hamiltonian method for fuzzy S*

The Hamiltonian for the matrices (4.24) is given by

(1+yP?) —yaX* +O(1/n),  (D5)

| =

H(y) =

where |y| = y,y*. In order to find the spectrum of this
Hamiltonian, we consider the specific SO(5) rotation matrix
A that brings the vector in the direction of the pole
(0,0,0,0,|y|) to the position vector of a point y € R>:
yaA? g = |y|65s. As shown in Appendix C 2, for this rotation
there exists a corresponding unitary operator U which
satisfies (C18). It follows from the relation (C18) that

Ut (y X4 US" = |y|Xs. (Do)

Using this relation we can diagonalize the Hamiltonian as

H) = 0% SR =yl +0(1/m) | U7en. (D7)

Then we can easily find the ground states of H(y) as

0@, y) = U®"n/2,n/2 —a) a€{0,1,...,n}. (DS)

Here, the notation |J,m) introduced in Sec. IVB2 is
used on the right-hand side. Note that J = (n+1)/2 in
Sec.IV B 2, while J/ = n/2 in this Appendix. This difference
comes from the fact that the Dirac orator is defined in a bigger
vector space. The eigenvalue of the ground states is

Ey(y) :%

In the classical limit, the zeros of E(y) are points such that
|y| = 1, and the classical space is indeed S* with unit radius.

Note that the structure of the ground state is common to
that in the Dirac operator method. Hence, in the large-N
limit, the Berry connection and the information metric for
the Hamiltonian method are equivalent to those in the Dirac
operator method.

(1= yI?) +O(1/n). (D9)

APPENDIX E: DERIVATION OF USEFUL
RELATIONS FOR FUZZY S*

In this Appendix, we prove some useful relations for
fuzzy S*.
We first prove (4.26). We first calculate as

ST(GY)? = snly, + 20 (E1)
A
Here, O is given by
O:FA®FA®H4®H4+"', (EZ)

where --- stands for all the symmetric permutations
of the positions of I',’s in the first term (i.e., O has totally
n(n —1)/2 terms). Itis easy to see that O commutes with all
of the SO(5) generators, (4.23). Thus, from Schur’s lemma,
O is proportional to the identity matrix on H,. The
normalization constant can be fixed by acting O on the
vector |17,)®". By using the representations (4.22), we can
easily prove that

4

Z;(F“ ®T)m) & In) = 0. (E3)
Then, we obtain
Omyer ="y yon (B4
Hence, we find that
0= w Ty, (E5)

Substituting this into (E1), we obtain (4.26).
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Next, we prove the following equations:

/dQ (UP U)®" —Lﬂ (E6)
A T (n+2)(n+3) ™
/ dQux,(UP. UT)®" = tor” G\
AT T (n2)(n+3)(n+4) A
(E7)

Here, the volume form d€2, shall be normalized as f dQ, =
ST”Z and x4 in the second equation is defined in (C9). These

equation follow from the fact that the integrations over S*
produce only rotationally invariant tensors. Thus, from the
structures of indices, we can see that the right-hand sides of
(E6) and (E7) are proportional to the identity matrix and

Gg"), respectively8 Namely, we have

/ dQ(UP, UN)®" = aly , (ER)

/ dQux,(UP, UT)®" = G\, (E9)

The remaining task is to determine the proportionality
constants @ and f. a is determined by taking the trace of the
both sides in (E8). Noting that

Try, (UP U")®" =Try P®" =Try: 1y, =dimH,f =n+1,
(E10)

we find that « is given as in (E6). f is determined by
multiplying GX‘) and taking a summation over A and finally
taking the traces in the both sides of (E9). Because of

(4.26), the right-hand side of (E9) becomes

nn+1)(n+2)(n+3)(n+4)
6

/)7n(n + 4)TanﬂHn = ﬁ
(E11)

Because of (C11) and (C18), the left-hand side of (E9)
becomes

¥Note that any contractions of the vector indices of Gamma
matrices as in (E2) give the trivial identity matrix as shown in
(ES).

/ 4@ A5 Ty, (G P2

- / dQ,Try, (GYP®")

872

= /dQ4TrH;(G§")) =Znlnt+1).  (E12)

By equating (E11) and (E12), we finally obtain (E7).

APPENDIX F: SPIN CONNECTIONS
ON $? AND §*

In this Appendix, we list the spin connections on S and S*.

1. Spin connections on S>

The standard round metric on S? in the stereographic
coordinate is given by

dzdz
(1+1z*)*

where r is any positive constant corresponding to the radius
of the sphere. We introduce the vielbein by

ds*> =r? (F1)

rdz _ rdz

+ , -
1+ |z]? 1+ |z]?

(F2)

so that ds®> = e*e~. The spin connection @ is determined
by the equations de” + s A e =0. In our case, the
equations reduce to

< _
ot Net==e" NeT,

’
W _ANe = et Ae (F3)
r
The solution to these equations is given by
1 zd7z — Zdz
ot =—-w_=—(ze” —ze") ="+ F4
+ I"< ) 1 + |Z|2 ( )

2. Spin connections on $*

The standard round metric on §* in the polar coordinate
is given by

ds* = r*(d6* + sin® 9d¢? + sin® 0 sin? pdy>
+ sin® @ sin? ¢ sin” ywdy?), (F5)
where r is the radius of S*. We define the vielbein by
e’ = rsin@sin ¢ sinydy,
e” = rsin@sin ¢gdy,
e’ = rsin@de,
e* = rdo. (F6)

By solving the equations de® + @ A e/ =0, we obtain
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the spin connection as
wyy = cosydy,
w13 = cos ¢ sinydy,
w14 = cos @sin ¢ sinydy,

w,3 = cos ¢dy,
W,y = cos @sin ¢pdy,
w34 = cos Odg. (F7)

APPENDIX G: QUANTIZATION MAPS FOR
LAPLACIANS ON S2 AND $*

In this Appendix, we derive the mapping rules (5.15) and
(5.35) for Laplace operators on S and S*, respectively.

1. Laplacian on S?

Here, we derive (5.15). From the mapping rule (5.12), we
have
(&), = (wj fD2w) + 2(Dyr s, f D),

(G1)

(Diy ;. fw:) +

where we have used partial integrations. The first and the
second terms in (G1) can be evaluated with the formula

Diy; = _%Wi- (G2)
This is obtained as follows. Since Dy; = 0, we have
Day; = (0“0" = o")D, Dyy;
== %Uﬂb [Da, Dyl

1 1 .
= —Eaab (ZRabchCd - lFab> wi.  (G3)

For S? with radius r, the curvature tensor is given by

1
Rupea = s (8acOba = Baadbe)s (G4)
and F,;, = ehe ey F,, is obtained from (4.17) as
N
Fo=—. G5
12 2}’2 ( )

Substituting (G4) and (GS5) into (G3), we obtain (G2). The
third term in (G1) is evaluated by using
(Go)

1
Diy; = ;A:Fk(Lk)ijo-

These equations follow from (5.6) and (C6). By using the
relation

2
Z AgeDa = G = x*x, (G7)
a=1

where x* is defined in (C1), we find that the third term in (G1)
is given by

2J? 2

- 2 fz] (Gg)

( WL

From this and (G3), we obtain (5.15).

2. Laplacian on $*

The mapping rule for the Laplace operator on S* can be
obtained in a similar way as the case of S2. First, it is easy to
see that

1 4i

STOFL, =3 Dg().
The curvature tensor of $* with radius r is given by the
same form as (G4), where the indices a, b, ¢, d run from 1
to 4 for S*. Then, from (G9), the relation

4]2

(G9)

[[D,, Dyl = mo o (G10)

holds. From (5.25), it is also easy to obtain

Dylm=——% C/" ,12 U®”G J-1/2,
aW; 2r +1 Z |/ S | | / y>

(G11)

By using (G10) and (G11), we can evaluate the Toeplitz
operator for the Laplacian on $* defined by

—~ 3 1)
57y =y et [ty nar. (@)

By integrating by parts, this is given by the sum of terms
such as [ dQy(yi™)" ( 2uIm)f, [ dQy(D2yr™) Tyl f and
[ dQy(D uy/f'”) (Du w!™)f. The first two can be evaluated
by noting that

D,Dyim = (Ter? —

1
= _Erab[Dathh/fi]m’

Fab>D D l//Jm
(G13)

and using (G10), while the third term can be calculated with
(G11). These calculations lead to the mapping rule (5.35).
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